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Abstract

Automatic generation of chemotherapy treat-
ment timelines from electronic health records
(EHRs) notes not only streamlines clinical
workflows but also promotes better coordina-
tion and improvements in cancer treatment
and quality of care. This paper describes
the submission to the Chemotimelines 2024
shared task that aims to automatically build a
chemotherapy treatment timeline for each pa-
tient using their complete set of EHR notes,
spanning various sources such as primary care
provider, oncology, discharge summaries, emer-
gency department, pathology, radiology, and
more. We report results from two large lan-
guage models (LLMs), namely Llama 2 and
Mistral 7B, applied to the shared task data us-
ing zero-shot prompting.

1 Introduction

Electronic Health Records (EHRs) are a rich repos-
itory of patient information, encompassing a wide
array of formats and sources including physician
notes, laboratory results, radiology images, and
pathology reports. Due to the heterogeneous and
unstructured nature of clinical data, it is cum-
bersome to visualize patient journeys or extract
meaningful information from Electronic Health
Records (EHRs) to help guide clinical decision
making (Anand and Sadhna, 2023; Najafabadipour
et al., 2020). EHR data is often dispersed, recorded
in free text with substantial variability in terminol-
ogy, and embedded in narrative formats that are
not easy to process or normalize across healthcare
settings and systems. In addition, privacy concerns
further limit the use of clinical data across hospi-
tals and geographical borders further compound-
ing complexity (Reisman, 2017; Kehl et al., 2020;
Levine et al., 2019; Banerjee et al., 2019) and diffi-
culty to leverage EHR data for insights generation.

Large Language Models (LLMs), with their ad-
vanced natural language (Guevara et al., 2024;

Chen et al., 2023a,c; Hochheiser et al., 2023; Bitter-
man et al., 2023) understanding capabilities, offer
a transformative solution to these challenges. They
can be trained to interpret complex language found
in EHRs, extracting relevant clinical events and
concepts, and mapping these onto a coherent infor-
mation or treatment timelines which can be difficult
to realize manually by humans. LLMs are appro-
priate for handling the variability and ambiguity
that arise in medical documentation, enabling them
to identify and organize critical information such
as chemotherapy treatments, such as drug names,
dosages, administration dates, and associated clini-
cal outcomes (Jahan et al., 2024).

Moreover, by leveraging the latest advance-
ments in transfer learning and domain-specific fine-
tuning, LLMs can be programmed in such a way
to understand the specific lexicon and data struc-
tures unique to domains as complex as oncology
and chemotherapy treatment regimes (Chen et al.,
2023b).

All in all, this can help with the generation
of comprehensive, accurate, and personalized
chemotherapy treatment timelines that are an es-
sential component for advancing precision oncol-
ogy, and also supporting the development and
assessment of patient-centric therapeutic strate-
gies (Levine et al., 2019; Banerjee et al., 2019).

To better understand the impact of various fac-
tors on tumor behavior and responsiveness, par-
ticularly in the context of precision oncology, the
Chemotimelines 2024 shared tasks has been pro-
posed (Yao et al., 2024). In this work, we describe
our submission to Subtask 1, which aims to build
timelines of chemotherapy treatments for individ-
ual patients using their Electronic Health Records
(EHR) notes. We achieved a 5th place ranking in
Subtask 1, with an averaged accuracy across breast,
ovarian, and melanoma indications.

The contributions of our paper can be outlined
as follows:
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1. We developed a Large Language Model
(LLM)-based system customized for descrip-
tion and exploration, providing substantial
value in tasks related to natural language un-
derstanding.

2. We employed multiple LLMs and prompts
across diverse development and training
datasets, our approach aimed to improve per-
formance and enhance generalization.

3. We introduced a framework that presents a
modular strategy for zero-shot relation extrac-
tion, leveraging well-established LLMs.

