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Abstract

Clinical Decision Support Systems assist med-
ical professionals in providing optimal care
for patients. A prominent data source used
for creating tasks for such systems is the
Medical Information Mart for Intensive Care
(MIMIC). MIMIC contains electronic health
records (EHR) gathered in a tertiary hospital
in the United States. The majority of past work
is based on the third version of MIMIC, al-
though the fourth is the most recent version.
This new version, not only introduces more
data into MIMIC, but also increases the vari-
ety of patients. While MIMIC-III is limited
to intensive care units, MIMIC-IV also offers
EHRs from the emergency department. In
this work, we investigate how to adapt previ-
ous work to update clinical outcome predic-
tion for MIMIC-IV. We revisit several estab-
lished tasks, including prediction of diagnoses,
procedures, length-of-stay, and also introduce
a novel task: patient routing prediction. Fur-
thermore, we quantitatively and qualitatively
evaluate all tasks on several bio-medical trans-
former encoder models. Finally, we provide
narratives for future research directions in the
clinical outcome prediction domain. We make
our source code publicly available to repro-
duce our experiments, data, and tasks.

1 Introduction

Estimating the future clinical state of a patient
upon admission to a medical care facility is a task
of critical importance. Clinicians must be able
to promptly gauge not only the main affliction
of patients, but also all the resources needed to
streamline their care. A Clinical Decision Support
System (CDSS) aids clinicians in a multifaceted
way; for instance, they can interact with a clinician
in a conversational manner or they can assist in
the diagnosis process by offering discrete sugges-
tions. Generative medical assistants, like AMIE
(McDuff et al., 2023), enable clinicians to derive

diagnostics and treatments by engaging in a con-
versation with the language model. One way of
communicating these findings is to use the Interna-
tional Classification of Diseases (ICD) taxonomy
which is also used by medical practitioners to doc-
ument the admission of a patient, their stay, and re-
lease from a medical care facility. While conversa-
tional CDSS can provide reasonable answers and
may identify important treatment strategies, their
suggestions veer substantially from expert sugges-
tions (Benary et al., 2023). Furthermore, validat-
ing these suggestions is difficult, given the arbi-
trarily large output space of decoder-based trans-
former architectures such as AMIE. However, it is
essential for clinicians to validate the predictions
of such systems in order to safeguard the well-
being of their patients. Given the discrete space of
the ICD taxonomy and the necessity of validation,
we argue that classification with encoder models
is relevant for the clinical outcome prediction do-
main.

Clinical Outcome Prediction from Admission
Notes. We revisit the clinical outcome predic-
tion (COP) tasks as defined in van Aken et al.
(2021). These tasks are all based on the third
version of the Medical Information Mart for In-
tensive Care (MIMIC-III)(Johnson et al., 2016).
Therefore, in this work, we refer to these tasks as
COP-III. Since the publication of COP-III, a new
version of MIMIC has been released, MIMIC-IV
(Johnson et al., 2023). MIMIC-IV supersedes the
third version with more patient data from the in-
tensive care units (ICU). Additionally, it includes
data from patients admitted to the emergency de-
partment (ED). This increase in available data,
both in quantity and diversity, renders the tasks of
COP-III obsolete. We present COP-IV, an updated
and extended set of 6 clinical outcome prediction
tasks based on MIMIC-IV. This includes 3 out of
4 COP-III tasks adapted for the MIMIC-IV ICU
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and ED splits respectively, as well as a novel pa-
tient routing task. The patient routing task utilizes
the exclusive routing information of MIMIC-IV to
predict the first transfer of a patient upon admis-
sion. We update the three COP-III tasks by adapt-
ing the data-processing methods to suit MIMIC-
IV. Alongside updating the admission note data,
we update the target space from ICD-9 to ICD-
10. This provides more relevance for clinicians
since ICD-10 is the coding version in use since
2015. We evaluate all COP-IV tasks against a se-
lection of open1 clinical transformer encoder mod-
els. Moreover, we compare our results for COP-IV
and the results of van Aken et al. (2021) for COP-
III to assess whether the performance for clinical
outcome prediction improves with the new data.

Contributions. We summarize our contribu-
tions as follows:

• We create novel datasets for several outcome
prediction tasks, derived from data in both the
intensive care unit (ICU) and the emergency
department (ED).

