@inproceedings{leonardi-etal-2024-hits,
title = "{H}its or Misses? A Linguistically Explainable Formula for Fanfiction Success",
author = "Leonardi, Giulio and
Brunato, Dominique and
Dell{'}orletta, Felice",
editor = "Dell'Orletta, Felice and
Lenci, Alessandro and
Montemagni, Simonetta and
Sprugnoli, Rachele",
booktitle = "Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)",
month = dec,
year = "2024",
address = "Pisa, Italy",
publisher = "CEUR Workshop Proceedings",
url = "https://aclanthology.org/2024.clicit-1.58/",
pages = "488--495",
ISBN = "979-12-210-7060-6",
abstract = "This study presents a computational analysis of Italian fanfiction, aiming to construct an interpretable model of successful writing within this emerging literary domain. Leveraging explicit features that capture both linguistic style and semantic content, we demonstrate the feasibility of automatically predicting successful writing in fanfiction and we identify a set of robust linguistic predictors that maintain their predictive power across diverse topics and time periods, offering insights into the universal aspects of engaging storytelling. This approach not only enhances our understanding of fanfiction as a genre but also offers potential applications in broader literary analysis and content creation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="leonardi-etal-2024-hits">
<titleInfo>
<title>Hits or Misses? A Linguistically Explainable Formula for Fanfiction Success</title>
</titleInfo>
<name type="personal">
<namePart type="given">Giulio</namePart>
<namePart type="family">Leonardi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dominique</namePart>
<namePart type="family">Brunato</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Felice</namePart>
<namePart type="family">Dell’orletta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Felice</namePart>
<namePart type="family">Dell’Orletta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simonetta</namePart>
<namePart type="family">Montemagni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachele</namePart>
<namePart type="family">Sprugnoli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>CEUR Workshop Proceedings</publisher>
<place>
<placeTerm type="text">Pisa, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-12-210-7060-6</identifier>
</relatedItem>
<abstract>This study presents a computational analysis of Italian fanfiction, aiming to construct an interpretable model of successful writing within this emerging literary domain. Leveraging explicit features that capture both linguistic style and semantic content, we demonstrate the feasibility of automatically predicting successful writing in fanfiction and we identify a set of robust linguistic predictors that maintain their predictive power across diverse topics and time periods, offering insights into the universal aspects of engaging storytelling. This approach not only enhances our understanding of fanfiction as a genre but also offers potential applications in broader literary analysis and content creation.</abstract>
<identifier type="citekey">leonardi-etal-2024-hits</identifier>
<location>
<url>https://aclanthology.org/2024.clicit-1.58/</url>
</location>
<part>
<date>2024-12</date>
<extent unit="page">
<start>488</start>
<end>495</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Hits or Misses? A Linguistically Explainable Formula for Fanfiction Success
%A Leonardi, Giulio
%A Brunato, Dominique
%A Dell’orletta, Felice
%Y Dell’Orletta, Felice
%Y Lenci, Alessandro
%Y Montemagni, Simonetta
%Y Sprugnoli, Rachele
%S Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)
%D 2024
%8 December
%I CEUR Workshop Proceedings
%C Pisa, Italy
%@ 979-12-210-7060-6
%F leonardi-etal-2024-hits
%X This study presents a computational analysis of Italian fanfiction, aiming to construct an interpretable model of successful writing within this emerging literary domain. Leveraging explicit features that capture both linguistic style and semantic content, we demonstrate the feasibility of automatically predicting successful writing in fanfiction and we identify a set of robust linguistic predictors that maintain their predictive power across diverse topics and time periods, offering insights into the universal aspects of engaging storytelling. This approach not only enhances our understanding of fanfiction as a genre but also offers potential applications in broader literary analysis and content creation.
%U https://aclanthology.org/2024.clicit-1.58/
%P 488-495
Markdown (Informal)
[Hits or Misses? A Linguistically Explainable Formula for Fanfiction Success](https://aclanthology.org/2024.clicit-1.58/) (Leonardi et al., CLiC-it 2024)
ACL