2 Related Work

In recent years, there has been a growing body of
research demonstrating the effectiveness of Large
Language Models (LLMs) in comprehending med-
ical text data and extracting valuable insights from
Electronic Health Records (EHRs) across various
clinical domains (Beam et al., 2019; Van Veen et al.,
2024; Wong et al., 2023; Eriksen and Ryg, 2023).
Prior investigations have shown the application of
Natural Language Processing (NLP) in healthcare,
encompassing tasks such as clinical text classifica-
tion, medical entity recognition, and patient risk
prediction. Efforts to construct clinical timelines
from EHR data have predominantly focused on
structured data such as procedure codes, diagno-
sis codes, and laboratory results (Rajkomar et al.,
2018; Mullenbach et al., 2018).

Within oncology, NLP methodologies have been
employed to analyze cancer-related textual data,
including pathology reports, clinical notes, and re-
search articles (Bodenreider, 2004; Meystre et al.,
2008). Researchers have investigated the utility of
NLP in extracting treatment regimens, identifying
adverse drug events, and predicting treatment out-
comes among cancer patients (Savova et al., 2010;
Xu et al., 2019). Techniques for temporal event
extraction and sequence modeling have been ex-
plored extensively to develop patient timelines for
disease progression tracking and treatment mon-
itoring (Ebadi et al., 2021). Temporal reasoning
techniques have found applications in healthcare
to analyze the temporal associations between clini-
cal events, treatments, and patient outcomes (Sun
et al., 2013). Studies have explored temporal logic,
temporal abstraction, and probabilistic models to
represent and analyze temporal data in healthcare
contexts (Orphanou et al., 2014).

Transformer based large language models have
demonstrated remarkable performance improve-
ments across various NLP benchmarks (Devlin
et al., 2018; Chiu and Nichols, 2016). Furthermore,
healthcare-specific models (Lee et al., 2020) have
exhibited state-of-the-art accuracy in biomedical
entity recognition (Kocaman and Talby, 2020) and
relation extraction (Kocaman and Talby, 2021).

The current state of the art lies in several no-
table Large Language Models (LLMs), each fea-
turing distinct model architectures and sizes (Pan
et al., 2024). Prominent examples include Llama
2 (Touvron et al., 2023), Mistral 7B (Jiang et al.,
2023), Zephyr (Tunstall et al., 2023), MEDITRON-
70B (Chen et al., 2023d), and Mixtral of Ex-
perts (Jiang et al., 2024). LLMs possess the ca-
pability to analyze extensive textual data, and the
task of summarizing crucial information from elec-
tronic health records (Van Veen et al., 2024) can
significantly impact how clinicians manage their
time, enabling them to dedicate more time to in-
teracting with patients (Khairat et al., 2018) and
improve quality of care.

3 Task and Dataset Details

3.1 Task Details

Chemotimelines 2024 at NAACL-ClinicalNLP
Workshop is a shared task (Yao et al., 2024) that
focuses on building a timeline of chemotherapy
treatment for each patient given all the available
Electronic Health Records (EHRs) notes of that
patient. The shared task has 2 subtasks. Sub-
task 1 involves using provided gold annotations
of chemotherapy events (EVENTs) and time ex-
pressions (TIMEX3s) along with Electronic Health
Record (EHRs) notes to predict temporal relations
between them and generate patient-level timelines.
This task requires deduplicating and resolving con-
flicts in pairwise temporal relations, with the option
to derive timelines without relying on pairwise rela-
tions. Additionally, attributes such as modality and
relation to document creation time are included.
Subtask 2 entails building an end-to-end system
for chemotherapy timeline extraction using only
patient EHR notes. Both subtasks are evaluated
against gold patient-level timelines. We submitted
the results of Subtask 1. The submission scripts for
evaluation can be found here1.

1https://github.com/HealthNLPorg/chemoTimelinesEval
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Indications (Train, Dev and Test) # Patients # Reports # Entities # Relations
Breast (Train) 23 236 1599 455
Melanoma (Train) 3 32 225 48
Ovarian (Train) 14 273 1765 494
Breast (Dev) 10 61 425 113
Melanoma (Dev) 2 99 1050 20
Ovarian (Dev) 8 138 1102 226
Breast (Test) 25 379 3678 0
Melanoma (Test) 4 77 591 0
Ovarian (Test) 6 143 1045 0
Total 95 1438 11480 1356

Table 1: Summary of Dataset Statistics: Number of Patients, Reports, Entities, and Relations across Training
(Train), Development (Dev) and Testing (Test) Sets for different indications (Breast, Melanoma and Ovarian).