• We introduce a novel patient routing task,
derived from the patient routing information
available in the emergency department mod-
ule of MIMIC-IV. Resulting in 6 tasks over-
all, with 3 tasks belonging to ICU and ED
prediction respectively.

• We benchmark multiple biomedical trans-
former encoder models on COP-IV and
present our qualitative and quantitative anal-
ysis.

• We present challenges of COP-IV and pro-
pose future work directions for clinical out-
come prediction.

• We release our source code to reproduce our
experiments and datasets2.

2 Related Work

Bio-medical encoders. In the context of transfer
learning, several works explore adapting encoder
transformer networks such as BERT (Devlin et al.,
2018) into specialized settings.

BioBERT(Lee et al., 2019) presents improved
performance in bio-medical text mining tasks, by

1available on https://huggingface.co/
2
https://github.com/DATEXIS/

ClinicalOutcomePrediction-IV

continuing pre-training a BERT model on full-text
and abstracts of research articles from PubMed.

Both ClinicalBert and DischargeBERT
(Alsentzer et al., 2019) further pre-train BioBERT
models on full-text notes and discharge notes
respectively from the MIMIC-III dataset.

CORe (van Aken et al., 2021) reformulates
BERT’s unsupervised next-sentence-prediction
pre-training objective as an admission-discharge-
relation, tasking a BioBERT model to classify
whether a sequence coming from an admission-
note relates to the discharge section of the same
patient.

In contrast to improving a pre-trained BERT or
BioBERT model, PubmedBERT(Gu et al., 2020)
achieves state-of-the-art results on the majority of
bio-medical tasks. This encoder is pre-trained
from scratch with a domain-specific tokenizer on
a corpus based on PubMed.

Advancements in COP. Naik et al. (2021) aug-
ments a PubmedBERT model with document re-
trieval from a PubMed knowledge base. Grund-
mann et al. (2022) and Winter et al. (2022) incor-
porate additional modalities in the form of sup-
port sets of ICD codes from prior admissions,
and knowledge graph completion tasks respec-
tively. Papaioannou et al. (2022) present knowl-
edge transfer strategies to improve performance
for low-resource clinical text datasets in different
languages. They show that incorporating clinical
text written in multiple languages can complement
clinical knowledge missing in smaller datasets, es-
pecially for non-frequent diagnoses. Deznabi et al.
(2021) augment the text modality with time-series
data to improve predictions for in-hospital mortal-
ity. van Aken et al. (2022) enhances a Pubmed-
BERT encoder with a prototypical network to not
only improve prediction results, but also increase
the explainability of predictions.

3 COP-IV Tasks

We revisit the task creation process of van Aken
et al. (2021) and update it for the MIMIC-IV data.

3.1 MIMIC-IV: Data preparation

Creation of admission notes. The electronic
health records (EHR) available in MIMIC are
all associated with medical discharge summaries
about the visit of a patient to the hospital. We
follow the same pre-processing as in (van Aken
et al., 2021), adapted to MIMIC-IV. Hence, we

209

https://github.com/DATEXIS/ClinicalOutcomePrediction-IV
https://github.com/DATEXIS/ClinicalOutcomePrediction-IV


mean
(words/note)

std
(words/note)

mean
(sent/note)

std
(sent/note) total notes

COP-III-ICU 396.3 233.3 32.5 23.1 48,745

COP-IV-ICU 495.6 236.7 26.9 16.1 59,056

COP-IV-ED 523.9 265.2 28.5 17.5 269,573

Table 1: COP-III vs COP-IV admission notes details.
COP-III is based on MIMIC-III, while COP-IV is
based on MIMIC-IV. The amount of available notes in
the ICU increases. ED is not available in MIMIC-III.

keep specific sections in the discharge summaries
that are known at admission time, such as: Chief
complaint, (History of) Present illness, Medical
history, Admission medications, Allergies, Physi-
cal exam, Family history, and Social history. An
admission note acts as an input for all tasks; in Fig-
ure 1 we present an example. Table 1 demonstrates
a comparison of the statistics of admission notes in
COP-III and COP-IV. We observe that the result-
ing ICU data for COP-IV contains 21% more ad-
mission notes compared to COP-III. In sharp con-
trast, COP-IV offers an additional 269,573 admis-
sion notes in the novel ED split. We also remark
that for COP-IV the average length of an admis-
sion note increases, while the number of sentences
decreases.

