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Abstract

This study evaluates the proficiency of Large
Language Models (LLMs) in accurately label-
ing clinical document excerpts. Our focus is
on the assignment of potential or confirmed di-
agnoses and medical procedures to snippets of
medical text sourced from unstructured clini-
cal patient records. We explore how the perfor-
mance of LLMs compare against human anno-
tators in classifying these excerpts. Employ-
ing a few-shot, chain-of-thought prompting
approach with the MIMIC-III dataset, Med-
PaLM 2 showcases annotation accuracy com-
parable to human annotators, achieving a no-
table precision rate of approximately 92% rel-
ative to the gold standard labels established by
human experts.

1 Introduction
Advanced natural language processing (NLP) tools
especially generative language models have re-
cently made a big difference in healthcare (Liu
et al., 2023; Hu et al., 2023; Singhal et al., 2023;
Goel et al., 2023; Tu et al., 2024). One key way
NLP is used is to find important medical details,
like diagnoses, within a patient’s unstructured data.
Clinicians can quickly search for medical condi-
tions in these documents, speeding up their under-
standing of a patient’s medical history.

In this work, we focus on identifying both poten-
tial and confirmed medical conditions throughout
the various text snippets of information found in pa-
tients’ medical records. Particularly, we establish
a mapping between a large comprehensive list of
possible medical condition or procedures queries
C and text snippets from clinical documents S. We
visualize the core task in Figure 4 in the Appendix.
When establishing a connection between a medical
condition or procedure and a snippet of medical
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Figure 1: Labeling Framework. This consists of four com-
ponents: (1) Pre-filtering; the query list is pre-filtered using
a keyword search algorithm. (2) Text Chunking; the medical
note is divided into smaller text snippets. (3) Alignment; The
remaining queries are associated with the most relevant text
snippets. (4) LLM Labeling; the text snippets and queries
are sent to a large language model (LLM). The LLM confirms
which conditions are truly relevant for each snippet.

text, we do not expect the text to include "support-
ing" components that are directly related to the
condition or procedure. Instead, we anticipate that
the labeler (here LLM) recognizes significant medi-
cal patterns, medications, and symptoms that point
to a potential diagnosis (i.e. medical condition) or
medical procedure. A straightforward example of
this is as follows:
Text Snippet: "The patient has been taking met-
formin 2500mg a day since last year."
Possible LLM Condition/Procedure Labeling:
Diabetes and Polycystic Ovary Syndrome (PCOS).
The rationale behind this labeling is that metformin
is a medication commonly used in various medical
treatments. Mastering this labeling process con-
tributes to building the foundation for powerful
information retrieval, search and summarization
systems, which has the potential to revolutionize
medical search and ultimately improve healthcare
workflow. We summarize our main contributions
as follows: (1) We demonstrate that LLMs can be
used to identify potential labels (i.e medical condi-
tions or procedures) with medical snippets reduc-
ing reliance on human experts. (2) We propose a
cost-effective and efficient labeling framework with
LLMs, which accelerates the annotation process
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by reducing expensive LLM calls while preserving
high labeling quality.

2 Related Work
Our work aligns with the field of Named Entity
Recognition (NER) (Doan et al., 2012; Mullenbach
et al., 2018; Yang et al., 2019; Goel et al., 2023;
Guo et al., 2024; Ferraro et al., 2024). While NER
primarily focuses on identifying and categorizing
words into predefined entities such as procedure
codes, medication codes, organizations, and oth-
ers, our work takes a different approach. We adopt
a unique methodology wherein we meticulously
structure clinical documents by segmenting them
into coherent and meaningful snippets. Our goal is
to establish connections between these snippets and
pertinent medical conditions or procedures drawn
from a comprehensive list of medical queries. This
approach allows us to not only identify potential
medical conditions or procedures but also under-
stand the context within the document, which ul-
timately will be useful for building and training
medical search and retrieval systems.

