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Abstract

Text generation opens up new prospects for
overcoming the lack of open corpora in fields
such as healthcare, where data sharing is bound
by confidentiality. In this study, we com-
pare the performance of encoder-decoder and
decoder-only language models for the con-
trolled generation of clinical cases in French.
To do so, we fine-tuned several pre-trained mod-
els on French clinical cases for each architec-
ture and generate clinical cases conditioned by
patient demographic information (gender and
age) and clinical features. Our results suggest
that encoder-decoder models are easier to con-
trol than decoder-only models, but more costly
to train.

1 Introduction

The performance of current text generation models
makes it difficult for humans to distinguish between
natural and synthetic text (Casal and Kessler, 2023),
paving the way for a wide range of applications in-
cluding data augmentation and addressing resource
sparsity (Claveau et al., 2021). In this article, we
consider the case of reference documents that can-
not be shared because of the personal information
they contain but are sufficiently generic to mutu-
alize processing resources on a community scale.
One way of developing shared processes is to work
with synthetic documents that are comparable in
content and style to reference documents. We fo-
cus on electronic health records, though our meth-
ods can be applied to other fields with document-
sharing constraints due to privacy.

Creating relevant synthetic documents is not triv-
ial and must take several dimensions into account.
As mentioned before, synthetic documents should
be comparable to reference documents in terms of
style, structure, and content, without leaking per-
sonal information that may be contained in the

*These authors contributed equally to this work. The order
is alphabetical.

training corpora. While directly identifying in-
formation can be subject to robust upstream de-
identification, this does not make documents anony-
mous according to the definition of the General
Data Protection Regulation (GDPR). Indeed, de-
identification, whether automatic or manual, does
not prevent cross-referencing medical information,
which can particularly impact privacy for rare dis-
eases.

It is possible to leverage the abilities of current
text generation models to generate synthetic docu-
ments. However, such models are not as efficient
when it comes to specialized domains such as the
medical domain, even more so in languages other
than English. Thus, the ability to precisely control
the generation process is important both for med-
ical consistency and for preserving the privacy of
the information contained in real texts.

In this article, we propose a methodology for
controlling text generation in terms of content.
More specifically, the goal is to condition the gen-
eration of medical reports on patient profiles. Fol-
lowing the example of work carried out on the
generation of synthetic patient profiles in terms of
structured data (Walonoski et al., 2017), these pro-
files take the form of a set of medical concepts.
This approach, which is part of a data-to-text gen-
eration problem, has the advantage over a textual
priming approach of being able to finely control
the information used for conditioning. The latter is
implemented by training a neural language model
with a set of pairs, each composed of a patient pro-
file in the form of concepts and a reference report
corresponding to this profile. Within this frame-
work, the contributions of our paper are as follows:

• a method for controlling the content of medi-
cal report generation;

• a method for creating a training set for carry-
ing out this control;
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• an implementation of the strategy using lan-
guage models with two different architec-
tures1;

• an automatic multidimensional evaluation of
synthetic text.

2 Related Work

2.1 Controlled text generation
Since the advent of the first large language models
(LLMs) such as those of the GPT family (Radford
et al., 2018), generating text resembling human
production seems easy and the problem of gen-
eration has evolved to change focus: the aim is
no longer simply to generate plausible text but to
be able to control more finely what we generate.
The texts produced by generative models may be
irrelevant, offensive, or even dangerous (Bender
et al., 2021). This is why a significant amount of
work is being done on generation control. Control
can concern several aspects of generation, such as
the lexicon or text style (Zhang et al., 2023). Sev-
eral control methods have been explored, including
training a model with examples conditioned ac-
cording to chosen criteria (Keskar et al., 2019) or
modifying the probabilities of output tokens during
inference (Kruszewski et al., 2023).

The data-to-text (Lin et al., 2023) approaches
constrain generation from structured data (graphs,
tables, and, in our case, slots). The preferred ar-
chitectures are encoder-decoder models, which can
have a variety of internal architectures, combining
pre-trained models as encoders and/or decoders.
It is also possible to directly fine-tune encoder-
decoder models, such as the T5 model (Raffel et al.,
2020). Causal language models, such as those us-
ing a Transformer (Vaswani et al., 2017) decoder
architecture, use the context at the start of a se-
quence to generate the rest of the sequence.

2.2 Biomedical text generation
In the biomedical field, text generation is being
explored either to facilitate the work of doctors or
to address resource sparsity due to confidentiality
issues. This work falls into the second category.

Earlier methods focus on training neural mod-
els from scratch. Melamud and Shivade (2019)
train an LSTM to generate shareable clinical notes
using differential privacy (Dwork et al., 2006),

1https://github.com/HugoBoulanger/
ClinicalGenerator

and Ive et al. (2020) train a Transformer encoder-
decoder model to generate synthetic mental health
records conditioned by entities automatically ex-
tracted from real documents. However, training a
model from scratch requires a substantial amount
of data that is not available in languages other than
English (Névéol et al., 2018).

Several efforts exploit Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014) to
generate structured data in the medical domain in
English (Choi et al., 2017; Abedi et al., 2022; Torfi
et al., 2022).

More recently, text generation is being explored
to produce reports of discussions between doctors
and patients, with the encoder-decoder architec-
ture often being preferred (Eremeev et al., 2023;
Ben Abacha et al., 2023; Asada and Miwa, 2023).

For French, Hiebel et al. (2023) fine-tune pre-
trained auto-regressive language models to gener-
ate clinical cases with no particular constraints and
propose a methodology for automatically evaluat-
ing the utility of the synthetic texts for a clinical
entity recognition task.

