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Abstract

Vision-language models, while effective in
general domains and showing strong perfor-
mance in diverse multi-modal applications
like visual question-answering (VQA), strug-
gle to maintain the same level of effective-
ness in more specialized domains, e.g., med-
ical. We propose a medical vision-language
model that integrates large vision and language
models adapted for the medical domain. This
model goes through three stages of parameter-
efficient training using three separate biomedi-
cal and radiology multi-modal visual and text
datasets. The proposed model achieves state-of-
the-art performance on the SLAKE 1.0 medical
VQA (MedVQA) dataset with an overall ac-
curacy of 87.5% and demonstrates strong per-
formance on another MedVQA dataset, VQA-
RAD, achieving an overall accuracy of 73.2%.

1 Introduction

Vision-Language Models (VLM), composed of two
key elements - vision models and language models,
mainly establish a connection between text-based
and image-based modalities. In order to accom-
plish this fusion, VLMs undergo training using
large volumes of text and images. This training
process enables them to understand the correla-
tions between visual and textual data, thus equip-
ping them to handle tasks such as Visual Question
Answering (VQA).

Vision-language models, such as CLIP (Rad-
ford et al., 2021) and BLIP-2 (Li et al., 2023b),
have shown impressive performance across vari-
ous multi-modal applications. Nevertheless, these
VLMs have not displayed similar levels of perfor-
mance when applied to the Medical VQA (Med-
VQA) task (Zhang et al., 2023a). The complexity
of medical questions in MedVQA often requires
a deep understanding of medical terminology and
image context that may not be adequately captured

by a generic VLM. Therefore, recent approaches,
such as PubMedCLIP (Eslami et al., 2023), Med-
Flamingo (Moor et al., 2023), LLAVA-Med (Li
et al., 2023a), and Biomed-CLIP (Zhang et al.,
2023a) adapt general-domain VLMs to the medi-
cal domain by leveraging large datasets containing
both medical images and accompanying text, such
as ROCO (Pelka et al., 2018).

Moreover, prior approaches, including PubMed-
CLIP (Eslami et al., 2023) and the models studied
by Lin et al. (2023b), treated MedVQA as a classi-
fication problem, where the models had to choose
the correct answer from a predefined set. This ap-
proach not only restricts the ability of VLMs to
generate free-form responses but also leads to inac-
curate evaluation.

In this paper, we first define the MedVQA task
as free-text generation, which is considered a more
challenging task compared to classification. Next,
we present a novel vision-language model that
fuses a domain-specific Large Language Model
(LLM) customized for radiology with a vision
model designed for biomedical tasks. In the pro-
posed vision-language model, all parameters of
both the vision and language models remain fixed.
We propose a parameter-efficient training approach
by integrating Low-Rank Adaptation (LoRA) tech-
nique (Hu et al., 2021) for training the model. The
frozen domain-adapted models and LoRA training
ensure not only stability and consistency during
training but also optimize the overall efficiency of
the training process.

Our proposed training approach for the train-
able parameters consists of three stages: medical
concept alignment through the image-captioning
task using PMC-OA dataset (Lin et al., 2023a),
adaptation to the general medical VQA task using
the PMC-VQA dataset (Zhang et al., 2023b), and
fine-tuning on the radiology task specific training
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dataset, such as VQA-RAD (Lau et al., 2018) and
SLAKE 1.0-English (Liu et al., 2021).

We conducted evaluations on two public radiol-
ogy MedVQA evaluation benchmarks, VQA-RAD
(Lau et al., 2018) and SLAKE 1.0 (Liu et al.,
2021), to assess the performance improvement
achieved by our proposed VLM. Our model out-
performed existing models from published works
on the SLAKE 1.0 benchmark, achieving an im-
pressive overall accuracy of 87.5%. Furthermore,
our model demonstrated strong performance on
the VQA-RAD benchmark, highlighting its effec-
tiveness compared to other published models. Ad-
ditionally, we conducted a performance compari-
son between our model and a version that incor-
porates a general-domain LLM while keeping all
other components constant. We observed a big per-
formance improvement with the domain-adapted
language model, and thereby demonstrating the ad-
vantage of integrating these models into VLMs as
a promising approach to address the limitations of
adapting general VLMs to domain-intensive appli-
cations.