Additionally, note that the clearest difference
between MIMIC-III and MIMIC-IV in terms of
style is the anonymization scheme. MIMIC-III fol-
lows HIPAA3 for anonymization and identifiable
entities are replaced with random identifiers and
an indication of the previous content. In contrast,
MIMIC-IV replaces all identifiable markers with
three underscores: "___"(Johnson et al., 2023).
We follow van Aken et al. (2021) and do not mask
the de-identified tokens and consider them as part
of the admission note.

ICD-10 label space. For the diagnoses and pro-
cedure prediction tasks in COP-III, the labels are
ICD-9 codes. Since MIMIC-IV includes admis-
sion notes annotated with ICD-10 codes, for these
specific tasks in COP-IV we choose to predict only
for this newer ICD version. We do this only for the
diagnoses and procedures prediction tasks since
the remaining tasks are independent of the ICD
standard.

3.2 Outcome prediction tasks

Patient routing (PR). We introduce a novel
task to COP-IV. We construct this task by lever-

3Health Insurance Portability and Accountability Act

aging routing information for patients accessible
in MIMIC-IV, which details patient transfers be-
tween different units within the hospital. In the pa-
tient routing task, we predict the first hospital unit
a patient is transferred to upon admission to the
emergency department. Note that we only focus
on the first transfer of a patient out of the emer-
gency department, since we predict at the time of
admission. Furthermore, we consolidate the labels
for the patient’s routing information that refer to
the same class but differ in their naming. For in-
stance, there are several specific hospital section
labels related to surgical procedures, which we
group together into surgery. This process results
in a total of 18 classes (Table 2), making this a
multi-class classification task.

Patient Routing Prediction

Classes Number of Samples

COP-IV-ED 18 328,589

Table 2: Novel patient routing prediction task sum-
mary.

Diagnoses prediction (DIA). The diagnoses
prediction task in COP-IV involves mapping ad-
mission notes to the ICD-10 coding standard. Sim-
ilar to van Aken et al. (2021), we don’t capture the
full granularity of ICD-10, and limit ourselves to
three-digit codes. This significantly reduces label
scarcity, but still retains a relevant level of detail
since the codes are organized hierarchically (Choi
et al., 2017). As we show in Table 3, the label
space grows in size significantly compared to the
old version COP-III. We apply a multi-label strat-
ified sampling approach (Sechidis et al., 2011) to
split the dataset into train/val/test. This ensures
that all codes appear in the training set at least
once. Furthermore, we restrict multiple admis-
sions for a single patient to be present in the same
split, to prevent potential data leakage during train-
ing. Diagnoses prediction is a multi-label classifi-
cation task.

Procedures prediction (PRO). The procedures
prediction task in COP-IV also involves mapping
admission notes to ICD-10. In contrast to the di-
agnoses prediction task, instead of using only the
first 3 digits, we use the first 4 digits. This is due to
the differences in hierarchy between the diagnoses
and procedure codes in ICD-10. Table 4 contains
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CHIEF COMPLAINT: Cough, shortness of breath
PRESENT ILLNESS: Mr. ___ is a ___ year old man with a
history of diabetes  mellitus, end-stage renal disease on
hemodialysis, and  hypertension. He presented  to an outside
hospital with cough and  shortness of breath. [...]. 
MEDICAL HISTORY: Cataracts  Community Acquired
Pneumonia Diabetes Mellitus, Insulin Dependent Diabetic
Neuropathy  End-Stage Renal Disease on HD [...]
MEDICATION ON ADMISSION: The Preadmission Medication
list is accurate and complete. 1. amLODIPine 10 mg PO DAILY 
2. Doxazosin 2 mg PO HS  3. HydrALAZINE 25 mg PO TID  [...]
ALLERGIES: lisinopril
PHYSICAL EXAM: General: Awake, alert, oriented [...]
FAMILY HISTORY: Father - history of  MI in late ___, deceased
at age ___ from  ALS Mother - had MI in ___
SOCIAL HISTORY: ___

Clinical
Outcome
Prediction

ICD-10-CM:
I25 - Chronic ischemic heart disease
K21 - Gastro-esophageal reflux disease
Z79 - Long term (current) drug therapy
I12 - Hypertensive chronic kidney disease

ICD-10-PCS:
02B7 - Atrium, Left
06BQ - Saphenous Vein, Left

Admitted section: Surgery

Length-of-stay: > 3 days

Mortality: Survived

Admission Note
Discharge

Figure 1: Clinical Outcome Prediction: Given an EHR textual description of a patient admission(left) this task
involves determining outcomes (right) such as diagnoses, procedures, hospital section, length of stay, and mortality
at discharge.

