@inproceedings{garigliotti-2024-sdg,
title = "{SDG} target detection in environmental reports using Retrieval-augmented Generation with {LLM}s",
author = "Garigliotti, Dario",
editor = "Stammbach, Dominik and
Ni, Jingwei and
Schimanski, Tobias and
Dutia, Kalyan and
Singh, Alok and
Bingler, Julia and
Christiaen, Christophe and
Kushwaha, Neetu and
Muccione, Veruska and
A. Vaghefi, Saeid and
Leippold, Markus",
booktitle = "Proceedings of the 1st Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2024)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.climatenlp-1.19",
doi = "10.18653/v1/2024.climatenlp-1.19",
pages = "241--250",
abstract = "With the consolidation of Large Language Models (LLM) as a dominant component in approaches for multiple linguistic tasks, the interest in these technologies has greatly increased within a variety of areas and domains. A particular scenario of information needs where to exploit these approaches is climate-aware NLP. Paradigmatically, the vast manual labour of inspecting long, heterogeneous documents to find environment-relevant expressions and claims suits well within a recently established Retrieval-augmented Generation (RAG) framework. In this paper, we tackle two dual problems within environment analysis dealing with the common goal of detecting a Sustainable Developmental Goal (SDG) target being addressed in a textual passage of an environmental assessment report.We develop relevant test collections, and propose and evaluate a series of methods within the general RAG pipeline, in order to assess the current capabilities of LLMs for the tasks of SDG target evidence identification and SDG target detection.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="garigliotti-2024-sdg">
<titleInfo>
<title>SDG target detection in environmental reports using Retrieval-augmented Generation with LLMs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dario</namePart>
<namePart type="family">Garigliotti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dominik</namePart>
<namePart type="family">Stammbach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingwei</namePart>
<namePart type="family">Ni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tobias</namePart>
<namePart type="family">Schimanski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalyan</namePart>
<namePart type="family">Dutia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alok</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Bingler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christophe</namePart>
<namePart type="family">Christiaen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Neetu</namePart>
<namePart type="family">Kushwaha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veruska</namePart>
<namePart type="family">Muccione</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saeid</namePart>
<namePart type="family">A. Vaghefi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Markus</namePart>
<namePart type="family">Leippold</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>With the consolidation of Large Language Models (LLM) as a dominant component in approaches for multiple linguistic tasks, the interest in these technologies has greatly increased within a variety of areas and domains. A particular scenario of information needs where to exploit these approaches is climate-aware NLP. Paradigmatically, the vast manual labour of inspecting long, heterogeneous documents to find environment-relevant expressions and claims suits well within a recently established Retrieval-augmented Generation (RAG) framework. In this paper, we tackle two dual problems within environment analysis dealing with the common goal of detecting a Sustainable Developmental Goal (SDG) target being addressed in a textual passage of an environmental assessment report.We develop relevant test collections, and propose and evaluate a series of methods within the general RAG pipeline, in order to assess the current capabilities of LLMs for the tasks of SDG target evidence identification and SDG target detection.</abstract>
<identifier type="citekey">garigliotti-2024-sdg</identifier>
<identifier type="doi">10.18653/v1/2024.climatenlp-1.19</identifier>
<location>
<url>https://aclanthology.org/2024.climatenlp-1.19</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>241</start>
<end>250</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SDG target detection in environmental reports using Retrieval-augmented Generation with LLMs
%A Garigliotti, Dario
%Y Stammbach, Dominik
%Y Ni, Jingwei
%Y Schimanski, Tobias
%Y Dutia, Kalyan
%Y Singh, Alok
%Y Bingler, Julia
%Y Christiaen, Christophe
%Y Kushwaha, Neetu
%Y Muccione, Veruska
%Y A. Vaghefi, Saeid
%Y Leippold, Markus
%S Proceedings of the 1st Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2024)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F garigliotti-2024-sdg
%X With the consolidation of Large Language Models (LLM) as a dominant component in approaches for multiple linguistic tasks, the interest in these technologies has greatly increased within a variety of areas and domains. A particular scenario of information needs where to exploit these approaches is climate-aware NLP. Paradigmatically, the vast manual labour of inspecting long, heterogeneous documents to find environment-relevant expressions and claims suits well within a recently established Retrieval-augmented Generation (RAG) framework. In this paper, we tackle two dual problems within environment analysis dealing with the common goal of detecting a Sustainable Developmental Goal (SDG) target being addressed in a textual passage of an environmental assessment report.We develop relevant test collections, and propose and evaluate a series of methods within the general RAG pipeline, in order to assess the current capabilities of LLMs for the tasks of SDG target evidence identification and SDG target detection.
%R 10.18653/v1/2024.climatenlp-1.19
%U https://aclanthology.org/2024.climatenlp-1.19
%U https://doi.org/10.18653/v1/2024.climatenlp-1.19
%P 241-250
Markdown (Informal)
[SDG target detection in environmental reports using Retrieval-augmented Generation with LLMs](https://aclanthology.org/2024.climatenlp-1.19) (Garigliotti, ClimateNLP-WS 2024)
ACL