Lastly, in our ablation investigation, we evalu-
ated the effect of our proposed multi-stage training
approach and found that it led to a significant 25%
improvement in accuracy compared to directly fine-
tuning a general-domain VLM on the downstream
MedVQA task. Our analysis underscores the ad-
vantages of incorporating a domain-specialized
LLM into the VLM architecture and highlights the
effectiveness of our proposed training strategy in
addressing MedVQA tasks.

Our contributions can be summarized as follows:

• We introduce a multi-modal model for Med-
VQA by fusing a radiology domain-specific
decoder-only LLM with a bio-medical vision
model within a VLM framework.

• We propose a parameter-efficient three-stage
training approach for efficient and effective
fusion of a vision encoder and LM.

• Our proposed model outperforms the state-of-
the-art on the SLAKE 1.0 MedVQA dataset.
Furthermore, we thoroughly analyze our
model and approach using both quantitative
and qualitative methods.

The remaining paper is structured as follows. In
Section 2, we provide a detailed description of the
model with its training schema. In Section 3, we

describe and discuss the dataset and experiments.
In Section 4, we discuss the related works. Section
5 concludes the study.

2 Model

Problem Formulation: Given a medical image vi
and a natural language question qi, a trained VLM
model M with parameters Θ generates the answer
ai for the given question as:

ai = M(vi, qi; Θ), (1)

where ai is the generated answer. Unlike previous
approaches that treat MedVQA as a classification
task, where the answer ai is selected from a pre-
defined set of possible answers {. . . ai, . . .}, our
objective is to generate an open-ended answer ai
instead.

Figure 1 shows our VLM model architecture.
Our model includes a vision encoder that takes
in the image vi ∈ RH×W×C , where H , W , and
C denote the height, width, and channels of the
image, respectively. It outputs the encoded image
e(v) ∈ Rn×m, with an embedding size of m and n
number of patches.

In our VLM model, the fusion module serves the
purpose of mapping the encoded vision features
e(v) to the embedding space of the LLM. This
module acts as a bridge between the vision encoder
and the LLM. Taking inspiration from BLIP-2 (Li
et al., 2023b), we employ a learnable query trans-
former architecture as the fusion module. Its pri-
mary function is to extract a predetermined set of
features from the output of the vision encoder. The
parameters of this module are randomly initialized.

The query transformer output is transformed us-
ing a multi-layer perceptron network to match the
embedding size of the LLM, resulting in e(v) ′ ∈
Rd. These projected features are then combined
with the embedded input text e(q) ∈ Rd and fed
into the LLM to generate the desired output.

In order to explore the potential benefits of incor-
porating radiology domain-adapted Language and
vision models in MedVQA tasks that involve radi-
ology images, questions, and answers, we utilize
decoder-only transformer models as the LLM mod-
ule. More specifically, we leverage RadBloomz-7b
(Karn et al., 2023), which is a radiology domain
adaptation of Bloomz-7b1 (Muennighoff et al.,
2022).
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Figure 1: Overview of the proposed vision-language (VLM) architecture for MedVQA task. The output from
the biomedical-adapted vision encoder component is combined with the input question, processed through a
Radiology-adapted Language Model (LLM). Learned queries are initiated from scratch and trained during our
proposed alignment training of multi-modal domain adapted models, which includes image-caption pretraining,
synthetic biomedical MQA, and MedVQA datasets, all fine-tuned using a parameter efficient LoRA technique.

The RadBloomz-7b model has been continu-
ously pre-trained using the MIMIC-IV radiology re-
ports dataset (Johnson et al., 2020) and has demon-
strated exceptional performance on the radiology
report summarization task, surpassing other models
on the MIMIC-III (Johnson et al., 2016), MIMIC-
CXR (Johnson et al., 2019), and CheXpert (Irvin
et al., 2019) summarization datasets. We argue
that RadBloomz-7b offers a highly powerful foun-
dation model and brings valuable advantages to
downstream MedVQA tasks.

To investigate the potential advantages of inte-
grating domain-specific vision models into Med-
VQA, we utilize the vision encoder models from
PMC-CLIP (Lin et al., 2023a) and BiomedCLIP
(Zhang et al., 2023a). These models have demon-
strated notable performance enhancements in multi-
modal medical tasks, including question-answering.
By employing these models, we not only have ac-
cess to two different pre-trained vision models but
also have the opportunity to explore two distinct ar-
chitectures: ResNet50 (He et al., 2016) from PMC-
CLIP (Lin et al., 2023a) and Vision Transformer
(ViT) from BiomedCLIP (Zhang et al., 2023a).