Indications (Train and Dev) BEGINS-ON CONTAINS ENDS-ON
Breast (Train) 131 298 26
Melanoma (Train) 10 37 1
Ovarian (Train) 101 327 66
Breast (Dev) 27 57 29
Melanoma (Dev) 42 157 2
Ovarian (Dev) 34 140 52

Table 2: Summary of Dataset Statistics: Indications (breast, melanoma, and ovarian) across training and development
sets, including the three types of temporal relations.

3.2 Dataset

The dataset comprises 95 patients with 1438 re-
ports. Table 1 summarizes dataset statistics, in-
cluding indications (breast, melanoma and ovar-
ian) for training, development, and testing sets,
along with the number of patients, reports, enti-
ties, and relations. The annotated dataset has been
using THYME ontology (Styler IV et al., 2014)
and temporal relation annotations (Wright-Bettner
et al., 2020) with three different temporal relations
used for TLINKs (temporal links): BEGINS-ON,
CONTAINS and ENDS-ON. Table 2 presents summa-
rized statistics for indications (breast, melanoma,
and ovarian) across training and development sets,
including the three types of temporal relations.

4 Approach

We aimed to significantly contribute to the de-
velopment of advanced cutting-edge methodolo-
gies and techniques for automatically constructing
chemotherapy treatment timelines from Electronic
Health Records (EHRs) clinical notes of individual
patients. We leveraged current state of the art Large
Language models (LLMs) for this shared task. We
tested various LLMs with different sizes and archi-

tectures to determine which model works best for
relation extraction (See Figure 1).

4.1 Natural Language Processing (NLP)
Pipeline with Language Representations

4.1.1 Document Chunking
We divided the documents into paragraphs or
groups of paragraphs (sections) to facilitate
manageable processing units.

Sequence Length The experiments involved evalu-
ating various sequence lengths, which determine
the number of words or tokens processed by the
model at once. Assessing lengths of 1024, 512,
and 256 tokens provides insights into how input
length impacts the system’s accuracy in extracting
relations.

Paragraph and Sentence Detection Paragraph
Detection NLP plays a crucial role in enhancing
contextual understanding within Electronic Health
Records (EHRs) by segmenting the text into mean-
ingful units. By identifying paragraphs, NLP mod-
els can discern distinct sections of the EHRs, such
as patient history, symptoms, diagnoses, and treat-
ment plans. This segmentation enables the model
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Figure 1: NLP Pipeline for Subtask 1

to focus on specific aspects of the patient’s medi-
cal information, facilitating more accurate analysis
and interpretation. We have incorporated section
chunking and paragraph detection techniques into
our system. This involves identifying individual
sentences within the text data. By isolating para-
graphs, the system can focus on extracting relations
specifically from relevant pairs of entities within
each paragraph, which enhances precision. We
have incorporated section chunking and paragraph
detection techniques into our system. This involves
identifying individual sentences and paragraphs
within the text data. By isolating paragraphs, the
system can focus on extracting relations specifi-
cally from relevant pairs of entities within each
paragraph (Kocaman and Talby, 2020), which en-
hances precision.

• In terms of extracting relations from various
document paragraphs, our sequences already
extend beyond a single paragraph, as our se-
quence length is configured to accommodate
256 tokens. Nonetheless, such occurrences
are rare within this dataset. If necessary, we
can concatenate adjacent or contiguous para-
graphs or clusters of paragraphs to enable the
extraction of relations spanning multiple para-
graphs.

