
Proceedings of the 6th Clinical Natural Language Processing Workshop, pages 431–438
June 21, 2024 ©2024 Association for Computational Linguistics

AIRI NLP Team at EHRSQL 2024 Shared Task:
T5 and Logistic Regression to the Rescue

Oleg Somov1,2, Aleksei Dontsov1, Elena Tutubalina1,3,4

1AIRI, 2MIPT, 3Sber AI, 4Kazan Federal University
Correspondence: somov@airi.net

Abstract

This paper presents a system developed for
the Clinical NLP 2024 Shared Task, focus-
ing on reliable Text-to-SQL modeling on Elec-
tronic Health Records (EHRs). The goal is to
create a model that accurately generates SQL
queries for answerable questions while avoid-
ing incorrect responses and handling unan-
swerable queries. Our approach comprises
three main components: a query correspon-
dence model, a Text-to-SQL model, and an
SQL verifier. For the query correspondence
model, we trained a logistic regression model
using hand-crafted features to distinguish be-
tween answerable and unanswerable queries.
As for the text-to-SQL model, we utilized T5-
3B as a pre-trained language model, further
fine-tuned on pairs of natural language ques-
tions and corresponding SQL queries. Finally,
we applied the SQL verifier to inspect the re-
sulting SQL queries. During the evaluation
stage of the shared task, our system achieved
an accuracy of 68.9% (metric version without
penalty), positioning it at the fifth-place rank-
ing. While our approach did not surpass solu-
tions based on large language models (LMMs)
like ChatGPT, it demonstrates the promising
potential of domain-specific specialized mod-
els that are more resource-efficient. The code
is publicly available at https://github.com/
runnerup96/EHRSQL-text2sql-solution.

1 Introduction

Electronic health records (EHRs) play a critical
role in storing comprehensive medical histories
within hospital settings, capturing everything from
patient admissions to treatment and discharge.
However, efficiently retrieving relevant informa-
tion from these records remains a significant chal-
lenge, particularly from complex medical relational
databases.

This paper focuses on enhancing a text-to-SQL
system specifically designed for the medical do-
main. The aim is to improve the retrieval pro-

Figure 1: The schema intersection algorithm. We match
normalized n-grams of an input natural language ques-
tion “How much is the cost for the drug nystatin cream?”
against normalized database (DB) content. As we can
see on schema intersection count distribution, the NULL
questions have much less schema intersection elements
in comparison to SQL questions. For more details,
please refer to Section 3.

cess of patient information and enable better clin-
ical decision-making. The objective is to develop
a model capable of accurately generating SQL
queries for answerable questions while effectively
handling unanswerable queries and avoiding incor-
rect responses. In other words, when faced with
unanswerable questions, the model should refrain
from generating any SQL prediction and indicate
the absence of an answer by returning NULL.

To conduct experiments, we utilize the Text-to-
SQL benchmark (Lee et al., 2022) provided by the
organizers of the Clinical NLP 2024 task (Lee et al.,
2024). This benchmark consists of pairs of input
utterances and expected SQL queries, including
cases where generating an SQL query is impossible
for a given question. This dataset is linked to two
open-source EHR databases—MIMIC-III (John-
son et al., 2016) and eICU (Pollard et al., 2018).
This benchmark includes questions that address the
actual needs of a hospital and incorporate various
time expressions crucial to daily healthcare work.

In this paper, we describe our solution for the

431

mailto:somov@airi.net
https://github.com/runnerup96/EHRSQL-text2sql-solution
https://github.com/runnerup96/EHRSQL-text2sql-solution

Clinical NLP 2024 shared task on reliable Text-to-
SQL. As shown in Figure 2, our system consists of
three components - query correspondence model,
Text-to-SQL model, and SQL result inspector. To
sum up, the system takes the user’s query as in-
put and goes through the following steps: feature
extraction, query scoring using the query corre-
spondence model and alignment check, SQL gener-
ation using a Text-to-SQL model with question and
schema input representation, SQL results inspec-
tion, execution of the generated query, and check-
ing if the execution result meets the requirements.
If the requirements are met, the system returns the
result to the user.

The paper is organized as follows. Section 2
presents related work on Text-to-SQL corpora and
state-of-the-art (SoTA) models. We describe our
model with three components in Section 3. Experi-
ments with baselines and our model are presented
in Section 4. Finally, we discuss errors and con-
clude the work in Sections 5 and 6, respectively.

