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Abstract

Addressing the critical challenge of identi-
fying and rectifying medical errors in clini-
cal notes, we present a novel approach tai-
lored for the MEDIQA-CORR task @ NAACL-
ClinicalNLP 2024, which comprises three sub-
tasks: binary classification, span identifica-
tion, and natural language generation for er-
ror detection and correction. Binary classifi-
cation involves detecting whether the text con-
tains a medical error; span identification en-
tails identifying the text span associated with
any detected error; and natural language gen-
eration focuses on providing a free text cor-
rection if a medical error exists. Our pro-
posed architecture leverages Named Entity
Recognition (NER) for identifying disease-
related terms, Retrieval-Augmented Generation
(RAG) for contextual understanding from ex-
ternal datasets, and a quantized and fine-tuned
Palmyra model for error correction. Our model
achieved a global rank of 5 with an aggre-
gate score of 0.73298, calculated as the mean
of ROUGE-1-F, BERTScore, and BLEURT
scores.

1 Introduction

Clinical notes typically include details about the pa-
tient’s medical history, symptoms, physical examina-
tions, diagnostic tests, treatments administered, and any
other relevant information related to the patient’s health
status and care plan.

Accurate documentation is crucial for patient care,
as errors in clinical notes can lead to misdiagnosis, im-
proper treatment, and potential harm to patients. By
automating the process of error detection and correction,
healthcare providers can ensure the integrity and reliabil-
ity of patient records, ultimately improving the quality
of care delivered. Research indicates that a substantial
proportion of adverse events in healthcare settings are
due to errors in documentation, highlighting the need
for effective error detection and correction mechanisms.

In this task of Medical Error Detection Correction
Ben Abacha et al., 2024. We seek to address the problem

*first author, equal contribution

of identifying and correcting medical errors in clinical
notes. This task had 3 subtasks. In subtask 1 (Binary
Classification) researchers had to detect whether the
clinical notes included a medical error or not. Subtask 2
named Span Identification was to identify the text span
associated with the error if a medical error exists. Sub-
task 3 (Natural Language Generation) was specifically
to provide error-free text after making corrections if a
medical error exists.

In our approach, we initially conducted Named Entity
Recognition (NER) using GEMINI to identify words
representing diseases or pathogens or suggestions in
the text. After masking these identified words, we im-
plemented the Retrieval-Augmented Generation (RAG)
model on textbooks and external datasets. If the RAG
score fell below a certain threshold, we passed the input
to our model, which was made by using 4-bit quantiza-
tion on Palmyra 20b and then fine-tuned the quantized
Palmyra model using the QLoRA technique on MEDQA
data Jin et al., 2020. If the word provided by Palmyra or
the RAG model matched the word detected by NER, no
error was detected. Otherwise, if a different word was
obtained, it was replaced with the masked word identi-
fied by NER. Finally, the error sentence is mapped with
the sentence ID to get the output in the desired format.
This approach helped us in getting a Global Rank 5 with
an Aggregate Score of 0.73298. The Aggregate score
is calculated as the mean of ROUGE-1-F, BERTScore,
and BLEURT . Our model achieved R1F, BERTSCORE,
and BLEURT scores of 0.70306, 0.74372 and 0.75217
respectively.

The rest of the paper is organized as follows: Review
of related work and background information in Sections
2 and 3 respectively, to provide context for our study.
Following this, we elucidate the system architecture
in Section 4 and describe the experimental setup in
Section 5. Subsequently, we present our findings in
Section 6, discuss limitations encountered in Section 7,
and propose avenues for future research in Section 8.
Finally, we have concluded our discussion in Section 9.

2 Background

The med dataset provided by organizers had 2 types of
clinical notes - MS and UW. Upon meticulous exami-
nation of the datasets , it became clear that the medical
dataset which was divided into MS and UW clinical
notes presented some unique difficulties. The MS sub-
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MS UW
Text ID ms-val-108 uw-val-51

Text A 3175-g (7-lb) female newborn is deliv-
ered at term. Initial examination shows a
flat perineal Colonic atresia is confirmed
when dark green discharge is coming out of
the vulva.

