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Abstract

In this paper, we report our effort to tackle the
challenge of extracting chemotimelines from
EHR notes across a dataset of three cancer
types. We focus on the two subtasks: 1) de-
tection and classification of temporal relations
given the annotated chemotherapy events and
time expressions and 2) directly extracting pa-
tient chemotherapy timelines from EHR notes.
We address both subtasks using Large Lan-
guage Models. Our best-performing methods
in both subtasks use Flan-T5, an instruction-
tuned language model. Our proposed system
achieves the highest average score in both sub-
tasks. Our results underscore the effectiveness
of finetuning general-domain large language
models in domain-specific and unseen tasks.

1 Introduction

Patient health records contain a wealth of infor-
mation that can offer valuable insights to health-
care professionals and researchers, aiding in the
enhancement of diagnosis, treatment, and disease
prevention. Cancer patients often undergo lengthy
treatment regimens, resulting in extensive elec-
tronic health record (EHR) documentation over
time. The sheer volume of data available to health-
care providers is substantial, making manual cura-
tion impractical and cost-prohibitive.

A crucial aspect of cancer patient records is their
chemotherapy treatment status documentation. Au-
tomatically extracting information regarding the
timelines of chemotherapy events offers several
advantages, including the ability to evaluate treat-
ment efficacy across various cancer types. This
automated extraction process also facilitates the
creation of concise summaries for future attending
physicians.

Two main tasks have been defined and addressed
in association with temporal relation extraction
from clinical notes: DocTimeRel and TLINK de-
tection and classification. The first task is to iden-

tify and classify the relation between events in an
EHR note and the creation time of the document.
TLINK detection and classification identify rela-
tions between event mentions and time expressions
in EHR notes.

In this paper, we deal with the latter, the tem-
poral relation extraction on a dataset of three can-
cer types. The shared task defines two subtasks.
Subtask one aims at discerning a temporal relation-
ship between a pair, consisting of a chemotherapy
event and a time expression, subsequently classi-
fying this relationship into one of the following
categories: CONTAINS, BEGINS-ON, or ENDS-
ON. In the second subtask, the only given input
is the patient notes. The desired output for both
subtasks is patient-level chemotherapy timelines.
For detailed information on the definition of the
subtasks, baseline methods, dataset, and evaluation
criteria, see (Yao et al., 2024).

We approach both subtasks using large language
models (LLMs). For the first subtask, we reformu-
late the relation classification problem into a text
generation task and benefit from instruction-tuned
language models to predict the relation. In the
second subtask, we experiment with a sequence-to-
sequence fine-tuning method with relations trans-
formed into target sequences using a triplet lin-
earization algorithm and also a pipeline method
consisting of a rule-based event and time expres-
sion module and our best-performing model on the
first subtask to identify and classify the pairwise
relations.

We achieved the highest average scores on the
test results as announced by the organizers (Yao
et al., 2024).

In the following, we describe how we have uti-
lized LLMs in detection, classification, and the
end-to-end approach to chemotherapy timeline ex-
traction from clinical notes.
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Figure 1: Low-rank adaptation instruction fine-tuning for Subtask 1

2 Methodology

2.1 Subtask1

With the chemotherapy events and time expressions
in each patient’s note already provided by the or-
ganizer, the first subtask aims to identify temporal
relations between them and subsequently generate
patient-level timelines.

Prior to training a model, we need to prepare
the dataset to train the model for the temporal re-
lation classification task. The annotated relations
with their respective pair of events and time expres-
sions in the gold standard training/development
dataset are added as positive instances. We create
negative instances labeled as NO-RELATION by
pairing events and time expressions within a patient
note with no temporal relations in the gold-standard
dataset.

However, incorporating every potential negative
instance would lead to a significant imbalance in
the training dataset as well as additional computa-
tional costs for training and inferencing the model.
To mitigate this, we exclude instances where the
positional distance between the event mentions and
time expressions in the EHR note exceeds a max-
imum number of characters. Table 1 reports the
maximum distance and number of NO-RELATION
label instances added to the dataset. With this
empirical observation, we set the maximum dis-
tance to 250 characters. We also create a heuris-
tic rule that any pairs with a distance greater than
the threshold are automatically predicted as NO-
RELATION during inference on the test set. Ap-
plying this rule to the test set reduces the number
of possible pairs from 12762 to 3042, thus enabling
a more computationally efficient inference process.