3 Overall Method

As outlined in the introduction, we cast the task
as a data-to-text generation problem where struc-
tured health data is used to shape the contents of
synthetic text. Of course, finding the conditioning
data within the generated texts cannot be the only
criterion for evaluating the models: they would
only need to reproduce their input to be judged as
perfect. This conditioning must therefore be close
in nature to the reference documents we wish to
emulate.

As mentioned in section 2.1, this double condi-
tioning can be achieved either by fine-tuning the
language model used for generation with control
elements or by steering the model during infer-
ence. We have opted for the former solution, as
the latter implies applying elaborate text analysis
processes during generation to check compliance
with the conditioning, which is costly. The first
solution, however, presupposes the availability of
training data combining conditioning data and ex-
ample texts conforming to this conditioning.

To this end, we have adopted a strategy compara-
ble to Peng et al. (2018) for story generation, taken
over by Ive et al. (2020) for medical reports, and
consisting in automatically extracting the condi-
tioning data from the example texts. This strategy
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obviously presupposes the availability of text anal-
ysis tools capable of extracting this conditioning
data from example texts with a sufficiently high
level of performance. It therefore requires a close
coupling between generation and analysis capa-
bilities but eliminates the need for costly manual
annotation. In the present case, we are focusing on
medical concepts and are therefore dependent on
models for extracting these concepts from medical
reports but the genericity of this strategy means
that new conditioning elements can easily be taken
into account, as long as they can be automatically
extracted from example texts.

4 Material and Methods

4.1 Clinical case corpora in French
The data used for our experiments come from two
freely available clinical case corpora. The first
corpus is the CAS corpus (Grabar et al., 2018), a
corpus of de-identified clinical cases in French2.
The second corpus is the E3C corpus (Magnini
et al., 2020), a multilingual corpus of de-identified
clinical cases. Our study only uses the clinical
cases in French.

4.2 Defining constraints based on a patient
profile

Our goal is to generate consistent clinical cases by
controlling the generation using clinical elements.
We have worked with clinicians to define the salient
features of real clinical cases. These features are
then used as constraints to generate text. Table 1
shows an example of features that were selected for
a clinical case of the E3C corpus. These include
patient demographics (age and gender), pathology
location, histological information, various signs or
symptoms, treatments and procedures performed,
lab results, and scores (measures or codes). In
line with clinicians’ recommendations, we identify
around twenty constraints per case, selecting if pos-
sible elements from each category with a majority
of symptoms, treatments, and procedures. This
approach ensures the selection of the salient infor-
mation from the clinical cases, according to the
doctors.

4.3 Extracting constraints from documents
Demographic data for the CAS corpus was directly
taken from the existing corpus annotations for pa-

2Corpus can be accessed with permission from the authors
https://deft.lisn.upsaclay.fr/2020

tient age and sex. We manually annotated the 1,009
cases from the E3C corpus to obtain equivalent de-
mographic information for this corpus. Other clini-
cal entities (e.g., signs and symptoms, procedures)
were obtained by automatically annotating the two
corpora consistently using clinical entity recogni-
tion models trained on the MERLOT private corpus
(Campillos et al., 2018), which contains manual an-
notations for the entities of interest.

Constraint sets thus include manually annotated
demographic information and automatically ex-
tracted clinical entities. For each document, we
select age and gender when available. When the
exact age is not provided, we use the age categories
derived from the MeSH (Medical Subject Head-
ings) thesaurus3 check tags.

Clinical entities are selected from the MERLOT
annotation categories that match the categories dis-
cussed with the doctors. For each clinical case, we
select the ten procedures (PROC) and ten symp-
toms (DISO) with the highest tf.idf score. We also
select substances (CHEM) and measures (MEAS).
The latters are filtered to retain only informative
measures (single digits such as 6 are annotated as
MEAS but without additional information). Overall,
we obtain an average of 26 constraints (±9.5) per
clinical case.

4.4 Text generation models
We compare the performance of two different archi-
tectures for the constrained generation of clinical
texts using encoder-decoder vs. decoder-only pre-
trained Transformer models.

Encoder-decoder This architecture aims to gen-
erate text from structured data. In particular, fine-
tuning the T5 model has become a standard method
for data-to-text tasks. We chose to use the multilin-
gual version of T5, called mT5 (Xue et al., 2021),
with one billion parameters as a pre-trained model,
and the Small (77 million parameters), Large (780
million parameters), and XL (3 billion parameters)
versions of Flan-T5 (Chung et al., 2022) as models
fine-tuned with instructions.

Decoder only This architecture aims to generate
text from textual prompts. We have chosen sev-
eral models for this architecture. The Bloom (Scao
et al., 2022) model, a generative model trained on
several languages, and the Bloomz model, a variant

3https://www.nlm.nih.gov/bsd/indexing/
training/CHK_030.html
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Type of clinical feature Sample value

Age 54
Sex Masculin
Localisation Vessie
Histology adénocarcinome de l’ouraque peu différencié
Sign hématurie
Procedure scanner CT
Treatment chimiothérapie par Méthotrexate-Vinblastine-Endoxan-Cisplatine
Score T III A (selon la classification de Sheldon)
Bio une négativité pour les cytokératines (ck) 7 et 20

Table 1: Sample control data based on manual analysis of a clinical case. The source case is shown in Table 2. We
show in Appendix A.1 an English version based on the automatic translation of the document (Tables 5 and 6).

specially trained to perform different tasks (trans-
lation, automatic summarization, etc.). For each
of these two models, we consider two versions in
terms of size: one billion and seven billion parame-
ters.

5 Experiments

5.1 Structured data representation
The use of these generative models requires the
conversion of structured data into text format. We
have chosen to linearize the inputs differently for
the encoder-decoder models and the decoder-only
models. For the encoder-decoder models, a special
token representing the entity type is added before
each entity. We separate demographic informa-
tion (age, sex) from medical constraints (symptom,
procedure, etc.) with a special token contraintes
(constraints). For decoder-only models, no special
tokens are used. Figure 1 shows an example of data
representation for encoder-decoders.