2 Related work

Text-to-SQL currently is one of the most develop-
ing and promising research areas in the field of
semantic parsing. Well-known public leaderboard
Spider (Yu et al., 2018) popularized the task, and
Text-to-SQL domain developed many directions
and specializations. Spider dataset is a complex
and cross-domain Text-to-SQL dataset which con-
sists of 10181 questions with 5693 SQL queries on
200 databases. The main goal of the dataset is to
generalize to new databases. However, the Spider
dataset does not contain unanswerable questions.
Spider also gave rise to more complex datasets
like BIRD (Li et al., 2024), which paid attention
not only to SQL query complexity (introduction of
window functions, etc.) but also to the optimality
of the generated query. BIRD databases are close
to real-world examples, with tables consisting of
millions of data rows; hence, the optimal SQL is
required.

Another dataset named CoSQL (Yu et al., 2019)
raised questions about ambiguity and the system’s
ability to handle such questions. It is a dialogue-
based Text-to-SQL benchmark, which consists of
the following dialogue acts - answering user ques-
tions with SQL, double checking the user intent
if the questions are ambiguous, or the system re-
minder to the user that the question is not related
to the database.

Spider leaderboard gave rise to specialized Text-
to-SQL architectures. Naturally, SoTA solutions
adapted the following Text-to-SQL solutions -
schema linking stage, encoding of question and
schema, and subsequent decoding. Starting from
most notable solutions like BRIDGE, which in-
duced database content into training process (Lin
et al., 2020) and RAT-SQL, which modified trans-
former architecture for question with schema in-
teraction and specialized grammar-based decoding
process (Wang et al., 2021) coming to the fine-
tuning approaches which reached its peak in RES-
DSQL (Li et al., 2023) approach and PICKARD
(Scholak et al., 2021). LLMs are also present in
the leaderboard in the form of in-context learn-
ing few-shot approaches(Gao et al., 2023a) and
SQL debugging stages (Pourreza and Rafiei, 2024).
Most solutions utilize ChatGPT-4 as a core model
and experiment with different prompt strategies for
stages of schema linking, query generation, and
SQL debugging.

Increased attention towards Text-to-SQL domain
detected the problem of generalization in seman-
tic parsing. The Spider dataset focused on cross-
domain generalization, but the work of (Suhr et al.,
2020) made the challenges more visible, introduc-
ing the challenges of single database split compared
to cross-database setting. Recently, Somov and Tu-
tubalina (2023) evaluated the generalization capa-
bilities of supervised models on the original, mul-
tilingual, and target length splits of the improved
version of the Spider dataset called PAUQ (Bak-
shandaeva et al., 2022). Results indicate that the
models can generalize well to unseen simple SQL’s,
while multilingual split shows that some models
benefit from learning on the translated task.

Overall, the ongoing progress in dataset develop-
ment and the advancement of specialized architec-
tures have significantly contributed to a deeper un-
derstanding of the Text-to-SQL task and its applica-
tions across various domains, including medicine.

3 Main method

Our final solution consists of 3 components - query
correspondence module, fine-tuned Text-to-SQL
model, and SQL result inspector, which checks the
result of the generated query. The system pipeline
is presented in Figure 2. The system output can be
NULL if the system considers the query unanswer-
able or results if the system can answer the query.
This section will describe our validation schema

432

Figure 2: The system overview. The user query inputs into the Text-to-SQL system. The feature extractor extracts
features for the query correspondence model. The query correspondence model scores the query by extracted
features. If the question is aligned with our system, we pass the input question into Text-to-SQL generation model.
It consists of question and schema input representation component and Text-to-SQL model. The generated query is
passed to the SQL results inspector, which checks weather the query can be executed and checks the result of the
execution. If the query execution result meets the requirement, we return the result to the user.

and all the system components in detail.

3.1 Validation schema

For our method evaluation, we have developed our
validation schema. Our solution consists of two
machine learning models - Query Correspondence
model and Text-to-SQL model. The leader board
submission of NULL revealed that the evaluation
and test sets consist of approximately 20% NULL’s
while our training set has approximately 9% of
NULL’s. For the Query Correspondence model,
we have prepared a similar test distribution - the
training set has 10% of NULLs while the validation
set has 20% of nulls. Since we do not observe
the distribution shift for SQL question, for Text-
to-SQL model, we prepared an i.i.d. splitting for
evaluation.

