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Abstract

This paper presents our approach for the
2024 ChemoTimelines shared task. Specifi-
cally, we explored using Large Language Mod-
els (LLMs) for temporal relation extraction.
We evaluate multiple model variations based
on how the training data is used. For in-
stance, we transform the task into a question-
answering problem and use QA pairs to extract
chemo-related events and their temporal rela-
tions. Next, we add all the documents to each
question-answer pair as examples in our train-
ing dataset. Finally, we explore adding unla-
beled data for continued pretraining. Each ad-
dition is done iteratively. Our results show that
adding the document helps, but unlabeled data
does not yield performance improvements, pos-
sibly because we used only 1% of the available
data. Moreover, we find that instruction-tuned
models still substantially underperform more
traditional systems (e.g., EntityBERT).

1 Introduction

Extracting chemotherapy treatment timelines from
clinical notes is crucial in Clinical Natural Lan-
guage Processing (ClinicalNLP) for enhancing pa-
tient care and advancing cancer research (Cui et al.,
2023). Researchers can construct detailed treat-
ment timelines within Electronic Health Records
(EHR) across various medical domains by identify-
ing and extracting events related to chemotherapy
treatments and their temporal information from
medical documents. This work aims to develop
an end-to-end system utilizing Large Language
Models (LLMs) in a Question-Answer format for
chemotherapy timeline extraction. Such a system
will aid healthcare professionals in comprehending
patient histories, thereby improving clinical text-
mining efforts and assisting physicians in making
more informed care decisions. Additionally, it will
contribute to research in personalized cancer treat-
ment development.

The main approach in clinical entity and rela-
tion extraction tasks heavily relies on pre-trained,
domain-specific models like BioBERT (Lee et al.,
2020), ClinicalBERT (Alsentzer et al., 2019), Pub-
MedBERT (Gu et al., 2021), and EntityBERT (Lin
et al., 2021). These models are trained on a broad
range of biomedical corpora, like PubMed articles
and clinical notes, to understand the complex lan-
guage of the clinical domain, which is often suc-
cinct and laden with phrases, jargon, non-standard
expressions, abbreviations, assumptions, and spe-
cialized knowledge. These models are then adapted
or fine-tuned for specific tasks such as named entity
recognition (NER), relation extraction (RE), and
event extraction (EE), which often employ strate-
gies like multi-task learning (MTL) and an all-in-
one scheme to enhance performance across multi-
ple tasks by leveraging shared knowledge and rep-
resentations (Luo et al., 2023; Yadav et al., 2020).
However, there are still challenges, such as a drop
in performance when these models are used for
out-of-domain tasks or very different sub-domains
in terms of context and terminology, revealing their
limitations in adaptability (Košprdić et al., 2023).

Recently, Large Language Models (LLMs) have
shown remarkable potential in Natural Language
Processing (NLP) tasks, including text generation,
reasoning, text classification, summarization, and
question answering, through their ability for zero-
shot or few-shot learning (Xu et al., 2023). This
capability allows them to adapt to new tasks quickly
with minimal fine-tuning. This adaptability has re-
sulted in their outstanding application performance,
including NER and RE within the general do-
main. Models like CoT-ER (Ma et al., 2023), GPT-
RE (Wan et al., 2023), and PromptNER (Ashok and
Lipton, 2023) show that through few-shot learning
or zero-shot learning, these generative LLMs can
achieve performance levels competitive with the
state-of-the-art methods in entity or relation extrac-
tion (Li et al., 2023; Brown et al., 2020; Wei et al.,
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2022; Liu et al., 2023). This achievement is primar-
ily due to their capability to use task-specific and
concept-level knowledge stored during pre-training,
which is then effectively leveraged through prompt-
ing to generate relevant evidence for the tasks.