During preprocessing, we first employ the

"mimic" model from the Stanza library, developed
by (Zhang et al., 2021), for sentence segmenta-
tion. Then, we construct the context for the input
sequences using two different approaches: concate-
nated context and bounded context. If the event
and the time expression in the pair occur within the
same sentence, both methods consider the sentence
as the context. Otherwise, if the event and time
expression are located in different sentences, the
two sentences are concatenated to form the concate-
nated context. In the bounded context method, any
sentence occurring between these two sentences is
also included in the context. In addition, we add
markers denoted by <e> followed by </e>, and <t>
followed by </t> to respectively delineate events
and time expressions.

We reformulate the temporal relation classifica-
tion task as a generation task by finetuning a large
language model to directly generate a label from
the predefined set of relation types: CONTAINS,
BEGINS-ON, ENDS-ON, NO-RELATION. We
prepend the instruction describing the task to each
input context. This method conditions the model to
generate the relation type immediately following
an anchor prompt “Relation:”. Figure 1 illustrates
our approach to tackling the first subtask, includ-
ing our model’s input and expected output. In the
instruction, we use the definition of events, time
expressions, and temporal relations provided in the
data descriptions of the shared task. Our instruc-
tion format leverages the prompt structure used
in relation extraction tasks, as described by (Lai
et al., 2023). We also experiment with finetuning
the model without adding the task instruction to the
input contexts.

During our preliminary experiments, we fine-
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Split Cancer
type

Gold
relation
pairs#

Max
character
distance

No
relation
pairs #

Train
brca 455 99 381
mela 48 218 35
ovca 494 143 336

Dev
brca 113 213 132
mela 201 144 191
ovca 226 173 220

Table 1: Maximum (character) distance between event
and time mentions of relation pairs in the gold standard
dataset used as a threshold to reduce the number of
NO-RELATION pairs. The number of gold relations is
provided for comparison.

tune three instruction-tuned models: Mistral-7B-
Instruct-v0.2 (Jiang et al., 2023), Flan-T5-xxl 11B
(Chung et al., 2022) and Llama-2-13B-chat (Tou-
vron et al., 2023).

Flan-T5-xxl consistently achieved superior per-
formance on the development set compared to the
other two models. Thus, we use Flan-T5-xxl for
further experimentation in this subtask.

2.2 Subtask2

As Yao et al. (2024) describe, in the second sub-
task, the input to the system is only the patient’s
EHR notes. Therefore, an end-to-end system that
integrates identifying chemotherapy events and
time expressions to extract the final chemotherapy
patient-level timeline is required. We consider two
different approaches to address this subtask.

In the first approach, we train a sequence-to-
sequence model with input snippets from the EHR
notes. The output is sequences containing the tem-
poral relations (each a triplet of <event, relation
type, time expression>) found in that snippet. The
training objective is to simultaneously identify the
events and time expressions in the context of each
sentence in the EHR note and to detect and clas-
sify the relation as CONTAINS, BEGINS-ON, or
ENDS-ON. We use the annotated data for the first
subtask to train the models and evaluate our mod-
els on the development set provided for the second
subtask.

We consider the context of each sentence to be
its neighboring sentences (one preceding and one
succeeding) joined by the separator token of the

corresponding tokenizer as defined in equation (1).

Context(si) = si−1 + [SEP ] + si + [SEP ] + si+1 (1)

Huguet Cabot and Navigli (2021) have neatly in-
troduced a triplet linearization algorithm for gener-
ating target sequences incorporating one or more
relations between entities. We adopt this algorithm
to transform the annotated temporal relations to
target sequences.

Our approach differs from Huguet Cabot and
Navigli (2021)’s approach in several ways. Firstly,
their approach is to identify more than 200 rela-
tion types; thus, contrary to our setting, they are
not limited to a restricted set. We add the re-
lation types (CONTAINS, BEGINS-ON, ENDS-
ON) to the special tokens of the tokenizer so they
are not split during the tokenization process and
the model learns them as defined in the target se-
quences. Since the events in our problem settings
are domain-specific, we observed that the approach
used in Huguet Cabot and Navigli (2021) identifies
any event (not only the chemotherapy events) as
a chemotherapy event after training. To prevent
the generation of false positive events, we include
additional chemotherapy events annotated in the
gold standard data set, which are not in any relation
with a time expression, to the training set. Simi-
larly, to create negative instances, we add the input
sequences that have no annotation of chemotherapy
events, time expressions, or relations to the training
data. Figure 2 shows different input sequence and
their corresponding target sequence.1