5.2 Fine-tuning
The training set used to fine-tune our models com-
prises 1,424 clinical cases, containing over 500,000
tokens excluding constraints. For fine-tuning, we
freeze the weights of the pre-trained model and add
LoRA trainable matrices (Hu et al., 2022). The
location of the trainable matrices depends on the
type of model. For encoder-decoder models, we
add LoRA matrices on the queries and values of
the Transformer layers and the model head. For
decoder-only models, LoRA matrices are added to
the linear layers of the models. Special tokens are
added to the embeddings via randomly initialized
vectors. The processing of word embeddings varies
according to two configurations defined as follows:

"Frozen" configuration: embeddings are
frozen but we add LoRA matrices to enable adap-
tation to the task at a low memory cost.

"Unfrozen" configuration: the embeddings are
unfrozen, to enable adaptation to the task, but at a
higher cost.

We show the total number of parameters and the
number of trainable parameters for each model in
Table 7 in Appendix A.2.

5.3 Automatically generating clinical cases
Our test set consists of 156 clinical cases and their
constraints. The constraints are given as input to
the generative models and the real clinical cases
are used as a reference when computing evalua-
tion metrics. Decoding is performed using a beam
search with five beams. We use sampling with a
top-p of 0.9, a temperature of 1, and a repetition
penalty of 3. Using sampling means that the same
model might generate different texts from the same
input. We run five generations for each test exam-
ple to account for this variability.

5.4 Evaluation metrics
Automatic evaluation of text generation is notori-
ously difficult (Novikova et al., 2017). Numerous
metrics exist to measure different aspects of text
generation (Frisoni et al., 2022). Our metric selec-
tion aims to cover several dimensions of evaluation.

Fit to constraints - Accuracy This measure is
used to assess the model’s ability to implement
the constraints. We calculate the proportion of
constraints respected in generated texts in relation
to the total number of constraints imposed.

Language quality - Perplexity Perplexity evalu-
ates how well the textual data matches the proba-
bility distribution of a language model. We use a
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<age> 22 <sexe> masculin <contraintes>
      <DISO> déhiscence cornéenne
      <PROC> réparation chirurgicale

{
"age": "22",
"sexe": "masculin",
"contraintes": [
[
"déhiscence cornéenne",
"DISO"

],
[
"réparation chirurgicale",
"PROC"

]
]

}

Figure 1: Example of data representation for encoder-decoder architecture (see Figure 2 in Appendix A.1 for its
translation).

model specific to French, GPTFR (Simoulin and
Crabbé, 2021). For this metric, we want the per-
plexity obtained on the generated data to be close
to the perplexity obtained on the real data (equal to
19.5 for the training corpus).

Diversity of generated texts - Self-BLEU The
Self-BLEU (Zhu et al., 2018) score is the average
of the BLEU scores of all the sentences in a corpus.
Thus, a redundant corpus will have a high Self-
BLEU score while a varied corpus will have a lower
score.

Proximity to natural corpus - Corpus-BLEU
Corpus-BLEU (Yu et al., 2017) is a measure of
proximity between two corpora and corresponds
to the average BLEU score between each sentence
in the generated corpus and all sentences in the
natural corpus. We calculate Corpus-BLEU by
comparing the clinical cases in the test corpus with
the generated texts.

Proximity with the clinical case correspond-
ing to the constraints - BLEU The BLEU (Pap-
ineni et al., 2002) score is calculated between the
generated text and the actual clinical case from
which the constraints originate. It measures prox-
imity to real data in a more specific way than the
Corpus-BLEU score.

6 Results

6.1 Evaluation of synthetic clinical cases
Table 2 shows examples of texts generated from
a set of constraints by an encoder-decoder model
(Flan-T5-XL frozen) and a decoder-only model
(Bloomz 1b1 unfrozen). Table 3 shows the auto-
matic evaluation of clinical cases generated with
the different architectures studied. Among our
baselines, the simple copy of the conditioning en-
tities (Copy) obtains, as expected, an accuracy of
100 %, but also a very high perplexity. The Corpus

baseline corresponds to a copy of the test corpus
in which we have removed the line breaks. This
change explains why the BLEU and corpus-BLEU
scores are not perfect and, more surprisingly, re-
duces perplexity from 30.5 to 19.5. The accuracy
score, meanwhile, reveals the limitations of our
data and accuracy calculation. The majority of
these errors concern the sex of the patient, when
this is not indicated by the gender agreement of the
term "patient" or the use of the qualifier "male" or
"female". Other errors are mainly due to rephrasing
or errors in constraints.

The results show several trends. The first trend,
which was expected but is confirmed by Table 3,
is the positive correlation between the size of the
models, both for encoder-only and encoder-decoder
models, and their results: larger models obtain bet-
ter results. When comparing encoder-decoder mod-
els of equal size (large), a model that has benefited
from a training period with instructions, a Flan
model, tends to obtain better overall results than a
model pre-trained without instructions, especially
for the unfrozen configuration. The Flan models
also have the advantage of being fine-tuned more
quickly for the same size, with a training period of
16 h for Flan-T5-large versus 60 h for mT5-large.
As expected, the Flan-T5-XL models were the best-
performing of the encoder-decoders tested. They
generate more varied texts (Self-BLEU) and have
the best accuracy. The texts generated most closely
resemble the references (BLEU) and the perplexity
values are better than those of the smaller versions
of the model. It should be noted that mT5 mod-
els achieve lower perplexity —probably because
the initial model is multilingual, whereas Flan-T5
models only saw French on translation tasks— and
better Corpus-BLEU. Finally, Flan-T5 models are
closer to the Corpus baseline than mT5 models in
terms of perplexity, which was not a priori obvi-
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Automatically
extracted
constraints