3.2 Query correspondence model

The query correspondence model (QCM) is a com-
ponent that analyzes input questions and discards
them if they look like questions that can not be
answered based on database content. It consists of
two components - a feature extractor and a machine
learning model. We get the input question and run
preprocessing. The preprocessing steps include -
punctuation cleaning, stop-word exclusion, lemma-
tization, and lowercase casting. Then, we extract
3 features from the processed question - schema
intersection feature, first-word feature, and query
length feature.

• Schema intersection feature is the number
of elements from the database(attributes, ta-
bles, values) in the question. We extract and
preprocess database content with punctuation

cleaning, lemmatization, and lowercase cast-
ing. We merge attributes, tables, and values
into one set. The processed question is tok-
enized by spaces and transformed into another
set. The intersection between these two sets
is the result feature value. On the public test
set, the feature for detection of NULL scored
18.77%, detecting 94% of NULL questions.
Since the feature proved to be important for
NULL question discarding, we later used it in
our experiment as a decision component with
a manually selected threshold. The schema
intersection algorithm and corresponding in-
tersection count distribution is presented in
Figure 1.

• We examined the intersection of the processed
NULL questions beginning (first 2 words)
with processed SQL questions beginning and
found out that there is only an 8% intersection
between sentence beginnings. Therefore, we
matched all the NULL first 2 words against
the input question. If the input processed sen-
tence is matched against processed null sen-
tence beginnings, the feature value is True and
False otherwise.

• We have analyzed NULL question length and
SQL question length and saw that the average
length of NULL questions is 11 (σ = 3), and
the average length of SQL questions is 15
(σ = 6). Due to such differences, we also
utilized question process length as a feature.

During our experiments, we have also used other
features, like pre-trained language model maxi-
mum entropy score, SVM classifier (Vapnik and

433

Chervonenkis, 1974) score based on TF-IDF en-
coder, pre-trained Transformer (Devlin et al., 2018)
encoder-based retrieval features (distance to clos-
est question with SQL, distance to closest ques-
tion with NULL, number of NULL candidates
@5/@10/@100 - but these features made our re-
sults only worse on public test set, so we have
discarded them.

We pass these selected features through normal-
ization and then pass them to a logistic regression
model. We trained this model on the binary task
on standardized extracted features and predicted
SQL vs. NULL for every question. We evaluate
our solution based on two metrics: sensitivity (Se)
and specificity (Sp).

Se =
TP

TP + FN
, Sp =

TN

TN + FP

On our split, the model gets the average of sensi-
tivity and specificity equal to 0.91 on our validation
set with a 0.5 threshold. If the question is predicted
as NULL, we do not pass the question further.

3.3 Text-to-SQL model
The next step is the Text-to-SQL model. We chose
the T5-3B (Raffel et al., 2020) model, and our eval-
uation showed its high performance. If the query
correspondence model evaluates the question as an-
swerable, we pass the question to the text-to-SQL
model. We wanted the model to learn only Text-to-
SQL task. Therefore, we have trained the model
on only text-to-SQL pairs. On our validation set,
the execution match from the benchmark evalua-
tion script with this model was Acc0 = 99%, Acc5=
92%, Acc10=86%, AccN=−501% on Text-to-SQL
pairs only. We use classic input representation 1
as a concatenation of database name, question, and
linearized schema representation of tables T and
columns C (Shaw et al., 2021).

X = Database name : Question |
[T1] : [C11], ...[C1|T1|] | [T2] : [C21], ... (1)

We normalized the target SQL query with classic
Spider Text-to-SQL fine-tuned model preprocess-
ing as in RESDSQL (Li et al., 2023). The target
representation during training was the following:

Y = Database name | Query (2)

We have trained our T5-3B model for 16
epochs(approximately 4000 iterations) with a train-
ing batch size of 2 and gradient accumulation batch

Figure 3: T5-3B training process on Text-to-SQL cus-
tom i.i.d. validation split from section 3.1. On the right
exact match training plot, we see that the model decently
learns to correctly align novel questions to SQL queries
as the validation loss decreases.

size of 8. The learning rate was 5e-5. Our input
maximum length was 800, and the target length
was 514. As demonstrated in Figure 3 we see that
the model successfully converged and reached de-
cent exact match accuracy.

3.4 SQL result inspector

After generation, we pass the result SQL to the SQL
inspector. We rely on the hypothesis that the user
must be very specific in his question to correctly
match the elements of the schema in his question
and get an answer to his question. Therefore, if
the query fails and returns a None or 0 value for
aggregate queries - we treat it as a false and exit
with NULL. We examined the training SQL query
outputs and discovered that approximately 90%
of training queries return some meaningful result,
meaning not None or 0 value for aggregate queries.
We evaluate the SQL inspector on the EHRSQL
train set - we run T5 prediction through it and evalu-
ate how many generated SQL queries the inspector
will discard and how many will approve. As in the
Query Correspondence model, we measure sensi-
tivity and specificity as in Equations 3.2. We get
the average of sensitivity and specificity of 96%.

