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Abstract
This paper describes our approach to the
MEDIQA-CORR shared task, which involves
error detection and correction in clinical notes
curated by medical professionals. This task in-
volves handling three subtasks: detecting the
presence of errors, identifying the specific sen-
tence containing the error, and correcting it.
Through our work, we aim to assess the ca-
pabilities of Large Language Models (LLMs)
trained on a vast corpora of internet data that
contain both factual and unreliable informa-
tion. We propose to comprehensively address
all subtasks together, and suggest employing a
unique prompt-based in-context learning strat-
egy. We will evaluate its efficacy in this special-
ized task demanding a combination of general
reasoning and medical knowledge. In medi-
cal systems where prediction errors can have
grave consequences, we propose leveraging
self-consistency and ensemble methods to en-
hance error correction and error detection per-
formance.

1 Introduction

With rapid advancements in Natural Language Pro-
cessing (NLP), we are witnessing a surge of its ap-
plications across various domains, including health-
care. Incorporating NLP in clinical settings brings
about a multitude of advantages. It enhances clin-
ical decision-making through advanced support,
making health information more accessible, stream-
lines documentation, and accelerates research ini-
tiatives (Hossain et al., 2023). These developments
contribute to improved patient care, reduced health-
care costs, and alleviated physician burnout.

NLP for healthcare applications pose inherent
challenges due to the need for medical expertise.
However, advancements in LLMs trained on inter-
net data including medical information have sig-
nificantly enhanced their knowledge and reasoning
capabilities, enabling them to tackle more complex
problems in the healthcare domain involving text

processing and generation. Few recent applications
in healthcare include information extraction, ques-
tion answering, summarization, and translation, all
while comprehending intricate medical knowledge
(Nazi and Peng, 2023). Despite these advance-
ments, safety and accuracy remain major concerns
as training data may contain unreliable and mis-
leading information that could have adverse effects
if not handled appropriately. Nevertheless, the ef-
fective utilization of these LLMs has the potential
to revolutionize healthcare and bring immense ben-
efits to society (Clusmann et al., 2023).

In the healthcare industry, there is a need for
automated systems capable of efficiently analyz-
ing and interpreting clinical texts that improves
patient’s safety, quality of care and costs. Process-
ing the clinical texts presents a unique and signifi-
cant challenge due to the complexities introduced
by medical jargon, abbreviations, syntactic varia-
tions, and context-specific nuances. The MEDIQA-
CORR shared task (Abacha et al., 2024), part of
the ClinicalNLP 2024 workshop, seeks to address
this issue of identifying and correcting (common
sense) medical errors found in clinical notes.

The MEDIQA-CORR shared task involves three
subtasks: detecting errors in clinical notes, identi-
fying specific error sentences, and correcting those
sentences. Our approach involves tackling all three
subtasks simultaneously using a single prompt for
LLMs invoking chain-of-thought. By doing this,
we seek to assess the complex reasoning capabili-
ties of LLMs in the clinical domain.

First, we analyze the dataset and curate a list
of the most common types of errors in clinical
notes. We then utilize this information to create
task specific instructions for the LLM. We lever-
age contemporary LLMs using in-context learning
(ICL) with a few-shot approach. Since publicly ac-
cessible LLMs are instruction-tuned models, con-
sidering the approach of directing them towards
assessing the clinical note based on specific error
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types maximizes the objective while only utilizing
a few training examples.

By employing single-prompt ICL approaches to
solve end-to-end tasks, we pave the way forward
for building more complex healthcare applications
using simple yet intuitive strategies leveraging the
capabilities of advanced LLMs.

In addition to the task prompt, an LLM’s per-
formance on a particular task is mainly influenced
by two factors: training techniques and underly-
ing training data. Consistency, which measures
how frequently an LLM produces the same output
given the same instructions, can be viewed as an-
other dimension that can affect the quality of an
LLM. Leveraging self-consistency can significantly
improve the accuracy of an LLM, particularly for
complex reasoning tasks (Wang et al., 2023). In
healthcare datasets, where hallucinations in LLMs
can occur more frequently due to training on fac-
tually unverified data, this could lead to serious
problems. While self-consistency is one approach
to obtaining more accurate results, LLM ensemble,
which has not yet been fully explored, presents a
promising opportunity. We validate the results of
each LLM by using the output of other LLMs that
are trained on different corpora. In our approach,
we investigate both self-consistency and ensemble
concepts.