• To address chunking concerns, we imple-
mented an overlap parameter for enhanced
performance. This parameter prevents the in-
advertent separation of essential information

by preserving sentence integrity, even with-
out overlap. It facilitates the reconciliation of
fragmented data, mitigating the risk of context
loss and preserving predictive accuracy. The
risk of reduced recall arises from potential
pairs not being prompted for relation classi-
fication. Encouragingly, the model’s metrics
exhibit no specific recall-related issues, sig-
naling positive performance in this regard.

4.1.2 Zero-Shot Prompting for Related Pairs
We developed structured prompts to guide the sys-
tem in identifying and extracting relations between
pairs of entities. These prompts serve as cues for
the system to recognize and analyze relevant infor-
mation in the text pertaining to the specified entities
(See Figure 2).

This process involved prompt engineering tech-
niques aimed at refining the instructions within
the relation extraction pipeline, optimizing them
to extract more precise and relevant information
during subsequent stages. The zero-shot prompt
gave us a reasonably high precision by leverag-
ing the prompt templates that guided the LLMs to
generate responses that closely match the desired
output without requiring explicit training data for
each class or category. Prompt 1 was used for the
submission and for evaluation. We tried Prompt 2
but encountered challenges in labeling the relations
from distinct lists. (See Figure 2)

The input to the LLMs involves combining the
prompt with the paragraph or groups of paragraphs
(sections).
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4.1.3 Tokenization and Embedding
Each paragraph is tokenized, and the tokens are
encoded using the tokenizer specific to the chosen
Large Language Model (LLM).

4.1.4 Embedding Decoding
The encoded tokens were fed to the LLM, resulting
in serialized outputs.

4.1.5 Semantic Object Construction
Using the outputs from the LLMs and predefined
validation classes for each of the prompts, we
construct semantic-rich objects that encapsulate
the information extracted from the text.

Directed Acyclic Graph (DAG) We constructed
a simplified DAG to outline the logical framework
guiding the construction of the output taxonomy,
enabling a structured representation of the reason-
ing process. (See Figure 1)

After establishing the relations with the output
from the LLMs, we leveraged Pydantic (Colvin and
contributors, 2024), a Python library for data vali-
dation and settings management. Pydantic (Colvin
and contributors, 2024) facilitates data parsing and
validation, ensuring that the data adheres to the
expected types specified using Python’s standard
type hints. A Directed Acyclic Graph (DAG) can
impact model accuracy positively by ensuring that
validation functions are executed in a specific,
predictable order. This helped in maintaining
data integrity and correctness, thereby reducing
the likelihood of errors or inconsistencies in the
model’s predictions. Additionally, DAGs prevent
cyclic dependencies, which led to more stable and
reliable model behavior.

Date Normalization We normalized the data us-
ing both the natural language representation for the
temporal entity and the document time as a refer-
ence. We then transformed the temporal entity to
an absolute datetime.

• The date normalization process is integrated
into the validation procedure through a dedi-
cated class field validator. It involves multiple
steps to handle various date formats and poten-
tial failure scenarios, including cases where
external services like Duckling (Rasa, 2024)
may not parse the input successfully.

• Initially, the validator attempts to parse the
raw date string using the parse_timex func-

tion, which sends the string to Duckling (Rasa,
2024) and, if unsuccessful, to the SparkNLP
date normalizer annotator (John Snow Labs,
2024). These tools excel at interpreting nat-
ural language and complex date expressions,
providing robust initial parsing. If successful,
the parsed value undergoes further processing
with dateutil to ensure compatibility with
Python’s datetime object format.

• In case of failure with Duckling (Rasa, 2024)
and SparkNLP parsing (John Snow Labs,
2024), the validator employs fallback strate-
gies. It checks for ISO week format dates
and year-month-only strings, attempting to
convert them into complete dates. If these
strategies fail, the validator employs a battery
of parsers (e.g., dateutil_parser.parse,
pd.to_datetime, arrow.get) in a loop un-
til successful parsing occurs.

• Throughout the process, detailed logging cap-
tures various states and errors, aiding in de-
bugging and understanding parsing issues. Fi-
nally, if a valid date is obtained through any of
these strategies, it is stored as the normalized
value in the model, which may represent a full
date or just the year and month, depending on
the input string and specified context.