âge: 54 ; sexe: masculin ; contraintes: hématurie isolée, examen tomodensitométrique, masse, 4
cm, adénocarcinome peu différencié, de type III, bilan d’ extension, cystoprostatectomie radicale
totale, lymphadénectomie iliaque, obturatrice, omphalectomie, entérocystoplastie de substitution,
adénocarcinome de l’ouraque peu différencié, très localement mucosécrétant, ulcéré, carcinome
transitionnel, grade III, Antigène Carcino-Embryonnaire, Leu-M1, CD 15, cytokératines, épithélium
vésical, classification de Sheldon, Méthotrexate, Vinblastine, Endoxan, Cisplatine

Real
clinical case

Un homme de 54 ans a consulté pour hématurie isolée. Une échographie, puis un examen tomod-
ensitométrique, démontraient une masse de 4 cm de diamètre, au centre nécrotique, antérieure
au dôme vésical, envahissant uniquement la graisse adjacente (Figure 1A.). Les biopsies, faites
à la cystoscopie, révèlaient un adénocarcinome peu différencié, avec des zones d’épithélioma
transitionnel de type III (Figure 1B). Le bilan d’ extension était négatif. Le patient bénéficiait d’une
cystoprostatectomie radicale totale avec lymphadénectomie iliaque et obturatrice, associée à une om-
phalectomie et une entérocystoplastie de substitution selon Studer. L’examen anatomo-pathologique
complet de la pièce opératoire, révèlait un adénocarcinome de l’ouraque peu différencié, invasif,
très localement mucosécrétant (Figure 1C). Il était ulcéré dans la lumière vésicale, et contenait des
zones de carcinome transitionnel de grade III, ainsi que des cellules argentaffines. Deux poches
de lymphonoeuds et la graisse environnante, étaient envahis. L’immunohistochimie montrait un
positivité des cellules néoplasiques pour l’Antigène Carcino-Embryonnaire (ACE), Leu-M1 (CD
15), et une négativité pour les cytokératines (ck) 7 et 20. L’épithélium vésical était positif pour les
ck 7. Il s’agissait d’un stade T III A (selon la classification de Sheldon). Le patient subissait une
chimiothérapie par Méthotrexate - Vinblastine - Endoxan -Cisplatine par voie systémique. Avec 35
mois de recul, il va bien.

Synthetic
Bloomz 1b1
unfrozen

Il s’agit d’un patient âgé de 54 ans sans antécédents pathologiques particuliers qui a consulté
pour une hématurie isolée. L’examen clinique trouvait un patient en bon état général, apyrétique,
avec des signes d’hypertension artérielle et une sensibilité abdominale à la palpation. La biologie
était normale. L’échographie abdominale objectivait une masse tissulaire hétérogène du flanc
gauche mesurant 4 cm de grand axe. L’IRM montrait une masse tissulaire homogène au niveau
du flanc gauche (Figure 1). L’étude histologique de la pièce opératoire confirmait le diagnostic
d’adénocarcinome peu différencié de type III selon la classification de Sheldon [1].
Le bilan d’extension par résonance magnétique (RMN) ne retrouvait pas de métastase cérébrale
ou pulmonaire. Une cystoprostatectomie radicale totale associée à une lymphadénectomie iliaque
et obturatrice ainsi qu’une omphalectomie et entérocystoplastie de substitution ont été réalisées.
L’étude anatomopathologique de la pièce opératoire avait confirmé le diagnostic d’adénocarcinome
de l’ouraque peu différencié évoluant vers un carcinome transitionnel stade III selon la classification
de Sheldon [1].

Synthetic
Flan-T5-XL
frozen

Il s’agit d’un patient âgé de 54 ans, sans antécédents pathologiques particuliers, qui a présenté une
hématurie isolée évoluant depuis 2 mois. L’examen tomodensitométrique a objectivé une masse de
4 cm au niveau de la paroi postérieure de l’ouraque (Figure 1). Le diagnostic d’adénocarcinome
peu différencié de type III a été retenu. Le bilan d’ extension était négatif. Une cystoprostatectomie
radicale totale associée à une lymphadénectomie iliaque non obturatrice et une omphalectomie avec
entérocystoplastie de substitution a été réalisée. L’étude anatomopathologique de la pièce opératoire
a confirmé le diagnostic d’adénocarcinome de l’ouraque peu différencié comportant un aspect très
localement mucosécrétant et ulcéré. Cet aspect est compatible avec un carcinome transitionnel
de grade III (Antigène Carcino-Embryonnaire: CD34, Leu-M1 et CD 15). Les cellules tumorales
exprimaient les cytokératines spécifiques de l’épithélium vésical (classification de Sheldon). Un
traitement associant Méthotrexate, Vinblastine, Endoxan et Cisplatine a été débuté.

Table 2: Sample clinical cases generated by two models based on constraints that were automatically extracted from
a reference clinical case. An automatic English translation is shown in Table 6 in Appendix A.

ous since an instructed-based language model is
not necessarily the best starting point for training a
base text generator. This is particularly true for the
Flan-T5-small models, without an evident explana-
tion.