However, challenges arise when adapting LLMs
from the general to the medical domain, primar-
ily due to their lack of domain-specific knowledge
and the difficulty in incorporating new, relevant
factual information over time (Jiang et al., 2024;
Brokman and Kavuluru, 2024; Li and Zhang, 2023).
While LLMs have shown potential in biomedi-
cal natural language processing tasks through in-
novative in-context learning strategies, their ap-
plication in specific tasks like NER and RE re-
mains problematic. This is partly because cur-
rent few-shot learning methods, which trained on
large amounts of source data and fine-tuning on
exemplars from the target domain, do not perform
well in the medical context (Gutiérrez et al., 2022;
Keloth et al., 2024; Ma et al., 2023). The discrep-
ancy arises from significant differences in entity
and relationship definitions between general and
medical texts (Das et al., 2022). To address these
challenges, researchers have explored various ap-
proaches, including the development of domain-
specific generative LLMs like BioGPT (Luo et al.,
2022), BioMedLM (Bolton et al., 2024), and Bio-
BART (Yuan et al., 2022). These models are
trained from scratch using medical corpora such as
PubMed or are continually fine-tuned on medical
data. Basically, fine-tuning is required for adequate
performance on biomedical NLP tasks. These ef-
forts represent steps toward bridging the gap in
domain adaptation for LLMs. However, updating
these models for the rapidly changing medical field
is still non-trivial due to the risk of catastrophic
forgetting during fine-tuning (Ren et al., 2024),
highlighting the need for better training methods
tailored to medical knowledge.

To address this, we explored instruction-tuning
methods for large language models, focusing on
an open-source language model. Traditional fine-
tuning methods risk forgetting previous knowledge,
so we adopted a novel training strategy, gradually
extending training to include associated documents
and unlabeled datasets. Initially, we instruction-
tuned on Question-Answer (QA) pairs before in-
tegrating complete EHR documents. Then, we
trained on QA pairs and documents simultaneously.
Finally, we continue pre-training on the large un-

labeled corpus. Jiang et al. (2024) demonstrates
that this integration strategy ensures the retention
of acquired knowledge. In the inference stage, our
system directly generates output relations from in-
put questions for subtask 1. For subtask 2, we
first extract event entities and time expressions be-
fore predicting relationships between identified en-
tities using different input questions. Our approach
provides an end-to-end relation extraction system
for extracting Chemotherapy Treatment Timelines.
This system formulates the task as a text genera-
tion task, using clinical notes as input to generate
relational triplets end-to-end, without requiring ad-
ditional intermediate annotations, as seen in the
REBEL method (Cabot and Navigli, 2021).

In summary, this paper makes the following con-
tributions:

1. We introduce a novel approach that combines
instruction-based fine-tuning with continuous
knowledge acquisition to adapt pre-trained
general LLMs to the medical domain, specifi-
cally targeting the extraction of chemotherapy
treatment timelines.

2. We evaluate the performance of a smaller
7B model, OpenChat-3.5-7B (Wang et al.,
2023b), on extracting chemotherapy treatment
timelines for breast cancer, ovarian cancer,
and melanoma datasets provided by the Uni-
versity of Pittsburgh/UMPC. Additionally, we
conduct a detailed analysis of each training
component to establish a robust framework
for biomedical end-to-end relation extraction,
with the potential to apply the same approach
to other biomedical NLP tasks.

3. We conduct an error analysis to identify the
strengths and weaknesses of our proposed ap-
proach, offering insights into areas for poten-
tial improvement.

2 Methods

In this section, we describe our instruction-tuned
LLMs strategy. Figure 1 shows a high-level
overview of our approach. We convert the in-
formation extraction task to the question-answer
instruction format. Our strategy has three main
components: 1) Instruction-tuning LLMs on task-
specific QA pairs (i.e., Named Entity Recognition
(NER) and Relation Classification (RE)); 2) Joint
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Figure 1: Overview of instruction-tuned LLMs Framework. First, we perform instruction-tuning on LLMs using
task-specific QA pairs (e.g., NER and RE). Second, we conduct further instruction-tuning on QA pairs and associated
documents to enhance its ability to progressively absorb knowledge from simpler to more complex data. Finally, we
continue pre-training the model on an unlabeled corpus to refine its capabilities in the clinical domain further.

instruction-tuning on QA pairs and associated doc-
uments to enhance its ability to absorb knowledge
progressively from simpler to more complex data;
and 3) Continuing pre-training on unlabeled corpus,
our intuition is first trained on QA pairs to under-
stand knowledge access patterns, then progresses
to training on a combination of QA and document
data to align knowledge access through questions
and knowledge encoding from documents, this will
help absorb information from unlabeled data. We
describe each component in the following subsec-
tions and how the three components are integrated
into a unified training strategy.

2.1 Step 1: Instruction-tuning on QA pairs

We fine-tuned the pretrained open-source LLMs
(i.e., OpenChat-3.5-7B) for two clinical tasks: clas-
sifying TLINK temporal relations and recognizing
named entities, including DocTimeRel, EVENTS,
and TIMEX3. Subsequent sections detail the la-
beled datasets used for these instruction-tuning
tasks, and Figure 2 illustrates the format used for
task-specific question-answer pairs.