4.1.6 Serialization for Submission
Finally, we aggregated and serialized these seman-
tic objects into the submission format specified by
the competition guidelines.

4.2 Baseline Models
We fine-tined pre-trained Llama 2 (Touvron et al.,
2023) and Mistral 7B (Jiang et al., 2023) for our
submission to this shared task.

Llama 2 Llama 2 (Touvron et al., 2023) is a
collection of large language models (LLMs)
ranging from 7 billion to 70 billion parameters.
They are fine-tuned LLMs optimized for dialogue
applications.

Mistal 7B Mistral 7B (Jiang et al., 2023) is a lan-
guage model consisting of 7 billion parameters
designed to deliver superior performance and ef-
ficiency. Mistral 7B demonstrates superior per-
formance compared to the best open 13B model
(Llama 2) (Touvron et al., 2023) across all assessed
benchmarks and outperforms the leading released
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Figure 2: Prompt template: Prompt 1 for the relation label from the pairs (left) and Prompt 2 for the relation label
from the separate lists of drugs and dates (right).

34B model (Llama 1) in tasks such as reasoning,
mathematics, and code generation.

4.2.1 Validation and Quality of LLM
Response

We rewrote the THYME ontology on top of a typed
validation framework based on (pydantic (Colvin
and contributors, 2024)) library. We binded every
result from a prompted task to one of these ob-
jects: Thyme; in Subtask 1 the validation class for
the LLM response is the graph representation de-
fined in TypedTimedEvents:List[Tuple[Event,
Timex, TLinkType]]. We forced the output from
the LLM to conform to this type, and if not we kept
refining the prompt. After obtaining accurately
processed outputs from the LLM, the next step in-
volved aggregation. This entails concatenating the
parsed subgraphs from each chunk of the LLM
output into a deduplicated timeline at the patient
level.

During the inference phase, we focused on the
post processing techniques, such as parsing and
refining, applied to the output generated by the
Large Language Models (LLMs). These techniques
aim to enhance the quality and accuracy of the
extracted information, ensuring its suitability for
downstream analysis and applications.

4.3 Evaluation Metrics

Models were evaluated with the official evaluation
script2 on the test set. The following metrics were
used: Precision, Recall and F-score (Hossin and
Sulaiman, 2015). We reported performance as the
arithmetic mean of F-score.

4.4 Human Evaluation

In our study, two medical professionals conducted
a comparative analysis of chemotherapy timelines
generated by LLMs, specifically using the Llama 2
model for our initial submission, against a ground
truth established by the dataset (train and dev set)
provided by the challenge. The dataset combines
training, development, and testing sets, encompass-
ing a total of ninety five (n=95) patients. Train and
dev set contain sixty patients (n=60) patients and
the test set contains thirty five (n=35) patients. The
gold standard for the test set of thirty five (n=35)
patients was not released. Therefore, the two medi-
cal professionals randomly selected five patients (n
= 5) from each indication (breast, melanoma and
ovarian) and manually reviewed the predictions
generated by the LLMs, performed a qualitative
evaluation.

The LLMs demonstrated a tendency to misclas-

2https://github.com/HealthNLPorg/chemoTimelinesEval
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Indications (Train and Dev) Baseline Predictions Llama 2 Mistral 7B
Breast (Train) 0.427713 0.800827 0.695125 0.606543
Breast (Dev) 0.863988 0.888878 0.768916 0.723611
Melanoma (Dev) 0.455782 0.797009 0.633271 0.767574
Melanoma (Train) 0.765196 0.842803 0.882037 0.799432
Ovarian (Dev) 0.715926 0.607934 0.561085 0.625625
Ovarian (Train) 0.715137 0.816064 0.647571 0.595842

Table 3: Performance on relation extraction by approach.