Mr. <NAME/> has been noted to have
documentation of thrombocytopenia on
<DATE/> in the Medicine note. Plt 101 on
admission. Thrombocytopenia was present
on admission (POA).

Sentences 0 A 3175-g
1 (7-lb) female newborn is delivered at term.
2 Initial examination shows a . . . .
3 Colonic atresia is confirmed . . .

0 Mr. <NAME/> has been noted to have
documentation of thrombocytopenia on
<DATE/> in the Medicine note.
1 Plt 101 on admission.
2 Thrombocytopenia was present on admis-
sion (POA).

Error Flag 1 0
Error Sentence ID 3 -1

Error Sentence Colonic atresia is confirmed. . . NA
Corrected Sentence Imperforate anus is confirmed when dark

green discharge is coming out of the vulva.
NA

Corrected Text A 3175-g (7-lb) female . . . opening. Imper-
forate anus is confirmed when dark green
discharge is coming out of the vulva.

NA

Table 1: Dataset Glimpse

set, which came from Microsoft, had incredibly small
flaws. So much so that a great deal of faults appeared to
be subtle, making it difficult for the physicians on our
team to recognize them. Yet, it was clear from closely
examining the training set’s corrected text that the cor-
rections frequently represented ideal completions.

The UW subset, which came from University of
Washington, on the other hand, showed a distinct scene.
This subset of clinical notes seemed to more closely re-
semble real-world situations, which made errors easier
to identify in them.

MS dataset was split into train (2189) and val (574),
and UW into val dataset (160). The testing data was a
mixture of MS and UW formats.

The dataset is in CSV format and consists of labeled
text data. Each row represents a unique input text and
includes columns named Text ID, Text, Sentences, Error
Flag, Error Sentence ID, Error Sentence, Corrected Sen-
tence, and Corrected Text. The Text column contains
the complete text, while the Sentences column divides
the text into individual sentences with corresponding
IDs starting from 0. The Error Flag column indicates
whether there is an error in the text, with 0 represent-
ing no error and 1 representing an error. If there is an
error, the Error Sentence ID column specifies the ID
of the sentence containing the error, and the Error Sen-
tence column provides the erroneous part of the text
containing the error. The Corrected Sentence column
contains the error-corrected version of the sentence, and
the Corrected Text column includes the complete text
with corrected sentences. When there is no error, Error
Flag is 0, Error Sentence ID is -1, and the Error Sen-
tence, Corrected Sentence, and Corrected Text columns
contain "NA" values. This structured format facilitates

error detection and correction tasks within the dataset.
Table 1 offers a glimpse into MS and UW datasets.

The MEDQA dataset is a collection of question-
answer pairs related to the medical field specifically
derived from professional medical board exams, like
the United States Medical Licensing Examination
(USMLE). It covers a wide range of medical topics
and is available in three languages: English, Simplified
Chinese, and Traditional Chinese.

Question-Answer Pairs: The dataset consists of
multiple-choice questions along with their correspond-
ing answers. The number of questions varies depending
on the language:
English: 12,723 questions
Simplified Chinese: 34,251 questions
Traditional Chinese: 14,123 questions

Medical Textbooks: The dataset also provides ac-
cess to a large corpus of medical textbook content to
aid models in comprehending the medical context for
answering the questions.

For this task we used the just the English QA corpus.
Here’s an example of a question-answer pair in MEDQA
dataset.

Question A 55-year-old female patient presents with
a chief complaint of progressive shortness of breath over
the past 6 months. She denies chest pain, cough, fever,
or chills. On physical exam, her vital signs are normal.
Her lungs are clear to auscultation bilaterally.What is
the most likely diagnosis for this patient’s shortness of
breath?

Options
A. Heart failure
B. Asthma
C. Chronic obstructive pulmonary disease (COPD)
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D. Pneumonia
Answer-idx : C

3 Related Work

Zhu et al., 2024 unveils REALM, a Retrieval-
Augmented Generation framework, addressing limita-
tions in existing clinical predictive models by enhancing
multimodal Electronic Health Records (EHR) repre-
sentations. Integrating clinical notes and time-series
EHR data, REALM leverages Large Language Models
(LLM) and GRU models for encoding, while incorpo-
rating external knowledge from a labeled knowledge
graph (PrimeKG). By aligning with clinical standards,
the framework eliminates hallucinations and ensures
consistency, culminating in an adaptive multimodal fu-
sion network. Extensive experiments on MIMICIII tasks
demonstrate REALM’s superior performance, highlight-
ing its effectiveness in refining multimodal EHR data
utilization and enhancing nuanced medical context for
informed clinical predictions.