Diagnoses Outcome Prediction

Total Train Test Val

COP-III-ICU 1,266 1,201 1,031 906
COP-IV-ICU 1,447 1,447 943 943
COP-IV-ED 1,617 1,617 1,207 1,198

Table 3: Diagnoses code statistics for COP-III vs COP-
IV. Note that the labels in the COP-III diagnoses task
are ICD-9 codes and in COP-IV these are ICD-10
codes. The label space grows significantly for both
splits, ED and ICU.

a summary of the code distributions for the task.
Since in the ICD-10 coding standard there are 19
times more procedure codes than ICD-94, the to-
tal number of codes increases drastically across
the ICU and the ED split. We apply the stratified
sampling strategy that we use for the diagnoses
outcome prediction task. Procedures prediction is
also a multi-label classification task.

Length-of-stay prediction (LOS). Predicting
the length of a patient’s stay for a visit is beneficial
for medical facilities to allocate resources accord-
ingly. As in (van Aken et al., 2021), the length
of an ICU stay is defined as the number of days
between the admission and discharge of a patient.
Unlike van Aken et al. (2021) we focus specifi-
cally on the length of a stay of a patient in the ICU,
since factors beyond the state of a patient like occu-
pied beds, medical professionals availability, etc.

4Accessed 28.02.24, https://www.cdc.gov/nchs/icd/
icd10cm_pcs_background.htm

Procedures Outcome Prediction

Total Train Test Val

COP-III-ICU 711 672 563 476
COP-IV-ICU 2,956 2,956 761 756
COP-IV-ED 4,137 4,137 1,242 1,344

Table 4: Procedures code statistics for COP-III vs
COP-IV. The label space grows significantly due to the
adoption of ICD-10 in COP-IV

could determine the stay. This information is avail-
able in MIMIC-IV and we use the same 4 classes
as in COP-III: Under 3 days, 3 to 7 days, 1 week to
2 weeks, and more than 2 weeks. We validate these
modifications to the task with medical profession-
als and do not create this task for the ED split. As
shown in Table 5, the stay of patients considered in
COP-IV shifts significantly due to the focus of the
stay in the ICU. The majority class is now (Under
3 days). Length-of-stay prediction is a multi-class
classification task.

Length-of-stay (in days)

≤ 3 > 3 & ≤ 7 > 7 & ≤ 14 > 14

COP-III-ICU 5,596 16,134 13,391 8,488
COP-IV-ICU 41,285 11,840 3,986 1,945

Table 5: Length-of-stay prediction task for COP-III &
COP-IV. The length of a stay is measured in days. We
observe a shift in the class distribution between version
III and IV. This task is not applicable to the ED split.
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In-hospital mortality prediction. Since a med-
ical professional writes a discharge summary after
the visit of a patient, admission sections may con-
tain explicit references to their death. van Aken
et al. (2021) applied pattern matching to remove
such admission notes. However, in our attempt to
replicate this preprocessing method, we found that
a rule-based approach to detecting these cases is
not reliable. We trained PubMedBERT following
this approach; this led to extremely high scores in
both AUROC and PR-AUC. Upon closer exami-
nation, we still encounter additional patterns (e.g.
cessation, passed) that made the decease of a pa-
tient explicit. Since we cannot guarantee exhaus-
tive filtering to remove admission notes with such
fragments for the MIMIC-IV data, we omit van
Aken et al.’s (2021) in-hospital mortality predic-
tion task in COP-IV.

4 Experiments

We fine-tune all models in all outcome prediction
tasks on both MIMIC-IV splits, except for the LOS
and PR tasks. These tasks are exclusive to the ICU
and ED split as mentioned in Section 3. We re-
port performance in AUROC-macro as well as in
PR-AUC. In contrast to van Aken et al. (2021), we
include PR-AUC as an additional metric.

