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Abstract

We explore the utility of pre-trained Large Lan-
guage Models (LLMs) in detecting the pres-
ence, subtypes, and severity of aphasia across
English and Mandarin Chinese speakers. Our
investigation suggests that even without fine-
tuning or domain-specific training, pre-trained
LLMs can offer some insights on language dis-
orders, regardless of speakers’ first language.
Our analysis also reveals noticeable differences
between English and Chinese LLMs. While
the English LLMs exhibit near-chance level ac-
curacy in subtyping aphasia, the Chinese coun-
terparts demonstrate less than satisfactory per-
formance in distinguishing between individu-
als with and without aphasia. This research
advocates for the importance of linguistically
tailored and specified approaches in leveraging
LLMs for clinical applications, especially in
the context of multilingual populations.

1 Introduction

Large language models (LLMs) are transformative
in various tasks (Tran, 2020; Chang et al., 2023;
Hadi et al., 2023; Rezaii et al., 2023b, 2021). It
remains understudied how to leverage non-English
LLMs in a clinical context such as aphasia de-
tection. Aphasia is an acquired neurogenic lan-
guage disorder, most often caused by stroke, with
devastating impact on one’s communication abili-
ties. Most aphasia studies with NLP perspectives
focus on monolingual English speakers (Salem
et al., 2023; Purohit et al., 2023; Sanguedolce et al.,
2023; Ortiz-Perez et al., 2023). Fewer studies with
NLP methods focus on the non-English population
(Smaïli et al., 2022; Chatzoudis et al., 2022; Bal-
agopalan et al., 2020). To bridge the gap, we lever-
age pre-trained LLMs to detect aphasia in English
and Mandarin Chinese speakers. Given LLMs’
widely claimed adaptability and linguistic compe-
tence (Zhao et al., 2023a; Bommasani et al., 2021),
we hypothesize that integrating LLMs would en-

hance clinical diagnosis of language disorders in
aphasia.

Aphasia in Chinese speakers has recently been
studied from NLP perspectives. Balagopalan et al.
(2020) utilized optimal transport domain adaptation
to detect aphasia in Chinese and French. Shivku-
mar et al. (2020) developed an open-source python
library called BlaBla to automatically extract lin-
guistic features in English, Chinese and French
aphasia data. Mahmoud et al. (2020) focused on
deep learning’s application to speech assessment
of Chinese speakers with aphasia. Qin et al. (2022)
used LLMs to derive embeddings, and fine-tuned
LLMs for detection tasks. Their findings suggest
that fine-tuned models outperform acoustic features
and static embeddings.

As far as our knowledge goes, there is no study
utilizing pre-trained LLMs derived surprisals to
detect aphasia in Chinese speakers. Surprisal can
be calculated by the negative likelihood of a to-
ken given previous context. Conceptually, it mea-
sures the unexpectedness of a sequence in a con-
text. Surprisals’ cognitive plausibility has been
discussed in both psycholinguistic and clinical lit-
erature (Futrell et al., 2018; Rezaii et al., 2023a,
2022; Van Schijndel and Linzen, 2018; Wilcox
et al., 2018; Michaelov and Bergen, 2020, 2022a,b;
Michaelov et al., 2023; Ryu and Lewis, 2021; Cong
et al., 2023; De Varda and Marelli, 2022). This mo-
tivates us to implement LLMs derived surprisals for
aphasia detection in Chinese speakers. We addition-
ally compare LLMs surprisals in Chinese datasets
with those in English, given that English is a dom-
inant language in NLP, English speakers are the
most studied population in clinical contexts, and
we hope to establish an interpretation baseline on
how LLMs surprisals behave in English aphasia
speakers.
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2 Experiments

2.1 Datasets

All the datasets were drawn from the AphasiaBank1

(MacWhinney et al., 2011), and all the observations
are from participants who are monolingual speak-
ers whose first language is English or Mandarin
Chinese, with a Western Aphasia Battery-Aphasia
Quotient (WAB-AQ (Kertesz, 2007)) of 92 or lower
in the aphasia group.