We then experiment with finetuning various ver-
sions of two pre-trained models with the encoder-
decoder structure, which have proven to perform
well for sequence-to-sequence tasks, namely BART
and Flan-T5. The reasoning behind choosing
BART is that it is trained for sequence-to-sequence
tasks and has proven to perform well on sequence-
generation tasks. We chose Flan-T5 to test the
effectiveness of this instruction-tuned model on an
unseen task. In this subtask, we do not add in-
structions to input sequences while finetuning Flan-
T5. We conduct experiments on various available
model sizes for BART and Flan-T5.

In the second approach, we use a pipeline
method that consists of two steps: the first step
extracts the chemotherapy events and time expres-

1To abide by the terms of the data agreement, we refrain
from quoting exact snippets from the EHR notes. The ex-
amples are altered and, therefore, might not be medically
accurate.
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Figure 2: The input sequences are the contexts, including a sentence and its preceding and succeeding sentence
in the EHR note joined by the separator token of the corresponding tokenizer. Target sequences are the linearized
triplets taken from the gold standard annotations. Following the encoding in Huguet Cabot and Navigli (2021),
<triplet> marks the start of a new temporal relation with a new head entity, followed by the tokens representing
the head entity in the input text; <subj> marks the end of the head entity and the start of the tail entity’s tokens;
<obj> marks the end of the tail entity and the start of the relation type between the head and tail entity. The head/tail
entities can be either a chemotherapy event or a time expression depending on their relative position in the text.

sions, and in the second step, we utilize our best-
performing model on the first subtask to detect and
classify the relations between pair of events and
time expressions. We extract the time expressions
using the Python wrapper for Stanford CoreNLP’s
SUTime Java library developed by Manning et al.
(2014)2. We utilize a rule-based system with a pre-
defined dictionary for the event extraction task. We
compile a list of chemotherapy events from three
different sources: 1) the baseline system3. 2) all
chemotherapy events extracted from the training
set, and 3) all the cancer drugs mentioned on the
Cancer Research UK website4.

2.3 Finetuning process

Our approach uses the Huggingface5 implemen-
tation of the Seq2SeqTrainer to finetune trained
models.

In the first subtask, we set the maximum length
of the input as 450 tokens and the maximum tar-
get length as 10 tokens to fit the instruction. We
finetune Flan-T5-xxl model using LoRA (Hu et al.,
2021) for 10 epochs, employing early stopping with
a patience of 3 epochs.

In the second subtask, we set the maximum

2https://pypi.org/project/sutime
3https://github.com/HealthNLPorg/

chemoTimelinesBaselineSystem/tree/main/
timelines/instance-generator/src/user/resources/
org/apache/ctakes/dictionary/lookup/fast/bsv

4https://www.cancerresearchuk.org/
about-cancer/treatment/drugs

5https://huggingface.co/

length of the input as 256 tokens and the maxi-
mum target length as 32 tokens. We then pad input
and target sequences to maximum length with the
pad token of the tokenizer specific to the model.
We run the finetuning for 10 epochs in the BART
setting and 5 epochs in Flan-T5 setting. The param-
eter efficient module (LoRA) was enabled while
finetuning Flan-T5 models for this subtask. For
more details on the models, see Appendix A.1.

For both finetuning experiments, we used the
implementation of LoRA in Huggingface library.
Parameters for LoRA are set to α = 32, dropout
= 0.05, and r = 16 and are added to [q, k, v, o]
layers in both tasks. Appendix A.2 briefly describes
LoRA.

2.4 Preparing data for evaluation

Most of the time expressions in the EHR notes are
relative and must be normalized using the docu-
ment time (DOCTIME). The document time in the
first subtask can be extracted from the gold stan-
dard annotated data or the headers of each patient
EHR note. In the case of the second subtask, only
the latter is feasible due to the absence of gold
standard annotations. The headers of the patient
records are provided in a standard format, so the
document time can be precisely extracted using
regular expressions.