Parameters Value Description
Chunk Size 256 number of tokens or words processed at a time during training or inference
Temperature 0.1 controls the randomness of the generated output
Seed 123 predefined starting point for the random no. generator used during training

Table 4: Hyperparameters used with LLama 2 (Touvron et al., 2023) and Mistral 7B (Jiang et al., 2023) for the
Chemotimelines 2024 Subtask 1.

sify CONTAINS relation over the BEGINS-ON and
ENDS-ON, resulting in low recall for BEGINS-ON and
ENDS-ON, and low precision for CONTAINS. For in-
stance, in one case, where the actual relationship
indicated Taxotere ENDS-ON at a specific date, the
model incorrectly predicted it as a CONTAINS rela-
tion.

Another noteworthy observation was the oc-
casional complete oversight of a relation by the
LLMs. Additionally, discrepancies arose when the
year was occasionally misinterpreted as a future
date due to errors in the dates mentioned in the
reports.

5 Results and Discussion

As previously stated, our study utilizes the two
large language models, Llama 2 (Touvron et al.,
2023) and Mistral 7B (Jiang et al., 2023). Table 3
shows the performance metrics on the relation ex-
traction NLP task for the training and development
set across three indications (Breast, Melanoma and
Ovarian). We evaluated the performance of both
Llama 2 and Mistral 7B against the baseline. No-
tably, we attained the highest performance on the
Melanoma training set with both Llama 2 and Mis-
tral 7B.

We utilized the default parameters for both
Llama 2 and Mistral 7B, except for the chunk size,
which was set to 256, temperature set to 0.1, and
seed set to 123 (Refer to Table 4). Chunk size
refers to the number of tokens or words processed
at a time during training or inference. Temperature
regulates the randomness of the generated output,
while the seed serves as the predefined starting

point for the random number generator used during
model training.

Table 5 illustrates the results of three test data
runs utilizing Llama 2 and Mistral 7B for Subtask
1. Our highest performing model was Llama 2,
achieving an F1 average score of 0.71, while
Mistral 7B attained an average F1 of 0.61. Llama
2 exhibited superior performance compared to
Mistral 7B, resulting in a higher rank. Specifically,
Llama 2 secured the 5th position in the average
score for Subtask 1, the 4th position for the
Melanoma indication, and the 7th position for
Breast and Ovarian indications.

Error Analysis Error analysis in Large Language
Models (LLMs) involves scrutinizing the model’s
prediction errors to discern their types, frequency,
and underlying causes. This entails evaluating the
model’s performance on a test dataset and cate-
gorizing errors into various types, including false
positives, false negatives, ambiguous cases, out-
of-distribution errors, and conceptual errors. By
analyzing these errors, insights can be gleaned re-
garding patterns and areas for improvement in the
model. This analysis guides strategies for enhanc-
ing the model’s performance through fine-tuning,
refining training data, and optimizing input repre-
sentations. Furthermore, error analysis is crucial
for establishing confidence in the model’s predic-
tions and comprehending its limitations in real-
world scenarios.

Figure 3 shows the error analysis presented com-
pares Llama 2 and Mistral for the baseline es-
tablished by the organizers, as well as prediction
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Runs LLMs Average Score Breast Melanoma Ovarian
Run 1 Llama 2 0.71 0.68 0.83 0.61
Run 2 Llama 2 0.68 0.66 0.80 0.59
Run 3 Mistral 7B 0.61 0.62 0.59 0.62

Table 5: Results of Runs on Test Data for Subtask 1.

Figure 3: Error Analysis for Subtask 1.

scores derived by directly utilizing the golden re-
lations as the timeline. The results from Llama 2
and Mistral 7B are based on the question answering
prompting approach used to generate our timelines.

The metrics reveal lower precision within the
system, characterized by exceptionally high recall.
Further investigation into the distribution of false
positives across event types or relation categories
may unveil discernible patterns. It appears that the
Large Language Model (LLM) is indiscriminately
predicting all instances as if they are related events
to timelines.