The remainder of the paper includes related
work, the MEDIQA-CORR task and dataset, our
approach, results and conclusion.

2 Shared Task and Dataset

The shared task focuses on leveraging LLMs for
the following three subtasks:

• Binary Classification: Detect if the text from
a clinical note includes a medical error.

• Span Identification: Identify the text span
(in the sentence) associated with the error, if
an error exists.

• Natural Language Generation: Generate
the corrected text, if an error exists.

2.1 Subtasks and Metrics

2.1.1 Error Detection
For each clinical text, the prediction is assigned a
value of 1 when an error is detected, and 0 if no
error is detected. Given the binary nature of this
classification task, accuracy serves as the primary
metric for performance evaluation.

2.1.2 Error Span Identification
Each clinical text comprises sentences associated
with unique IDs. The subtask involves predicting
the error ID, which is an integer between 0 and
the highest sentence ID. If no error is detected, the
prediction should be -1. The primary evaluation
metric is accuracy, calculated based on all samples,
including those with and without errors.

2.1.3 Correct Sentence Generation
If a model identifies an error sentence in the pre-
vious subtasks, it should also generate a corrected
sentence as prediction for this subtask. Here, the
full corrected sentence is evaluated against the
ground truth sentence for measuring the perfor-
mance. Clinical note generation tasks are challeng-
ing to evaluate automatically due to the large num-
ber of possible correct answers. Metric ensembles
(Abacha et al., 2023) have been shown to outper-
form individual state-of-the-art measures, such as
ROGUE for such tasks. The evaluation metric for
this subtask is computed as an unweighted average
of the following three scores:

• ROUGE-1F measures the similarity between
system-generated and human-written texts
by measuring the overlap of unigrams (Lin,
2004). It uses the F-1 score to assess the qual-
ity of the generated sentence.

• BERTScore leverages contextual word em-
beddings obtained from BERT models to as-
sess the similarity between a candidate sen-
tence and a reference sentence (Zhang* et al.,
2020). In this context, it signifies the F-1 score
of the semantic similarity performed using the
DeBERTa XL model (He et al., 2021).

• BLEURT-20 is a learned metric trained on
human ratings that aims to better correlate
with human judgments for measuring quality
compared to traditional BLEU (Sellam et al.,
2020).

2.2 Dataset
The train data consists of clinical texts from MS
data while the valid and test data contains MS and
UW collections. Each entry in the datasets includes
a text, its ID and sentences as inputs. Table 1 shows
the composition of the dataset.

3 Approach

We propose to tackle all subtasks concurrently
within a single prompt for the following reasons:
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Dataset Type # Samples % of Error
Samples

MS Training 2189 55.69
MS Validation 574 55.57
UW Validation 160 50.00
MS + UW Test 925 51.35

Table 1: MEDIQA-CORR Dataset

• Comprehensive Evaluation: To enable per-
formance evaluation on a complex task, rather
than assessing them on isolated, simpler tasks.
This provides a more holistic view of the
LLMs’ capabilities.

• Efficiency Optimization: To minimize infer-
ence costs and developmental efforts by elim-
inating the need for multiple models (or) se-
quential processing. It streamlines the process,
making it more efficient and cost-effective.

• Ease of Adoption: To alleviate the adoption
burden in practical applications and facilitate
seamless upgrades to more advanced LLMs
amidst the rapid technological advancements.

Publicly accessible LLMs are models that are
fine-tuned to follow instructions, with the aim of
performing user-defined instructions as accurately
as possible. The success of the task then depends
on the quality of the instructions provided and the
model’s ability to follow them effectively. Our
approach focuses on refining the instructions for
the LLM to facilitate comprehensive learning of
all subtasks using ICL. We initiate this process by
analyzing error types in the dataset followed by
curating the prompt and inferencing with different
LLMs.