To normalize relative time expressions such as
“two weeks ago”, “today”, “currently”, we use the
timenorm library (Xu et al., 2019). We discard
the extracted relations for which timenorm fails to
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Cont. Inst.
brca mela ovca

F1 RF1 TF1 F1 RF1 TF1 F1 RF1 TF1
Bound No 0.893 0.992 0.941 0.922 0.938 0.887 0.879 0.968 0.852
Bound Yes 0.922 0.980 0.962 0.960 0.977 0.887 0.916 0.987 0.793
Concat No 0.913 0.980 0.937 0.898 0.916 0.887 0.890 0.968 0.871
Concat Yes 0.919 0.967 0.918 0.934 0.954 0.887 0.893 0.960 0.810

Table 2: Results for the first subtask on the development set. The terms F1 and RF1 represent the F1-score and
relaxed F1-score of our classification model, respectively. TF1 is the official F1-score for the final timelines
calculated using the evaluation system.

normalize the time expression. Examples of such
time expressions include “at this time”, “January
10 or 11”, “05/2012” , “day one” , “16-09”, etc.

For both subtasks, we use the baseline system
provided by Yao et al. (2024) for de-duplication
and creation of final timelines.6

As an extra step in the pipeline approach to the
second subtask, we manually omitted some events
and time expressions from the results of the rule-
based systems. Examples of such omissions are
“continues” event (which appears in the train set)
and time expressions “1842”, “1255” and “1000”.

3 Results

We use the evaluation system provided by (Yao
et al., 2024) for both subtasks on the development
set.7 The evaluation script receives the gold stan-
dard timelines, and the system prediction for all
patients in each cancer type as input.

All the experiments on the development set have
been executed before the test set results were an-
nounced.

3.1 Subtask1

In addition to reporting the timeline score on the
development set using the organizer’s evaluation
system, we also evaluate our model’s performance
on the pairwise temporal classification task (Table
2). We implement two metrics: micro F1 and re-
laxed micro F1. CONTAINS and BEGINS-ON,
CONTAINS and ENDS-ON are interchangeable in
the relaxed F1-score computation.

Finetuned Flan-T5-xxl with instruction and
bounded context achieved the highest scores on
almost all metrics. Finetuning bounded context
shows a marginal improvement in relaxed micro

6https://github.com/HealthNLPorg/
chemoTimelinesBaselineSystem

7https://github.com/HealthNLPorg/
chemoTimelinesEval

F1 compared to the concatenated context. This
suggests that incorporating sentences between sen-
tences containing event and time expression might
be beneficial for classifying NON-RELATION
pairs.

Our classification model scores do not correlate
well with timeline scores. For instance, in ovar-
ian cancer results, fine-tuned Flan-T5-xxl bounded
context and instruction achieves the highest F1-
score on the classification task but the lowest time-
line score. We suspect that this difference origi-
nates from official results being based on average
macro F1 score across all patients. Further reasons
might be related to the errors of the post-processing
steps in creating the final patient timelines, such as
the normalization of time expressions and the de-
duplication process. We select three submissions
with the highest average F1-score of F1-scores, re-
laxed F-scores and final timeline F-scores for all
cancer types as presented in Table 2.

Our submission outperformed the baseline for
breast cancer, ovarian cancer, and the average score.
It achieved the same score as the baseline system
for melanoma cancer (Table 3).

3.2 Subtask2

The end2end approach with Flan-T5-xxl + LoRA
achieves the highest results across all other meth-
ods and the baseline system results for melanoma
and ovarian cancer as shown in Table 4. For breast
cancer, on the other hand even though this method
performs best among other implemented methods,
it does not surpass the baseline system results on
the development set.

Considering the relaxed setting, Flan-T5-xxl
+ LoRA has achieved the highest precision rate
across all cancer types. However, the methods that
extract event types using a rule-based or dictionary-
based system (baseline system and the pipeline
approach) have gained higher recall scores in the
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Method brca mela ovca Average score

Subtask 1

Baseline system 0.93 0.87 0.88 0.89
Flan-T5-xxl + bound context + instruction 0.96 0.87 0.88 0.90
Flan-T5-xxl + bound context 0.95 0.85 0.89 0.90
Flan-T5-xxl + concat context 0.95 0.84 0.89 0.90

Highest score on the leader board 0.96 0.87 0.89 0.90

Subtask 2

Baseline system 0.59 0.43 0.71 0.58
End2end BART-large 0.52 0.57 0.59 0.56
End2end Flan-T5-xxl + LoRA 0.62 0.74 0.74 0.70
Pipeline system 0.53 0.38 0.49 0.47

Highest score on the leader board 0.68 0.74 0.74 0.70

Table 3: Evaluation published by the organizers for our submission on the held-out test set

same setting. The low score in the strict evaluation
setting for Flan-T5 is due to its failure to identify
ENDS-ON relations in any cancer type, possibly
because of the label’s low frequency in the train-
ing set. See Appendix B for detailed results on
precision and recall.