While the AUROC provides insight into perfor-
mance for the majority of the patients, the PR-
AUC provides a more balanced view, since it em-
phasizes the performance of labels that are less fre-
quent in the data.

For comparability, we evaluate all COP-IV
tasks with the encoder models used in (van Aken
et al., 2021), namely BioBERT, CORe, Clinical-
BERT, and DischargeBERT. Additionally, we ex-
tend this evaluation to PubMedBERT. We conduct
a Hyper-Parameter-Optimization (HPO) on Pub-
MedBERT for all tasks for the learning rate and
warmup steps using ray (Liaw et al., 2018) and
(Bergstra et al., 2013). We use the resulting hyper-
parameters in all experiments. We use early stop-
ping on AUROC with a patience of 5 epochs as in
van Aken et al. (2021). We keep a consistent batch
size of 50 for all tasks and models. For every ex-
periment, we use a single A100 40GB GPU.

5 Results

We present all experimental results in Table 6.

Overall performance. PubMedBERT outper-
forms all models across all tasks. BioBERT is the

second best performing model, followed by CORe.
ClincalBERT and DischargeBERT are the worst
performing models.

Domain-specific tokenizer. PubMedBERT is
the only model in our work that uses a domain-
specific tokenizer. We argue that this is one of the
reasons why it is the top-performing model across
all tasks. Notably, the average tokenized admis-
sion note in MIMIC-IV is longer than 512 tokens.
Thus exceding the maximum sequence length for
BERT-like models. Therefore, the context window
that PubMedBERT processes per admission note
contains more information on average compared
to the other models.

Pre-training on MIMIC does not bring benefits.
PubMedBERT and BioBERT are pre-trained on
PubMed. They have not explicitly seen any
MIMIC discharge summaries during the pre-
training. In contrast, CORe, ClinicalBERT,
and DischargeBERT incorporate MIMIC-III data
into their training routine, thus exposing the pa-
rameters to specific details, writing style, and
anonymization scheme. The results suggest that
the models do not benefit from pre-training on
MIMIC-III. This is highlighted by the fact that
BioBERT has a very similar performance. Thus,
reinforcing the idea that the domain-specific tok-
enizer has a much greater impact on the perfor-
mance of these tasks.

Patient routing. All models achieve high scores
for AUROC. In contrast, the results in PR-AUC
indicate that all models have difficulties with cap-
turing the hospital units where transfers occur less
often. Similar to other tasks, PubMedBert outper-
forms all other models.

5.1 Performance comparison of CORe on
MIMIC-III and MIMIC-IV

To validate that our adaptation of the COP tasks to
the MIMIC-IV dataset is done correctly, we com-
pare the performance of the CORe model on COP-
III and COP-IV. For COP-III we use scores from
van Aken et al. (2021) and for COP-IV we take
the results of the CORe5 model from our evalua-
tion on the respective task in COP-IV. We present
this comparison in Table 7. Since the ED split was
not available in MIMIC-III, we only compare the

5
https://huggingface.co/DATEXIS/

CORe-clinical-outcome-biobert-v1, accessed 28.02.24
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Task PR DIA PRO LOS

Split Model AUROC PR-AUC AUROC PR-AUC AUROC PR-AUC AUROC PR-AUC

ED BioBERT 93.83 59.33 85.86 14.77 92.87 19.32 - -
CORe 93.85 59.55 85.46 14.54 93.57 19.70 - -
DischargeBERT 93.87 59.69 84.83 14.29 92.93 19.02 - -
ClinicalBERT 93.85 59.19 84.73 14.05 93.18 18.74 - -
PubMedBERT 94.28 61.44 86.86 17.24 93.64 21.62 - -

ICU BioBERT - - 78.71 13.02 86.32 17.44 70.89 36.06
CORe - - 78.06 13.05 85.38 16.10 71.39 36.49
DischargeBERT - - 77.76 12.30 85.25 16.01 70.00 35.70
ClinicalBERT - - 77.02 12.58 84.62 14.86 70.18 35.58
PubMedBERT - - 79.70 15.55 87.21 18.43 71.82 36.87

Table 6: Results of the models for all outcome prediction tasks. Metrics are macro averaged and scores are in %.
PubMedBERT is the best performing model for all COP-IV tasks. We observe a big gap between AUROC and
PR-AUC, signaling the challenges of the long-tail distribution of labels in MIMIC.