We observe that encoder-decoder models per-

form better than decoder-only models. Decoder-
only models are also more unstable from one gen-
eration to another, with large standard deviations
in Accuracy, Self-BLEU, and Corpus-BLEU, es-
pecially for the smallest models. In terms of per-
plexity, these models achieve lower scores and thus,
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Generation method Accuracy↑ Perplexity Self-BLEU-4↓ Corpus-BLEU-4↑ BLEU-4↑
B

as
el

in
es

Copying constraints 100 194.3 14.4 25.5 1.1
Copying natural corpus 98.8 19.5 33.4 97.4 97.5
Bloom 1b1 frozen∗ s/o 11.5±1.5 86.1±0.4 64.8±0.4 s/o
Bloom 1b1 unfrozen∗ s/o 10.2±0.9 82.9±0.4 60.6±0.5 s/o
Bloom 7b1 frozen∗ s/o 8.4±2.8 79.3±1.2 57.1±0.5 s/o

E
nc

od
er

-d
ec

od
er

E
nc

od
er

-d
ec

od
er

mT5-large frozen 78.0±0.6 13.6±0.2 53.5±0.5 55.8±0.5 12.0±0.1

mT5-large unfrozen 73.6±0.8 13.4±0.2 53.8±0.4 56.4±0.3 10.9±0.2

Flan-T5-small frozen 61.6±0.4 18.9±0.4 49.1±0.4 47.1±0.4 6.6±0.1

Flan-T5-small unfrozen 61.5±0.7 17.6±0.5 51.2±0.4 50.0±1.4 7.0±0.2

Flan-T5-large frozen 81.5±1.1 14.8±0.4 52.8±0.4 55.3±0.4 12.0±0.1

Flan-T5-large unfrozen 80.3±1.0 15.6±0.5 51.9±0.2 55.0±0.4 11.7±0.2

Flan-T5-XL frozen 84.2±0.8 14.9±0.2 50.2±0.2 54.5±0.2 12.8±0.1

Flan-T5-XL unfrozen 85.3±0.8 14.9±0.2 49.0±0.1 53.8±0.4 12.9±0.2

D
ec

od
er

Bloom 1b1 frozen 40.5±3.9 8.8±0.2 62.5±5.8 42.3±11.1 4.7±1.0

Bloom 1b1 unfrozen 29.6±0.9 9.3±0.4 63.6±4.7 50.4±9.7 4.0±0.5

Bloom 7b1 frozen 43.5±2.5 9.9±0.6 54.0±2.1 47.5±2.0 5.8±1.0

Bloomz 1b1 frozen 45.4±4.2 9.2±0.2 61.9±7.6 41.8±11.0 5.2±1.3

Bloomz 1b1 unfrozen 32.1±1.7 9.6±0.2 65.7±6.0 47.0±13.2 4.3±0.7

Bloomz 7b1 frozen 39.8±3.0 9.9±0.2 55.0±1.9 49.8±1.5 5.4±0.4

Table 3: Evaluation of synthetic text generated from the constraints of the test set. Baseline models marked with
"∗": training and generation without constraints.

deviate from the training corpus. As the model used
to calculate perplexity is also a decoder, the com-
mon architecture potentially biases the decoders
for this metric. On the other hand, decoder train-
ing time is much shorter: 10 to 15 minutes for
billion-parameter models and 30 minutes for seven-
billion-parameter models.

We can also identify some good practices re-
garding model pre-training and word embedding
configuration. Models that have benefited from
fine-tuning with instructions perform better overall
than models with pre-training on a language mod-
eling task. This is mainly true for accuracy and the
BLEU score. We can assume that the type of in-
structions used for this fine-tuning – more precisely,
whether these instructions are directly related or
not to text generation tasks – may have an influ-
ence on the performance of these models but this
analysis is beyond the scope of this article. We
can also observe that frozen models perform better
than unfrozen models. This observation could be
considered surprising since the unfrozen models
are supposed to have better adaptation capabili-
ties but their heterogeneity in terms of parameters
(LoRA and word embeddings matrices) is perhaps
the source of these results.

6.2 Environmental impact

Model Fine-tuning Generation Perplexity Total

mT5-large 4.84 0.5 0.01 5.35
flan-T5-small 0.76 0.08 0.01 0.85
flan-T5-large 1.3 0.5 0.01 1.81
flan-T5-XL 4.84 0.5 0.01 5.35

Bloom(z) 1b1 0.03 0.78 0.01 0.82
Bloom(z) 7b1 0.05 0.64 0.01 0.70

Table 4: Environmental impact of the final experiments
for each model, in kgCO2e. Each line sums the emis-
sions for different associated configurations. The total
emissions reach 14.87 kgCO2e.

Table 4 presents the greenhouse gas emissions of
the experiments in terms of kgCO2e. The environ-
mental impact is essentially linked to the training
of encoder-decoder models, which takes longer
and requires more GPUs for larger models. These
estimations were computed using the Machine-
Learning Impact calculator presented in (Lacoste
et al., 2019) with emission values for France (0.101
kgCO2e/kWh) found in (Moro and Lonza, 2018).

7 Conclusion

In this study, we generate French clinical cases
conditioned on structured clinical data. We com-
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pare models with different architectures, encoder-
decoder and decoder-only, which we fine-tune on
a corpus of clinical cases using LoRA matrices.
We propose an evaluation methodology based on
a set of automatic measures: accuracy, perplex-
ity, Self-BLEU, Corpus-BLEU, and BLEU. We
observe that models with encoder-decoder architec-
ture achieve better results on the task of generation
from structured data, but with more costly train-
ing. Our experiments suggest that the best training
strategy is to add LoRA matrices to the word em-
beddings rather than unfreezing them, although this
does lengthen training.

The computing power available in a hospital set-
ting limits the possibility of using larger and/or
heavier models. The smallest size encoder-decoder
model, Flan-T5-Small (77 million parameters), fits
on the smaller Nvidia P6000 GPUs for fine-tuning
and inference and obtains better performances than
the larger decoder models. Small encoder-decoder
models should be used if this type of resource is
available for multiple hours. Decoders are more
suitable if time on the GPUs is limited. However, it
would be necessary to generate several candidates
and filter them to compensate for the irregularity
of these models.