Relationship Classification QA Design. For the
RE QA pairs, Let C represent the input context,
and let eevent ∈ C and etimex3 ∈ C denote a
chemotherapy event entity and a time expression
entity, respectively. For a set of predefined rela-
tion classes R, the goal of relation extraction is to
determine the relationship y ∈ R between the en-
tity pair (eevent, etimex3) within C. If no predefined
relation exists between them, the model predicts
y = NULL. Building on the prior work (Ma et al.,
2023), we use a three-step reasoning framework
combining concept-level entity knowledge and ex-
plicit evidence to design question-answer instruc-
tions. This approach aims to maximize the use of
knowledge embedded in LLMs to support step-by-
step reasoning. For the RE task, questions are for-

mulated with instructions, definitions of potential
relations, and the context. Answers are designed as
a structured three-step reasoning process. First, we
integrate concept-level knowledge about the event
entity. Second, we apply a similar approach to
the time expression entity. Third, to identify the
most suitable relation label for the pair of entities
within the context, we explicitly highlight relevant
text spans as evidence and subsequently construct
a coherent expression that combines the two enti-
ties and the relation label. An example using the
relation label “CONTAINS” is shown in the last
“Answer” in Figure 2. First, Avastin is described
as a chemotherapy drug. Next, the TIMEX3 entity
(March 2009) is described. Finally, some reason-
ing is described about a potential relation, and the
relation is specified.

How does the model learn this reasoning frame-
work? Inspired by Wan et al. (2023), we implement
the OpenChat-3.5-7B model to generate logical rea-
soning in question-answer pairs. We employ few-
shot learning to prompt the LLMs to generate a
three-step reasoning process based on the question
and corresponding given golden label. For exam-
ple, we append the query “What are the three-step
reasoning processes that lead to the relation be-
tween [entity1] and [entity2] being [relation] in the
sentence [context]?” to the end of the question and
corresponding a gold label. This prompt is then
passed to the LLMs to generate the three-step rea-
soning. Specifically, we generate the reasons using
an untrained OpenChat-3.5-7B without fine-tuning
for all examples in our training dataset. These rea-
sons are then used during our instruction tuning
phase.

Named Entity Recognition QA Design. The
NER QA instruction design is inspired by Prompt-
NER (Ashok and Lipton, 2023), which shows the
advantages of enhancing language models’ under-
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NER System: Given the context below, identify a list of possible entities and for each item explain why it is
considered as an entity or not. The response should be structured as follows: 'entity name | entity type | True/False |
Explanation', where you explain the rationale behind the classification. Output NULL and mark it as False if there is
no entity identified.

Define: the DOCTIME entity refers to the time expression representing the document creation time, usually found at
the start of the document.
Question: "{DOCTIME}" Given the context, the DOCTIME entity is:
Answer: 20090824 | DOCTIME | True | As it is listed as the "Principal Date" at the start of the document, indicating
it as the date the document was created or formalized.

Define: The EVENT entity refers to chemotherapy mention in the clinical notes, including general terms like
'chemotherapy' and 'chemo', as well as specific chemotherapy treatments such as 'cytoxan', which involve the use
of powerful drugs to target and destroy cancer cells, often administered in cycles to shrink tumors, prevent cancer
spread, and potentially achieve remission or alleviate symptoms. Diseases (e.g., "melanoma"), diagnostic scans
(e.g., "FDG PET scan," "CT scan") or medications not used in chemotherapy (e.g., "Vicodin" for pain relief, "Zocor"
for cholesterol management) are not EVENT entities.
Question: "Avastin for 6 cycles through March 2009." Given the context, all relevant EVENT entities are:
Answer: Avastin | EVENT | True | As it is a specific type of chemotherapy treatment for breast cancer, the
mention of Avastin highlights a particular therapeutic approach within the patient's care.

Define: The TIMEX3 entity is a time expression that identifies specific dates, times, and periods like "tomorrow" or
"last week" in texts specifically related to chemotherapy mentions in the document.
Question: "Avastin for 6 cycles through March 2009." Given the context, all relevant TIMEX3 entities are:
Answer: March 2009 | TIMEX3 | True | As it tells us when the patient had chemotherapy, showing it was happened
in March 2009.

RE System: Please solve the TLINK Relation Extraction task, which is a temporal link only between an EVENT and
a TIMEX3. Given the context below, consider what is the most precise relation between two entities belongs to the
following N possible relations. The relation to choose must be in these N possible relations: CONTAINS,
CONTAINS-1, BEGINS-ON, ENDS-ON. Please output NULL if the EVENT and TIMEX3 entities do not appear in
the same sentence or if none of these relations apply.