For the Chinese dataset, we matched the apha-
sia with the control group on age, education, and
sex using the R matchit package to perform op-
timal pair matching. The matched sample con-
tains an equal amount of observations (N=1756)
for each group, with similar tasks such as picture
description and story retelling. The same apha-
sia sample was used in detecting aphasia severity.
As for aphasia subtypes detection, we focused on
Broca’s and anomic aphasia, which are two of the
most representative subtypes in the dataset. Since
Broca’s contains 86 observations in total, we ran-
domly sampled 86 observations from the anomic
aphasia group to get a balanced dataset.

For the English dataset, we conducted the same
matching procedures with similar sample size. We
compiled 1586 observations for each group, since
that is the maximum of the control group. The se-
lected aphasia sample was used in detecting aphasia
severity. We randomly sampled 86 observations for
each of the Broca’s and anomic aphasia types.

2.2 Aphasia detection

We leveraged pre-trained LLMs in three tasks for
both English and Chinese datasets: (1) detecting
the presence of aphasia; (2) detecting aphasia sub-
types (diagnosis labels provided by the Aphasia-
Bank); (3) detecting aphasia severity (WAB-AQ,
provided in the AphasiaBank). We constructed
and optimized machine learning models. Logistic
regression classifiers were used to classify apha-
sia and control (task 1) and Broca’s and anomic
aphasia (task 2). Elastic net was used to pre-
dict WAB-AQ scores (task 3). All the machine
learning models were developed and evaluated in
scikit-learn (Buitinck et al., 2013). Considering the
limited sample size, for all the machine learning
models, we focused on linear models and used de-
fault parameter settings without fine-grained hyper-
parameter tuning.

1https://talkbank.org/DB/

2.3 LLMs details

Each LLM read in utterance and output a surprisal
score for that utterance. Specifically, we first com-
puted token-wise surprisals, summed them for each
utterance, then divided it by the utterance length
(the number of tokens) to get mean surprisals. We
hypothesize that higher surprisals, as an indica-
tor of larger amount of grammatical unacceptabil-
ity, are associated with higher severity of apha-
sia. Three pre-trained LLMs were used to generate
token-wise surprisals in both the Chinese and En-
glish datasets: GPT22 (Radford et al., 2019; Zhao
et al., 2019, 2023b), Llama2-7B (Touvron et al.,
2023), and BERT (bert-base-chinese for Chinese
and bert-base-uncased for English) (Devlin et al.,
2019, 2018). We chose these Chinese LLMs be-
cause they are among the most widely used open-
source LLMs according to the HuggingFace leader-
board3. We used the corresponding comparable
pre-trained LLMs in English. To keep consistency,
we used minicons (Misra, 2022), a utility for an-
alyzing transformer-based representations of lan-
guage. We make all code and meta-data available
for additional testing4.

2.4 Feature selection

We chose the following features as the predictor
variable: utterance length and utterance level mean
surprisal computed by pre-trained LLMs. This is
because surprisial can measure language abilities at
the utterance level and has been shown to be corre-
lated with the features of agrammatism in aphasia
(Rezaii et al., 2023a). Besides GPT2 surprisals,
which have been investigated in previous studies,
we attempt to examine the clinical capability of
multiple pre-trained LLMs with difference scales
in a non-English setting, and to investigate how
these LLMs’ surprisals relate to the clinical man-
ifestation of aphasia. We chose utterance length
as another independent variable. This is because,
as a clinical indicator of linguistic productivity
(MacWhinney et al., 2011; Fromm and MacWhin-
ney, 2023; Fromm et al., 2022, 2020), utterance
length can be informative of aphasia detection. Ut-

2We acknowledge that technically speaking, GPT2 may
not be considered as a “large” language model, compared to
other LLMs used in this study. Here, in order to keep the
naming convention consistent and easy to follow, by “LLMs”,
we meant language models that have a transformer architecture
as opposed to the classic n-gram paradigm.

