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Abstract
The MEDIQA-M3G 2024 challenge necessi-
tates novel solutions for Multilingual & Multi-
modal Medical Answer Generation in derma-
tology (wai Yim et al., 2024a). This paper
addresses the limitations of traditional meth-
ods by proposing a weakly supervised learn-
ing approach for open-ended medical question-
answering (QA). Our system leverages readily
available MEDIQA-M3G images via a VGG16-
CNN-SVM model, enabling multilingual (En-
glish, Chinese, Spanish) learning of informa-
tive skin condition representations. Using pre-
trained QA models, we further bridge the gap
between visual and textual information through
multimodal fusion. This approach tackles com-
plex, open-ended questions even without pre-
defined answer choices. We empower the gen-
eration of comprehensive answers by feeding
the ViT-CLIP model with multiple responses
alongside images. This work advances medical
QA research, paving the way for clinical deci-
sion support systems and ultimately improving
healthcare delivery. 1

1 Introduction

Dermatological telemedicine consultations, while
offering a promising solution for remote diagnosis
and treatment, face hurdles due to limitations in
capturing subtle visual details and the inability to
physically examine lesions. This can lead to mis-
communication, such as difficulties in describing
the texture or progression of lesions, which can
hinder the development of effective treatment plans
(Elsner, 2020; Hwang et al., 2024; Mehraeen et al.,
2023). However, recent advancements in image-
text learning, like Vision Transformer (ViT) for
image captioning and Contrastive Language-Image
Pre-Training (CLIP) for aligning text and image
representations, offer promising avenues to bridge
this gap (Yin et al., 2022; Li et al., 2021).

1Fine-tuned models and Code avaliable: https://github.
com/NadiaSaeed/MediFact-M3G-MEDIQA-2024

Existing approaches to teledermatology consulta-
tions have limitations. Traditional consumer health
question-answering systems primarily focus on
textual data, neglecting the valuable information
within visual details (Abacha et al., 2019b). This
limits their ability to understand the nuances of
skin conditions often best captured visually. Visual
question-answering efforts have mainly targeted
radiology images, overlooking the crucial context
provided by clinical text (Abacha et al., 2019a).
While recent advancements in deep learning have
shown promise in lesion classification for dermatol-
ogy (Li et al., 2022), these approaches often focus
on specific image types and cannot integrate textual
information, essential for a holistic understanding
of a patient’s condition. While some research ex-
plores combining clinical text and images for spe-
cific dermatology tasks, such as melanoma risk as-
sessment, they haven’t addressed open-ended ques-
tion answering (Groh et al., 2022; Lin et al., 2023).

This research tackles these limitations by intro-
ducing a novel framework for multilingual and
multimodal query response generation in clinical
dermatology. Our system leverages the power
of multimodal fusion, which combines informa-
tion from different sources. In this case, the
sources are textual and visual: textual clinical con-
text and user queries in multiple languages, along
with user-uploaded images. This work introduces
Medifact-M3G, a framework for tackling uncertain-
ties in medical question answering for dermatology
shown in Figure 1. Medifact-M3G prepares the
data and assigns weights to potential answers, con-
sidering their relevance and trustworthiness (Sec-
tion a). It then uses a powerful image analysis tool
to extract key features from skin condition images
(Section b). By combining these features with text
analysis, Medifact-M3G leverages multiple pow-
erful models to generate informative answers to
medical questions (Sections c and d). This frame-
work has the potential to improve the accuracy
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Figure 1: MediFact-M3G Framework: From Uncertain Data to Informed Answers

and reliability of AI-powered diagnosis systems in
telemedicine, ultimately assisting healthcare pro-
fessionals in providing better diagnoses and treat-
ment plans. This research addresses the follow-
ing key questions: 1) Can feature fusion from
weakly supervised learning techniques effectively
support open-ended medical question answering in
dermatology? 2) Can a Medifact-M3G fine-tuned
model trained solely on the MEDIQA-M3G train-
ing dataset adequately capture similarities and relat-
edness for unseen samples? 3) How can contrastive
learning be seamlessly integrated with Medifact-
M3G to quantify uncertainty in response generation
for ambiguous queries and limited content informa-
tion?

2 Methodology

Our response generation system for the MEDIQA-
M3G 2024 task tackles the challenge of limited

labeled data while aiming to generate informative
responses to user queries about dermatological con-
ditions (wai Yim et al., 2024a). This methodology
leverages several key steps, as illustrated in the ac-
companying MediFact-M3G framework shown in
Figure 1.

2.1 Data Preprocessing and Response
Weighting

We begin by ensuring the quality of the raw data
through techniques like handling missing values,
text cleaning, and formatting consistency. This
establishes a clean and consistent foundation for
subsequent model training.

Next, a weighting function assigns scores to each
response based on the author’s expertise (e.g., medi-
cal doctor) and response completeness. This guides
the model to prioritize learning from the most effec-
tive responses during training, ultimately improv-
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Figure 2: Example of Original Text "MEDIQA-M3G" and System Output "MediFact-M3G

ing the quality of the generated responses.