4 Experiments

This section describes our most successful attempts
on the test leaderboard. Solutions feature schema
intersection algorithm explained in Sec. 3.2 and
SQL inspector explained in Sec. 3.4. In Table 1,
we present official evaluation scores1: Accuracy0,
Accuracy5, Accuracy10, AccuracyN. These met-
rics differ in penalty strategy for wrong predictions.
In particular, Accuracy0 does not penalize any mis-

1For details, see https://www.codabench.org/
competitions/1889/

434

https://www.codabench.org/competitions/1889/
https://www.codabench.org/competitions/1889/

Method Accuracy0 Accuracy5 Accuracy10 AccuracyN
1 Schema intersection@2 + ChatGPT ICL 5-shot 55 -41.8 -138.6 -22545
2 Schema intersection@2 + T5-3B + ChatGPT debugger + SQL inspector 53.3 -27.2 -107.8 -18746.7
3 Schema intersection@2 + T5-3B + SQL inspector 64.4 53.3 42.2 -2535.6
4 QCM + T5-3B + SQL inspector 68.9 56.5 44 -2831.1

Table 1: Experimental results of our systems on the official test set.

takes, while Accuracy5 counts a -5 penalty for each
mistake result.

4.1 ChatGPT: in-context learning with
few-shot examples

In 2020, the paradigm of in-context learning, in-
troduced by Radford et al. (2019), emerged as a
powerful technique that enables Language Model
Models (LLMs) to solve problems without requir-
ing fine-tuning. We effectively leverage the poten-
tial of few-shot learning by exposing the model to a
few examples from the training set along with their
corresponding solutions. To facilitate this process,
we create an index of training questions with cor-
responding SQL query by extracting embedding
of the question using SentenceBERT2 (Reimers
and Gurevych, 2019). To identify the most simi-
lar matches, we calculate the Euclidean distance
between the index question vectors and the em-
bedding of the natural language question. These
selected questions, along with their corresponding
SQL queries, are included in the prompt.

Furthermore, to provide the LLM with an under-
standing of the database’s structure, we append a
textual representation of the entire database schema
and question at the end of the prompt. This ap-
proach mirrors the methodology employed in the
DAIL-SQL technique (Gao et al., 2023b).

The final prompt is further passed into OpenAI
API3, model version gpt-3.5-turbo.

After gathering the results, we filtered out
queries that did not pass our schema intersection
manual threshold of 2.

4.2 ChatGPT debugger

Recent advances on the Spider leaderboard showed
that the ChatGPT can not only work as an in-
context learning algorithm but can also refine
a given query. We have utilized the DIN-SQL
(Pourreza and Rafiei, 2024) approach for self-
correction. To address this, DIN-SQL proposed

2https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

3https://platform.openai.com

a self-correction module where the model is in-
structed to correct those minor mistakes. This is
achieved in a zero-shot setting, where only the
buggy code is provided to the model, and it is
asked to fix the bugs. DIN-SQL proposed two
different prompts for the self-correction module:
generic and gentle. The generic prompt, DIN-SQL
requests the model to identify and correct the er-
rors in the “BUGGY SQL”. The gentle prompt,
on the other hand, does not assume the SQL query
is buggy; instead, it asks the model to check for
any potential issues and provides some hints. Since
our Text-to-SQL T5-3B model performed well on
our validation split, we have utilized a gentle ap-
proach for the model to fix potential bugs. We have
used the original implementation 4. Also, DIN-
SQL experiments showed that a gentle prompt is
more effective for the GPT-4 model, which proved
to be better at this task. After gathering the re-
sults, we filtered out queries that did not pass our
schema intersection manual threshold of 2. The
query debugger algorithm resulted in quality dete-
rioration in comparison to our final solution. The
GPT-4 debugger of generated T5 queries usually
just deleted some comparisons or conditions from
the final query, making more false positive predic-
tions.