3https://huggingface.co/spaces/HuggingFaceH4/
open_llm_leaderboard

4https://github.com/yancong222/ClinicalNLP2024
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terance length will also greatly influence LLMs sur-
prisals calculation, since utterance suprisal score is
normalized by sequence length. We did not include
other language measures in this study, due to the
scope of this preliminary experiment. In this ex-
ploratory analysis, we intend to focus on one utility
(i.e., LLMs) in a cross-linguistic clinical setting.
The existing language measures such as verb ra-
tio, noun percentage, sentence complexity, and so
on, will need an additional utility to derive (e.g.,
the CLAN software for Computerized Language
Analysis by MacWhinney et al. (2011)).

3 Results and discussion

3.1 LLMs’ performance in aphasia presence
and subtypes detection

Table 1 illustrated the logistic regression classifiers’
performance in detecting the presence and subtypes
of aphasia in Chinese speakers. Notation: Acc: ac-
curacy; Prec: precision; Rec: recall; AUC: area
under the curve. Results suggest that pre-trained
LLMs are more effective in subtyping (F1-score
0.86) than detecting the presence of aphasia in Chi-
nese speakers (F1-score 0.61). On the other hand,
pre-trained LLMs showed the inverse pattern for
detecting aphasia in English speakers (Table 2).
Findings reveal that LLMs are less effective in de-
tecting subtypes (F1-score 0.54) than the presence
of aphasia in English speakers (F1-score 0.79). The
two classification report tables contain weighted av-
erage values (averaging the sample-weighted mean
per label, e.g., aphasia versus healthy; Broca’s and
anomic aphasia).

Task Acc Prec Rec F1-
score

AUC

Presence 0.61 0.61 0.61 0.61 0.63
Subtype 0.86 0.86 0.86 0.86 0.93

Table 1: Evaluation of logistic regression classifiers
using LLMs surprisals in Chinese aphasia detection.

Task Acc Prec Rec F1-
score

AUC

Presence 0.79 0.79 0.79 0.79 0.86
Subtype 0.54 0.54 0.54 0.54 0.51

Table 2: Evaluation of logistic regression classifiers
using LLMs surprisals in English aphasia detection.

Our interpretation is that using matched datasets

and LLMs surprisals, LLMs pre-trained in Chi-
nese are sensitive in separating non-fluent Broca’s
aphasia from anomic aphasia in Chinese speakers,
whereas English LLMs showed efficacy in classi-
fying aphasia versus control in English speakers.
We infer that this result has something to do with
crosslinguistic differences. The basic unit of gram-
mar in Chinese is zì "character", but it is a word
in English (Duanmu, 2017; Tsai and McConkie,
2003). Most Chinese words are made of two char-
acters. Studies in psycholinguistic and NLP (Bai
et al., 2008; Li et al., 2019) suggest that characters,
rather than words, are considered the fundamental
units of Chinese language processing. As far as our
knowledge goes, most of the pre-trained LLMs for
Chinese are based on character-level tokenization
(Si et al., 2023). This character-based processing
in LLMs could influence aphasia subtyping. Since
LLMs’ vocabularies for Chinese are consisted of
characters, their representation of word meanings
is not intrinsic. LLMs have to combine multiple
characters to represent a word’s meaning (Tsai and
McConkie, 2003; Bai et al., 2008). It is likely that
such character-based representation enables Chi-
nese LLMs to get better tuned to pinpoint word
retrieval difficulties, hence Chinese LLMs may be
capable to identify more fine-grained differences
such as specific aphasia subtypes.

Why do Chinese LLMs performed less effec-
tively in detecting the presence of aphasia? The
availability and size of training datasets for crosslin-
guistic LLMs (such as Chinese) can vary, but we
maintain that typically English LLMs may have
access to larger training datasets. Accordingly, we
stipulate that non-English pre-trained LLMs are hy-
pothetically less flexible and harder to generalize
to domain-specific data (e.g., aphasia). Therefore,
compared to English LLMs in English aphasia de-
tection, Chinese LLMs are likely to be less sensi-
tive to the broad linguistic disturbances associated
with aphasia in Chinese speakers, leading to lower
efficacy in detecting aphasia overall. Further, we in-
fer that the low efficacy may be due to Chinese not
having verb conjugations. Studies show that a hall-
mark in aphasia is the main verb problem, which is
associated with morphological impairment (Bates
et al., 1991; Pak-Hin Kong, 2011). In English,
larger morphological load carried by verbs (com-
pared with nouns) likely cause such impairment.
The lack of verb conjugations and rich morphologi-
cal markings in Chinese may lead to difficulties for
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LLMs, since these commonly seen signs of aphasia
in English are absent in Chinese.