Quantization might also be a solution for light-
ening computational loads, provided that quantized
models achieve comparable results to their regular
counterparts.

7.1 Limitations
The set of measures we have put in place gives us
a fairly good view of what our models generate.
There are, however, limits to using only accuracy,
especially as calculated, to describe the fidelity of
information transcription. Accuracy here seeks an
exact match between the constraints and the text.
Any reformulation of the model is therefore dis-
carded, even though it may be correct. Moreover,
using this measure alone does not give us any in-
formation on potential additions of information or
entities by the models. In this study, we have exclu-
sively used automatic metrics for the evaluation of
generated texts. It is difficult to manually assess the
quality of generated texts without clinical knowl-
edge. Manual evaluation by clinical experts would
enable us to estimate the medical consistency of
generated texts more reliably. Finally, we have
found that generations from the same model can be
unstable. Filtering texts to keep the best candidate
could improve results (Hiebel et al., 2023).

7.2 Ethical Considerations
The clinical documents used for fine-tuning the
generation models (E3C and CAS) do not contain
personal information. Thus, there is no additional
risk of generating sensitive information with our
models fine-tuned on those documents. The docu-
ments used for training clinical entity recognition
models (MERLOT) were de-identified according
to a protocol approved by the CNIL (Commission
de l’Informatique et des Libertés), an independent
French administrative regulatory body whose mis-
sion is to ensure that data privacy law is applied to
the collection, storage, and use of personal data. In
this work, we only use the models’ annotations on
the E3C and CAS corpus.

Acknowledgments

This work has received funding from the French
"Agence Nationale pour la Recherche" under grant
agreement CODEINE ANR-20-CE23-0026-01.

This publication was made possible by the use
of the FactoryIA supercomputer, financially sup-
ported by the Ile-de-France Regional Council.

Calculations involving decoder-only models
were performed using HPC resources from
GENCI–IDRIS (Grant 2023-AD011014538).

References
Masoud Abedi, Lars Hempel, Sina Sadeghi, and Toralf

Kirsten. 2022. GAN-Based Approaches for Generat-
ing Structured Data in the Medical Domain. Applied
Sciences, 12(14).

Masaki Asada and Makoto Miwa. 2023. BioNART:
A biomedical non-AutoRegressive transformer for
natural language generation. In The 22nd Work-
shop on Biomedical Natural Language Processing
and BioNLP Shared Tasks, pages 369–376, Toronto,
Canada. Association for Computational Linguistics.

Asma Ben Abacha, Wen-wai Yim, Yadan Fan, and
Thomas Lin. 2023. An empirical study of clinical
note generation from doctor-patient encounters. In
Proceedings of the 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 2291–2302, Dubrovnik, Croatia. As-
sociation for Computational Linguistics.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT ’21, page 610–623, New York, NY,
USA. Association for Computing Machinery.

179

https://doi.org/10.3390/app12147075
https://doi.org/10.3390/app12147075
https://doi.org/10.18653/v1/2023.bionlp-1.34
https://doi.org/10.18653/v1/2023.bionlp-1.34
https://doi.org/10.18653/v1/2023.bionlp-1.34
https://doi.org/10.18653/v1/2023.eacl-main.168
https://doi.org/10.18653/v1/2023.eacl-main.168
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922


Leonardo Campillos, Louise Deléger, Cyril Grouin,
Thierry Hamon, Anne-Laure Ligozat, and Aurélie
Névéol. 2018. A French clinical corpus with com-
prehensive semantic annotations: development of
the Medical Entity and Relation LIMSI annOtated
Text corpus (MERLOT). Language Resources and
Evaluation, 52(2):571–601.

J. Elliott Casal and Matt Kessler. 2023. Can lin-
guists distinguish between chatgpt/ai and human writ-
ing?: A study of research ethics and academic pub-
lishing. Research Methods in Applied Linguistics,
2(3):100068.

Edward Choi, Siddharth Biswal, Bradley Malin, Jon
Duke, Walter F. Stewart, and Jimeng Sun. 2017. Gen-
erating multi-label discrete patient records using gen-
erative adversarial networks. In Proceedings of the
2nd Machine Learning for Healthcare Conference,
volume 68 of Proceedings of Machine Learning Re-
search, pages 286–305. PMLR.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Vincent Claveau, Antoine Chaffin, and Ewa Kijak. 2021.
La génération de textes artificiels en substitution ou
en complément de données d’apprentissage. In TALN
2021 - 28e Conférence sur le Traitement Automa-
tique des Langues Naturelles, volume 1, pages 37–49,
Lille, France. ATALA.

Cynthia Dwork, Krishnaram Kenthapadi, Frank Mc-
Sherry, Ilya Mironov, and Moni Naor. 2006. Our
data, ourselves: Privacy via distributed noise gener-
ation. In Advances in Cryptology - EUROCRYPT
2006, pages 486–503, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Maksim Eremeev, Ilya Valmianski, Xavier Amatriain,
and Anitha Kannan. 2023. Injecting knowledge into
language generation: a case study in auto-charting
after-visit care instructions from medical dialogue.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2373–2390, Toronto, Canada.
Association for Computational Linguistics.

Giacomo Frisoni, Antonella Carbonaro, Gianluca Moro,
Andrea Zammarchi, and Marco Avagnano. 2022.
NLG-metricverse: An end-to-end library for evaluat-
ing natural language generation. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 3465–3479, Gyeongju, Republic
of Korea. International Committee on Computational
Linguistics.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in Neural Information
Processing Systems, volume 27. Curran Associates,
Inc.

Natalia Grabar, Vincent Claveau, and Clément Dalloux.
2018. CAS: French corpus with clinical cases. In
Proceedings of the Ninth International Workshop on
Health Text Mining and Information Analysis, pages
122–128, Brussels, Belgium. Association for Compu-
tational Linguistics.