3 Methodology
We provide in Figure 1 the general framework of
our proposed labeling pipeline.
Pre-filtering. The first step in the pipeline in-
volves pre-filtering a comprehensive list using cost-
effective filtering strategies. This step aims to re-
duce the number of expensive calls to the LLM
and avoid quality label loss (see Appendix I.1).
There are several methods for implementing a
pre-filtering step, such as embedding similarity,
medical search engines, etc. We encourage re-
searchers to explore other available and easy al-
ternatives. In this work, we employed a keyword
search algorithm. This technique expands the input
queries (through query expansion) and looks for
the matched text in the input document, which we
regard as reference snippets. More details can be
found in Appendix B.
Text Chunking. We broke down the patient’s med-
ical record into more manageable and informative
text segments (i.e. medical snippets). We per-
formed different chunking strategies (see Appendix
D), and settled with a hybrid method involving a
sentence-based (3-4 sentences) chunking algorithm
with a constraint of 10-70 word tokens (Figure E).
Alignment. At this stage, we matched the remain-
ing medical conditions and procedures to the cor-
responding text snippet. In particular, we opted

for fuzzy matching. This can be considered as
a secondary pre-filtering step at the snippet level.
In our work, since our pre-filtering step outputs a
reference snippet per condition or procedure, we
attempted to locate these snippets within the dif-
ferent text chunks we have produced. This way,
the condition becomes associated with the chunked
snippet.*

LLM labeling. In the final stage of our framework,
we paired the text snippets and their corresponding
medical conditions. These pairs are then sent to
the LLM using appropriate prompting strategies.
The LLM assesses the relevance of the text snippet
and medical condition in each pair. If it determines
a condition to be relevant, the condition label is
included as one of the final labels for that snippet.

4 Experimental Setup
Dataset and Pre-processing. We used the
publicly available de-identified dataset MIMIC-III
(Johnson et al., 2016). It is a collection of de-
identified medical records and notes of more than
40,000 critical care patients at a large tertiary care
hospital. It contains over two million unstructured
clinical documents from nurses, physicians, etc.
In our work, we randomly sampled 1000 patients
and fetched all of their corresponding clinical
records. Our pre-processing of the dataset was kept
simplistic. We used simple regular expressions
to identify formatting inconsistencies, such as
extra spaces or tabs, in the clinical documents.
We provide basic statistics in Section F about the
sampled subset from the MIMIC-III dataset.
Human Labeling Workflow. The human labeling
process was carried out in three separate rounds.
In each round, a different group of medical expert
raters was recruited to evaluate a distinct set of
medical text snippets paired with a condition.
Overall, we had 14 different medical experts as
human annotators: 3 experts on the first round,
5 on the second, and 6 on the third round of
labeling. Specifically, the raters were given
a set of multiple-choice options ("Relevant",
"Irrelevant", and "Not sure") and were asked to
answer the following question: "Is the following
text snippet relevant to the following medical
condition/procedure?". The raters were given a
random sample of snippets. In total, we collected
14,470 labeled snippet-condition pairs.

*It is important to note that the inclusion of this component
is contingent upon the pre-filtering strategy that is ultimately
adopted.
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Zero-shot Zero-shot CoT Few-shot CoT

NE WE NE WE NE WE

LLM Architecture P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

PaLM 2∗ 83.55 96.55 89.58 71.79 93.37 81.17 50.49 91.07 64.97 39.82 87.25 54.68 83.75 96.28 89.58 73.96 94.25 82.88
Med-PaLM 2 81.10 98.51 88.95 67.37 96.92 79.49 91.74 84.37 87.91 81.49 76.48 78.91 92.70 87.62 90.09 84.94 82.98 83.95

Table 1: LLM performance compared to the golden human labels. Med-PaLM 2 has the highest performance
overall. NE: golden labels without rater exclusion; WE: golden labels with rater exclusion. P: precision; R: recall;
F1: F1 score. *This is a fine-tuned PaLM 2 model variant for programming tasks.

LLM Labeling and Prompt Engineering Strate-
gies. In this study we investigated LLM capabili-
ties using simple prompt engineering techniques to
more complex reasoning prompting strategies. We
used zero-shot, few-shot, chain-of-thought (CoT)
(Wei et al., 2022) , self-consistency CoT (Wang
et al., 2022), and chain of verification (CoVe) (Dhu-
liawala et al., 2023). We assess these strategies on
providing accurate labeling on medical snippets
with respect to the “golden” labels obtained from
human annotators. As for the LLM architectures,
we used two different models: PaLM 2 (Anil et al.,
2023) and Med-PaLM 2 (Singhal et al., 2023).