6 Conclusion and Future Work

In this paper, we present our submission to the
Chemotimelines 2024 shared tasks (Yao et al.,
2024) to build chemotherapy treatment time-
lines using Electronic Health Records (EHRs)
notes from various sources, such as primary care

providers, oncology departments, discharge sum-
maries, emergency department, pathology, radi-
ology, and more. We used zero shot prompted
relation extraction (Wang et al., 2023; Jun and
et al., 2022) driven by the THYME ontol-
ogy (Styler IV et al., 2014) and temporal relation
annotations (Wright-Bettner et al., 2020).

We evaluated pre-trained Large Language Mod-
els (LLMs) like Llama 2 (Touvron et al., 2023),
Mistral 7B (Jiang et al., 2023), Zephyr (Tun-
stall et al., 2023), MEDITRON-70B (Chen et al.,
2023d), and Mixtral of Experts (Jiang et al., 2024)
with different sizes and architectures. We only re-
ported results on Llama 2 (Touvron et al., 2023)
and Mistral 7B (Jiang et al., 2023). We conducted
a series of experiments with different setups to im-
prove the system’s performance. From our analysis,
we conclude that our approach helped us determine
which model works best for this shared task. We
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conclude that LLMs provide a promising path for-
ward for extracting timelines that contextualize can-
cer treatment, which were previously unavailable.
We also show that our model provides high recall
that is beneficial for instances where high sensitiv-
ity is required such as with output-sensitive pre-
dictions like cancer prediction models. However,
due to the auto-generation approach and minimiz-
ing human intervention, the models we developed
demonstrated relative low precision. Precision was
evaluated with two physicians validating the accu-
racy of the generated chemotherapy timelines.

Our proposed methodology represents a signifi-
cant advancement in the field, providing a flexible
and efficient solution for relation extraction tasks
in natural language processing. Large Language
Models (LLMs) offer a promising approach for
auto-generating chemotimelines from Electronic
Health Records (EHRs) due to their advanced natu-
ral language understanding capabilities, contextual
understanding, and semantic representation of med-
ical information. LLMs can comprehend complex
medical texts, capture contextual relationships be-
tween different medical events, and generate rich
semantic representations of medical concepts and
events mentioned in EHRs. As we see in our cur-
rent study, our effort to attempt fully auto-generated
chemotherapy timelines have shown great promise
in terms of recall but have a negative impact on
precision. In future studies we will explore further
training rounds or human-in-the-loop models to
explore the right balance between automation and
human guided outputs. Nevertheless, our study
demonstrates great promise in integrated LLM-
generated chemotherapy timelines that have the
potential to alleviate documentation and data har-
monization burdens, potentially easing clinician
workload and enhancing quality of patient care.

Exploring the potential of LLMs is an emerging
area in research. We have experimented with two
state-of-the-art LLMs (Llama 2 and Mistral 7B) for
this task, comparing each with the gold standard for
various cancer types. Our approach was to main-
tain a broad, domain-agnostic perspective, treating
it as a high-level NLP relation detection task. We
assumed that the underlying LLMs were general-
purpose. In the future, we aim to explore domain-
specific LLMs tailored for biomedical texts, such
as JSL-MedMNX-7B (JSL-Med-Sft-Llama-3-8B,
2024), which could offer improved accuracy by
better handling specialized language and data struc-

tures inherent in this domain.

Furthermore, we aim to validate the effectiveness
of our LLM-based system across diverse healthcare
datasets to enhance its performance. Additionally,
we intend to conduct comprehensive analysis of
the generated chemotherapy timelines to fine-tune
them further and improve precision. This includes
conducting in-depth error analyses to pinpoint the
root causes of false positives. Our goal is to iden-
tify any consistent patterns, words, or phrases that
the model may misinterpret, facilitating targeted
improvements to enhance its accuracy.