Question: "Avastin for 6 cycles through March 2009." Given the context, what are the relations between the
EVENT entity '{source_entity}' and the TIMEX3 entity '{target_entity}'?
Answer: 1. EVENT entity 'Avastin' is a chemotherapy drug mentioned in the context as part of a treatment regimen
that includes carboplatin and paclitaxel, indicating its use in the patient's cancer therapy.
2. TIMEX3 entity 'March 2009' is a time expression indicating the endpoint of the period during which the
chemotherapy treatment regimen, including 'Avastin', was administered for 6 cycles.
3. According to the context, the phrase "Avastin for 6 cycles through March 2009" suggests that the chemotherapy
treatment phase encompassing 'Avastin' spans until 'April 2013', denoting the EVENT 'Avastin' contains the
TIMEX3 'March 2009' within its duration.
Therefore, Avastin | EVENT | March 2009 | TIMEX3 | CONTAINS

Doc Question: The relevant document is:
Answer: {document}

Figure 2: An instruction example for clinical document and task-specific QA pairs. Both subtask 1 and subtask
2 use the same training dataset and process. However, subtask 1 focuses on identifying temporal relations by
generating specific relation pairs through tailored questions during inference. In contrast, subtask 2 first identifies
chemo-related entities with distinct instructions before determining their temporal relationships. Tokens used for
computing losses are highlighted in green.

standing of textual logical structures. This under-
standing is used to improve NER tasks by em-
ploying Chain-of-Thought Prompting, guiding the
model through a step-by-step reasoning process
that leads to entity identification. This technique
boosts entity recognition accuracy and offers a ver-
satile framework adaptable to various entity types
by adjusting definitions and explanations within
the prompting template (Ashok and Lipton, 2023;
Wang et al., 2023a). Therefore, in our NER QA
instruction design, each question includes instruc-
tions and definitions of entities, with answers detail-
ing the chosen entities in the format of “entity name
| entity type | True/False | Explanation,” where the
Explanation includes the rationale behind the NER

type classification. Inspired by Ashok and Lip-
ton (2023), this method employs Chain-of-Thought
Prompting to refine our model’s understanding of
textual logic, enhancing NER tasks by guiding step-
by-step reasoning. We’ve crafted a structured out-
put template for the LLMs that identifies and clas-
sifies entities. This structure has the potential to
enhance accuracy through outcome supervision us-
ing reinforcement learning (Gao et al., 2024). Ad-
ditionally, the True/False component marks noun
phrases that are relevant entities we want to extract
(True) or irrelevant (False). In our experiments, we
learn to generate relevant entities because we are
fine-tuning, hence we only use True. However, we
kept the option for False in future work by adding
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incorrect entities.
This format displays the model’s decision-

making process, making it adaptable across dif-
ferent NER types by simply modifying definitions.
Similarly, we use the non-finetuned OpenChat-3.5-
7B model, employing few-shot learning with man-
ually created demonstrations to generate explana-
tions for all examples in the training data. In gen-
eral, our NER QA instruction includes three dis-
tinct categories of entities: EVENTS, which re-
fer specifically to mentions of chemotherapy treat-
ments; DocTimeRel, which represents the tempo-
ral relationship between an event and the time the
document was created; and Temporal Expressions
(TIMEX3), which are precise references to times
linked to chemotherapy treatments. These entities
are illustrated in Figure 2, which shows “Avastin”
and “March 2009” as example extractions.

2.2 Step 2: Joint instruction-tuning on QA
pairs and documents

In this training phase, the instruction combines QA
pairs with their relevant documents. Intuitively,
QA pairs are typically simple, unlike documents,
which are usually more complex and dense, con-
taining numerous factual details not available in
a single (or few) sentence. Therefore, Jiang et al.
(2024) suggests that it is effective to deliberately
expose LLMs to QA data before continued pre-
training on documents so that the process of encod-
ing knowledge from complex documents considers
how this knowledge is accessed through questions.
During this phase, LLMs improve at digesting de-
tailed content from documents, building on the
QA pairs they’ve already learned. The training
starts with QA pairs to grasp basic knowledge ac-
cess patterns and then adds documents to enhance
question-based knowledge access and document
understanding. The instruction is created based
on each document; we position all the NER QA
pairs, followed by the RE QA pairs. Finally, the
document itself is formatted as a QA pair, with
the question identifying the document and the an-
swer being the document’s content, as illustrated
in Figure 2. Jiang et al. (2024) found that placing
the documents after the QA pairs leads to better
performance than placing them before. We also ex-
perimented with positioning the document before
and after the QA pairs and tested on the melanoma
development set. The results showed that placing
the document after the QA pairs yielded better per-

formance. Therefore, we put the document after
the QA pairs in our following experiments.