Elgedawy et al., 2024 presented a conversational in-
terface powered by large language models (LLMs) for
efficiently accessing information within clinical notes.
Utilizing Langchain framework and transformer-based
models, users can interactively query and retrieve rele-
vant details from unstructured clinical data. Evaluation
experiments, including advanced language models and
semantic embedding techniques, demonstrate promis-
ing results, with Wizard Vicuna showing the highest
accuracy despite computational demands. Model opti-
mization techniques, such as weight quantization, signif-
icantly improve inference latency. However, challenges
like model hallucinations and limited evaluation across
diverse medical cases remain, indicating avenues for
future research in enhancing clinical decision-making
through AI-driven approaches.

Singhal et al., 2023 outlines Med-PaLM 2, a sig-
nificant advancement in medical question answering,
achieving an impressive accuracy of 86.5 % on the
MedQA dataset. Compared to its predecessor, Med-
PaLM, which scored 67.2% on the same dataset, Med-
PaLM 2 represents a substantial improvement. By
leveraging enhancements in base large language models
(LLMs), domain-specific fine-tuning, and novel prompt-
ing strategies, Med-PaLM 2 demonstrates promising
progress towards attaining physician-level performance
in medical question answering across various datasets,
including MedQA, PubmedQA Jin et al., 2019, MMLU,
and MedMCQA Pal et al., 2022.

Jin et al., 2020 elucidates MEDQA, the inaugural
free-form multiple-choice OpenQA dataset for medi-
cal problem-solving, sourced from professional med-
ical board exams in English, simplified Chinese, and
traditional Chinese. With question counts of 12,723,
34,251, and 14,123 across the three languages respec-
tively, MEDQA provides a robust benchmark. Despite
employing both rule-based and neural methods, even
the most advanced model achieves only 36.7%, 42.0%,

and 70.1% test accuracy on English, traditional Chi-
nese, and simplified Chinese questions. MEDQA poses
significant challenges to current OpenQA systems, en-
couraging the NLP community to develop more robust
models for medical applications.

Chen et al., 2023 introduces MEDITRON, an open-
source suite of Large Language Models (LLMs) tailored
for the medical domain, ranging from 7B to 70B param-
eters. Leveraging Nvidia’s Megatron-LM Shoeybi et al.,
2020 distributed trainer and a carefully curated medi-
cal corpus, including PubMed articles and international
medical guidelines, MEDITRON outperforms state-of-
the-art baselines across four major medical benchmarks.
The study underscores the impact of increasing model
parameters on medical LLM performance, highlighting
MEDITRON’s competitive edge against closed-source
counterparts like GPT-3.5 and Med-PaLM. Notably,
MEDITRON achieves performance levels within 5%
of GPT-4 and 10% of Med-PaLM-2, thus potentially
democratizing access to extensive medical knowledge.

The recent development of LLMs Boiko et al.,
2023,Tamkin et al., 2021 has generated a great deal
of enthusiasm due to their exceptional performance in
natural language generation and understanding, as well
as their adaptability in handling a variety of tasks. To
improve the performance of Large Language Models
(LLMs), particularly for disease identification and clas-
sification tasks. Oniani et al., 2024 proposed an ensem-
ble prompting method called Models-Vote Prompting
(MVP). The way MVP operates is that multiple LLMs
are given the same task, and their results are combined
via a majority voting procedure. The utility of MVP
is demonstrated by experiments showing better results
on one-shot unusual disease diagnostic tasks compared
to distinct models in the ensemble. Additionally, the
researchers provide a novel rare disease dataset, which
is made available to researchers under the terms of the
MIMIC-IV Data Use Agreement (DUA). For doing re-
search and evaluating in the field, this set of data is a
helpful resource.