5 Results
We provide details about the basic statistics on both
human labeled data and the sampled data from
MIMIC-III in Appendix F.
Agreement Between Human Raters. Before re-
lying on human labels, it is essential to assess their
reliability and validity, especially when there is no
clear or accessible ground truth label. To do this,
we start by plotting the response distribution of
each rater at each labeling round. Figure 2 exhibits
significant variations within the different raters’ re-
sponses. In round 1, for instance, two raters (raters
1 and 2) demonstrated a tendency to provide an-
swers skewed towards the "irrelevant" category. In
contrast, rater 3 maintained a balanced approach,
assigning an equal number of responses to both
the "irrelevant" and "relevant" categories. During
the second round of the labeling process, raters
5, 6, and 8 exhibited a similar pattern of provid-
ing more "irrelevant" labels. In contrast, raters
4 and 7 produced more "relevant" responses. In
the third round, we observe a similar distribution
trend, which is predominantly characterized by a
skew towards the "irrelevant" side. In Figure 3, we
assess inter-rater reliability using Cohen’s Kappa
statistics (Viera et al., 2005; McHugh, 2012) and
we provide in Appendix H the agreement interpre-
tations. We observe that the level of agreement
between raters varies across different rounds. In

round 1 of labeling, the agreement ranges from
"fair" to "moderate," indicating a practical level of
consensus. However, in rounds 2 and 3, substantial
variations emerge. In round 2, raters 5 and 6 exhibit
a stronger agreement compared to other raters. In
the third round, we observe a notable agreement be-
tween raters 11 and 12 and a moderate agreement
between raters 10 and 11.
Golden Labels. Based on these reliability and
agreement results, we decide to create two types
of golden labels: (1) Majority vote with no rater
exclusion [NE] and (2) Majority vote with rater ex-
clusion [WE]. Indeed, for the first case, we mainly
consider all of the raters’ responses. As for the
second version of golden labels, we consider only
the majority voting of rater responses that are at
least in a fair agreement with each other. In this
case, we consider the following raters in each of
the rounds (i.e. all raters in round 1, raters 5, 6, and
8 in round 2, and raters 10, 11, and 12 for round 3).
We also applied a rigorous majority voting strategy.
This involved selecting cases where there was a
clear and consistent consensus among the raters.
For instance, for a particular snippet-condition pair,
we designated the snippet as relevant (associating
it with the condition) only if all raters agreed that
the condition was pertinent to the snippet. In cases
where raters disagreed, we deemed the condition
as "not sure", and excluded it from the evaluation.
LLM Performance on the Aggregated raters’
labels. In Table 1, we compare the performance
of different LLMs using different prompting strate-
gies. Overall, Med-PaLM 2 achieves the highest
precision across the different LLM architectures
for each prompting strategy. This is likely because
Med-PaLM 2 is specifically trained on medical
text, which allows it to provide more precise re-
sults. However, when considering the recall metric,
PaLM 2 achieves highest recall values, albeit with
lower precision. When building a dataset for train-
ing medical retrieval systems, it is well preferred
to have a good balance between precision and re-
call. Among the various prompting techniques, we
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Figure 2: Response Distribution of each Raters. There are clear variations in the distribution of annotations
across the raters.

Figure 3: Cohen Kappa’s Inter-rater reliability.

find that a few-shot CoT approach yields superior
overall performance. Specifically, we observe im-
provements in both precision and recall metrics.
Med-PaLM 2 outperformed in Few-shot CoT due
to its medical focus. In zero-shot settings, PaLM 2
achieved top precision and F1 scores.
Beyond Basic Prompts. In addition to the three
aforementioned prompts, we also explored two
more prompting strategies and tested them on Med-
PaLM 2: (1) self-consistency CoT and (2) Chain
of Verification (CoVe). The accuracy of all these
5 prompts are shown in the Table 2. Note that
the self-consistency prompting is based on the Few-
shot CoT prompt with multiple runs using non-zero
temperature (T=0.5). Although the ensemble result
slightly outperforms the single run with T=0 (few-
shot CoT), it requires multiple runs (three in our
case), which substantially increases the time ex-
penditure, hence we used the few-shot CoT for our
final labeling task. Similarly, utilizing the CoVe
prompt entails multiple rounds of verification to
attain the final label. Each round demands distinct
LLM invocations, rendering this method expensive.