2.3 Step 3: Integrating Unlabeled Corpus

In this training phase, we aim to improve how the
fine-tuned OpenChat-3.5-7B model handles clini-
cal documents, which are often complex and full of
medical terminology. Instead of using instruction-
tuning alone, we continued “pre-training” the
model on unlabeled documents (i.e., training on
unlabeled data after instruction-tuning).1 This po-
tentially helps the model learn a specialized vo-
cabulary for the clinical domain, capturing impor-
tant terms such as diseases, symptoms, medica-
tions, and medical procedures in their original con-
text (Lin et al., 2021). This approach is crucial
for enhancing the model’s performance on tasks
specific to the clinical field. Based on Jiang et al.
(2024), there’s a concern that directly continuing
pre-training on a vast, unlabeled clinical corpus
might lead to the model forgetting previously ac-
quired knowledge. However, by initially training
on QA pairs to grasp knowledge access patterns
and then moving on to a blend of QA and docu-
ment data, we can strengthen the model’s ability
to assimilate document knowledge. This method
helps mitigate the issue of catastrophic forgetting
by aligning how the model accesses knowledge
through questions with how it encodes knowledge
from documents (Ouyang et al., 2022; Jiang et al.,
2024). Technically, we employed Byte-Pair En-
coding (BPE) (Gage, 1994) to break down the
text into small context windows, considering the
OpenChat-3.5-7B model’s 8192 token maximum
context limit, setting our windows to 7800 tokens
for efficiency. We prepared the training data by
joining these pieces with an end-of-sequence (eos)
token and then splitting the extended text into sec-
tions. This structured training method is designed
to make the model more effective at analyzing and
interpreting medical documents.

3 Experiments

In this section, we provide a brief overview of the
dataset, discuss the evaluation metrics, discuss our
results on the validation dataset, and briefly men-
tion the final model performance in the competition
on the test set.

1Because of lack of time and limited GPU resources, we
were not able to use the entire unlabeled dataset and only
learned on less than 1% of the unlabeled data.
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3.1 Dataset

In this shared task, we use both unlabeled and la-
beled EHRs, including radiology reports, pathol-
ogy notes, clinical notes, oncology notes, discharge
summaries, and progress reports, from the Univer-
sity of Pittsburgh/UPMC to construct the end-to-
end system for Extracting Chemotherapy Treat-
ment Timelines. For the unlabeled data, this in-
cluded EHR notes from approximately 62,000 pa-
tients with breast and ovarian cancer and 16,000
patients with melanoma. For the labeled data,
we have gold annotations for 310 patients’ histo-
ries, focusing on EVENTs, TIMEX3s entities, and
temporal relations (TLINKs) between an EVENT
and a TIMEX3. The training set includes EHRs
for ovarian (26 patients), breast (33 patients), and
melanoma (10 patients), while the development set
comprises records from ovarian (8 patients), breast
(16 patients), and melanoma (3 patients). Addi-
tionally, for ethical reasons and to protect patient
privacy, the data has been de-identified (Jiarui Yao,
2024).

An EVENT refers to any relevant chemother-
apy treatment on the clinical timeline, each
with a temporal relation to the document cre-
ation time (DocTimeRel), categorized as BE-
FORE, BEFORE-OVERLAP, OVERLAP, or AF-
TER. Temporal expressions (TIMEX3) denote
discrete references to time, normalizations to a
unified format (e.g., “YYYY-MM-DD”) using
TimeNorm (Laparra et al., 2018; Xu et al., 2019).
Additionally, temporal relations (TLINKs) link an
EVENT and TIMEX3, including categories such as
CONTAINS, CONTAINS-1, BEFORE, BEGINS-
ON, and ENDS-ON, where CONTAINS-1 is the
inverse of CONTAINS, meaning the Target CON-
TAINS the Source (Styler IV et al., 2014).

For training, we created positive NER QA pairs
from all gold standard examples, even though there
were no relations between EVENT and TIMEX3.
For RE QA pairs, we randomly selected three pairs
of chemo events and time expressions with no tem-
poral relation, where the answer would be NULL.