The Retrieval Augmented Generation (RAG) Lewis
et al., 2020 method is a natural language processing
model that combines retrieval and generation compo-
nents to handle knowledge-intensive tasks. In this paper
Jin et al., 2024 used LLMs along with RAG to evaluate
health reports with a novel feature extraction method.
They used RAG to retrieve knowledge from the profes-
sional knowledge base. Researchers employ an auto-
mated feature engineering approach to train a classifica-
tion model XGBoost for final disease prediction. The
accuracy of GPT-4 combined with information retrieval
by RAG for disease diagnosis is 0.68, and the F1 score
is 0.71, while their framework achieved an accuracy of
0.833 and an F1 score of 0.762, respectively.

Dettmers et al., 2023 formerly employed QLoRA, an
effective finetuning technique that maintained full 16-bit
fine-tuning task performance while reducing memory
usage to the point where a single 48GB GPU could
finetune a 65B parameter model. The Guanaco model
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family, described in the research as the top model family,
achieves 99.3% of ChatGPT’s performance level on the
Vicuna test, beating out all other publicly available mod-
els in under 24 hours of fine-tuning on just one GPU.
Results from this approach consistently demonstrate
that, on educational standards with widely recognized
evaluation settings, 4-bit QLORA with NF4 data type
matches 16-bit complete finetuning and 16-bit LoRA
finetuning performance. Additionally, they have demon-
strated that NF4 (4-bit NormalFloat) outperforms FP4
(4-bit Float) and even indicated that performance is not
diminished by double quantization.

A significant advancement in the field has been made
recently with the development of HEAL Yuan et al.,
2024, a Large Language Model (LLM) designed specifi-
cally for automated scribing and medical conversations.
Based on the widely taught 13B LLaMA2 architecture,
HEAL provides a novel approach to the unique issues
associated with medical communication. An evaluation
of HEAL on tasks like PubMedQA yields an excellent
accuracy of 78.4%, proving its superiority over current
LLMs like GPT-4 and PMC-LLaMA Wu et al., 2023.
Furthermore, when it comes to producing medical notes,
HEAL performs similarly to GPT-4, demonstrating its
effectiveness in clinical documentation activities. No-
tably, HEAL outperforms human scribes and other simi-
lar models in terms of accuracy and completeness, and
it outperforms GPT-4 and Med-PaLM 2 in terms of
reliably identifying medical ideas.

4 System Description

The subsequent sections provide a list of the sub-
modules used. We will describe why and how each
model was utilized, and assess its relevance to our prob-
lem statement.

4.1 RAG using GEMINI

Large language models (LLMs) function best when
Retrieval-Augmented Generation (RAG) Lewis et al.,
2020 extends their capabilities to internal knowledge
bases or specialized domains without requiring retrain-
ing. By guaranteeing that LLM output is accurate, per-
tinent, and usable in a variety of circumstances, this
technique improves LLM output. Giving end users out-
of-date or generic information when they’re looking for
specific answers is a prevalent problem with LLMs. This
problem is solved by RAG, which instructs LLMs to
obtain relevant information from reliable, pre-selected
knowledge sources, improving accuracy and depend-
ability.

Domain-specific or pertinent data is loaded, split into
appropriately sized chunks to preserve context, and fi-
nally embedded using embedding models. The resultant
embeddings are kept in a vector database so that doc-
uments with similar semantic content may be quickly
retrieved. Data is then extracted from these embeddings
according to how closely the query supplied by the user
matches the documents. We use RAG with Gemini as

Figure 1: Proposed Model - Quantised Palmyra with
RAG

the foundational LLM because of Gemini’s extensive
knowledge base as well as its large context window
which allows chunks with higher semantic lengths to be
supplied by the retriever.

LangChain simplifies the implementation of RAG by
providing tools to load relevant datasets, such as the
MedQA dataset, through its Data Loaders. It facilitates
the chunking of data and the creation of embeddings
using predefined functions and embedding models. The
user’s query is incorporated into a template and given as
input into the LLM, while a Retriever component assists
in finding similar documents based on query similarity.
Utilizing MedQA data enhanced Gemini’s answering
ability, resulting in improved accuracy and relevance
in responses. This integrated approach underscores the
effectiveness of RAG in augmenting LLM performance
specifically in the domain of Medical science.