In our model, the vision encoder and LLM re-
main as pre-trained models with frozen parameters.
Instead, we propose using the Low-Rank Adap-
tation (LoRA) technique (Hu et al., 2021) on the
pre-trained LLM to align it with the downstream
MedVQA task.

2.1 Training Approach

Our training approach comprises three main stages,
with the first two stages considered as pre-training

and the final stage as fine-tuning. The loss function
employed in all training stages is the sum of nega-
tive log-likelihoods of the correct next token in a
given text sequence across all time stages as:

L(Θ) = −
T∑

t=1

log p(at|v, q, a1:t−1; Θ), (2)

where Θ is the trainable model parameters, T is the
length of the ground-truth answer, and p(·) repre-
sents the probability of generating the t-th token in
the answer sequence given the input image v, the
question q, and the previous tokens in the answer
sequence a1:t−1.

Pre-Training Stage 1: Medical concept align-
ment: This stage is framed as a medical image
caption prediction task, where the model predicts
the next token in the caption given an input image.
The loss function is accordingly defined as:

L(Θ) = −
T∑

t=1

log p(ct|v, c1:t−1; Θ), (3)

where ct−1 and ct are the caption tokens at time
t− 1 and t, respectively, and v is the input image.

This stage serves two purposes: bridging the gap
between the vision encoder model and language
model, and pre-training the randomly initialized fu-
sion module to align medical concepts with visual
content. This integration enables the fusion module
to understand medical concepts in images and align
visual information with textual descriptions. We
utilize a training strategy called Image-grounded
Text Generation (ITG) in this stage, which is in-
spired by BLIP-2 (Li et al., 2023b). However, un-
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like BLIP-2, we train the introduced LoRA param-
eters of the LLM.

Pre-Training Stage 2: General medical visual
question answering To build an effective Med-
VQA model, we rely on the PMC-VQA dataset
Zhang et al. (2023b). This dataset encompasses a
diverse collection of medical images across mul-
tiple modalities, including X-ray, CT, MRI, and
microscopy. It also features a wide range of ques-
tions that cover various aspects of medical images.
By training the model using this dataset, we expose
it to a rich variety of medical scenarios, fostering
the development of broad knowledge and general-
ization in the medical field. The loss function is the
same as in Equation 2.

We utilized the second version of the PMC-VQA
dataset for our training process, which is approx-
imately 186, 033 image-associated questions and
answers.

Training Stage 3: Downstream task finetun-
ing In the final stage, we fine-tune the model by
utilizing the training split of two publicly avail-
able MedVQA benchmarks: VQA-RAD (Lau et al.,
2018) and SLAKE 1.0-English (Liu et al., 2021).
This process helps us further refine the model’s
performance. The loss function during this stage
remains the same as in Equation 2.

3 Experiments

3.1 Experiment setup
Our objective is to evaluate how well the proposed
method performs in answering questions related
to medical visual content. To do this, we conduct
experiments and compare its performance with the
following baseline VLMs.

• BiomedCLIP (Zhang et al., 2023a). This
biomedical domain adapted vision-language
foundation model is pretrained on PMC-15M,
which is a dataset consisting of 15 million
image-caption pairs extracted from PubMed
Central. The model is trained using con-
trastive learning techniques. Additionally, we
consider this model as one of the domain-
adapted vision model for our fusion experi-
ments. We make use of the vision component
ViT-Base-patch16-224 variant, which has a
patch size of 16× 16. We refer to this variant
as "BiomedCLIP ViT".

• PMC-CLIP. Inspired by CLIP (Radford et al.,
2021), Lin et al. (2023a) combine image-

text contrastive loss with masked language
modeling loss from BERT to train a new
model called PMC-CLIP. To pre-train their
VLM, Lin et al. (2023a) employ the PMC-
OA dataset, consisting of 1.6M image-caption
pairs. They combine ResNet50 (He et al.,
2016) as the vision module and PubmedBERT
(Gu et al., 2020) as the language module. Ad-
ditionally, a 4-layer transformer is trained as
the fusion module. Like BiomedCLIP, we uti-
lize the ResNet50 model from PMC-CLIP as
a domain-adapted vision model. This variant
is referred to as "PMC-CLIP ResNet".