3.2 Hyperparameters

In our experiments, we trained models on 2
Nvidia A6000 GPUs using DeepSpeed Zero stage
2 (Rasley et al., 2020), HuggingFace Acceler-
ate (Gugger et al., 2022), and FlashAttention2 (Dao,
2023) for a maximum of 10 epochs and using

1https://github.com/clulab/timenorm

Melanoma dev set to select best epoch for all three
stage training. Following Jiang et al. (2024), we
employed the AdamW optimizer (Loshchilov and
Hutter, 2018) with specific parameters (β1 = 0.9,
β2 = 0.95, weight decay = 0.1) and set a maximum
context length of 1024.

For instruction tuning on question-answer pairs,
we used a batch size of 128 and learning rates
of 3e-5 for direct pairs and 5e-6 when doc-
uments were associated while continuing pre-
training on unlabeled datasets at a batch size of
36 and a learning rate of 3e-5. We use spaCy’s
“en_ner_bc5cdr_md” model for sentence bound-
ary detection and text segmentation. Moreover,
we adopted Low-Rank Adaptation (LoRA) fine-
tuning (Hu et al., 2021) with a rank of 256,
LoRA alpha of 512, and LoRA dropout of 0.05,
targeting modules [“q_proj”, “o_proj”, “k_proj”,
“v_proj”, “gate_proj”, “up_proj”, “down_proj”,
“fc_in”, “fc_out”,“wte”], to optimize specific tar-
get modules within pre-trained language models
(LLMs), effectively reducing the number of param-
eters needed for training without altering the origi-
nal model weights. This approach was facilitated
by using the “trl” library from HuggingFace (von
Werra et al., 2020), enhancing our model’s perfor-
mance and efficiency.

When training on QA pairs, we compute the av-
erage negative log-likelihood loss by focusing only
on the tokens within the answer. This approach
is inspired by Lin et al. (2024), which suggests
that not all tokens are equally important in lan-
guage model training. We can enhance the model’s
efficiency and performance by selectively focus-
ing on tokens that align with the desired distribu-
tion. For QA + Doc training, we treat the phrase
“The relevant document is” as a question and apply
next-token prediction loss to the document’s to-
kens, treating them as an expanded answer. This is
because the document provides a rich context that
informs the model’s understanding, enabling it to
learn from contextually relevant tokens, as shown
in Figure 2.

In the inference stage, we experimented with
different settings with temperatures from 0.1 to 0.9,
top p values from 0.1 to 0.6, and top k options of
10, 20, and 30. After experimenting, we found that
the best settings were a temperature of 0.2, a top p
value of 0.5, and a top k of 20.
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3.3 Evaluation Metrics

The final output of our system employs the fol-
lowing approach to summarize event triples into
patient-level timelines: We begin by using gold-
standard DOCTIME annotations for subtask 1. In
subtask 2, we predict DOCTIME by analyzing the
first sentence of each document, discarding any
document that lacks a DOCTIME prediction. Next,
we normalize all temporal expressions to a stan-
dard format using the TimeNorm package (Laparra
et al., 2018; Xu et al., 2019), with DOCTIME as
the anchor time. We then de-duplicate timeline en-
tries where chemotherapy events, time expressions,
and their relations are identical. Using the time-
line summarization system described by Jiarui Yao
(2024), we prioritize specific temporal labels from
a predefined hierarchy (e.g., BEGINS-ON/ENDS-
ON → CONTAINS) for chemotherapy events and
only include generic terms like “chemotherapy” in
the timeline if there is no mention of a specific drug
like “cytoxan” on the same day with the same label.

Performance in this shared task is measured
by comparing generated patient-level timelines
against gold-standard timelines. Specifically, we
evaluate the accuracy of identified tuples contain-
ing chemotherapy events, their temporal relations,
and time expressions (“chemo EVENT”, “tempo-
ral_relation”, “TIMEX3”) compared to the correct
timelines. The F1 score is calculated for each pa-
tient and then averaged across all patients to yield
the macro F1 score. This evaluation employs a
relaxed criterion, acknowledging certain temporal
relations, specifically “contains-1” with “begins-
on” and “contains-1” with “ends-on”, as equiva-
lent (Jiarui Yao, 2024).