4.2 Palmyra Quantised version

In our experiments, we employed a big decoder-only
transformer model, known as Palmyra-20b. The Pile
dataset Gao et al., 2020, which was tokenized with the
GPT2 Radford et al., 2019 BPE tokenizer, served as
the pre-training dataset for Palmyra-20b. It is a GPT-
based model with 48 attention heads, a hidden size of
6144, 44 transformer layers, and a sequence length of
2048. The distributed Adam optimizer was used to
train the model, which has two parallelism configura-
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tions: pipeline parallelism of 1 and tensor parallelism
of 4. Given the constraints of limited computational
resources, we implemented 4-bit quantization on the
model to mitigate computational demands while pre-
serving efficiency. Quantization Gholami et al., 2021 is
a technique that involves the process of converting the
weights of the model from a higher precision to a lower
precision. In our approach, we used 4-bit quantization
to reduce the precision of weights and activations of
Palmyra-20b to only 4-bit integer format. By quanti-
zation, we were able to significantly decrease memory
and computational requirements without compromis-
ing model performance substantially to give accurate
predictions by analyzing the symptoms provided to the
model.

4.3 QLoRA on palmyra
Since fine-tuning LLMs like Palmyra20B is highly com-
putationally expensive, we used PEFT ( Parameter Ef-
ficient Fine Tuning ) to make sure the training could
be carried out on consumer-grade GPUs. In particu-
lar, we used QLORA Dettmers et al., 2023 ( Quantized
Low-Rank Adaptation ) which quantizes a pre-trained
model to 4-bit weights and adds an Adaptor - a low-
rank tensor of trainable weights that can then be used to
fine-tune the model through back-propagation. QLORA
achieves far more efficient fine-tuning through the use of
4-bit Normal Float datatype which has been empirically
proven to yield superior results to 4bit Floats. QLORA
also employs double-quantization where not only are
the weights but the quantization constants themselves
are also quantized saving further memory. Finally, this
approach uses Paged Optimisers allowing NVIDIA to
manage memory effectively and ensuring that QLORA
gives optimal results in parallel processing.

4.4 Proposed Model - Quantised Palmyra with
RAG

In this, we incorporated 3 modules for the Error detec-
tion and correction task. The first one was the RAG
module as explained in the previous section the second
was the quantized and finetuned Palmyra med 20B and
the third NER module.

We initially conducted Named Entity Recognition
(NER) using GEMINI to identify words represent-
ing diseases or vaccines in the text. After masking
these identified words, we implemented the Retrieval-
Augmented Generation (RAG) model on an external
dataset Jin et al., 2020. If the RAG score fell below a
certain threshold, we passed the input to our model i.e.
Palmyra(quantized and finetuned version). If the word
provided by our Palmyra or RAG model matched the
word detected by NER, no error was detected. Other-
wise, if a different word is obtained from the model, then
it is replaced with the masked word identified by NER.
Finally, the error sentence is mapped with the sentence
ID to get the output in the desired format. Our proposed
model is illustrated in Figure 1, which provides a visual
representation of the key components and relationships

within our framework. For determining the error flag
NER plays a pivotal role. It is so because irrespective
of what flow the text takes (i.e. RAG or Palmyra), the
output will always be compared with the NER’s output
for the error flag.

4.5 Metrics Used

To evaluate our model and assess its accuracy in light of
the corrected sentence, we have adopted the following
metrics for evaluation

4.5.1 R1-F

The ROUGE-1 F1-score is a metric commonly utilized
in natural language processing tasks, particularly in the
evaluation of automatic text summarization systems.
ROUGE, which stands for Recall-Oriented Understudy
for Gisting Evaluation, focuses on measuring the quality
of summaries generated by algorithms in comparison to
human-generated reference summaries.

Specifically, the ROUGE-1 F1-score assesses the
overlap of unigrams (individual words) between the
generated summary and the reference summary. It is
computed by taking into account both precision and re-
call of unigrams. Precision measures the proportion of
correctly included unigrams in the generated summary
relative to all unigrams present, while recall measures
the proportion of correctly included unigrams relative
to all unigrams in the reference summary.