4.3 RESDSQL fine-tuning

We have also tried to fine-tune the RESDSQL solu-
tion to the EHRSQL task. RESDSQL is fine-tuned
SoTA on the Spider leaderboard. It consists of
two training phases - cross-encoder classifier for
question-relevant columns and tables detection and
query generation stage via a pre-trained language
model. During training in the query generation
stage, the decoder input is prefixed with SQL skele-
ton, forcing the model to generate a correct SQL
template and then fill it with schema elements and
values. Although the cross-encoder component had
a validation AUC score for detection of tables and
columns 97.7%, the result execution accuracy0 on

4https://github.com/MohammadrezaPourreza/
Few-shot-NL2SQL-with-prompting

435

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://platform.openai.com
https://github.com/MohammadrezaPourreza/Few-shot-NL2SQL-with-prompting
https://github.com/MohammadrezaPourreza/Few-shot-NL2SQL-with-prompting

Figure 4: The distribution of embedding in two-
dimensional space via t-SNE of our custom split of
original training EHRSQL data of train and validation
and along with test questions as in 3.1 for evaluation
of Query Correspondence Model. trainSQL stands for
train question embeddings which have SQL, trainNULL

which do not.valSQL stands for val question embed-
dings which have SQL, valNULL which do not. test
stands for EHRSQL test question embeddings.

our Text-to-SQL validation set was 77.5%. We sus-
pect the problem is the inconsistency of the SQL
skeleton with the target SQL query.

For example, almost every second SQL
EHRSQL query contains strftime function,
which includes two attributes; however, the RESD-
SQL SQL skeleton, which is prefixed in the query
generation model, contained only one attribute.

4.4 Experimental results

As shown in Table 1, we have conducted 4 submis-
sion experiments. All of our experiments use the
schema intersection feature. The first three use it
as a decision feature, while the final solution model
uses it as a feature in QCM. We see that the first ex-
periment was the worst. There was no SQL inspec-
tor phase, and ChatGPT itself generated incorrect
queries. Then, we enhanced our solution with the
SQL inspector component and used ChatGPT as
a debugger for our T5 predictions. Unfortunately,
the debug mode worsened SQL predictions, but
due to the SQL inspector, we had fewer false posi-
tive predictions, as we can see in the accuracies of
a penalty. We concentrated on purely T5-3B and
other components in our following experiments. At
first, we used only the schema intersection feature
to discard unanswerable queries, but after careful

exploratory data analysis, we found more features
to be a good signal for our decision - so we devel-
oped a query correspondence model, which gave
us the highest score.

Although we have good accuracy across all of
our components on our validation split, we have
much lower results on the test leaderboard. In
Figure 4, we have plotted reduced SentenceBERT
questions embeddings via the t-SNE algorithm on
a coordinate plane. We see that the testing ques-
tions are shifted relatively to training data in terms
of SQL and NULL questions. Although we also
mimic data drift in our validation schema as in sec-
tion 3.1, our validation questions are still closer to
training questions than test questions. The solu-
tion to that problem might be running a solution
in production mode with activated data markup for
online and offline metrics alignment.

5 Error analysis

We manually checked the errors of our final sys-
tem components on our validations sets from 3.1.
The Text-to-SQL T5-3B errors mostly consist of
regular errors - ASC to DESC mismatch, wrong col-
umn, missed comparison expression. Sometimes
the model shows the overfitting signs - looping
the prediction output, adding wrong syntactic con-
straints (like adding not needed GROUP BY) or extra
symbol to value ('10-31' −→ '10-31\').

The query correspondence errors come mostly
from the starting word feature - although it helps to
identify questions with starting phrases that were
in the training set, it does not help to combat novel
starting phrases that occur in the test set.

As we pointed out, we evaluated our query in-
spector on sensitivity and specificity metrics. Speci-
ficity is 99%, and sensitivity is 94%. We can see
that we are stricter than necessary to generated
queries, and sometimes correct SQL can return the
result of None or 0, but we will not return it to the
user.

6 Discussion and conclusion

In this work, we have built a reliable Text-to-SQL
solution. We have developed our validation schema
for model evaluation and submitted our final sys-
tem results to the EHRSQL leaderboard. Our so-
lution consists of 3 components - query correspon-
dence model, Text-to-SQL generation model, and
SQL inspector. During validation, we measured our
performance based on sensitivity and specificity

436

metrics to account for NULL queries and execution
match for the query generation model. The sensitiv-
ity and specificity metrics for the query correspon-
dence model and SQL inspector are 81%/99% and
94%/99% accordingly. The execution accuracy of
Text-to-SQL model is 99%. Our components are
independent of each other; therefore, we can calcu-
late the product probability that the NULL question
will be discarded is 98%, while the probability that
the SQL question will be answered correctly is
75%.