3.4 Results

In the inference stage, for subtask 1, we directly fed
questions to the model to generate output relations.
For subtask 2, the model processes each sentence
first to extract the chemo event entity. Inspired by
Cui et al. (2023), we adopt a sentence window ap-
proach to extract associated time expressions. If
the target treatment entity is within the target sen-
tence, the model selects k sentence before and after
the target sentence to gather contextual information.
Due to constraints in time and computing resources,
we initially set the window size to zero. If an event
entity is detected, we extract the time expression
by reprocessing the sentence through the model.
Furthermore, to enhance accuracy for subtask 2,

we implemented rule-based postprocessing. This
approach uses regular expressions to identify and
remove inaccurate named entity recognition (NER)
predictions for EVENTS and TIMEX3, specifically
targeting the pattern associated with chemo enti-
ties.

Table 1 shows the official results on the dev set
for subtask 1. Our best performance is achieved
when instruction tuning with QA and associated
documents, leading to a slight accuracy improve-
ment across all disease types, with an overall av-
erage score of .68. This indicates the benefit of
integrating document context into our training reg-
imen. However, we observed a slight decrease
in performance for all three disease types when
we continued pretraining on the unlabeled dataset.
This decline may be attributed to the limited us-
age of training data, as we only utilized 1% of the
unlabeled data. This did not fully explore the po-
tential of continuous training capabilities, possibly
explaining the observed performance dip. Further
exploration and more extensive use of the unla-
beled data might be necessary to fully optimize the
model’s performance.

Table 2 shows the official results on the dev set
for subtask 2. The model shows variable perfor-
mance across cancer types, struggling notably with
ovarian cancer (.17) and achieving a total average
precision of .47. This suggests that subtask 2’s en-
tity extraction and relation task is more challenging,
especially in complex cancer data.

Table 3 shows the official results on the test set
for subtask1. Our method ranks in the mid-tier com-
pared to other teams, with a total average precision
of .69. This indicates our approach’s competitive-
ness but also highlights a gap to top-performing
models and the baseline.

Table 4 shows the official results on the test set
for subtask 2. We face significant challenges, with
a total average precision of .22, considerably lower
than the baseline. This underscores the complexity
of subtask 2 and the need for method improvement.

Overall, our method employs generative LLMs,
which, despite their innovative approach, encounter
difficulties when competing against traditional
state-of-the-art (SOTA) BERT methods in specific
tasks like NER and RE. The broad capabilities of
generative models aimed at creating new content
may not directly translate to the high specificity re-
quired for these tasks in the medical domain. This
discrepancy is evident in our performance on dev
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Breast Melanoma Ovarian Total Average

Type A Type B Average Type A Type B Average Type A Type B Average

train QA .81 .50 .66 .80 .70 .75 .57 .57 .57 .66
+ train QA + DOC .82 .51 .67 .83 .74 .78 .58 .58 .58 .68
+ train on unlabeled corpus .77 .39 .58 .80 .70 .75 .56 .56 .56 .63

Table 1: Official results on the dev set for subtask 1.

Breast Melanoma Ovarian Total Average

Type A Type B Average Type A Type B Average Type A Type B Average

train QA + Doc .78 .41 .59 .71 .57 .64 .17 .17 .17 .47

Table 2: Official results on the dev set for subtask 2.

Team Breast Melanoma Ovarian Total Average

LAILab 1 .96 .87 .88 .90
Wonder 2 .90 .84 .77 .84
NLPeers 1 .72 .81 .75 .77
BioCom 1 .88 .61 .72 .74
Lexicans 1 .68 .83 .61 .71
UTSA-NLP 1 (Ours) .70 .68 .69 .69
EmoryClincalRXMiners 1 .44 .47 .34 .40
Baseline .93 .87 .88 .89

Table 3: Official results on the test set for subtask 1.

Model Breast Melanoma Ovarian Total Average

LAILab 2 .62 .74 .74 .70
KCLab 1 .68 .49 .45 .54
Wonder 3 .63 .39 .55 .53
NYULangone .19 .32 .18 .23
UTSA-NLP (Ours) .25 .21 .18 .22
Baseline .59 .43 .71 .58

Table 4: Official results on the test set for subtask 2.

and test sets, especially for subtask 2, where our ap-
proach trails behind the baseline model built based
on EntityBERT (Lin et al., 2021). This outcome
suggests that leveraging the strengths of generative
models for such specific tasks requires a strategic
reevaluation of our model’s application or method-
ology.

3.5 Error Analysis

Our error analysis shows that the model is prone to
generating false positive relation triples. This issue
appears to be rooted in insufficient NULL relation
examples during training, leading to the model’s
poor performance in recognizing the absence of a
relationship between EVENT and TIMEX3 enti-
ties.