We chose to submit the results of the end2end
method with both BART and Flan-T5 with the high-
est scores, which are the largest models we experi-
mented with, namely BART-large and Flan-T5-xxl
and the pipeline approach as our third submission.

We first performed a sentence tokenization step
on the test data and extracted the contexts as in-
put sequences. We used the models to infer target
sequences. The results of these three approaches
on the test data provided by the organizers are pre-
sented in Table 3. The end2end approach using
the pre-trained Flan-T5-xxl model with LoRA ex-
ceeds in all evaluations except for the breast results.
Albeit, the breast cohort results surpass the test
set’s baseline score contrary to the experiments on
the development set. The average score on this
approach gains the highest score among other sub-
missions, as reported by the organizers.

Method brca mela ovca

Baseline system 0.857 0.456 0.329
Pipeline Approach 0.529 0.511 0.470
End2End BART-large 0.700 0.618 0.496
End2End Flan-T5-xxl 0.749 0.720 0.647

Table 4: Evaluation for the second subtask on the devel-
opment set.

4 Error Analysis

Since the gold standard timeline and annotations
on the test set have not been released to enable
future editions of the task, we will provide the error
analysis on the results of the development set.

4.1 Subtask1
Our best model, Flan-T5-xxl finetune bounded con-
text with instruction, achieved a low error rate of
20 incorrect predictions out of 1,083 tested pairs.
Possible error sources include misspellings, poten-
tially missing or spurious annotations, or unclear or
complex contexts. Complex contexts occur when
notes include tables that have lost their structures
in the plain text files. We list some examples of
mispredictions below.

• Misspelling: "Condition <t>yesterdat</t> appeared im-
proved with treatment, and <e>chemo</e> cycle discon-
tinued.", Label: ENDS-ON, Predict: NO-RELATION.

• Missing annotation: "Patient with metastatic melanoma
enrolled in protocol and received first dose of
<e>aflibercept</e> 9/4 and second dose <t>09/18</t>
prior to admission for high dose IL2 (first cycle)Thus
far has received 9/12 planned doses.", Label: NO-
RELATION, Predict: CONTAINS.

• Spurious annotation: "Patient enrolled in protocol
and received first dose of alibercept 9/4 and second
dose <t>09/18</t> prior to admission for high dose
<e>IL2</e> (first cycle)", Label: CONTAINS, Predict:
NO-RELATION.

• Unclear context: "Cycle #2 was initiated on
<t>September 10 , 2011</t>; however, the patient had a
severe reaction during the <e>paclitaxel</e> infusion.",
Label: CONTAINS, Predict: NO-RELATION.

4.2 Subtask2
One source of error in subtask2 is the emergence
of medical events or drugs as output events that
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are not particularly chemotherapy events such as
“radiation”, “iv decadron”, “bolus”, “anti-vegf an-
tibody”, “augmentin” and so on. The following
example shows one of the incident where our best
performing model incorrectly identifies “radiation”
as a chemotherapy event in temporal relation CON-
TAINS with “June 1st”. 8

• ... she is undergoing consultation with Dr. X for possible
radiation therapy on June 1st.

We noticed that balancing the negative instances
with the positive examples of temporal relations
worsens this problem. Thus, we keep all negative
instances in the training set to improve the identi-
fication of chemotherapy events. These negative
instances include the ones containing events/time
expressions but no relations, for example, target se-
quences 4 and 5 in Figure 2. And also the ones with
no events and no time expressions, for example,
input sequence 6 in Figure 2. We suspect this prob-
lem is caused by the bias of the pre-trained model
in identifying all entities beyond the chemother-
apy events. This approach improved the results;
however, it’s not completely resolved. It can fur-
ther be alleviated either manually or by applying a
post-processing filter created by experts to only
keep the temporal relations with chemotherapy
drugs/treatments.

In examining the distribution of relation types
across various cancer types within the development
set for the second subtask, we observed an imbal-
ance in the dataset. Specifically, the ENDS-ON
relation type was found to occur with frequencies
of approximately 30%, 2%, and 14% concerning
all chemotherapies within the final gold timelines
for breast cancer, melanoma, and ovarian cancer,
respectively. Given our approach’s reduced accu-
racy in identifying the ENDS-ON relation type, this
discrepancy explains the lower accuracy observed
compared to the baseline system specifically con-
cerning breast cancer within both the development
and potentially the test set (Assuming the distribu-
tion of relation types on the test set is close to the
distribution on the development set).