F1 = 2× precision× recall

precision+ recall
(1)

Here, precision is the number of samples correctly
predicted out of the number of samples predicted in that
category. Recall is the number of samples predicted
correctly out of the number of samples present for that
class.

4.5.2 BERT SCORE

BERTScore is a collection of three metrics - BERT-
Precision, BERT-Recall, and BERT-F1. As the names
imply, BERT-Precision measures how well the candidate
texts avoid introducing irrelevant content. BERT-Recall
measures how well the candidate texts avoid omitting
relevant content. BERT-F1 is a combination of both
Precision and Recall to measure how well the candidate
texts capture and retain relevant information from the
reference texts.

PBERT =
1

|x̂|
∑

x̂j∈x̂

max
xi∈x

(xT
i · x̂j) (2)

RBERT =
1

|x|
∑

xi∈x

max
x̂j∈x̂

(xT
i · x̂j) (3)

F1 = 2× Pbert ×Rbert

Pbert +Rbert
(4)
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Model Score
R1F Score BERT Score BLEURT Score Aggregate Score

Quantised Palmyra 0.46277 0.48681 0.49753 0.482371
Quantised+QLoRa 0.54802 0.57079 0.55477 0.55786
Pure RAG 0.66376 0.64557 0.60720 0.63884
Quantised+QLoRa+RAG 0.70306 0.74372 0.75217 0.73298

Table 2: Scores for various model

4.5.3 BLEURT
BLEURT (Bilingual Evaluation Understudy with Rep-
resentations from Transformers) Sellam et al., 2020 is
a novel, machine learning-based automatic metric for
Natural Language Generation BLEURT that can capture
non-trivial semantic similarities between sentences. It
takes a pair of sentences as input, a reference, and a
candidate, and it returns a score that indicates to what
extent the candidate is fluent and conveys the meaning
of the reference.

4.5.4 Aggregate Score
The aggregate score is calculated as the Mean of
ROUGE-1-F, BERTScore, and BLEURT

Aggregate =
R1F +BERTScore+BLEURT

3
(5)

Parameter Value
per_device_train_batch_size 4
gradient_accumulation_steps 4
optim paged_adamw_32bit
logging_steps 1
learning_rate 1e-4
fp16 True
max_grad_norm 0.3
num_train_epochs 2
evaluation_strategy steps
eval_steps 0.2
warmup_ratio 0.05
save_strategy epoch
group_by_length True
save_safetensors True
lr_scheduler_type Cosine
Seed 42

Table 3: Hyperparameters for Fine Tuning

5 Experimental Setup
We primarily used Google Colab notebooks for our
workflow as well as for less computationally demanding
tasks such as NER, EDA, text masking, RAG, etc.

Colab notebooks provide free access to a single T4
GPU (12GB RAM, 8GB VRAM, 64GB disk space).
However, running quantized LLMs or fine-tuning had
much higher computational requirements, and we there-
fore used Kaggle notebooks, which provide limited ac-
cess to 2x T4 GPUs (15 GB of VRAM each). Please

refer to Table 3 for a comprehensive overview of the
parameters employed during the fine-tuning process.
Since dataset preparation requires disk storage and fre-
quent reads and writes, we use Jupyter Kernels for the
same. We used the BitsAndBytes library for 4-bit quan-
tization as well as the PEFT, Accelerate, and Datasets
libraries by Huggingface for fine-tuning.

For performing NER on text, we used the GEMINI
API from Google AI Studio. It had a maximum query
limit of 60 queries per second. Since we were using
GEMINI for NER as well as for RAG, this became our
bottleneck, which sometimes led the session to crash.
To address this, we imposed a timeout after every few
API calls as well as made frequent local saves to the
inferred results.

We implemented RAG using the Langchain frame-
work, using GEMINI as our LLM. For implementing
retrieval in our knowledge base, we used GEMINI em-
beddings to populate our vector store, which was a lo-
cally created ChromaDB instance.