Time Efficiency Comparison. On average, hu-
man raters took anywhere between 65 and 595 sec-
onds (approximately 10 minutes) to review a single
snippet, with an average time of 203 seconds. Con-
sidering an average of 8 conditions per snippet,

Prompts P R Acc. F1

Zero-shot 78.73 97.30 89.97 87.03
Zero-shot CoT 92.79 72.59 88.57 81.45
Few-shot CoT 91.94 83.45 91.75 87.49
Self-Consistency 92.63 84.43 92.29 88.34
CoVe 73.98 77.67 82.83 75.78

Table 2: Med-PaLM 2 performance on the NE
dataset. The highest F1 score is highlighted in
bold, and the second-best score is underlined. Self-
consistency yields the best performance. However,
given that the few-shot prompt is less expensive than
the self-consistency prompt, it is still a viable option.

this translates to roughly 24 seconds to review a
snippet-condition pair. The latency of LLMs, on
the other hand, varies depending on factors such as
model architecture, size, inference infrastructure,
and prompt strategies. However, on average, their
latency is significantly lower than that of human
raters.

6 Conclusion
We proposed a framework for labeling clinical
notes. Our findings suggest that LLMs can pro-
duce high-quality medical data labels, which can
serve as a valuable dataset for NLP tasks, such as
information retrieval systems. These systems can
help clinicians to be more efficient in their daily
workflow by finding the key information faster and
focus on pertinent facts within a clinical note.
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7 Limitations

This work focused on a specific task: labeling
medical conditions within clinical text snippets.
While successful in this context, generalizing this
approach to other scenarios might face limitations.
Our keyword search method could miss relevant
conditions not captured by the search algorithm.
Additionally, the large language model (LLM) la-
beling is sensitive to the way it is prompted and re-
quires further exploration to find optimal strategies
for different use cases. Furthermore, the sentence-
based chunking algorithm, while effective here, is
specifically designed for the MIMIC-III dataset
and may need adjustments for broader application.
Finally, even human raters showed significant dis-
agreement on labeling, highlighting the challenges
posed by limited context in snippets and the inher-
ent uncertainties within the medical domain, par-
ticularly when associating conditions with diverse
symptoms. These limitations underscore the need
for further research to improve generalizability and
robustness when applying this type of system to
broader medical text analysis tasks.

8 Ethical Statement

Labels created by LLMs might reflect biases inher-
ent in the LLMs themselves. To some extent, these
biases can be reduced by diversifying the LLMs, as
this approach encourages the generation of more
robust labels. However, even after implementing
this strategy, biases may still persist. In the medical
context specifically, additional alignment interven-
tion methods can be utilized to modify the behavior
of the LLM, presenting a potential solution to this
challenge.
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A Visualization of Medical Note
Labeling Task.

The goal is to categorize and classify each med-
ical note text snippet into potential conditions.
This pairing of text snippets and conditions can be
highly valuable for training dense retrieval systems
for medical notes pertaining to specific patients.

DISCHARGE  SUMMARY

PATIENT: [*****]
DATE OF ADMISSION: [**date**]
DATE OF DISCHARGE: [**date**]

REASON FOR ADMISSION: CHEST PAIN

HISTORY OF PRESENT ILLNESS:
Mr. Doe presented to the emergency department with complaints of 
chest pain, which he described as a squeezing sensation in the center 
of his chest, radiating to his left arm. 

The pain began at rest approximately 30 minutes prior to arrival and 
was associated with shortness of breath and diaphoresis. He denied 
any history of chest pain, palpitations, or syncope.

PAST MEDICAL HISTORY: hypertension, diabetes, high cholesterol

SOCIAL HISTORY: smoking history and alcohol use

FAMILY HISTORY: diabetes in first-degree relatives

MEDICATIONS: not on insulin.

PHYSICAL EXAMINATION: 
- Blood pressure: [**blood pressure**]
- Heart rate: [**Heart rate**]
- …..
- ….

TREATMENT: Mr. Doe was treated with aspirin, clopidogrel, or 
nitroglycerin. 

Angina, Chest Pain

Stroke, heart disease, 
shortness of breath, 

Diabetes, hypertension, high 
cholesterol 

Angina, Chest pain, Discomfort

Stroke

Diabetes

Diabetes

High blood pressure, 
hypertension

Angina, Chest Pain

None/NA

Figure 4: Medical Note Labeling Task

B An Example of Input and Output of
the Implemented Mixer Search
Algorithm for a Medical Note.

