@inproceedings{singh-etal-2024-climate,
title = "Climate Policy Transformer: Utilizing {NLP} to track the coherence of Climate Policy Documents in the Context of the {P}aris Agreement",
author = "Singh, Prashant and
Lehmann, Erik and
Tyrrell, Mark",
editor = "Stammbach, Dominik and
Ni, Jingwei and
Schimanski, Tobias and
Dutia, Kalyan and
Singh, Alok and
Bingler, Julia and
Christiaen, Christophe and
Kushwaha, Neetu and
Muccione, Veruska and
A. Vaghefi, Saeid and
Leippold, Markus",
booktitle = "Proceedings of the 1st Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2024)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.climatenlp-1.1",
doi = "10.18653/v1/2024.climatenlp-1.1",
pages = "1--11",
abstract = "Climate policy implementation is pivotal inglobal efforts to mitigate and adapt to climatechange. In this context, this paper explores theuse of Natural Language Processing (NLP) as atool for policy advisors to efficiently track andassess climate policy and strategies, such asNationally Determined Contributions (NDCs).These documents are essential for monitoringcoherence with the Paris Agreement, yet theiranalysis traditionally demands significant la-bor and time. We demonstrate how to leverageNLP on existing climate policy databases totransform this process by structuring informa-tion extracted from these otherwise unstruc-tured policy documents and opening avenuesfor a more in-depth analysis of national and re-gional policies. Central to our approach is thecreation of a machine-learning (ML) dataset{'}CPo-CD{'}, based on data provided by the Inter-national Climate Initiative (IKI) and ClimateWatch (CW). The CPo-CD dataset is utilizedto fine-tune Transformer Models on classify-ing climate targets, actions, policies, and plans,along with their sector, mitigation-adaptation,and greenhouse gas (GHG) components. Wepublish our model and dataset on a HuggingFace repository.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="singh-etal-2024-climate">
<titleInfo>
<title>Climate Policy Transformer: Utilizing NLP to track the coherence of Climate Policy Documents in the Context of the Paris Agreement</title>
</titleInfo>
<name type="personal">
<namePart type="given">Prashant</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">Lehmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Tyrrell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dominik</namePart>
<namePart type="family">Stammbach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingwei</namePart>
<namePart type="family">Ni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tobias</namePart>
<namePart type="family">Schimanski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalyan</namePart>
<namePart type="family">Dutia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alok</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Bingler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christophe</namePart>
<namePart type="family">Christiaen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Neetu</namePart>
<namePart type="family">Kushwaha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veruska</namePart>
<namePart type="family">Muccione</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saeid</namePart>
<namePart type="family">A. Vaghefi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Markus</namePart>
<namePart type="family">Leippold</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Climate policy implementation is pivotal inglobal efforts to mitigate and adapt to climatechange. In this context, this paper explores theuse of Natural Language Processing (NLP) as atool for policy advisors to efficiently track andassess climate policy and strategies, such asNationally Determined Contributions (NDCs).These documents are essential for monitoringcoherence with the Paris Agreement, yet theiranalysis traditionally demands significant la-bor and time. We demonstrate how to leverageNLP on existing climate policy databases totransform this process by structuring informa-tion extracted from these otherwise unstruc-tured policy documents and opening avenuesfor a more in-depth analysis of national and re-gional policies. Central to our approach is thecreation of a machine-learning (ML) dataset’CPo-CD’, based on data provided by the Inter-national Climate Initiative (IKI) and ClimateWatch (CW). The CPo-CD dataset is utilizedto fine-tune Transformer Models on classify-ing climate targets, actions, policies, and plans,along with their sector, mitigation-adaptation,and greenhouse gas (GHG) components. Wepublish our model and dataset on a HuggingFace repository.</abstract>
<identifier type="citekey">singh-etal-2024-climate</identifier>
<identifier type="doi">10.18653/v1/2024.climatenlp-1.1</identifier>
<location>
<url>https://aclanthology.org/2024.climatenlp-1.1</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>1</start>
<end>11</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Climate Policy Transformer: Utilizing NLP to track the coherence of Climate Policy Documents in the Context of the Paris Agreement
%A Singh, Prashant
%A Lehmann, Erik
%A Tyrrell, Mark
%Y Stammbach, Dominik
%Y Ni, Jingwei
%Y Schimanski, Tobias
%Y Dutia, Kalyan
%Y Singh, Alok
%Y Bingler, Julia
%Y Christiaen, Christophe
%Y Kushwaha, Neetu
%Y Muccione, Veruska
%Y A. Vaghefi, Saeid
%Y Leippold, Markus
%S Proceedings of the 1st Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2024)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F singh-etal-2024-climate
%X Climate policy implementation is pivotal inglobal efforts to mitigate and adapt to climatechange. In this context, this paper explores theuse of Natural Language Processing (NLP) as atool for policy advisors to efficiently track andassess climate policy and strategies, such asNationally Determined Contributions (NDCs).These documents are essential for monitoringcoherence with the Paris Agreement, yet theiranalysis traditionally demands significant la-bor and time. We demonstrate how to leverageNLP on existing climate policy databases totransform this process by structuring informa-tion extracted from these otherwise unstruc-tured policy documents and opening avenuesfor a more in-depth analysis of national and re-gional policies. Central to our approach is thecreation of a machine-learning (ML) dataset’CPo-CD’, based on data provided by the Inter-national Climate Initiative (IKI) and ClimateWatch (CW). The CPo-CD dataset is utilizedto fine-tune Transformer Models on classify-ing climate targets, actions, policies, and plans,along with their sector, mitigation-adaptation,and greenhouse gas (GHG) components. Wepublish our model and dataset on a HuggingFace repository.
%R 10.18653/v1/2024.climatenlp-1.1
%U https://aclanthology.org/2024.climatenlp-1.1
%U https://doi.org/10.18653/v1/2024.climatenlp-1.1
%P 1-11
Markdown (Informal)
[Climate Policy Transformer: Utilizing NLP to track the coherence of Climate Policy Documents in the Context of the Paris Agreement](https://aclanthology.org/2024.climatenlp-1.1) (Singh et al., ClimateNLP-WS 2024)
ACL