The distinct patterns suggest that subtler linguis-
tic features captured by LLMs are more discrimi-
native in identifying specific subtypes of aphasia
in Chinese. Conversely, a contrasting scenario was
found in English speakers, where the LLMs exhibit
superior performance in detecting the presence of
aphasia compared to subtype classification. This
discrepancy makes us wonder if language-specific
nuances influence the performance of LLMs in
aphasia detection. The findings emphasize the
importance of tailored approaches for leveraging
LLMs in clinical applications across diverse lin-
guistic populations. The inverse patterns observed
between English and Chinese speakers indicate the
necessity of language-specific model adaptations
and fine-tuning strategies, which will likely opti-
mize the utility of LLMs in clinical practice. To
sum up, we found some clinical efficacy in Chinese
pre-trained LLMs for aphasia subtyping. Crosslin-
guistic LLMs are promising utilities for clinical
diagnosis. However, we are cautiously optimistic
since these LLMs showed less than satisfactory ac-
curacy (0.61) when detecting the presence of apha-
sia, a task we think is fundamental to benchmark
LLMs’ clinical reliability.

3.2 LLMs’ performance in aphasia severity
detection

Given that we have a relatively small sample size
and only a handful of features which are related, to
handle multicollinearity, we used elastic net regres-
sion to model LLMs’ efficacy in predicting aphasia
severity (WAB-AQ scores). Elastic net model was
evaluated using repeated 10-fold cross-validation.
We report the average mean absolute error (MAE)
and predictor variables’ coefficients in Table 3.

Dataset MAE utterance
length

GPT2 Llama2 BERT

English 14.97 0.00 -0.55 -3.05 1.56
Chinese 7.61 0.55 -0.03 -0.37 -0.06

Table 3: Elastic net regression models in predicting
English and Chinese aphasia severity.

Model coefficients in Table 3 suggest that for the
English dataset tasks, the role of utterance length
as a predictor of aphasia severity is trivial. The two
decoder LLMs (GPT2 and Llama2) showed neg-
ative effects, namely higher surprisals are associ-
ated with lower WAB-AQ (higher severity). BERT

showed the inverse, which is unexpected and hard
to interpret. For all three LLMs, Llama2 showed
the strongest coefficients. For the Chinese dataset,
utterance length played a role in predicting aphasia
severity. All the LLMs’ surprisals showed nega-
tive coefficients for the Chinese dataset. Llama2,
the largest LLM, gave the largest coefficient again.
This implies that larger LLMs tend to outperform
smaller ones, and scaling improves LLMs’ per-
formance in both English and Chinese tasks. We
do not find sufficient evidence showing that bidi-
rectional LLMs’ surprisals such as BERT are less
effective than unidirectional LLMs’ like GPT2
in clinical tasks, although GPT type LLMs’ pre-
training task (next token prediction given previous
context) appears to be more suitable for surprisals
computation (Shain et al., 2024).

Additionally, MAEs, an average measure of how
far the model’s predictions are from the actual tar-
get values in the test set, suggest that elastic net
regression model is a better fit for the Chinese than
the English tasks. This indicates that to operational-
ize pre-trained LLMs and help healthcare practi-
tioners make clinical decisions for the non-English
aphasia population, we need LLMs pre-trained in
corresponding languages. Open-source crosslin-
guistic pre-trained LLMs have the potential to im-
prove LLMs’ ecological validity in a clinical set-
ting.