6 Result
In our study, we employed a series of approaches aimed
at enhancing the accuracy of our model. Initially, we
implemented the quantized Palmyra approach, in which
we tested the model that we built after the 4-bit quanti-
zation of Palmyra-20b. This gave a modest aggregate
score of 0.482371. However, recognizing the room for
improvement, we continued to refine our methodology.
Building upon the quantized palmyra framework, we
introduced the quantized+ QLoRa approach. In quan-
tised palmyra, we fine-tuned using QLora on MEDQA
data, which demonstrated a notable improvement, yield-
ing an aggregate score of 0.55786. Encouraged by this
progress, we further augmented our model with the Pure
RAG technique, resulting in a substantial enhancement
in aggregate score to 0.63884. Finally, through the in-
tegration of all three approaches—quantized, QLoRa,
and RAG—into our model, we achieved the highest ag-
gregate score of 0.73298. The detailed scores for each
approach are described in Table 2.

7 Limitations
The model struggles to give the correct output if the
error is not related to a disease or pathogen. NER plays
a crucial role in detecting pathogens or diseases from
the text and therefore proves to be a bottleneck for ac-
curacy since if NER fails to accurately determine the
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disease, pathogen, or suggestion, the result will not be
accurate regardless of the robustness of the model. The
RAG approach fails for symptoms that are phrased very
differently from those in the principal texts.

8 Future Work
Using Larger and More Powerful LLMs: Larger
LLMs like Meditron-70b and Palmyra-med-40b can
be used for achieving better accuracy in error detection
and correction in clinical notes given sufficient compu-
tational power. The greater number of weights in these
larger models allows them to capture more intricate
patterns and nuances in the data during training.

FineTuning on a larger dataset, which will contain
richer and more diverse medical information, can im-
prove the model performance. Integrating multimodal
information, such as images or structured data from elec-
tronic health records, alongside text data could provide
richer context and improve error detection and correc-
tion accuracy.

Enhancing Model Robustness: The model can be
made more robust against failures by having an end-to-
end architecture where individual modules like NER,
error detection, etc. are not carried out independently.

9 Conclusion
To conclude with this work for the MEDIQA-CORR
task at NAACL, In ClinicalNLP 2024, we investigated
four approaches for detecting and correcting errors in
clinical notes. Our experiments demonstrated that the
combined approach of Quantised Palmyra with RAG
achieved the best performance, with an aggregate score
of 0.73298. However, a key limitation identified is the
reliance on named entity recognition (NER). Errors in
NER can impact the overall performance of the system.
Looking towards the future, research efforts should fo-
cus on mitigating the dependence on NER. Additionally,
exploring alternative techniques and leveraging a larger,
more comprehensive dataset holds promise for further
improving the accuracy of error detection and correction
in clinical notes. This will ultimately lead to a more
robust and reliable system for enhancing the quality of
clinical documentation.

References

Asma Ben Abacha, Wen wai Yim, Velvin Fu, Zhaoyi
Sun, Fei Xia, and Meliha Yetisgen. 2024. Overview
of the mediqa-corr 2024 shared task on medical er-
ror detection and correction. In Proceedings of the
6th Clinical Natural Language Processing Workshop,
Mexico City, Mexico. Association for Computational
Linguistics.

Daniil A. Boiko, Robert MacKnight, and Gabe Gomes.
2023. Emergent autonomous scientific research capa-
bilities of large language models.

Zeming Chen, Alejandro Hernández Cano, Angelika
Romanou, Antoine Bonnet, Kyle Matoba, Francesco
Salvi, Matteo Pagliardini, Simin Fan, Andreas
Köpf, Amirkeivan Mohtashami, Alexandre Sallinen,
Alireza Sakhaeirad, Vinitra Swamy, Igor Krawczuk,
Deniz Bayazit, Axel Marmet, Syrielle Montariol,
Mary-Anne Hartley, Martin Jaggi, and Antoine Bosse-
lut. 2023. Meditron-70b: Scaling medical pretraining
for large language models.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms.

Ran Elgedawy, Sudarshan Srinivasan, and Ioana Danciu.
2024. Dynamic qa of clinical documents with large
language models.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, Shawn Presser,
and Connor Leahy. 2020. The pile: An 800gb dataset
of diverse text for language modeling.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,
Michael W. Mahoney, and Kurt Keutzer. 2021. A
survey of quantization methods for efficient neural
network inference.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng,
Hanyi Fang, and Peter Szolovits. 2020. What disease
does this patient have? a large-scale open domain
question answering dataset from medical exams.