We used a keyword mixer search algorithm. This
technique expands the input queries (via query
expansion) and identifies their connections and lo-
cations within the input document. By positioning
the keywords in the input document (25 tokens as
the context with the searched keyword in the cen-
ter), the algorithm generates reference sentences.
Ultimately, the most representative reference
sentence is given in relation to the input query
(i.e. medical conditions/procedures). We illustrate
the behavior of the mixer search algorithm as a
technique for pre-filtering unlikely conditions from
a medical note. Given a single query condition and
the patient’s clinical note, the algorithm identifies
the most relevant text snippet from the document
that is likely to be associated with the condition.
Input:
query: "coughing"
note: (note_id, the medical text)
Output: reference text from the medical note
"... Secretions: produced bloody and yellowish
sputum with productive cough which was cleared
with Yankauer and tracheal suction. Also of note
..."

C Identifying Sentence Boundaries

To identify sentence boundaries in the medical
notes within MIMIC-III, we use regular expres-
sions after some simple pre-processing as described
in the experimental setup section. Regular expres-
sions provide a flexible and efficient way to capture
full sentences. They allow us to define patterns that
match specific sentence-ending punctuation marks,
such as periods (.), exclamation marks (!), and ques-
tion marks (?). Additionally, regular expressions
can be used to handle more complex cases, such as
sentences that end with abbreviations or quotations.

D Note Chunking/Segmentation
Strategies.

We implemented several ways of text chunking to
split each medical note properly:
(1) Sentence-base (SB) segmentation: The medi-
cal note is fragmented according to a collection of
one or more sentences. We divide the document
into n non-overlapping sentences without regard
for the notes’ structure and sectioning.
(2) Word-base (WB) segmentation: The medical
note is fragmented according to a collection of one
or more word tokens. One thing to note is that this
word base does not consider the cut offs. In other
words, it would take the number of words given
in the input regardless of it being an incomplete
or full sentence. For our use case, snippets would
be more readable (contextually and grammatically
correct) for later human and LLM labeling.
(3) Sentence-word fusion (SWF) segmentation:
One major thing we noticed during the execution of
our algorithms is that we were getting a lot of very
short sentences. To mitigate this, we implemented
a hybrid version of the snipping algorithms above.
We considered a sentence-based text segmentation,
with a constraint on the number of words admissi-
ble for each segment via a range threshold. In this
work, we chose a balance of 3-4 sentences with the
constraint of 10- 70 word tokens.

E Distribution of the Number of Tokens
for Different Chunking Algorithms.

The MIMIC-III dataset was used to extract medical
notes, and the chunking algorithm was then used to
obtain the distribution of token counts. Naively
chunking (into four sentences) resulted in very
short sentences, mainly due to the formatting of
MIMIC-III and the simple pre-processing done on
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Figure 5: Distribution of token count using differ-
ent chunking strategies. Top left: Sentence-based
segmentation (4 sentences per snippet). Top right:
Sentence-based segmentation with a token count con-
straint of 10-70. Bottom left: Sentence-based seg-
mentation with a token count of 20-60. Bottom right:
Sentence-based segmentation with a token count con-
straint of 30-50.

the notes. To address this, we opted for a sentence-
based constraint on token count, resulting in im-
proved snippets. A 10-70 constraint was chosen
as it captures an appropriate amount of atomical
(singleton) information, while larger constraints
could lead to more extensive snippets with more
information.

F Statistics on Human Labeled Data

There are totally 46,146 patients and 2,083,159
notes in the MIMIC3 dataset. We collected 499
medical conditions as queries and sampled 1,000
patients randomly to generate the labeled data for
future model training. For the evaluation purpose,
we launched three runs of human evaluation: the
first run randomly sampled 100 chunked note snip-
pets across patients and notes, the second and third
runs sampled 5 patients each and totally 338 notes
and 1,048 note snippets. We asked at least three
medical expertise to evaluate the data indepen-
dently in each human evaluation run, and at the end
we had 14 independent raters working on 1,079
note snippets and 14,470 snippet-condition pairs.
Due to the raters’ availability, 9,812 of the snippet-
condition pairs were evaluated by three raters in-
dependently, 896 of them were evaluated by two
raters, and the left 3,762 pairs were evaluated by
only one rater.