• MUMC. Li et al. (2023c) propose a novel vi-
sion language pre-training approach. They
use masked image and text encoding with
uni-modal and multi-modal contrastive losses
on image and text encoders, along with im-
age and text features. They also introduce a
masked image strategy for data augmentation
by randomly masking image patches during
pre-training. For downstream tasks, they in-
corporate transformer-based decoder layers to
generate answers and fine-tune the model us-
ing the masked language modeling objective
on VQA datasets.

• PubMedCLIP Eslami et al. (2023) present
PubmedCLIP, a fine-tuned version of CLIP
for the medical domain. It is trained on image-
text pairs from PubMed articles. The authors
explore the impact of incorporating Pubmed-
CLIP as a pre-trained vision encoder in two
MedVQA methods. They further fine-tune
these models using public MedVQA bench-
marks. Due to the inclusion of text encoders,
the training and evaluation of MedVQA are
structured as a multi-label classification task
rather than a free-form generation task.

• MedVInT-TD Zhang et al. (2023b) propose
a generative-based VLM that integrates vi-
sual information from vision encoders, such
as ResNet from PMC-CLIP (Lin et al., 2023a),
with large language models, such as PMC-
LLaMA-7B (Wu et al., 2023) as decoder-only
models. They pretrain their model using PMC-
OA on the image-captioning task. Then, they
introduce a large-scale medical multi-modal
question-answering dataset, PMC-VQA, with
which their proposed model is instruction
tuned. We selected this model for compar-
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ison as it’s directly comparable to ours, given
its similar use of a decoder-only LLM.

3.2 Datasets
The pre-training process for aligning medical con-
cepts involves two stages. In the first stage, the
PMC-OA dataset (Lin et al., 2023a), containing
1.64 million image-caption pairs, is used. In the sec-
ond stage, the version 2 of the PMC-VQA dataset
(Zhang et al., 2023b), encompassing approximately
186,033 visual question-answer pairs, is utilized. In
the third stage, we utilize the training split of VQA-
RAD (Lau et al., 2018) and SLAKE 1.0-English
(Liu et al., 2021) datasets for the downstream fine-
tuning tasks, as they are the most popular public
benchmarks in the radiology domain. For addi-
tional information, please refer to Table 8 in the
Appendix section A. In both fine-tuning datasets,
questions are categorized as either closed-ended or
open-ended. Closed-ended questions are multiple-
choice questions with a limited set of answers, such
as "yes/no" questions. Open-ended questions con-
tain free-form answers.

3.3 Training and Evaluation
We train our model for 3 epochs in the first stage of
aligning medical concepts with an initial learning
rate of 3e− 4. For the second stage of pre-training,
we trained the model for 10 epochs with a learning
rate of 1e − 5. Finally, we fine-tuned the model
on MedVQA benchmarks for 100 epochs, using a
learning rate of 2e− 5.

For all training stages, we employed the AdamW
optimizer (Loshchilov and Hutter, 2018) with a co-
sine annealing schedule. The training batch size
was set to 256 for pre-training and 16 for fine-
tuning. All training processes were conducted on 4
A100-40GB GPUs. To optimize our training proce-
dures, we integrated the DeepSpeed (Rasley et al.,
2020) acceleration strategy along with Automatic
Mixed Precision (AMP) (Micikevicius et al., 2018)
techniques.

To evaluate the performance on VQA-RAD and
SLAKE 1.0-English, we measure the accuracy met-
ric. We further analyze the results by distinguishing
between open-ended and closed-ended questions,
allowing for a detailed assessment of the model’s
performance across different question types.

In our approach to the MedVQA task, we adopt
the method proposed by Wu et al. (2023), which
treats it as free-form text generation. We identify
the answer in the list of all possible answers from

the training split of each dataset that is most sim-
ilar to the answer generated by our model. We
then compare this selected answer to the ground
truth. To achieve this comparison, we make use of
Python’s difflib library.1

3.4 Results and Analysis

The results of our proposed model can be seen
in Table 1. Its evident that our BiomedCLIP-
RadBloomz-7b model achieves state-of-the-art per-
formance on SLAKE 1.0, with an overall accuracy
of 87.5, surpassing the previous approaches. This
model excels particularly in closed-ended questions
with accuracy of 92.1. The results illustrate the ad-
vantages of our training strategy and the utilization
of a radiology domain-adapted language model in
the MedVQA task.