2.2 Weakly Supervised Learning for Image
Representation: Addressing Data
Limitations

While large, labeled datasets are ideal for training
robust response generation models in dermatology,
ethical considerations, and data access limitations
often restrict their availability. To address this chal-
lenge, we employed a weakly supervised learning
approach that leverages the available data effec-
tively.

Our approach utilizes a pre-trained Convolu-
tional Neural Network (CNN), specifically VGG16,
to extract high-level features from the dermato-

logical images. These features capture the visual
characteristics relevant to diagnosis (Desai et al.,
2021). We then use a Support Vector Machine
(SVM) classifier to learn the relationship between
the extracted image features and the high-quality
textual responses associated with labeled image-
response pairs. The SVM essentially learns to map
images to their most relevant textual descriptions
(Chandra and Bedi, 2021).

This weakly supervised approach allows us to
overcome limitations in labeled data. The SVM
generalizes the learned relationship between la-
beled image-response pairs to unlabeled images.
By incorporating the information gleaned from
the textual responses, this process enriches the im-
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age representations learned by the VGG16 model,
even without explicit labels for each unlabeled im-
age. These enriched image representations (En-
glish, Chinese, and Spanish languages) capture the
semantic meaning associated with the images, pro-
viding valuable information for the response gener-
ation model during training. Additionally, for com-
parison purposes, we evaluated the performance of
Inception and ResNet models in place of VGG16
to determine the most effective CNN architecture
for this task (Zheng et al., 2021; Zhou et al., 2021).

2.3 Multi-Model Response Generation with
Feature Fusion

This step focuses on generating responses to user
queries. We employ a multi-model approach that
combines pre-trained question-answering (QA)
models with the image representation learned from
the weakly supervised approach described in Sec-
tion 2 (Cortiz, 2022). Due to limitations in the per-
formance and availability of non-English language
models, this step focuses on English responses.

A comprehensive feature vector for each query-
response pair is created by combining the following
elements:

• The user’s query itself.

• Relevant textual content (e.g., patient demo-
graphics).

• The image representation learned from the
weakly supervised approach (Section 2).

We utilize two pre-trained English models:

2.3.1 Extractive QA Model
This model retrieves relevant answer passages from
a text corpus (potentially including high-quality re-
sponses) that directly address the user’s query (Guo
et al., 2023; Clark et al., 2020; He et al., 2021).

2.3.2 Abstractive QA Model
This model goes beyond retrieval and generates
a new, comprehensive response. It incorporates
information from various sources (textual features,
extracted passages) and potential reasons over the
information to provide a more informative answer
(Lewis et al., 2019).

This multi-model approach offers the advantage
of combining factual grounding from the extractive
model with flexible response generation from the
abstractive model, while also incorporating visual

information through the image features. This ul-
timately leads to more accurate and informative
responses within the teledermatology domain.

2.4 Response Selection with Contrastive
Learning

Selecting the most informative response for a
query-image pair, especially in non-English set-
tings, requires a robust approach. We leverage
CLIP, a contrastive learning model adept at learn-
ing relationships between image and text embed-
dings (Li et al., 2021). CLIP utilizes a Vision
Transformer (ViT) (Section 2) to extract high-
dimensional image features and a separate text en-
coder for potential responses (Yin et al., 2022).
We employ CLIP in two key settings: First, CLIP
receives the ViT-extracted image embedding and
multiple response lists (English, Spanish, Chinese).
It calculates the cosine similarity between each re-
sponse embedding (in a specific language) and the
image embedding. The response with the highest
similarity (closest semantic relationship) is cho-
sen for that language. Second, CLIP focuses on
the relationship between the image and English re-
sponses from pre-trained QA models (Section 3).
It assesses the cosine similarity between the im-
age embedding and the selected English response
embedding. Google Translate then converts this
English response to Spanish and Chinese for user
convenience, acknowledging potential translation
inaccuracies (Taira et al., 2021).

3 Experimental Setup and Results

We evaluated our model’s capability in addressing
the problem of clinical dermatology multimodal
query response generation. This evaluation was
conducted within the Shared Task of MEDIQA-
M3G 2024, which focuses on multilingual and mul-
timodal medical answer generation (wai Yim et al.,
2024a). As illustrated in Figure 2, each sample in
the task comprised k medical images related to der-
matological conditions, a textual query describing
the user’s skin concern, and its content. Addition-
ally, the ground truth for each sample included mul-
tiple possible responses with corresponding scores.
Leveraging the framework outlined in Figure 1, our
Medifact-M3G model was employed to generate
answers in three languages for each sample.