3.1 Error Analysis

In the MEDIQA-CORR task, the definition of an
error is loosely defined and can be interpreted dif-
ferently by humans or systems without examining
the dataset. To address this, we perform error type
classification in clinical texts by extracting error
sentences and corresponding corrected sentences
from the training data. We create an LLM prompt-
ing task to broadly categorize the entities modified
from the error sentence to the corrected sentence
within the clinical domain. We utilize GPT-3.5 for
categorizing the errors and cluster these generated
free-form categories into a manually defined set.
This categorization results in the identification of

various error types as depicted in figure 1. Finally,
we use the well-defined error categories for the
rest of the task while handling "Others" category
discreetly.

Figure 1: Error Types Extracted from Training Data

3.2 Prompt Curation
When prompted to identify errors in clinical texts
without being specific, LLMs may introduce bi-
ases from their training data and flag non-critical
errors adhering to their own standards of compos-
ing clinical notes. To mitigate this, we propose
converting an abstract definition of a clinical note
error into a concrete and approximate one by ana-
lyzing and categorizing the errors. Consequently,
we expand the original task from identifying the
error to include error classification, which facili-
tates chain-of-thought for the LLM. We conduct
ablation studies to demonstrate the effectiveness of
these techniques and present in section 4.

To illustrate the task more thoroughly, we
incorporate reasoning within the task prompt for
the LLM. Through this, we aim to provide more
generalizable patterns for detecting and identifying
errors. Additionally, it adds explainability to the
LLM systems, which is crucial for real-world
applications. Finally, we adopt a few-shot
approach utilizing random samples from the
training data to teach the LLM how to detect,
identify, classify errors, provide reasoning and
demonstrate the corrected text. We utilize the same
samples for few-shot throughout the task as we
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need to manually generate the additional fields
such as error category and reason. The designed
task prompt is provided as below. Note that this
prompt is a tailored version for demonstration
purposes. Finally, errors that fall into the "Others"
category are processed as "No Error" as they are
unimportant for this task.

Prompt Template
In this task, you will be given a clinical

report presented as sentences while each
sentence is associated with a sentence number.
Now, you need to go through the report line
by line and identify if there is any error in the
sentence. The error can fall into one of the
following main categories:
1. Medications
2. Medical Conditions, Virus or Bacteria
3. Reports, Diagnosis and Monitoring
4. Clinical Procedures and Treatments
5. Clinical Plans and Recommendations
6. Medical Devices
7. Others including clarity/improper usage of
terminology

The error can be identified by looking
at the entities present in each sentence and
check if these entities fall into one of the
aforementioned categories and validate if
the entire report is correct with this entity.
If there is an error, you need to output
details as shown in the examples. Use all
your medical knowledge and make the right
judgements. Here are a few examples for your
understanding:

/* Five random samples from training
data with manually curated error category
and reason */
Example Clinical Report:
0 Mr. <Name> is admitted ..
1 He has a surgical ..
2 He is also being managed ..
Output:
{
"Error Sentence ID": 1,
"Error Category": "Medical Devices",
"Reason": "The device should be .."
"Corrected Sentence": "He has a surgical .."
}
...

...
Test Clinical Report:
0 A 45 year old woman ..
1 She is experiencing ..
2 She had prior examamination ..
Output:

3.3 Model Selection
Using the designed prompt, we utilize the follow-
ing LLMs for performing the task:

• GPT-3.5: A model from the OpenAI’s gen-
erative pre-trained transformer (GPT) family
that can understand as well as generate natural
language or code (Ye et al., 2023).

• GPT-4: Latest model from the GPT family
with broader general knowledge and advanced
reasoning capabilities (OpenAI et al., 2024).

• Claude-3 Opus: Anthropic’s largest model,
released in Feb 2024, which sets new industry
benchmarks across a wide range of cognitive
tasks and outperforms its peers on most of
the common evaluation benchmarks for AI
systems (Anthropic and others, 2024).

Due to its affordability, speed, and reliability,
GPT-3.5 is an excellent choice for experimentation.
As a result, we employed GPT-3.5 for error analysis
and prompt design, reserving the more advanced
GPT-4 and Claude-3 Opus models for the final test
runs.