Additionally, when comparing similar experi-
ments where the domain-adapted BioMedCLIP-
ViT vision encoder is replaced with PMC-
CLIP ResNet, it becomes evident that utilizing
BiomedCLIP-ViT results in superior performance
on both benchmark datasets. The findings indicate
that certain domain-adapted vision encoders, such
as BiomedCLIP, possess exceptional capabilities in
effectively managing domain-specific knowledge
within specific language models like RadBloomz-
7b. Also, this successful combination underscores
the potential for further research in exploring the
fusion of these models.

In the VQA-RAD dataset, our BiomedCLIP-
RadBloomz-7b model outperforms PubMedCLIP
(Eslami et al., 2023) and Biomed-CLIP (Zhang
et al., 2023a) models on the overall accuracy. It also
demonstrates competitive performance with exist-
ing approaches on closed-ended questions. How-
ever, it does not perform as well on open-ended
questions, where it falls behind compared to the
MedVInt-TD model. We argue that the lower
performance on open-ended questions can be at-
tributed to several factors. One key factor is our
formulation of the problem as free-form answer
generation for both question types, as opposed to
the baseline Biomed-CLIP and PubMedCLIP mod-
els. This means that our model is not constrained
by a predefined set of answers in the training data.

To evaluate the influence of domain adaptation
in the VLM, we performed experiments using
two LMs, Bloomz-7b1 and RadBloomz-7b. The
comparison results in Table 2 demonstrate that

1https://docs.python.org/3/library/difflib.html
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SLAKE 1.0 VQA-RAD
Model VE LM Overall Closed Open Overall Closed Open
Ours BiomedCLIP ViT RadBloomz-7b 87.5 92.1 84.5 73.2 83.5 57.5
Ours PMC-CLIP ResNet50 RadBloomz-7b 82.5 88.5 78.6 67.6 79.4 49.7
MedVInT-TD
(Zhang et al., 2023b) 85.2 86.3 84.5 81.6 86.8 73.7

Biomed-CLIP
(Zhang et al., 2023a) 86.1 88.9 84.3 72.7 76.5 67.0

PubMedCLIP
(Eslami et al., 2023) 80.1 82.5 78.4 72.1 80.0 60.1

MUMC
(Li et al., 2023c) 84.9 - - 79.2 84.2 71.5

PMC-CLIP
(Lin et al., 2023a) 84.3 88.0 81.9 77.6 84.0 67.0

Table 1: Accuracy (%) results of VLMs on SLAKE 1.0-English and VQA-RAD datasets. Performance on open-
ended and closed-ended questions as well as overall performance are reported. VE represents vision encoder.

SLAKE 1.0 VQA-RAD
VE LM Overall Closed Open Overall Closed Open

BiomedCLIP ViT Bloomz-7b1 80.0 86.8 75.7 68.3 80.9 49.2
Radbloomz-7b 87.5 92.1 84.5 73.2 83.5 57.5

PMC-CLIP ResNet Bloomz-7b1 80.5 87.5 76.0 65.2 77.9 45.8
Radbloomz-7b 82.5 88.5 78.6 67.6 79.4 49.7

Table 2: The table compares the accuracy (%) between a VLM with a radiology-adapted RadBloomz-7b LM and a
general-domain Bloomz-7b1 LM, using the SLAKE 1.0-English and VQA-RAD datasets. Results for open-ended,
closed-ended, and overall performance are included, with experiments conducted separately using two pretrained
vision encoders (VE).

BiomedCLIP-RadBloomz-7b outperforms its gen-
eral domain language model counterpart, Bloomz-
7b1, on both datasets. There is a noticeable en-
hancement in overall accuracy on Slake 1.0, with
an improvement of 7.5%. Similarly, on VQA-RAD,
there is a significant increase in overall accuracy,
with an improvement of 4.9%. This highlights the
significant benefit of employing a domain-adapted
language model, specifically RadBloomz-7b, as
the backend language model for domain-intensive
tasks in VLMs. The model’s effectiveness is par-
ticularly evident in its performance on open-ended
questions, demonstrating an average improvement
of 8.5% in accuracy.