The basic statistics of the note snippets and con-
dition queries are shown in Figure 3. Because of
the settings of our chunking algorithm, most of the
snippets have reasonable length (around 60 tokens).
Most of the condition queries are single words or

short phrases with 2 to 3 tokens. The keyword
mixer search algorithm efficiently narrows the con-
ditions for each snippet: on average, each snippet
has about 13 relevant conditions (compare with the
full list of 499 conditions), which will largely re-
duce the time cost of LLM labeling. About half
of these pre-filtered snippet-condition pairs were
further labeled as true relevant pairs, according to
the majority voting of human raters.

Figure 6: Basic Statistics of the Note Snippets and
Condition Queries. a) Distribution of snippets over
length (token counts); b) Distribution of condition
queries over length (token counts); c) Counts of rele-
vant conditions of each snippet (green: based on the
search engine pre-filter results; blue: majority voting
from human raters); d) Counts of relevant snippets of
each condition.

G Prompting strategies

G.1 Zero shot
You are an expert medical assistant. Your task is to
give an answer of Yes/No for the relevance between
a snippet and condition pair. A snippet is relevant
to a condition if it includes information about the
symptoms, assessments, labs, vitals, medications,
procedures, or past medical history of a patient that
is relevant to the given condition.

G.2 Zero-shot CoT
You are a clinical specialist. You will be given a
medical note snippet (S) and a medical condition
or procedure (C). Your task is to mark whether
the snippet S mentions meaningful information
for C to you. Mark the answer with a binary
number (0 or 1). A score of 0 indicates that the
snippet does not contain meaningful content to
the condition, while a score of 1 indicates that the
snippet contains meaningful content. Walk me
through your thoughts.

If C is a condition, snippet S contains mean-
ingful information for C if it satisfies one of the
following criterias:
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(1) The snippet contains description of the condi-
tion (including explicit denial of the condition).
(2) The snippet contains description of a common
cause to the condition.
(3) The snippet contains description of symptom(s)
that are strongly correlated with the condition.
(4) The snippet contains description of findings
that could suggest the condition (including findings
that can rule out this condition).

If C is a procedure, snippet S contains meaning-
ful information for C if it contains description of
the procedure C.
S: snippet.
C: condition.
A:

G.3 Few-shot CoT
You are an experienced clinician. You will be
given a medical note snippet (S) and a medical
condition or procedure (C).
Your task is to decide whether the snippet mentions
useful information to a clinician for understanding
the condition or procedure.
Think step by step without hallucination and
provide a final Yes/No answer.

If C is a [condition], snippet S contains useful
information for C if it satisfies one of the following
criteria:
(1) The snippet contains information that clearly
certifies or excludes C.
(2) The snippet contains highly specific informa-
tion for C (symptoms, signs, or test values).

If C is a [procedure], snippet S contains useful
information for C if it contains one of the following
criteria.
(1) The snippet contains information that clearly
certifies or excludes C.
(2) The snippet mentions clinical conditions that
are highly specific to C.

Example1: C: foot pain S: ros: the patient
denies any fevers, chills, weight change, nausea,
vomiting, abdominal pain, diarrhea, constipation,
melena, hematochezia, chest pain, shortness of
breath, orthopnea, pnd, lower extremity edema,
cough, urinary frequency, urgency, dysuria,
lightheadedness, gait unsteadiness, focal weakness,
vision changes, headache, rash, or skin changes. A:

Step 1. C (foot pain) is a common [condition] that
refers to pain in the foot (lower extremity).
Step 2. Is there an explicit positive/negative signal
of C in S? : No, S contains multiple negative
symptoms as part of a ROS but does not contain
any features related to foot pain.
Thus the answer is No.

Example2
....
ExampleN

C: condition
S: snippet
A: """