Note that the analysis of LLMs’ performance
in aphasia severity detection is based on the raw
data irrespective of whether the initial classifica-
tion of aphasia presence and subtype was correct.
There are two primary motivations. First, the sam-
ple size is already small. Selecting only cases that
are correctly identified as having aphasia may fur-
ther shrink the dataset. Second, we intend to in-
dependently examine how much LLMs surprisals
can measure aphasia severity, based on raw data.
This approach will also enable reproducibility and
model applicability, since no intermediate pipelines
are needed to filter data based on previous tasks’
efficacy. However, we acknowledge that it is open
to discussion how much noise from misclassified
cases potentially may skew the severity models’
performance metrics. For future research, we hope
to expand the datasets, and construct and compare
multiple models with and without initial classifica-
tion.
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3.3 Qualitative error analysis
In order to increase interpretability, we conducted
qualitative error analyses. Concrete examples high-
lighting certain unexpected outputs from LLMs are
given in Table (4, 5), for which a higher surprisal
is unexpectedly found in the control group.

Results suggest that extremely short utterances
turn out to give rise to large surprisal scores for
both Chinese and English datasets, especially for
Llama2 and GPT2 (example 4). Interestingly for
BERT, the utterance length effect is not strong. It is
also likely that English interjection or filler words
like “gee”, low frequency verb "startle", and Chi-
nese sentence final particles such as “呢” “呀”
lead to higher surprisals (examples (2,4)). The
level of cleaning and pre-processing of the inpu
text may play a role. We hope to independently test
this hypothesis for future research.

4 Conclusion

This study leveraged pre-trained LLMs to detect
the presence, subtypes, and severity of aphasia
in English and Mandarin Chinese speakers. Our
findings suggest that without fine-tuning, taking
pre-trained LLMs off-the-shelf can already inform
us how surprisals distribute in aphasic individuals
whose first language is or is not English. That said,
we also found that Chinese LLMs showed less de-
cent performance in classifying healthy control ver-
sus aphasia, and that English LLMs show almost
chance level accuracy in subtyping aphasia. We
plan to fine-tune crosslinguistic LLMs using apha-
sia datasets to improve the models’ competence in
clinical tasks.

Our study highlights the clinical application of
pre-trained LLMs in English and non-English apha-
sia individuals. There is a critical need for auto-
matic aphasia diagnosis, since manually assessing
language disturbances is labor and cost intensive,
especially in low-resource non-English settings.
The advent of LLMs has the potential to advance
the field of aphasia detection. As a case study of
utilizing pre-trained LLMs in Chinese and English
datasets, our investigation advocates for refining
clinical NLP pipelines via incorporating LLMs pre-
trained in non-English languages.

5 Limitation

Given the relatively small sample size, the current
study is meant to be a proof of concept, rather
than providing any end-to-end or predictive models

or analytical frameworks. We hope to showcase
how much we can gain from pre-trained LLMs
in non-English speakers with aphasia, advocating
for clinical crosslinguistic LLMs in low-resource
settings, for example languages other than English.

Our findings suggest that larger LLMs gave
higher clinical efficacy. This implies that scal-
ing could matter. We are aware that scaling up
is not necessarily a feasible option for most re-
searchers, given its demanding computation re-
quirement (Schick and Schütze, 2020). Exactly
how much scaling and sample size matter is open
to discussion and out of the scope of the current
study. We maintain that dataset size may play a
role in how well LLMs perform in classifying and
subtyping aphasia. We hope to examine this with a
more comprehensive set of pre-trained LLMs and
larger sample size.

Moreover, we acknowledge that our study only
showed that there is difference when using LLMs
pre-trained in different languages, but we did not
show its magnitude and specifically what linguistic
properties (e.g., argument structure, word order)
differ in LLMs’ detection of Chinese and English
speakers with aphasia. Also, in aphasia studies,
overlapping patterns were found in Chinese and
English speakers: although there are crosslinguis-
tic differences, a previous study has reproduced
the impairment caused by the syntactic complexity
of utterances produced by Chinese speakers with
aphasia (Wang and Thompson, 2016). We plan to
expand our datasets and examine to what extent
the crosslinguistic impairment similarities can be
detected when using crosslinguistic LLMs.
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