To evaluate the impact of including training of
existing parameters in the fusion model, we con-
ducted experiments on VLMs that employed train-
able vision encoders. In this regard, we trained the
vision encoder parameters alongside other trainable
parameters throughout all training stages. Table 3
shows the results obtained from the VLMs using
trainable BiomedCLIP-ViT. The two LMs, Bloomz
and RadBloomz, were utilized in the experiments.
Notably, the VLM utilizing the specialized-domain
RadBloomz-7b achieves better performance with
a reduced number of parameters compared to the
VLM with a larger set of trainable parameters. We

argue that through an optimal fusion of the domain-
adapted vision encoder and LM, there is no longer
a need to train the vision encoder in our VLM. This
results in a lightweight adaptation of the VLM.

To assess the effect of three different training
stages on model performance, we explore the fol-
lowing scenarios: 1) Direct Fine-tuning, where
the model is exclusively trained on VQA-RAD
or SLAKE 1.0 datasets without any prior training
phases. 2) One-stage Pre-Training, which includes
pre-training stage 1, followed by fine-tuning on
downstream datasets. 3) Full Pre-Training, where
the model undergoes all three training stages. This
comparison offers valuable insights into the most
effective training pathway for this model architec-
ture in domain-intensive MedVQA tasks.

Table 4 shows the comparison results with
BiomedCLIP-RadBloomz-7b. The findings reveal
significant improvements in final accuracy, with an
approximate 25% increase in full pre-training (Sce-
nario 3) compared to direct fine-tuning (Scenario
1). These results underscore the effectiveness of
Pre-training stage 1, which greatly enhances the
model’s medical knowledge. Furthermore, full pre-
training not only preserves the knowledge gained
during stage 1 but also integrates medical concept
alignment with specialized MedVQA training.
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VE LM Overall Closed-ended Open-ended
Trained BiomedCLIP ViT Bloomz-7b1 69.4 80.1 53.1
Frozen BiomedCLIP ViT Bloomz-7b1 68.3 80.9 49.2
Trained BiomedCLIP ViT RadBloomz-7b 71.4 81.3 56.4
Frozen BiomedCLIP ViT RadBloomz-7b 73.2 83.5 57.5

Table 3: The table provides a comparison of accuracy (%) between two scenarios on the VQA-RAD dataset: one
scenario where the vision encoder of VLMs is trained alongside alignment training, and another where the vision
encoder is frozen during training. The table displays performance for open-ended and closed-ended questions, as
well as overall performance.

Scenarios Overall Closed-ended Open-ended
1 48.3 59.9 30.7
2 59.0 70.6 41.3
3 73.2 83.5 57.5

Table 4: The table demonstrates the performance of
our VLM (BiomedCLIP ViT+Radbloomz-7b) on VQA-
RAD under different training scenarios: 1) direct fine-
tuning on VQA-RAD; 2) stage 1 pretraining followed
by fine-tuning on VQA-RAD; and 3) full pre-training
and fine-tuning on VQA-RAD. The accuracy metric
is used, and performance is reported for open-ended,
closed-ended questions, along with overall accuracy.

We examine the overall accuracy of VLMs us-
ing BiomedCLIP-ViT as the vision encoder across
different question categories in both datasets. The
results can be found in Tables 5 and 6. Our VLM
with medical-tailored Radbloomz-7b shows bet-
ter performance in most categories. RadBloomz-
7b particularly excels in interpreting spatially-
oriented queries, as evident from its leading per-
formance in modality, abnormality, presence of ob-
jects/attributes, organ, and plane categories. This
suggests a strong capability of RadBloomz-7b in
analyzing the spatial arrangement in radiology im-
ages. However, the model can be further improved
in shape, size, and position categories. Addition-
ally, the distribution of categories in the training
data has an impact on the model’s performance.

Finally, we conduct a qualitative analysis of the
model’s predictions to identify areas where im-
provements may be needed for both the model and
evaluation measures. Table 7 shows examples of
questions from the VQA-RAD test split where the
model’s predictions are evaluated as incorrect dur-
ing the evaluation. Notably, despite the model’s
responses being evaluated as incorrect according
to our evaluation measure, a closer examination re-
veals a different perspective. The model provided
responses that consist of terms that are either syn-
onyms or contextually relevant to the given labels.

