@inproceedings{ruzzetti-etal-2024-assessing,
title = "Assessing the Asymmetric Behaviour of {I}talian Large Language Models across Different Syntactic Structures",
author = "Ruzzetti, Elena Sofia and
Ranaldi, Federico and
Onorati, Dario and
Venditti, Davide and
Ranaldi, Leonardo and
Caselli, Tommaso and
Zanzotto, Fabio Massimo",
editor = "Dell'Orletta, Felice and
Lenci, Alessandro and
Montemagni, Simonetta and
Sprugnoli, Rachele",
booktitle = "Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)",
month = dec,
year = "2024",
address = "Pisa, Italy",
publisher = "CEUR Workshop Proceedings",
url = "https://aclanthology.org/2024.clicit-1.92/",
pages = "854--863",
ISBN = "979-12-210-7060-6",
abstract = "While LLMs get more proficient at solving tasks and generating sentences, we aim to investigate the role that differentsyntactic structures have on models' performances on a battery of Natural Language Understanding tasks. We analyze theperformance of five LLMs on semantically equivalent sentences that are characterized by different syntactic structures. Tocorrectly solve the tasks, a model is implicitly required to correctly parse the sentence. We found out that LLMs strugglewhen there are more complex syntactic structures, with an average drop of 16.13({\ensuremath{\pm}}11.14) points in accuracy on Q{\&}A task.Additionally, we propose a method based on token attribution to spot which area of the LLMs encode syntactic knowledge,by identifying model heads and layers responsible for the generation of a correct answer"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ruzzetti-etal-2024-assessing">
<titleInfo>
<title>Assessing the Asymmetric Behaviour of Italian Large Language Models across Different Syntactic Structures</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="given">Sofia</namePart>
<namePart type="family">Ruzzetti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Federico</namePart>
<namePart type="family">Ranaldi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dario</namePart>
<namePart type="family">Onorati</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Davide</namePart>
<namePart type="family">Venditti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leonardo</namePart>
<namePart type="family">Ranaldi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tommaso</namePart>
<namePart type="family">Caselli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="given">Massimo</namePart>
<namePart type="family">Zanzotto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Felice</namePart>
<namePart type="family">Dell’Orletta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simonetta</namePart>
<namePart type="family">Montemagni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachele</namePart>
<namePart type="family">Sprugnoli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>CEUR Workshop Proceedings</publisher>
<place>
<placeTerm type="text">Pisa, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-12-210-7060-6</identifier>
</relatedItem>
<abstract>While LLMs get more proficient at solving tasks and generating sentences, we aim to investigate the role that differentsyntactic structures have on models’ performances on a battery of Natural Language Understanding tasks. We analyze theperformance of five LLMs on semantically equivalent sentences that are characterized by different syntactic structures. Tocorrectly solve the tasks, a model is implicitly required to correctly parse the sentence. We found out that LLMs strugglewhen there are more complex syntactic structures, with an average drop of 16.13(\ensuremath\pm11.14) points in accuracy on Q&A task.Additionally, we propose a method based on token attribution to spot which area of the LLMs encode syntactic knowledge,by identifying model heads and layers responsible for the generation of a correct answer</abstract>
<identifier type="citekey">ruzzetti-etal-2024-assessing</identifier>
<location>
<url>https://aclanthology.org/2024.clicit-1.92/</url>
</location>
<part>
<date>2024-12</date>
<extent unit="page">
<start>854</start>
<end>863</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Assessing the Asymmetric Behaviour of Italian Large Language Models across Different Syntactic Structures
%A Ruzzetti, Elena Sofia
%A Ranaldi, Federico
%A Onorati, Dario
%A Venditti, Davide
%A Ranaldi, Leonardo
%A Caselli, Tommaso
%A Zanzotto, Fabio Massimo
%Y Dell’Orletta, Felice
%Y Lenci, Alessandro
%Y Montemagni, Simonetta
%Y Sprugnoli, Rachele
%S Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)
%D 2024
%8 December
%I CEUR Workshop Proceedings
%C Pisa, Italy
%@ 979-12-210-7060-6
%F ruzzetti-etal-2024-assessing
%X While LLMs get more proficient at solving tasks and generating sentences, we aim to investigate the role that differentsyntactic structures have on models’ performances on a battery of Natural Language Understanding tasks. We analyze theperformance of five LLMs on semantically equivalent sentences that are characterized by different syntactic structures. Tocorrectly solve the tasks, a model is implicitly required to correctly parse the sentence. We found out that LLMs strugglewhen there are more complex syntactic structures, with an average drop of 16.13(\ensuremath\pm11.14) points in accuracy on Q&A task.Additionally, we propose a method based on token attribution to spot which area of the LLMs encode syntactic knowledge,by identifying model heads and layers responsible for the generation of a correct answer
%U https://aclanthology.org/2024.clicit-1.92/
%P 854-863
Markdown (Informal)
[Assessing the Asymmetric Behaviour of Italian Large Language Models across Different Syntactic Structures](https://aclanthology.org/2024.clicit-1.92/) (Ruzzetti et al., CLiC-it 2024)
ACL