Nicolas Hiebel, Olivier Ferret, Karen Fort, and Au-
rélie Névéol. 2023. Can synthetic text help clini-
cal named entity recognition? a study of electronic
health records in French. In Proceedings of the 17th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pages 2320–
2338, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations, Online.

Julia Ive, Natalia Viani, Joyce Kam, Lucia Yin, So-
main Verma, Stephen Puntis, Rudolf Cardinal, An-
gus Roberts, Robert Stewart, and Sumithra Velupillai.
2020. Generation and evaluation of artificial mental
health records for natural language processing. npj
Digital Medicine, 3.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney,
Caiming Xiong, and Richard Socher. 2019. CTRL:
A conditional transformer language model for con-
trollable generation. CoRR, abs/1909.05858.

Germán Kruszewski, Jos Rozen, and Marc Dymetman.
2023. disco: a toolkit for distributional control of
generative models. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 3: System Demonstrations), pages
144–160, Toronto, Canada. Association for Compu-
tational Linguistics.

Alexandre Lacoste, Alexandra Luccioni, Victor
Schmidt, and Thomas Dandres. 2019. Quantifying
the carbon emissions of machine learning. arXiv
preprint arXiv:1910.09700.

Yupian Lin, Tong Ruan, Jingping Liu, and Haofen Wang.
2023. A survey on neural data-to-text generation.
IEEE Transactions on Knowledge and Data Engi-
neering, pages 1–20.

Bernardo Magnini, Begoña Altuna, Alberto Lavelli,
Manuela Speranza, and Roberto Zanoli. 2020. The
E3C Project: Collection and Annotation of a Multilin-
gual Corpus of Clinical Cases. In Proceedings of the
Seventh Italian Conference on Computational Lin-
guistics, CLiC-it 2020, volume 2769 of CEUR Work-
shop Proceedings, Bologna, Italy. CEUR-WS.org.

Oren Melamud and Chaitanya Shivade. 2019. Towards
Automatic Generation of Shareable Synthetic Clin-
ical Notes Using Neural Language Models. In Pro-
ceedings of the 2nd Clinical Natural Language Pro-
cessing Workshop, pages 35–45, Minneapolis, Min-
nesota, USA. Association for Computational Linguis-
tics.

180

https://doi.org/10.1007/s10579-017-9382-y
https://doi.org/10.1007/s10579-017-9382-y
https://doi.org/10.1007/s10579-017-9382-y
https://doi.org/10.1007/s10579-017-9382-y
https://doi.org/https://doi.org/10.1016/j.rmal.2023.100068
https://doi.org/https://doi.org/10.1016/j.rmal.2023.100068
https://doi.org/https://doi.org/10.1016/j.rmal.2023.100068
https://doi.org/https://doi.org/10.1016/j.rmal.2023.100068
https://proceedings.mlr.press/v68/choi17a.html
https://proceedings.mlr.press/v68/choi17a.html
https://proceedings.mlr.press/v68/choi17a.html
https://hal.archives-ouvertes.fr/hal-03265896
https://hal.archives-ouvertes.fr/hal-03265896
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11761679_29
https://doi.org/10.18653/v1/2023.acl-long.133
https://doi.org/10.18653/v1/2023.acl-long.133
https://doi.org/10.18653/v1/2023.acl-long.133
https://aclanthology.org/2022.coling-1.306
https://aclanthology.org/2022.coling-1.306
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.18653/v1/W18-5614
https://doi.org/10.18653/v1/2023.eacl-main.170
https://doi.org/10.18653/v1/2023.eacl-main.170
https://doi.org/10.18653/v1/2023.eacl-main.170
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.1038/s41746-020-0267-x
https://doi.org/10.1038/s41746-020-0267-x
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
https://doi.org/10.18653/v1/2023.acl-demo.14
https://doi.org/10.18653/v1/2023.acl-demo.14
https://doi.org/10.1109/TKDE.2023.3304385
http://ceur-ws.org/Vol-2769/paper_55.pdf
http://ceur-ws.org/Vol-2769/paper_55.pdf
http://ceur-ws.org/Vol-2769/paper_55.pdf
https://doi.org/10.18653/v1/W19-1905
https://doi.org/10.18653/v1/W19-1905
https://doi.org/10.18653/v1/W19-1905


Alberto Moro and Laura Lonza. 2018. Electricity car-
bon intensity in european member states: Impacts on
ghg emissions of electric vehicles. Transportation
Research Part D: Transport and Environment, 64:5–
14. The contribution of electric vehicles to environ-
mental challenges in transport. WCTRS conference
in summer.

Aurélie Névéol, Hercules Dalianis, Sumithra Velupillai,
Guergana Savova, and Pierre Zweigenbaum. 2018.
Clinical natural language processing in languages
other than english: opportunities and challenges.
Journal of Biomedical Semantics, 9(1):12.

Jekaterina Novikova, Ondřej Dušek, Amanda Cer-
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A Appendix

A.1 Translation of Tables and Figures
Figure 2 presents the translation of the example of
data representation shown in Figure 1.

Tables 5 and 6 present an automatic translation
of the natural document with the corresponding
constraints and generated samples that were pre-
sented in Tables 1 and 6. The automatic translation
was done with DeepL4.

A.2 Model Sizes
Table7 present the total number of parameters and
the trainable parameters for each model.
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"age": "22",
"sex": "male",
"constraints": [
[
"corneal dehiscence",
"DISO"

],
[
"surgical repair",
"PROC"

]
]

<age> 22 <sex> male <constraints>
      <DISO> corneal dehiscence 
      <PROC> surgical repair 

Figure 2: Example of data representation for encoder-decoder architecture (translation of Figure 1).