Category #Q Bloomz-7b1 RadBloomz-7b
Abnormality 56 64.3 69.6
Attribute 20 90.0 90.0
Color 4 100.0 100.0
Count 6 66.7 83.3
Modality 33 45.5 48.5
Organ 10 20.0 40.0
Plane 26 73.1 76.9
Position 61 72.1 70.5
Presence 171 74.9 82.5
Size 46 87.0 82.6
Other 26 30.8 26.9

Table 5: Models’ overall accuracy (%) across different
question categories on VQA-RAD. Performance of two
VLMs with Radbloomz-7b and Bloomz-7b1 as LLM
component is reported separately. The vision encoder
of VLMs is BiomedCLIP ViT. #Q: number of questions
in the given category.

For instance, in question 1, the model identifies the
modality as ‘chest x-ray’, which is essentially cor-
rect in the context of this question (See Figure 2).
Similarly, for question 2, the model’s prediction ‘t2
weighted’ captures the essence of the ‘t2 weighted
mri’ label or in question 4, ‘both sides’ is predicted
whereas the label is ‘both’.

Given that traditional accuracy metrics may not
fully capture the nuances and utilization of syn-
onyms in the medical domain, conducting a man-
ual evaluation of the predictions can be valuable in
determining the actual performance of the model.
However, it is worth noting that we have identified
instances where the model generated incorrect an-
swers, such as in questions 6 and 7. We asked a
licensed medical expert to meticulously compare
the model’s predictions with the ground truth val-
ues and identify cases similar to those mentioned
earlier. Following this rigorous human evaluation,
we achieved an accuracy of 64.2%, surpassing the
performance obtained using our automatic evalua-
tion metric, which yielded an accuracy of 57.5%.

Although BiomedCLIP-RadBloomz-7b VLM
demonstrates remarkable overall improvement in
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(a) question 1 (b) question 4 (c) question 5

Figure 2: Image examples from VQA-RAD corresponding to questions in Table 7.

Category #Q Bloomz-7b1 RadBloomz-7b
Organ 253 88.9 93.6
Abnormality 150 73.3 84.6
Size 65 86.1 87.6
Position 186 67.2 87.6
Plane 58 96.5 100.0
Modality 108 100.0 100.0
Knowledge Graph 148 68.9 75.0
Color 34 88.2 91.1
Quantity 52 59.6 59.6
Shape 7 85.7 71.4

Table 6: Model’s overall accuracy (%) across different
question categories on SLAKE 1.0-English. Perfor-
mance of two VLMs with Radbloomz-7b and Bloomz-
7b1 as LLM component is reported separately. The
vision encoder of VLMs is BiomedCLIP ViT. #Q: the
number of questions in the given category.

MedVQA, additional investigation of the model
is necessary. Specifically, since the task is formu-
lated as free-form generation, training a model to
adhere to a restricted set of terminologies presents
challenges and warrants further attention.

4 Background and Related Work

Language models (LMs) designed for general do-
mains often face difficulties when applied to highly
specialized fields. Additionally, data scarcity is a
prevalent challenge in domain adaptation of LMs.
Various methods have been developed to adapt pre-
trained LMs to specific domains. One method in-
volves continuous pre-training of model parameters
using data specific to the target domain (Karn et al.,
2023). Alternatively, synthetic data can be effec-
tively incorporated into the training process for
fine-tuning models to better adapt to specific target
domains (Karn et al., 2021). Another approach in-
cludes using parameter-efficient fine-tuning meth-
ods (Xu et al., 2023) with task-specific training
data. Our training schema amalgamates several
of these methods like image-caption pretraining,
synthetic biomedical MQA, and task-specific Med-
VQA datasets, all fine-tuned using a parameter-
efficient technique.

Among parameter-efficient fine-tuning ap-
proaches, the Low-Rank Adaptation (LoRA) tech-
nique (Hu et al., 2021) has received considerable
interest for adapting Large LMs (LLMs). In the
biomedical domain, domain-specific LLMs have
been proposed either by fine-tuning the model’s
parameters (Luo et al., 2022; Wu et al., 2023) or
by utilizing LoRA techniques (Gema et al., 2023).
However, it’s important to note that biomedical
domain-adapted LLMs might not perform as ef-
fectively in the radiology domain. This is due to
the complexity of terminologies in clinical NLP
(Karn et al., 2022; Ghosh et al., 2023). Thus, there
have been recent proposals for radiology domain-
adapted LLMs (Karn et al., 2023).