The advantages of our system are the following:

• The solution discards unanswerable queries
with high precision while keeping a decent
execution accuracy.

• Our components can be independently opti-
mized.

• The solution is interpretable because every
component has its single responsibility.

• Our model can be used on-premise without
confidential data leaks to external language
models.

The disadvantages of the system are:

• The cascading effect of the system leads to
lower execution accuracy.

• Weak out-of-distribution robustness.

• We employ a heavy Text-to-SQL T5-3B pre-
trained language model, which needs signifi-
cant resources for deployment.

As a future work direction, we see the necessity
of developing reliable, robust, and lightweight spe-
cialized solutions. These solutions can be run and
maintained on-premise without exposing personal
data to external LLMs.

Acknowledgments

The work of E.T. has been supported by the Rus-
sian Science Foundation grant # 23-11-00358. We
would also like to thank the anonymous reviewers
for their comments on this paper.

Ethics Statement

One limitation of using databases for retrieval is
that these sources may not be complete and can in-
clude errors. T5-3B, like any language model, may

be subject to representation biases and potentially
misleading results, which is a critical concern in
the healthcare domain.

All pre-trained language models and datasets
used in this work are publicly available for research
purposes.

We honor and support the ACL Code of Ethics.

References
Daria Bakshandaeva, Oleg Somov, Ekaterina Dmitrieva,

Vera Davydova, and Elena Tutubalina. 2022. Pauq:
Text-to-sql in russian. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
2355–2376.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023a.
Text-to-sql empowered by large language mod-
els: A benchmark evaluation. arXiv preprint
arXiv:2308.15363.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023b.
Text-to-sql empowered by large language models: A
benchmark evaluation.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H
Lehman, Mengling Feng, Mohammad Ghassemi,
Benjamin Moody, Peter Szolovits, Leo Anthony Celi,
and Roger G Mark. 2016. Mimic-iii, a freely accessi-
ble critical care database. Scientific data, 3(1):1–9.

Gyubok Lee, Hyeonji Hwang, Seongsu Bae, Yeonsu
Kwon, Woncheol Shin, Seongjun Yang, Minjoon Seo,
Jong-Yeup Kim, and Edward Choi. 2022. Ehrsql: A
practical text-to-sql benchmark for electronic health
records. Advances in Neural Information Processing
Systems, 35:15589–15601.

Gyubok Lee, Sunjun Kweon, Seongsu Bae, and Edward
Choi. 2024. Overview of the ehrsql 2024 shared task
on reliable text-to-sql modeling on electronic health
records. In Proceedings of the 6th Clinical Natural
Language Processing Workshop, Mexico City, Mex-
ico. Association for Computational Linguistics.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 37, pages 13067–13075.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

437

http://arxiv.org/abs/2308.15363
http://arxiv.org/abs/2308.15363

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2020. Bridging textual and tabular data for cross-
domain text-to-sql semantic parsing. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 4870–4888.

Tom J Pollard, Alistair EW Johnson, Jesse D Raffa,
Leo A Celi, Roger G Mark, and Omar Badawi. 2018.
The eicu collaborative research database, a freely
available multi-center database for critical care re-
search. Scientific data, 5(1):1–13.

Mohammadreza Pourreza and Davood Rafiei. 2024.
Din-sql: Decomposed in-context learning of text-
to-sql with self-correction. Advances in Neural Infor-
mation Processing Systems, 36.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional generaliza-
tion and natural language variation: Can a semantic
parsing approach handle both? In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 922–938, Online. Asso-
ciation for Computational Linguistics.

Oleg Somov and Elena Tutubalina. 2023. Shifted pauq:
Distribution shift in text-to-sql. In Proceedings of the
1st GenBench Workshop on (Benchmarking) Gener-
alisation in NLP, pages 214–220.

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Ken-
ton Lee. 2020. Exploring unexplored generalization
challenges for cross-database semantic parsing. In

Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8372–
8388, Online. Association for Computational Lin-
guistics.

Vladimir Vapnik and Alexey Chervonenkis. 1974. The-
ory of pattern recognition.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2021. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers.

Tao Yu, Rui Zhang, He Yang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, et al. 2019. Cosql: A conversational
text-to-sql challenge towards cross-domain natural
language interfaces to databases. arXiv preprint
arXiv:1909.05378.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

438

https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2020.acl-main.742
https://doi.org/10.18653/v1/2020.acl-main.742
http://arxiv.org/abs/1911.04942
http://arxiv.org/abs/1911.04942
http://arxiv.org/abs/1911.04942