3.4 Enhancing Robustness
Due to the potential limitations such as halluci-
nations and inconsistent results, which can affect
the quality of the LLMs, we investigate two con-
cepts to improve performance on the subtasks: self-
consistency and ensemble. The Claude-3 Opus
model has slower speed, higher cost, and stricter
token limits compared to GPT-4. Therefore, we
utilize GPT-4 for self-consistency by generating
four outputs per test sample and aggregate them,
while only generating one output per test sample
for Claude-3 Opus.

To enhance the quality of predictions, we com-
bine the results from both models to predict the
outputs for all three subtasks. Figure 2 provides a
visual representation of the overall process. The re-
sults aggregator module validates and combines the
outputs i.e. predicted error flag, predicted error sen-
tence ID and corrected sentence, from GPT-4 and
Claude-3 Opus models to generate the final error
flag, error sentence ID and corrected sentence.
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Figure 2: LLM Ensemble Approach for MEDIQA-CORR task

Model Prompt Task-1
Accuracy

Task-2
Accuracy

GPT-3.5
No error

categories
48.75% 22.5%

GPT-3.5
Error

categories
58.44% 38.55%

GPT-4
Error

categories
63.07% 58.17%

Table 2: Performance improvement with error catego-
rization in prompt using GPT-3.5 and assessing GPT-4
performance

4 Ablation Study

We begin by presenting the results obtained from
incorporating error categorization into the final
prompt, which demonstrates an improvement in
performance on both error detection and text span
identification tasks. In order to make the compar-
ison, we utilize GPT-3.5 with prompts including
and excluding error categorization. Additionally,
we assess the performance of GPT-4 to ascertain
the extent to which it surpasses GPT-3.5 for the
finalized prompt. The results obtained using the
combined MS and UW validation sets (during the
development phase) are presented in Table 2.

The results indicate that by integrating error cate-
gorization which initiates an intermediate chain-of-
thought, results in a significant performance boost
of nearly 10% and 16% for Task-1 and Task-2, re-
spectively. Additionally, GPT-4 outperforms GPT-
3.5, confirming its enhanced reasoning capabili-
ties. These advancements make GPT-4 a preferred
choice for final test runs.

5 Results

We present the results of individual models first
followed by incorporating self-consistency and en-
sembles on the test data. The performance of GPT-
4 and Claude-3 Opus using the final prompt on all

Model Task-1
Accuracy

Task-2
Accuracy

Task-3 Agg-
regate Score

GPT-4 62.05% 56.43% 0.6172
Claude-3

Opus
62.59% 58.48% 0.6669

Table 3: Comparison of GPT-4 and Claude-3 Results

Model Task-1
Accuracy

Task-2
Accuracy

Task-3 Agg-
regate Score

GPT-4 with
consistency

(Majority=3/4)
62.91% 59.45% 0.6390

GPT-4 +
Claude-3 Opus
(Majority=4/4)

62.16% 60.86% 0.7865

GPT-4 +
Claude-3 Opus
(Majority=3/4)

63.78% 62.48% 0.7492

Table 4: Self-consistent GPT-4 and its ensemble with
Claude-3 Opus Results

three subtasks is presented in Table 3.
Claude-3 Opus surpasses GPT-4 in error detec-

tion and significantly in error sentence identifica-
tion. However, GPT-4 tends to be more verbose
during error correction, leading to lower scores
in metrics such as ROUGE, BERT, and BLEURT.
Although Claude-3 Opus exhibits superior perfor-
mance, its daily token limit, slower inference, and
shorter test phase duration hinder its usability for
self-consistency. Therefore, we employ GPT-4 to
demonstrate the performance enhancement using
self-consistency in large language models (LLMs).
Additionally, we ensemble the self-consistent GPT-
4 with Claude-3 Opus to showcase further improve-
ment. Table 4 presents the results for all subtasks
using the aforementioned methods:

The majority ratio x/y for GPT-4 results is a
measure of how often the model produces the same
result for a given input. For example, a majority
ratio of 3/4 means that at least three out of the four
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results should be the same to qualify the predicted
error sentence ID as correct. In the ensemble ap-
proach, a prediction is considered correct if the
self-consistent GPT-4 result matches the Claude-3
Opus result. Otherwise, the prediction is consid-
ered "no error". To select the best corrected sen-
tence from the ensemble, the ROGUE score is used
to estimate the distance between each corrected
sentence and the error sentence. The sentence with
the highest ROGUE score is used for the evaluation
because LLMs tend to generate verbose corrected
sentences which decreases the aggregate scores. In
our experiments, using a majority ratio of 3/4 for
GPT-4 in the ensemble resulted in the best Task-1
and Task-2 performances. Using a majority ratio of
4/4 resulted in the best Task-3 aggregate score. Our
best subtask-3 score is ranked 2nd among all par-
ticipants in the competition, and our best subtask-2
performance is among the top 3 according to the
reported scores (Ben Abacha et al., 2024).

6 Related Work

In recent years, there has been a surge of research
exploring the potential of prompt engineering tech-
niques with large language models (LLMs) in
healthcare. These techniques have shown promis-
ing results in various healthcare tasks, often achiev-
ing state-of-the-art performances (Zhou et al.,
2023), (He et al., 2023). One notable study, Med-
Prompt, highlighted several research directions
demonstrating the power of prompt exploration
for LLMs (Nori et al., 2023). LLMs exhibited
impressive knowledge and reasoning abilities, tack-
ling various tasks effectively. These advancements
showcase the potential of LLMs in healthcare, of-
fering new opportunities for leveraging language
models to address healthcare challenges.

Evaluating common sense reasoning is essential
for computer systems, as it impacts language com-
prehension, communication reliability, and general
task performance. SemEval-2020 ComVE aims to
address general common sense questions and seeks
logical justification for correct responses, assessing
reasoning abilities. Pretrained language models
naturally acquire common sense through training
on vast word tokens obtained from the web (Wang
et al., 2020). MEDIQA-CORR, specifically tai-
lored to identify and correct errors in clinical notes,
offers a valuable resource for evaluating pretrained
LLMs in medical common sense reasoning. In-
spired by prompt-based explorations, our research

also focuses on utilizing pretrained LLMs to assess
reasoning capabilities in medical common sense
scenarios.

7 Conclusion

Our research demonstrates that incorporating error
categorization into the prompt enhances the perfor-
mance of large language models (LLMs) in detect-
ing, identifying, and classifying clinical note errors.
By initiating an intermediate chain-of-thought, this
approach facilitates better reasoning and aids the
LLM in providing more accurate and explainable
results. Furthermore, our findings suggest that self-
consistency and ensembles can further enhance
the robustness and performance of LLMs on these
tasks. These advancements pave the way for the
development of more reliable and interpretable AI
systems for clinical documentation analysis, ulti-
mately contributing to improved healthcare out-
comes.

8 Limitations and Risks

While promising, our approach has limitations.
LLMs trained on general data may lack specific
medical knowledge, potentially leading to misin-
terpretations and inaccurate corrections. Despite
mitigation efforts, the risk of hallucinations and
inconsistencies in LLM outputs remains a concern.
Additionally, the effectiveness of our approach re-
lies heavily on prompt engineering, which requires
expertise and may not be easily generalizable.

The black box nature of LLMs also presents chal-
lenges in terms of explainability and building trust
in medical contexts. To mitigate these limitations,
continuous improvements of training data, more
robust evaluation metrics, and human oversight are
crucial. Further research is needed to explore the
full potential and limitations of LLMs in healthcare,
ensuring their safe and responsible application for
improved patient care.

9 Ethical Considerations

The use of LLMs for medical error detection and
correction raises significant ethical concerns. Po-
tential biases in training data and algorithms must
be carefully mitigated to prevent propagating ex-
isting healthcare disparities and ensure fairness.
Transparency in how prompts are designed and how
the LLM reaches its decisions is vital for building
trust and ensuring accountability. Additionally, ro-
bust data security and de-identification practices
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are paramount for protecting sensitive patient infor-
mation.

It is essential to remember that LLMs should
serve as tools to augment the expertise of health-
care professionals, not replace them. Clear lines of
responsibility, ongoing human oversight, and con-
tinuous research and collaboration are necessary
to address these ethical challenges. This will en-
sure the responsible use of LLMs and their positive
contribution to improved healthcare outcomes.
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