The application of domain adaptation is not lim-
ited to LLMs. It also finds utility in the adaptation
of multi-modal models like vision-language models
(VLMs). In line with this, there have been recent
proposed biomedical VLMs such as (Zhang et al.,
2023a; Lin et al., 2023a; Moor et al., 2023; Chen
et al., 2023; Li et al., 2023a). These have been suc-
cessful in achieving state-of-the-art performance
in downstream biomedical tasks, such as medical
question-answering. In this study, we concentrate
on developing a more efficient domain adaptation
technique for VLMs within the challenging domain
of Radiology.

5 Conclusion

We introduce a new vision-language model for
medical visual question-answering by integrating
a radiology large language model, RadBloomz-7b
(Karn et al., 2023) and a biomedical vision encoder,
BiomedCLIP-ViT (Zhang et al., 2023a), in to the
VLM. Our main objective is to investigate the im-
pact of integrating specialised LMs and vision en-
coders into VLMs for domain-specific tasks in the
medical domain.

For this purpose, we propose a parameter-
efficient training approach by deploying low-rank
adaptation technique (Hu et al., 2021) to the

253



Question Label Prediction
1 What kind of image is this? x-ray chest x-ray
2 What type of MRI sequence is displayed in this image? t2 weighted mri t2 weighted
3 What modality was used? plain film plain film xray
4 Are pleural opacities located on the left, right, or

both sides of the lung? both both sides
5 Are there multiple or just 1 metastatic focus? one just one
6 Which lung is clearer? left right
7 Is the anatomy of the brain gyri affected? no yes

Table 7: Examples of our model’s generated answers (Prediction) on closed- and open-ended questions in VQA-
RAD evaluated as incorrect answer.

decoder-only LLM component in the VLM, which
significantly reduces the number of trainable pa-
rameters while maintaining the model performance.
Moreover, the vision encoder is kept frozen in the
training process. We then propose a two-stage
pre-training approach aiming to align our VLM
to medical concepts by pre-training the model on
the image-captioning task and acquiring general
knowledge for medical visual question answering
by pre-training it on a general MedVQA dataset.
We finally finetune the model on the downstream
MedVQA tasks.

Our results demonstrate state-of-the-art perfor-
mance on a MedVQA SLAKE 1.0 dataset and
strong performance on the VQA-RAD dataset. Fur-
thermore, compared to a VLM with a general-
domain LLM, we show that our proposed VLM
leads to a higher performance using parameter-
efficient training, while a VLM with general-
domain LM benefits slightly from training the vi-
sion encoder as well. Finally, our findings sug-
gest that the proposed pre-training approach signifi-
cantly improves model performance in downstream
MedVQA tasks.

6 Limitations

In this paper, we explored the generation ability of
our adapted vision-language model on learning to
generate free-form answers. While we observed
impressive performance, we realized that in a few
test cases, such as wh-questions, the model gener-
ates yes/no answers. Therefore, more investigation
on optimizing the training to capture the type of
the question is required.

We proposed a multi-modal model tailored for
radiology-domain visual-question answering tasks.
Therefore, we are aware that our model is not easily
generalizable to diverse medical domains and tasks,

such as pathology image analysis. As a result, we
didn’t compare our model to SoTA generalized
multi-modal models in other medical domains and
tasks. Furthermore, the LLM model architecture
we studied is restricted to a decoder-only type, thus
its performance may not be directly comparable to
different model architectures.
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Table 8: Downstream dataset statistics of VQA-RAD and SLAKE 1.0, includes number of images and question-
answer pairs (QAs). Questions are categorized as close-ended and open-ended.

Dataset
VQA-RAD SLAKE 1.0-English

Total Train Test Total Train Validation Test
#Images 315 314 203 642 586 174 96
#QAs 3515 3064 451 12995 9835 2099 1061
#Close-ended QAs 2093 1821 272 5141 3881 844 416
#Open-ended QAs 1420 1241 179 7754 5854 1255 645
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