3.1 Dataset
The MEDIQA-M3G dataset is divided into train-
ing (842 instances), validation (56 instances), and
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test (100 instances) sets, with each set available in
Chinese, English, and Spanish versions (wai Yim
et al., 2024b). While non-English training sets
are machine-translated, validation and test sets are
human-translated for accuracy. Each instance is
represented as a JSON object containing a unique
encounter ID, a list of image IDs, the query title
and content in the specific language, and author
information from a separate CSV file. Participants
are expected to generate responses in JSON for-
mat, including a unique encounter ID and a list
of generated responses for the specified languages.
Participation in all language evaluations is optional,
with empty strings allowed for non-participating
languages.

3.2 Evaluation Metrics
Our system’s performance was evaluated using of-
ficial available evaluation program of MEDIQA-
M3G 2. metrics commonly employed in Natural
Language Generation (NLG) tasks. DeltaBLEU
and BERTScore were chosen for this assessment
[cite]. DeltaBLEU measures the similarity between
a generated response and reference responses by
considering n-gram (sequence of n words) overlap
but weighs these n-grams based on human judg-
ment. BERTScore, on the other hand, focuses on
the semantic similarity between the generated re-
sponse and the references, taking the maximum
score from any available reference response. The
evaluation script processed instances across three
languages (English, Spanish, and Chinese).

3.3 Result
In this study, we evaluated our approach using the
Mediqa-M3G framework, employing three differ-
ent feature extraction models while maintaining
consistency in other aspects of the setup. These
models included SVMs with default sklearn set-
tings and pre-trained CNN architectures like from
the Keras library. The evaluation results are sum-
marized in Table 1.

Table 1 displays the evaluation results for two
setups of the MediFact-M3G framework. In the
first setup, denoted as VGG16-Individual, separate
VGG16 models were trained for each language,
yielding individual scores for each language. In the
second setup, the best-performing VGG16 model
output, which was observed to be the Chinese lan-
guage model, was utilized to translate responses

2MEDIQA-M3G evaluation code: https://github.com/
wyim/MEDIQA-M3G-2024/tree/main

into English and Spanish languages following the
MediFact-M3G framework. While the translated
version of MediFact-M3G showed slight improve-
ment in BERT_Score, the Deltableu score per-
formed better in the individual setup for Spanish
language responses.

Additionally, it’s worth noting our performance
in the MEDIQA-M3G 2024 shared task, where we
achieved 7th rank in English language response
generation, and 3rd rank in Chinese and Spanish
language response generation, out of a total of 75
participants. These rankings underscore the effec-
tiveness of our approach across different languages
and its competitiveness in challenging benchmark
tasks (wai Yim et al., 2024a).

3.4 Discussion

The results presented here were obtained after rig-
orous testing in a challenging setting, providing
insights into the performance of different feature
extraction models within the MediFact-M3G frame-
work. VGG16-Translated demonstrated significant
improvements over VGG16-Individual, underscor-
ing the effectiveness of data translation in enhanc-
ing translation quality. The evaluation results are
summarized in Table 2.

After replacing the VGG16 models with ResNet
and SqueezNet in MediFact-M3G framework, we
obtained the following evaluation results as shown
in Table 2. SqueezNet demonstrated exceptional
proficiency in Chinese translations, achieving the
highest Deltableu scores across all languages. On
the other hand, although ResNet exhibited slightly
lower Deltableu scores, its competitive perfor-
mance across all languages highlights its versatility
in handling various translation tasks. These find-
ings underscore the critical role of selecting appro-
priate feature extraction models tailored to specific
language requirements and task objectives, ulti-
mately enhancing the effectiveness of the MediFact-
M3G framework in addressing medical query chal-
lenges.

4 Future Work

In the future, we plan to conduct further exper-
iments to explore the robustness and scalability
of our approach across larger and more diverse
datasets. Additionally, we aim to investigate the
integration of domain-specific ontologies and med-
ical terminologies to enhance the semantic under-
standing and accuracy of our system. Furthermore,
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Deltableu BERT_ScoreModel
en zh es en zh es

VGG16-Individual 0.588 4.503 0.918 0.837 0.771 0.804
MediFact-M3G

VGG16-Translated 0.717 4.503 0.823 0.842 0.763 0.809

Table 1: Scores for Response Generation Approaches on MEDIQA-M3G Testing Dataset (submitted at the
competition)

Deltableu BERT_ScoreModel
en zh es en zh es

VGG16-Individual 0.588 4.503 0.918 0.845 0.763 0.806
VGG16-Translated 0.717 4.503 0.823 0.842 0.763 0.809
ResNet 0.565 6.457 0.542 0.837 0.771 0.804

MediFact-M3G

SqueezNet 0.744 2.125 0.641 0.841 0.702 0.808

Table 2: Scores for Response Generation Approaches on MEDIQA-M3G Testing Dataset (after the competition)

we are interested in exploring novel techniques for
handling multi-turn dialogue scenarios, allowing
our system to engage in more natural and inter-
active conversations with users. Additionally, we
plan to collaborate with medical professionals to
validate the clinical relevance and effectiveness of
our approach in real-world healthcare settings. By
addressing these challenges, we hope to continue
advancing the field of medical question-answering
and contribute to the development of more practical
and clinically useful systems.
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