@inproceedings{attanasio-etal-2024-itaeval,
title = "{I}ta{E}val and {T}weety{I}ta: A New Extensive Benchmark and Efficiency-First Language Model for {I}talian",
author = "Attanasio, Giuseppe and
Delobelle, Pieter and
La Quatra, Moreno and
Santilli, Andrea and
Savoldi, Beatrice",
editor = "Dell'Orletta, Felice and
Lenci, Alessandro and
Montemagni, Simonetta and
Sprugnoli, Rachele",
booktitle = "Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)",
month = dec,
year = "2024",
address = "Pisa, Italy",
publisher = "CEUR Workshop Proceedings",
url = "https://aclanthology.org/2024.clicit-1.6/",
pages = "39--51",
ISBN = "979-12-210-7060-6",
abstract = "Current development and benchmarking efforts for modern, large-scale Italian language models (LMs) are scattered.This paper situates such efforts by introducing two new resources: ItaEval, a comprehensive evaluation suite, and TweetyIta, an efficiency-first language model for Italian.Through ItaEval, we standardize evaluation across language understanding, commonsense and factual knowledge, and social bias-related tasks.In our attempt at language modeling, we experiment with efficient, tokenization-based adaption techniques. Our TweetyIta shows encouraging results after training on as little as 5G tokens from natural Italian corpora. We benchmark an extensive list of models against ItaEval and find several interesting insights. Surprisingly, i) models trained predominantly on English data dominate the leaderboard; ii) TweetyIta is competitive against other forms of adaptation or inherently monolingual models;iii) natural language understanding tasks are challenging for current models.We release code and data at https://github.com/RiTA-nlp/ita-eval and host a live leaderboard at https://huggingface.co/spaces/RiTA-nlp/ita-eval."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="attanasio-etal-2024-itaeval">
<titleInfo>
<title>ItaEval and TweetyIta: A New Extensive Benchmark and Efficiency-First Language Model for Italian</title>
</titleInfo>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Attanasio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pieter</namePart>
<namePart type="family">Delobelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Moreno</namePart>
<namePart type="family">La Quatra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Santilli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Beatrice</namePart>
<namePart type="family">Savoldi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Felice</namePart>
<namePart type="family">Dell’Orletta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simonetta</namePart>
<namePart type="family">Montemagni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachele</namePart>
<namePart type="family">Sprugnoli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>CEUR Workshop Proceedings</publisher>
<place>
<placeTerm type="text">Pisa, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-12-210-7060-6</identifier>
</relatedItem>
<abstract>Current development and benchmarking efforts for modern, large-scale Italian language models (LMs) are scattered.This paper situates such efforts by introducing two new resources: ItaEval, a comprehensive evaluation suite, and TweetyIta, an efficiency-first language model for Italian.Through ItaEval, we standardize evaluation across language understanding, commonsense and factual knowledge, and social bias-related tasks.In our attempt at language modeling, we experiment with efficient, tokenization-based adaption techniques. Our TweetyIta shows encouraging results after training on as little as 5G tokens from natural Italian corpora. We benchmark an extensive list of models against ItaEval and find several interesting insights. Surprisingly, i) models trained predominantly on English data dominate the leaderboard; ii) TweetyIta is competitive against other forms of adaptation or inherently monolingual models;iii) natural language understanding tasks are challenging for current models.We release code and data at https://github.com/RiTA-nlp/ita-eval and host a live leaderboard at https://huggingface.co/spaces/RiTA-nlp/ita-eval.</abstract>
<identifier type="citekey">attanasio-etal-2024-itaeval</identifier>
<location>
<url>https://aclanthology.org/2024.clicit-1.6/</url>
</location>
<part>
<date>2024-12</date>
<extent unit="page">
<start>39</start>
<end>51</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ItaEval and TweetyIta: A New Extensive Benchmark and Efficiency-First Language Model for Italian
%A Attanasio, Giuseppe
%A Delobelle, Pieter
%A La Quatra, Moreno
%A Santilli, Andrea
%A Savoldi, Beatrice
%Y Dell’Orletta, Felice
%Y Lenci, Alessandro
%Y Montemagni, Simonetta
%Y Sprugnoli, Rachele
%S Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)
%D 2024
%8 December
%I CEUR Workshop Proceedings
%C Pisa, Italy
%@ 979-12-210-7060-6
%F attanasio-etal-2024-itaeval
%X Current development and benchmarking efforts for modern, large-scale Italian language models (LMs) are scattered.This paper situates such efforts by introducing two new resources: ItaEval, a comprehensive evaluation suite, and TweetyIta, an efficiency-first language model for Italian.Through ItaEval, we standardize evaluation across language understanding, commonsense and factual knowledge, and social bias-related tasks.In our attempt at language modeling, we experiment with efficient, tokenization-based adaption techniques. Our TweetyIta shows encouraging results after training on as little as 5G tokens from natural Italian corpora. We benchmark an extensive list of models against ItaEval and find several interesting insights. Surprisingly, i) models trained predominantly on English data dominate the leaderboard; ii) TweetyIta is competitive against other forms of adaptation or inherently monolingual models;iii) natural language understanding tasks are challenging for current models.We release code and data at https://github.com/RiTA-nlp/ita-eval and host a live leaderboard at https://huggingface.co/spaces/RiTA-nlp/ita-eval.
%U https://aclanthology.org/2024.clicit-1.6/
%P 39-51
Markdown (Informal)
[ItaEval and TweetyIta: A New Extensive Benchmark and Efficiency-First Language Model for Italian](https://aclanthology.org/2024.clicit-1.6/) (Attanasio et al., CLiC-it 2024)
ACL