Another source of the model’s confusion is the
chemotherapy events that were not annotated in the
training dataset. The first example was identified as
a “chemotherapy” event in CONTAINS temporal
relation with time expression “2003” and the sec-
ond as “docetaxel”, BEGINS-ON, “oct 3rd” by our

8Examples in this section have been altered to abide by the
data use agreement.

end2end model, however, we do not find the equiv-
alent of this chemotherapy event instance in the
annotated development set. In order to resolve this
particular error, we would need further information
about the annotation rules.

• History of Present Illness: Patient was diagnosed with
disease in 2003 and treated with surgery, chemotherapy,
and radiation per the patient.

• Patient says they are now taking docetaxel with 1st dose
Oct 3rd and second due in early november.

We can also associate a fraction of errors to the
normalization errors originating from the timnorm
library, for example, in cases where time expres-
sions containing two-digit years are inaccurately
resolved to the 1900s.

5 Related work

Numerous studies focus on annotation (O’Gorman
et al., 2016; Wang et al., 2022; Alsayyahi and
Batista-Navarro, 2023), detection and classification
(Lim et al., 2023; Huang et al., 2023) of temporal
relations in the general domain.

In the medical domain, temporal relation extrac-
tion also received attention for its benefits in lon-
gitudinal studies of medication, treatments, and
diseases, as well as in summarizing clinical notes
for physicians’ further reference. THYME annota-
tion guidelines and corpus (Styler IV et al., 2014)
and its extension (Wright-Bettner et al., 2020) is a
considerable effort in the specification of process of
temporal relation annotation process in clinical nar-
ratives based on ISO-TimeML (Pustejovsky et al.,
2010).

Prior to the introduction of transformer-based
language models a few studies approached various
tasks of temporal relation extraction problem with
feature-based supervised machine learning algo-
rithms and sequential neural networks (Xu et al.,
2013; Lee et al., 2016; Alfattni et al., 2020, 2021).
Moreover, Lin et al. (2018) utilized unlabeled data
by self-training neural networks in clinical tempo-
ral relation extraction.

After the rise of transformer-based models, tem-
poral relation extraction from clinical notes also
benefited from this significant development in NLP
methods using models such as BERT (Lin et al.,
2020; Zhou et al., 2021), BioBERT and BART
(Wright-Bettner et al., 2020) for clinical text repre-
sentation. Lin et al. (2021) continue training BERT
using a masking method called entity-centric mask-
ing strategy, where they use the MIMIC III dataset
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as their training data. Their results on temporal re-
lation extraction shows improvements on baselines
using the model pretrained using this approach.

Most end-to-end systems for temporal relation
extraction in the clinical domain have been tackled
using a pipeline approach consisting of modules
for event and time expression extraction and pair-
wise temporal relation detection and classification.
Dligach et al. (2022) on the other hand, explore
the use of sequence-to-sequence models in extract-
ing temporal relations from text. They experiment
with various input/output representations and adopt
those representations, which enable the reconstruc-
tion of the snippets with several relations and repet-
itive event names in a text snippet. They report this
approach’s results utilizing different sequence-to-
sequence LLMs such as BART and T5. Miller et al.
(2023) approach temporal relation extraction prob-
lem as an end-to-end task without given events and
time expressions using a combination of domain-
specific pre-trained language model PubmedBERT
(Gu et al., 2021) and a multi-headed attention clas-
sifier on THYME2 dataset (Wright-Bettner et al.,
2020).

Bethard et al. (2016, 2017) organized previous
shared tasks to incentivize the research on temporal
relation extraction from clinical notes.

6 Conclusions

This paper presents our effort in participating in the
Chemotimeline shared task. We apply an instruc-
tion finetuning method for temporal relation detec-
tion and classification and a sequence-to-sequence
approach for extracting timelines directly from
EHR notes to solve the first and second subtasks.
Our approach, leveraging the power of general-
domain Large Language Models and further fine-
tuning them with parameter-efficient methods, se-
cured the highest average scores across the different
cancer types for both subtasks. The results of our
approach using Flan-T5-xxl + LoRA underscore
the potential of instruction finetuning in enhanc-
ing the capabilities of LLMs for unseen natural
language understanding and generation tasks, even
on domain-specific data. In future work, we aim
at augmenting the data for low-frequency relation
types and also harnessing the power of provided
unlabeled data to continue pre-training Large Lan-
guage models and to investigate the effect on the
results of extracting temporal relations from cancer
patient EHR notes.