Type of clinical feature Sample value

Age 54
Sex Male
Localisation Bladder
Histology poorly differentiated adenocarcinoma of the urachus
Sign hematuria
Procedure CT scan
Treatment methotrexate-vinblastine-endoxan-cisplatin chemotherapy
Score T III A (according to Sheldon’s classification)
Bio negative for cytokeratins (ck) 7 and 20

Table 5: Sample control data based on manual analysis of a clinical case (translation of Table 1).
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Automatically
extracted
constraints

age: 54 ; sex: male ; constraints: isolated hematuria, CT scan, mass, 4 cm, poorly differentiated
adenocarcinoma, of type III, extension work-up, total radical cystoprostatectomy, iliac and obturator
lymphadenectomy, omphalectomy, replacement enterocystoplasty, adenocarcinoma of the urachus,
very locally mucosecretory, ulcerated, transitional cell carcinoma, grade III, Carcinoembryonic
Antigen, Leu-M1, CD 15, cytokeratins, bladder epithelium, Sheldon’s classification, methotrexate,
vinblastine, endoxan, cisplatin

Real
clinical case

A 54-year-old man presented with isolated hematuria. An ultrasound scan, followed by a CT scan,
showed a mass 4 cm in diameter, with a necrotic center, anterior to the bladder dome, invading only
the adjacent fat (Figure 1A.). Cystoscopic biopsies revealed a poorly differentiated adenocarcinoma,
with areas of type III transitional epithelioma (Figure 1B). The extension work-up was negative.
The patient underwent total radical cystoprostatectomy with iliac and obturator lymphadenectomy,
combined with omphalectomy and Studer replacement enterocystoplasty. Complete anatomopatho-
logical examination of the surgical specimen revealed a poorly differentiated, invasive, very locally
mucosecretory adenocarcinoma of the urachus (Figure 1C). It was ulcerated in the bladder lumen,
and contained areas of grade III transitional cell carcinoma, as well as argentaffin cells. Two lymph
node pockets and surrounding fat were invaded. Immunohistochemistry showed neoplastic cells to
be positive for Carcinoembryonic Antigen (CEA), Leu-M1 (CD 15), and negative for cytokeratins
(ck) 7 and 20. The bladder epithelium was positive for ck 7. This was stage T III A (according to
Sheldon’s classification). The patient was undergoing systemic methotrexate-vinblastine-endoxan-
cisplatin chemotherapy. With 35 months’ follow-up, he is doing well.

Synthetic
Bloomz 1b1
unfrozen

This is a 54-year-old patient with no particular pathological history who consulted for isolated
hematuria. Clinical examination revealed a patient in good general condition, apyretic, with signs
of arterial hypertension and abdominal tenderness to palpation. Laboratory tests were normal.
Abdominal ultrasound revealed a heterogeneous tissue mass on the left flank measuring 4 cm
in long axis. MRI showed a homogeneous tissue mass in the left flank (Figure 1). Histological
examination of the operative specimen confirmed the diagnosis of type III poorly differentiated
adenocarcinoma according to Sheldon’s classification [1]. Magnetic resonance imaging (MRI)
did not reveal any brain or lung metastases. A total radical cystoprostatectomy associated with an
iliac and obturator lymphadenectomy and a substitution omphalectomy and enterocystoplasty were
performed. Anatomopathological study of the surgical specimen confirmed the diagnosis of poorly
differentiated adenocarcinoma of the urachus, progressing to stage III transitional cell carcinoma
according to Sheldon’s classification [1].

Synthetic
Flan-T5-XL
frozen

This was a 54-year-old patient with no specific pathological history who presented with isolated
hematuria evolving for 2 months. CT examination revealed a 4 cm mass in the posterior wall of the
myringotomy (Figure 1). A diagnosis of type III poorly differentiated adenocarcinoma was made.
The extension work-up was negative. Total radical cystoprostatectomy combined with non-obturator
iliac lymphadenectomy and omphalectomy with replacement enterocystoplasty was performed.
Anatomopathological study of the surgical specimen confirmed the diagnosis of poorly differentiated
adenocarcinoma of the urachus, with a very locally mucosecretory and ulcerated appearance. This
appearance is compatible with a grade III transitional cell carcinoma (Carcinoembryonic Antigen:
CD34, Leu-M1 and CD 15). Tumor cells expressed cytokeratins specific to the bladder epithelium
(Sheldon classification). Treatment with Methotrexate, Vinblastine, Endoxan and Cisplatine was
initiated.

Table 6: Sample clinical cases generated by two models based on constraints that were automatically extracted from
a reference clinical case (translation of Table 2).
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Model Total parameters Trainable parameters Percentage trainable

mT5-large frozen 1.2 B 9.6 M 0.8%
mT5-large unfrozen 1.5 B 518 M 34.5%

Flan-T5-small frozen 78.3 M 1.3 M 1.7%
Flan-T5-small unfrozen 94.3 M 33.8 M 35.8%

Flan-T5-large frozen 787 M 4.3 M 0.5%
Flan-T5-large unfrozen 819 M 69.7 M 8.5%

Flan-T5-XL frozen 2.9 B 7.9 M 0.3%
Flan-T5-XL unfrozen 2.9 B 139 M 4.7%

Bloom(z) 1b1 frozen 1.1 B 6.7 M 0.6%
Bloom(z) 1b1 unfrozen 1.5 B 390 M 26.8%
Bloom(z) 7b1 frozen 7.1 B 17.8 M 0.3%

Table 7: Parameter count as reported by the PEFT library used for fine-tuning. We report the same numbers for
Bloom and Bloomz because the models have the same architecture and the same amount of parameters. Shift of
total parameters in unfrozen models are due to tied embeddings being counted twice.
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