DIA PRO LOS

CORe COP-III 83.39 87.15 72.53
CORe COP-IV 78.06 85.38 71.39

Table 7: Comparison of the CORe model’s AUROC-
macro performance in COP-III as reported in (van
Aken et al., 2021) and COP-IV. The scores are in %.
Given the non-existence of the ED split in version III,
we compare ICU only. The tasks in COP-IV are more
challenging, the pre-training on MIMIC-III does not
transfer positively to MIMIC-IV.

tasks that relate to ICU data. This also excludes
the patient routing task.

Diagnoses and procedures outcome prediction.
COP-III and COP-IV have different label spaces
for diagnoses and procedures. We use ICD-10,
whereas COP-III uses ICD-9. van Aken et al.
(2021) reports better performance for both tasks.
We argue that this performance gap might be due
to the larger code space of ICD-10 compared to
ICD-9 (Cartwright, 2013). Additionally, since
COP-IV uses only ICD-10 codes, we are limited to
a fraction of the total amount of summaries avail-
able in MIMIC-IV for the ICU split. Roughly 60%
of admission notes in this split are annotated with
the ICD-9 standard, hence this results in signifi-
cantly fewer notes for training in COP-IV than in
COP-III.

Length-of-stay. The similar scores for the
CORe model in COP-III and COP-IV in Table 7
indicate that the length-of-stay task is still chal-

lenging, despite the modification aimed at focus-
ing on the ICU stay. As previously noted, this
leads to a shift of the label distribution, with
the majority of patients experiencing shorter stays
compared to the COP-III task. We argue that this
shift in the distribution of the labels could be a fac-
tor explaining the lower scores for the task in COP-
IV. Additional challenges at predicting the length
of stay of a patient come from factors such as em-
ployment or marital status which may not be men-
tioned in a clinical admission note (Khosravizadeh
et al., 2016).

6 Discussion & Future Work

6.1 Multi-label outcome prediction

The performance reported in Table 6, shows that
the AUROC and especially the PR-AUC metric for
the DIA and PRO tasks have a large room for im-
provement.

Critical long-tail. In Figure 2 we present the
label distribution for the complete ED split in
MIMIC-IV. It is worth noting that only 100 labels
(6% of all labels) are annotated in approximately
67% of the data, whereas the remaining 1,517 la-
bels (94% of all labels) are distributed among the
remaining 33% of the samples. We observe the
same behavior in the ICU split. We expand the
evaluation of PR-AUC of PubMedBERT for class
groups depending on their frequency. Figure 3
demonstrates that the model achieves poor PR-
AUC performance in the tail of the distribution and
improves towards the head. This behavior in PR-
AUC emphasizes a weakness of current methods
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Figure 2: ICD-10 code distribution for the MIMIC-IV
ED split. Each one of the 3 colors indicates 33.3% of
total samples highlighting a pronounced long tail.
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Figure 3: PR-AUC in % measured on groups of la-
bels depending on their frequency in the data. Perfor-
mance in the long tail is generally poor while it im-
proves greatly for the more frequent labels.

since the majority of the labels reside in the tail.

Label-space. The larger code space in ICD-10
in comparison to ICD-9 further exacerbates the
class imbalance present in the multi-label outcome
prediction tasks (DIA & PRO).

Annotation Moreover, labels in MIMIC exhibit
annotation inconsistencies; in practice the most
frequent labels are under-annotated (up to 35%)
(Searle et al., 2020). Therefore, some correct pre-
dictions made by models will conflict with an in-
complete ground truth.

6.2 Qualitative analysis on Patient routing
For the novel patient routing task, we conduct an
additional analysis on diversity and identify poten-
tial gaps for different populations. Next, we fur-
ther discuss the difference in performance that we

observe in hospital care units. In Figure 4 we dis-
aggregate the PR-AUC for variables such as gen-
der and marital status, as well as admission type
and care unit.