Limitations

There are several limitations to our experiments.
Firstly, our experiments were bounded by com-

putational resource limitations. Specifically, our
experiments employed the Flan-T5 model with
parameter-efficient techniques due to constraints
in available computational power on shared hard-
ware and time. This limitation prevents us from
comparing our methodology with implementations
of Flan-T5 without LoRA approach. Secondly, we
do not test our experiments on other datasets since
annotated data in the medical domain on such a
specific task is extremely scarce. Thus, we cannot
claim that our results will be as high on different
datasets. Moreover, since our method is fine-tuned
on the provided data, practical use and release of
the model are legally bound by the data agreement
usage. Finally, our method uses a deep learning
approach and, therefore, is limited by the explain-
ability and interpretability constraints of such tech-
niques.
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A Preliminaries

A.1 Pretrained Models
In our experiments, we have employed two main
pre-trained model weights available for public use:
BART (Lewis et al., 2020), Flan-T5 Chung et al.
(2022) which we briefly introduce in this section.
The details of how we finetune them for our specific
task are described in sections 2.1 and 2.2.

• BART (Lewis et al., 2020) BART is a
sequence-to-sequence model based on an
encoder-decoder architecture, which is com-
posed of a BERT-based bidirectional encoder
and an auto-regressive GPT-based left to right
decoder. BART is trained by the task of re-
constructing a corrupted input sentence into
its original text and it has proven to perform
well for text-to-text generation tasks such as
Summarization.

• Flan-T5 (Chung et al., 2022) Instruction-
tuning is a technique to explicitly guide Large
Language models to perform specific tasks.
Flan-T5 is a sequence-to-sequence Large Lan-
guage model that has been fine-tuned using
this technique on a mixture of tasks. Flan-
T5 has shown performance improvement on
unseen tasks.

A.2 LoRA
Large language models inherent to their title have
billions of parameters. Finetuning large language
models for a specific task or domain is expensive
and infeasible in terms of time and computational
resource limitations. Hu et al. (2021) introduced
Low-Rank Adaptation of Large Language (LoRA)
models method to make the finetuning process of
these models more efficient and conclusively more
accessible by freezing the pre-trained weights of
the model and injection of trainable rank decom-
position matrices into different layers of the trans-
former architecture. This method drastically re-
duces the number of training parameters. It has
been shown to perform comparably well to full-
parameter finetuning methods and, in some cases,
outperforms several baselines with comparable or
fewer trainable parameters.

B Detailed Results for the second subtask

We report the detailed results of strict and relaxed
settings for all our experiments in the second sub-
task using the evaluation system in this section.

Table 5 contains the results of our experiments for
the second subtask. We have experimented with the
end2end approach described in section 2.2 using
BART and Flan-T5 models with various sizes. Not
surprisingly bigger models have performed better
across all cancer types for both strict and relaxed
evaluation settings. The pipeline approach achieves
high recall scores for melanoma and ovarian can-
cer since it extracts events in a rule-based manner.
However, the precision score is low in the pipeline
approach, since it identifies drugs and treatments
other than chemotherapy-specific ones.
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Micro Macro Type A Macro Type B Official Score

Pr Re F1 Pr Re F1 Pr Re F1 F1

Strict

Baseline system 0.622 0.718 0.667 0.811 0.871 0.835 0.663 0.823 0.727
Bart-base 0.333 0.256 0.290 0.646 0.640 0.642 0.222 0.207 0.213
Bart-large 0.625 0.385 0.476 0.826 0.785 0.797 0.537 0.727 0.455
Flan-T5-large + LoRA 0.409 0.231 0.295 0.667 0.645 0.653 0.278 0.220 0.242
Flan-T5-xl + LoRA 0.5 0.282 0.360 0.799 0.746 0.763 0.464 0.322 0.369
Flan-T5-xxl + LoRA 0.667 0.308 0.421 0.851 0.753 0.781 0.602 0.342 0.417