Limitations

While leveraging Large Language Models (LLMs)
for creating chemotherapy timelines from clinical
notes offers numerous benefits, it also presents sev-
eral limitations: 1. The accuracy and reliability of
generated timelines heavily depend on the quality
and consistency of input clinical notes, potentially
leading to inaccuracies or omissions. 2. LLMs
may exhibit biases inherent in the training data,
leading to disparities, inaccuracies or generaliza-
tion in the generated timelines, especially when
applied to diverse patient populations. 3. LLMs are
complex models with billions of parameters, mak-
ing it challenging to interpret their decision-making
processes, limiting clinicians’ ability to trust and
validate the generated outputs. 4. Training and
fine-tuning LLMs for healthcare applications, in-
cluding generating chemotherapy timelines, require
significant computational resources, expertise, and
time. Due to time constraints, we investigated a
narrow range of models and hyperparameter con-
figurations. Given their demonstrated proficiency
in natural language processing, these models serve
as an ideal starting point for extracting pertinent
clinical events and concepts essential for construct-
ing treatment timelines. 5. Despite the automation
capabilities of LLMs, human oversight and valida-
tion are still essential to ensure the accuracy and
relevance of the generated chemotherapy timelines.
Clinicians must review and validate the outputs to
identify and correct any inaccuracies or inconsis-
tencies. In our study, two medical professionals
compared chemotherapy timelines generated by
LLMs, particularly the Llama 2 (Touvron et al.,
2023) model, with a ground truth dataset provided
by the challenge.
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Ethics Statement

Leveraging Large Language Models (LLMs) for
constructing timelines of chemotherapy treatments
using Electronic Health Records (EHR) notes
raises numerous ethical considerations. Foremost
among these is the imperative to safeguard patient
privacy and confidentiality, given the sensitive na-
ture of personal health information stored in EHRs.
By leveraging openly available LLMs, physicians
can inadvertently expose patient data to private
companies (Blease, 2024). Robust data security
measures, and digital literacy training is essential
to thwart unauthorized patient data exposure to
LLMs or data breaches, thereby averting potential
cyber threats. Additionally, obtaining informed
consent from patients regarding the utilization of
their health data is paramount to uphold patient
autonomy and foster transparency. Ensuring the
accuracy and integrity of the data is vital to mit-
igate risks of erroneous treatment timelines that
could lead to patient harm. Moreover, LLMs may
perpetuate biases inherent in the data, thereby in-
troducing disparities or unfairness in the generated
timelines (Singh et al., 2023). Prioritizing algorith-
mic transparency and accountability is imperative
to identify and mitigate biases in LLM decision-
making processes. Furthermore, granting patients
control over their health data, including access and
consent for research or analytical purposes, is fun-
damental in upholding patient autonomy and foster-
ing trust in the healthcare system. The organizers of
the Chemotimelines 2024 at NAACL-ClinicalNLP
Workshop shared tasks (Yao et al., 2024) have pro-
vided a de-identified dataset.

In leveraging Large Language Models (LLMs)
for Open Book Question Answering (QA), it’s
crucial to address the potential ethical concerns
surrounding the minimization of generation diver-
gence risk. This entails ensuring that the responses
generated by LLMs align closely with the intended
context and accurately reflect the information avail-
able in the open book. By minimizing generation
divergence risk, we aim to uphold the integrity of
the QA process, promote transparency, and miti-
gate the dissemination of misinformation or biased
responses. Additionally, efforts should be made to
continually evaluate and refine LLMs to enhance
their reliability and trustworthiness in providing
accurate and contextually appropriate answers.

It is noteworthy that LLMs often demonstrate a
propensity to produce hallucinations when generat-

ing coherent answers, underscoring the necessity
for human supervision in their utilization. Ensuring
human supervision during the deployment of LLMs
in healthcare contexts is crucial to validate the ac-
curacy, appropriateness and potential harmfulness
of the generated outputs and to mitigate potential
risks or errors (Chen et al., 2023a). Moreover,
it is crucial to recognize that the present system
serves as an experimental tool intended to catalyze
further research, including additional fine-tuning
and model explainability studies. Such endeav-
ors are indispensable before these systems can be
safely incorporated into clinical settings, ensuring
their reliability and efficacy in supporting clinical
decision-making processes. Additionally, another
critical aspect deserving careful consideration is
the explainability and interpretability of Language
Models (LLMs) when deployed in healthcare con-
texts.
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