@inproceedings{paccosi-tonelli-2024-benchmarking,
title = "Benchmarking the Semantics of Taste: Towards the Automatic Extraction of Gustatory Language",
author = "Paccosi, Teresa and
Tonelli, Sara",
editor = "Dell'Orletta, Felice and
Lenci, Alessandro and
Montemagni, Simonetta and
Sprugnoli, Rachele",
booktitle = "Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)",
month = dec,
year = "2024",
address = "Pisa, Italy",
publisher = "CEUR Workshop Proceedings",
url = "https://aclanthology.org/2024.clicit-1.78/",
pages = "720--727",
ISBN = "979-12-210-7060-6",
abstract = "In this paper, we present a benchmark containing texts manually annotated with gustatory semantic information. We employ a FrameNet-like approach previously tested to address olfactory language, which we adapt to capture gustatory events. We then propose an exploration of the data in the benchmark to show the possible insights brought by this type of approach, addressing the investigation of emotional valence in text genres. Eventually, we present a supervised system trained with the taste benchmark for the extraction of gustatory information from historical and contemporary texts."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="paccosi-tonelli-2024-benchmarking">
<titleInfo>
<title>Benchmarking the Semantics of Taste: Towards the Automatic Extraction of Gustatory Language</title>
</titleInfo>
<name type="personal">
<namePart type="given">Teresa</namePart>
<namePart type="family">Paccosi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Tonelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Felice</namePart>
<namePart type="family">Dell’Orletta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simonetta</namePart>
<namePart type="family">Montemagni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachele</namePart>
<namePart type="family">Sprugnoli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>CEUR Workshop Proceedings</publisher>
<place>
<placeTerm type="text">Pisa, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-12-210-7060-6</identifier>
</relatedItem>
<abstract>In this paper, we present a benchmark containing texts manually annotated with gustatory semantic information. We employ a FrameNet-like approach previously tested to address olfactory language, which we adapt to capture gustatory events. We then propose an exploration of the data in the benchmark to show the possible insights brought by this type of approach, addressing the investigation of emotional valence in text genres. Eventually, we present a supervised system trained with the taste benchmark for the extraction of gustatory information from historical and contemporary texts.</abstract>
<identifier type="citekey">paccosi-tonelli-2024-benchmarking</identifier>
<location>
<url>https://aclanthology.org/2024.clicit-1.78/</url>
</location>
<part>
<date>2024-12</date>
<extent unit="page">
<start>720</start>
<end>727</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Benchmarking the Semantics of Taste: Towards the Automatic Extraction of Gustatory Language
%A Paccosi, Teresa
%A Tonelli, Sara
%Y Dell’Orletta, Felice
%Y Lenci, Alessandro
%Y Montemagni, Simonetta
%Y Sprugnoli, Rachele
%S Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)
%D 2024
%8 December
%I CEUR Workshop Proceedings
%C Pisa, Italy
%@ 979-12-210-7060-6
%F paccosi-tonelli-2024-benchmarking
%X In this paper, we present a benchmark containing texts manually annotated with gustatory semantic information. We employ a FrameNet-like approach previously tested to address olfactory language, which we adapt to capture gustatory events. We then propose an exploration of the data in the benchmark to show the possible insights brought by this type of approach, addressing the investigation of emotional valence in text genres. Eventually, we present a supervised system trained with the taste benchmark for the extraction of gustatory information from historical and contemporary texts.
%U https://aclanthology.org/2024.clicit-1.78/
%P 720-727
Markdown (Informal)
[Benchmarking the Semantics of Taste: Towards the Automatic Extraction of Gustatory Language](https://aclanthology.org/2024.clicit-1.78/) (Paccosi & Tonelli, CLiC-it 2024)
ACL