brca
Pipeline approach 0.337 0.718 0.459 0.341 0.451 0.379 0.409 0.702 0.510

Relaxed

Baseline system 0.795 0.816 0.805 0.866 0.894 0.876 0.809 0.855 0.837 0.857
Bart-base 0.429 0.353 0.387 0.688 0.668 0.676 0.334 0.281 0.302 0.489
Bart-large 0.818 0.5 0.621 0.888 0.813 0.837 0.701 0.501 0.564 0.700
Flan-T5-large + LoRA 0.692 0.529 0.600 0.859 0.769 0.801 0.791 0.552 0.635 0.718
Flan-T5-xl + LoRA 0.696 0.457 0.552 0.905 0.827 0.853 0.748 0.540 0.607 0.730
Flan-T5-xxl + LoRA 0.833 0.441 0.577 0.944 0.830 0.863 0.851 0.547 0.634 0.749
Pipeline approach 0.405 0.833 0.545 0.381 0.507 0.425 0.515 0.852 0.633 0.529
Strict

Baseline system 0.667 0.667 0.667 0.571 0.571 0.571 0.357 0.357 0.357
Bart-base 0.483 0.333 0.395 0.217 0.119 0.154 0.326 0.179 0.231
Bart-large 0.585 0.533 0.558 0.660 0.833 0.658 0.490 0.75 0.487
Flan-T5-large + LoRA 0.72 0.4 0.514 0.725 0.682 0.656 0.588 0.524 0.484
Flan-T5-xl + LoRA 0.629 0.489 0.550 0.702 0.817 0.714 0.553 0.726 0.571
Flan-T5-xxl + LoRA 0.686 0.533 0.6 0.726 0.833 0.733 0.590 0.75 0.6

mela
Pipeline approach 0.347 0.911 0.503 0.499 0.865 0.574 0.249 0.798 0.362

Relaxed

Baseline system 0.630 0.630 0.630 0.570 0.56 0.565 0.354 0.34 0.347 0.456
Bart-base 0.44 0.458 0.449 0.204 0.167 0.183 0.305 0.25 0.275 0.229
Bart-large 0.586 0.739 0.654 0.663 0.905 0.694 0.495 0.857 0.542 0.618
Flan-T5-large + LoRA 0.72 0.565 0.634 0.708 0.690 0.664 0.561 0.536 0.496 0.580
Flan-T5-xl + Lora 0.667 0.75 0.706 0.698 0.910 0.748 0.548 0.864 0.622 0.685
Flan-T5-xxl + Lora 0.731 0.827 0.775 0.728 0.936 0.776 0.592 0.905 0.665 0.720
Pipeline approach 0.3375 1.0 0.505 0.517 1.0 0.608 0.275 1.0 0.413 0.511
Strict

Baseline system 0.4 0.306 0.347 0.224 0.358 0.239 0.224 0.358 0.239
Bart-base 0.350 0.4 0.374 0.391 0.486 0.378 0.391 0.486 0.378
Bart-large 0.340 0.423 0.377 0.351 0.357 0.341 0.351 0.357 0.341
Flan-T5-large + LoRA 0.494 0.494 0.494 0.471 0.426 0.437 0.471 0.426 0.437
Flan-T5-xl + LoRA 0.557 0.518 0.537 0.488 0.559 0.483 0.488 0.558 0.483
Flan-T5-xxl + LoRA 0.564 0.411 0.476 0.581 0.545 0.504 0.581 0.544 0.504

ovca
Pipeline approach 0.265 0.659 0.378 0.297 0.692 0.389 0.297 0.692 0.389

Relaxed

Baseline system 0.558 0.426 0.483 0.280 0.465 0.329 0.280 0.465 0.329 0.329
Bart-base 0.434 0.554 0.486 0.440 0.574 0.457 0.440 0.574 0.457 0.457
Bart-large 0.506 0.620 0.557 0.498 0.590 0.496 0.498 0.590 0.496 0.496
Flan-T5-large + LoRA 0.633 0.769 0.694 0.581 0.646 0.592 0.581 0.646 0.592 0.592
Flan-T5-xl + LoRA 0.677 0.646 0.661 0.658 0.677 0.642 0.658 0.677 0.642 0.642
Flan-T5-xxl + LoRA 0.686 0.515 0.588 0.726 0.592 0.647 0.756 0.592 0.647 0.647
Pipeline approach 0.318 0.742 0.445 0.365 0.812 0.470 0.365 0.812 0.470 0.470

Table 5: System results for the second subtask on the development set
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