G.4 Chain-of-Verification CoVe
BASELINE PROMPT = You are a medical spe-
cialist/clinician. You will be given a medical note
snippet (S) and a condition/procedure (C).
Your task is to answer the below question (Q) cor-
rectly and concisely with a Yes/No answer then
provide your explanation and thoughts.
Q: Does the snippet (S) directly or indirectly relate
to the condition or procedure (C)?
A direct relationship is when the snippet (S) con-
tains a description of the condition/procedure
(C) or perhaps a common cause to the condi-
tion/procedure (C).
An indirect relationship is when the snippet (S)
contains description of symptoms that are strongly
correlated with the condition/procedure (C) or find-
ings that could suggest the condition/procedure
(C). Provide clear step by step explanations and
thoughts.
S: snippet
C: condition
Answer:
VERIFICATION QUESTIONS = You are a med-
ical expert. You will be given a medical note snip-
pet (S), a condition (C ), a question (Q), and a
baseline response (BR) coming from another clini-
cian.
Your goal is to generate three verification questions
that relate to both (S) and (C ). These verification
questions should give a clearer guidance on how
to get factual answers based on the (Q) and (BR).
They are meant for verifying the factual accuracy in
the baseline response (BR). The verification ques-
tions must show consistency with (Q), (BR), (S),
and (C ).
S: snippet
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C: condition
Q: Does the snippet (S) directly or indirectly relate
to the condition or procedure (C )?
BR:baseline response
Verification Questions:
EXECUTE PLAN PROMPT = You are a medi-
cal expert. You will be given a medical note snippet
(S), a condition (C ), some verification questions
(VQ) to answer as a second opinion expert.
Your task is to provide answers to the verification
questions (VQ) as correctly as possible based on
the given snippet (S) and condition (C ). The verifi-
cation questions (VQ) could be tricky as well, so
think step by step and answer them correctly.
S: snippet
C: condition
VQ: verification questions
Answer:
REFINEMENT = You are a medical expert. You
will be given a medical note snippet (S), a condition
(C ), a medical question (MQ), a baseline response
(BR), some verification questions (VQ) related to
all the above, and their corresponding verification
answers (VA) provided by another medical assis-
tant.
S: snippet
C: condition
MQ: Does the snippet (S) directly or indirectly re-
late to the condition or procedure (C )? A direct
relationship is when the snippet (S) contains a de-
scription of the condition/procedure (C ) or perhaps
a common cause to the condition/procedure (C ).
An indirect relationship is when the snippet (S)
contains description of symptoms that are strongly
correlated with the condition/procedure (C ) or find-
ings that could suggest the condition/procedure (C
).
BR: baseline response
VQ: verification questions
VA: verification answer
Your task is to analyze all of the above informa-
tion and provide a refined [Yes/No] answer to the
medical question (MQ). You must answer with a
[Yes/No] response.
Make sure to provide clear explanations, a good
walk through of your thoughts based on the infor-
mation in (S), (C ), (MQ), (BR), (VQ), and (VA).
Answer:

H Interpretation of Cohen Kappa’s
statistics.

Table 3 provides detailed breakdown for interpret-
ing the cohen Kappa value.

Kappa Values Agreement

<0 Less than chance agreement
0.01 - 0.20 Slight agreement
0.21 - 0.40 Fair agreement
0.41 - 0.60 Moderate agreement
0.61 - 0.80 Substantial agreement
0.81 - 0.99 Almost perfect agreement

Table 3: Interpretation of Kappa statistics (Viera et al.,
2005)

I Frequently Asked Questions

I.1 Why was the LLM not given a list of
medical conditions to choose from when
labeling a medical text snippet?

Research has shown that LLM performance is cor-
related with the number of tokens provided in the
context (Zhang et al., 2024). Therefore, it is not sen-
sible to use a voluminous and comprehensive list of
medical conditions and provide it to the LLM for se-
lection. An alternative and better strategy would be
to provide the LLM with medical snippet-condition
pairs and ask it to determine the relevance of each
pair, which is the strategy used in this work.

Although this approach can reach high accuracy,
it presents challenges too: as performing multiple
inferences on the LLM can be computationally ex-
pensive and may result in long labeling times if
resources are limited. For example, to label mil-
lions of snippets with associated thousands of con-
ditions, the time complexity would be in the order
of O(108) or O(109), and since LLM inference
usually is slow (in seconds) thus the time cost will
be in the order of O(103) or O(104) days. Thus,
we need a fast condition filter before sending the
data to LLM.

J The Comprehensive List of Conditions
used in this study.

Our study considered the 499 most prevalent, fre-
quently encountered and queried medical condi-
tions and procedures in medical notes. While we
only provide 20 examples below, more detailed in-
formation is available upon request: amputation,
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anemia, angioedema urticaria, angioplasty of blood
vessel, burn, cardiac abscess, cardiac arrest, corneal
disease, cough, covid 19, flank pain, foot pain, frac-
ture, fracture fixation, insulin resistance, lung ma-
lignancy, ovarian abscess, ophthalmologic proce-
dure, oropharyngeal infection, pancreatitis, etc
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