Mingyu Jin, Qinkai Yu, Dong Shu, Chong Zhang,
Lizhou Fan, Wenyue Hua, Suiyuan Zhu, Yanda Meng,
Zhenting Wang, Mengnan Du, and Yongfeng Zhang.
2024. Health-llm: Personalized retrieval-augmented
disease prediction system.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W.
Cohen, and Xinghua Lu. 2019. Pubmedqa: A dataset
for biomedical research question answering.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

David Oniani, Jordan Hilsman, Hang Dong, Fengyi
Gao, Shiven Verma, and Yanshan Wang. 2024. Large
language models vote: Prompting for rare disease
identification.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan
Sankarasubbu. 2022. Medmcqa : A large-scale multi-
subject multi-choice dataset for medical domain ques-
tion answering.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Thibault Sellam, Dipanjan Das, and Ankur P. Parikh.
2020. Bleurt: Learning robust metrics for text gener-
ation.

380

http://arxiv.org/abs/2304.05332
http://arxiv.org/abs/2304.05332
http://arxiv.org/abs/2311.16079
http://arxiv.org/abs/2311.16079
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2401.10733
http://arxiv.org/abs/2401.10733
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/2009.13081
http://arxiv.org/abs/2009.13081
http://arxiv.org/abs/2009.13081
http://arxiv.org/abs/2402.00746
http://arxiv.org/abs/2402.00746
http://arxiv.org/abs/1909.06146
http://arxiv.org/abs/1909.06146
http://arxiv.org/abs/2308.12890
http://arxiv.org/abs/2308.12890
http://arxiv.org/abs/2308.12890
http://arxiv.org/abs/2203.14371
http://arxiv.org/abs/2203.14371
http://arxiv.org/abs/2203.14371
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
http://arxiv.org/abs/2004.04696
http://arxiv.org/abs/2004.04696


Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2020. Megatron-lm: Training multi-billion pa-
rameter language models using model parallelism.

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres,
Ellery Wulczyn, Le Hou, Kevin Clark, Stephen Pfohl,
Heather Cole-Lewis, Darlene Neal, Mike Schaeker-
mann, Amy Wang, Mohamed Amin, Sami Lachgar,
Philip Mansfield, Sushant Prakash, Bradley Green,
Ewa Dominowska, Blaise Aguera y Arcas, Nenad
Tomasev, Yun Liu, Renee Wong, Christopher Sem-
turs, S. Sara Mahdavi, Joelle Barral, Dale Webster,
Greg S. Corrado, Yossi Matias, Shekoofeh Azizi,
Alan Karthikesalingam, and Vivek Natarajan. 2023.
Towards expert-level medical question answering
with large language models.

Alex Tamkin, Miles Brundage, Jack Clark, and Deep
Ganguli. 2021. Understanding the capabilities, limi-
tations, and societal impact of large language models.

Chaoyi Wu, Weixiong Lin, Xiaoman Zhang, Ya Zhang,
Yanfeng Wang, and Weidi Xie. 2023. Pmc-llama:
Towards building open-source language models for
medicine.

Dong Yuan, Eti Rastogi, Gautam Naik, Sree Prasanna
Rajagopal, Sagar Goyal, Fen Zhao, Bharath Chinta-
gunta, and Jeff Ward. 2024. A continued pretrained
llm approach for automatic medical note generation.

Yinghao Zhu, Changyu Ren, Shiyun Xie, Shukai Liu,
Hangyuan Ji, Zixiang Wang, Tao Sun, Long He,
Zhoujun Li, Xi Zhu, and Chengwei Pan. 2024.
Realm: Rag-driven enhancement of multimodal elec-
tronic health records analysis via large language mod-
els.

381

http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/2305.09617
http://arxiv.org/abs/2305.09617
http://arxiv.org/abs/2102.02503
http://arxiv.org/abs/2102.02503
http://arxiv.org/abs/2304.14454
http://arxiv.org/abs/2304.14454
http://arxiv.org/abs/2304.14454
http://arxiv.org/abs/2403.09057
http://arxiv.org/abs/2403.09057
http://arxiv.org/abs/2402.07016
http://arxiv.org/abs/2402.07016
http://arxiv.org/abs/2402.07016

