@inproceedings{di-fabbrizio-etal-2024-scalable,
title = "Scalable Query Understanding for {E}-commerce: An Ensemble Architecture with Graph-based Optimization",
author = "Di Fabbrizio, Giuseppe and
Stepanov, Evgeny and
Frizziero, Ludovico and
Tessaro, Filippo",
editor = "Dell'Orletta, Felice and
Lenci, Alessandro and
Montemagni, Simonetta and
Sprugnoli, Rachele",
booktitle = "Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)",
month = dec,
year = "2024",
address = "Pisa, Italy",
publisher = "CEUR Workshop Proceedings",
url = "https://aclanthology.org/2024.clicit-1.35/",
pages = "289--296",
ISBN = "979-12-210-7060-6",
abstract = "Query understanding is a critical component of e-commerce platforms, enabling accurate interpretation of users' intents and efficient retrieval of relevant products. This paper presents a study on scalable query understanding techniques applied to a real use case in the e-commerce grocery domain. We propose a novel architecture that combines deep learning models with traditional ML models to capture query nuances and provide robust performance. Our model ensemble approach aims to capture the nuances of user queries and provide robust performance across various query types and categories. We conduct experiments on real-life datasets and demonstrate the effectiveness of our proposed solution in terms of accuracy and scalability. An optimized graph-based architecture using Ray enables efficient processing of high-volume traffic. The experimental results highlight the benefits of combining diverse models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="di-fabbrizio-etal-2024-scalable">
<titleInfo>
<title>Scalable Query Understanding for E-commerce: An Ensemble Architecture with Graph-based Optimization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Di Fabbrizio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Evgeny</namePart>
<namePart type="family">Stepanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ludovico</namePart>
<namePart type="family">Frizziero</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Filippo</namePart>
<namePart type="family">Tessaro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Felice</namePart>
<namePart type="family">Dell’Orletta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simonetta</namePart>
<namePart type="family">Montemagni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachele</namePart>
<namePart type="family">Sprugnoli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>CEUR Workshop Proceedings</publisher>
<place>
<placeTerm type="text">Pisa, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-12-210-7060-6</identifier>
</relatedItem>
<abstract>Query understanding is a critical component of e-commerce platforms, enabling accurate interpretation of users’ intents and efficient retrieval of relevant products. This paper presents a study on scalable query understanding techniques applied to a real use case in the e-commerce grocery domain. We propose a novel architecture that combines deep learning models with traditional ML models to capture query nuances and provide robust performance. Our model ensemble approach aims to capture the nuances of user queries and provide robust performance across various query types and categories. We conduct experiments on real-life datasets and demonstrate the effectiveness of our proposed solution in terms of accuracy and scalability. An optimized graph-based architecture using Ray enables efficient processing of high-volume traffic. The experimental results highlight the benefits of combining diverse models.</abstract>
<identifier type="citekey">di-fabbrizio-etal-2024-scalable</identifier>
<location>
<url>https://aclanthology.org/2024.clicit-1.35/</url>
</location>
<part>
<date>2024-12</date>
<extent unit="page">
<start>289</start>
<end>296</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Scalable Query Understanding for E-commerce: An Ensemble Architecture with Graph-based Optimization
%A Di Fabbrizio, Giuseppe
%A Stepanov, Evgeny
%A Frizziero, Ludovico
%A Tessaro, Filippo
%Y Dell’Orletta, Felice
%Y Lenci, Alessandro
%Y Montemagni, Simonetta
%Y Sprugnoli, Rachele
%S Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)
%D 2024
%8 December
%I CEUR Workshop Proceedings
%C Pisa, Italy
%@ 979-12-210-7060-6
%F di-fabbrizio-etal-2024-scalable
%X Query understanding is a critical component of e-commerce platforms, enabling accurate interpretation of users’ intents and efficient retrieval of relevant products. This paper presents a study on scalable query understanding techniques applied to a real use case in the e-commerce grocery domain. We propose a novel architecture that combines deep learning models with traditional ML models to capture query nuances and provide robust performance. Our model ensemble approach aims to capture the nuances of user queries and provide robust performance across various query types and categories. We conduct experiments on real-life datasets and demonstrate the effectiveness of our proposed solution in terms of accuracy and scalability. An optimized graph-based architecture using Ray enables efficient processing of high-volume traffic. The experimental results highlight the benefits of combining diverse models.
%U https://aclanthology.org/2024.clicit-1.35/
%P 289-296
Markdown (Informal)
[Scalable Query Understanding for E-commerce: An Ensemble Architecture with Graph-based Optimization](https://aclanthology.org/2024.clicit-1.35/) (Di Fabbrizio et al., CLiC-it 2024)
ACL