Demographic variables. We observe that pre-
dictions for male patients are worse by a signifi-
cant margin. A possible reason could be the addi-
tional amount of time spent by women on average
for physical exams and patient questions when vis-
iting a doctor (Tabenkin et al., 2004), thus produc-
ing more relevant information during the anamne-
sis. This may result in richer admission notes for
women. The marital status shows an impact on
widowed patients. The average patient is 78 years
old, which is 18 years older when compared to the
other categories. Given that the age of patients has
an impact on other tasks (van Aken et al., 2021;
Khosravizadeh et al., 2016), we argue that it has
an impact on patient routing as well. For all other
classes, the marital status does not seem to influ-
ence the outcome.

Admission type PubMedBERT achieves its best
performance with admissions that come through
physician referrals. Such referrals may contain
relevant information to route patients to the cor-
responding care unit. Walk-ins and Emergency
Room (ER) admissions may prioritize immediate
care over EHR documentation. Therefore, we ar-
gue that in such cases, routing information might
be incomplete.

Performance of care units. We observe that per-
formance is not directly coupled to the class distri-
bution. In Figure 4 bottom right, we present the
PR-AUC for each care unit, sorting them (from left
to right) by the number of occurrences in the data.
For instance, psychiatry (dark green) and obstet-
rics (dark orange), where PR-AUC is significantly
above the average, are units that are less present
in the data. We argue that for this task perfor-
mance is determined by the specificity in the ad-
mission notes relevant to each care unit and less
so by the class frequency. The fact that the ob-
servation (pink) category is the worst performing
reflects the inherent uncertainty of this care unit.
We argue that since the symptomatology is not as
clear as for other care units (pregnancy in obstet-
rics), models have more difficulties in routing the
patient to the right care unit.
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Figure 4: PR-AUC of the patient routing task disag-
gregated by Top demographic variables: Gender and
Marital status, Bottom Admission type and Care units.
A large gap between genders exists. Physician referrals
route best. Frequency and marital status of classes are
not directly coupled with prediction performance.

6.3 Future Work

Our work aims to be a resource for future research
in clinical outcome prediction. We propose future
work directions as follows:

ICD code imbalance. We see a very pro-
nounced room for improvement in PR-AUC per-
formance due to the distribution of the labels in the
data. We believe that models designed to tackle
this premise are needed since it’s an inherent fea-
ture in the distribution of real-world clinical data.
This could be accomplished with novel architec-
tures beyond transformers, or further strategies to
integrate complementary knowledge.

Label inconsistency. MIMIC is the best pub-
licly available EHR data and contains annotation
deficiencies. We believe that a great effort towards
consistent labeling is needed. Potential avenues
of data augmentation could come from leveraging
generative methods to rephrase and augment exis-
tent verified high-quality data.

Evaluation on other datasets. Much of the
prior research in clinical NLP has centered
around MIMIC. However, evaluating on alterna-
tive datasets is crucial. We noticed in our COP-IV
experiments how models did not benefit from pre-
training on MIMIC-III. We believe that these signs
of overfitting could be mitigated with broader eval-
uations using clinical text sourced in different clin-
ics, specialties, and languages.

Multimodal patient representation. Although
most modalities relevant to medical practitioners
can be expressed in natural language, there are nu-
merous additional modalities available not only in
MIMIC but also in other domain datasets. We be-
lieve that enriching the textual representations of
transformers with multi-modal data could be ben-
eficial for the outcome prediction tasks.

Novel outcome prediction tasks. In practice,
outcome prediction consists of a very broad set of
possible tasks. Our novel patient routing task is
just one example. We expect that additional tasks
would provide valuable insights into the strengths
and weaknesses of models employed in real-life
clinical settings.

7 Conclusion

In this work, we introduce COP-IV, a clinical out-
come prediction set of tasks based on MIMIC-IV,
which updates COP-III. In addition, we introduce
the novel task of patient routing at admission time
to clinical outcome prediction. We evaluate quali-
tatively this task for various patient demographics,
as well as hospital care units. We explain in de-
tail our preprocessing approach to reproduce the
COP-IV tasks. Furthermore, we present a compre-
hensive evaluation of several bio-medical encoder
models and discuss their weaknesses, as well as
challenges such as the pronounced class imbal-
ance. Moreover, we give relevant insights into data
distribution shifts between COP-III and COP-IV.
Lastly, we propose future research directions for
clinical outcome prediction. We release our source
code to reproduce the data for our benchmark, ex-
periments, and results.
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