“Gemcitabine used in August 2010 and cis-
platin used from March 2012.”

For instance, in the above sentence:2 “Gemc-
itabine used in August 2010 and cisplatin used from
March 2012.” In this case, two chemotherapy treat-
ment events are linked with specific time expres-
sions. Our approach to relation extraction involves
testing every possible combination of EVENT and
TIMEX3 entities, such as Gemcitabine with Au-
gust 2010, Gemcitabine with March 2012, cisplatin
with August 2010, and cisplatin with March 2012.
Notably, the combinations of Gemcitabine with
March 2012 and cisplatin with August 2010 do not
have a temporal relation. Nevertheless, our model
erroneously predicts a relation for these pairs. This
flaw is primarily due to the difficulty in generat-
ing high-quality negative examples for creating QA
pairs, which is essential for accurately predicting a
NULL relationship.

In subtask 2, we also need to identify EVENT
entities accurately. However, generative language
models (LLMs) struggle with this, often misidenti-
fying unrelated entities as EVENTS. These errors
include categorizing diseases (like “melanoma” or
“Parkinson”), diagnostic scans (“FDG PET scan,”
“CT scan”), diagnostic codes (“PD13-007285PD”),
people (“Person2”), and non-chemotherapy med-
ications (“Vicodin,” “Zocor”) as EVENT entities,
despite instructions to exclude them. To address
these inaccuracies, we use regular expressions to
filter and refine our EVENT entity identification,
based on a list of valid chemotherapy events ex-
tracted from the training and development sets.
This use of regular expressions as a post-processing
step ensures the exclusion of these inaccurately
named entities.

2All examples have been modified and do not directly
match the training data to ensure data privacy.
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“Patient underwent diagnostic CT scans in
June 2012 .”

For example, when analyzing the sentence “Pa-
tient underwent diagnostic CT scans in June 2012,”
our model incorrectly classifies “diagnostic CT
scans” as a chemotherapy EVENT. Although the
model explains that “diagnostic CT scans | EVENT
| True | As it is crucial for diagnosing the dis-
ease and planning chemotherapy,” meaning CT
scans are important for diagnosis, not chemother-
apy events, the model still wrongly labels them as
EVENT entities. This leads to many false positives
in identifying entities.

4 Related Work

Continual Knowledge Acquisition. In contin-
ual knowledge acquisition, several studies have
investigated the ability of language models (LMs)
to retain and update knowledge over time. Hu
et al. (2023) and Ovadia et al. (2023) explore the
effectiveness of different pre-training approaches
using smaller LMs like BART (Lewis et al., 2020)
and EntityBERT (Lin et al., 2021). Zhu and Li
(2023); Jiang et al. (2024); Keloth et al. (2024)
delve into fine-tuning LMs on QA pairs related
to individuals, with a focus on mixed training set-
tings combining biographies and QA pairs. These
studies are a foundation for exploring strategies to
incorporate QA data before continued pre-training.
Additionally, researchers have sought to adapt LMs
to specialized domains, such as medicine, with Li
and Zhang (2023); Hu et al. (2024); Zhang et al.
(2023) proposing various strategies. However, a
common challenge in continual knowledge acquisi-
tion is the potential for inaccuracies or difficulties
in clinical NLP tasks. Models like BioGPT (Luo
et al., 2022), BioMedLM (Bolton et al., 2024), and
BioBART (Yuan et al., 2022) address these con-
cerns by continuing training specifically within the
medical domain.

Instruction Fine-tuning. Recently, instruction
tuning, also known as supervised fine-tuning, has
gained prominence for its ability to draw out knowl-
edge from Large Language Models (LLMs) using
high-quality annotated data or data from propri-
etary models (Wei et al., 2021; Zhou et al., 2024;
Brokman and Kavuluru, 2024; Zhou et al., 2023).
This process enhances LLMs’ capacity to address
user inquiries and improves their factual accuracy,
a focal point of our research. Additionally, the

zero-shot and few-shot in-context learning capabil-
ities of LLMs, which operate with minimal or no
training data, present a significant advantage for
efficient learning. These approaches, further dis-
cussed by Wei et al. (2021) and highlighted in the
works of Wang et al. (2024) and Sanh et al. (2021),
underscore the potential of instruction tuning in re-
fining LLMs’ factuality and responsiveness.

5 Limitation

Due to the constrained timeline and limited re-
sources of the shared task, our exploration was re-
stricted to basic setups. We did not create negative
examples for NER QA pairs and only used a limited
set of negative examples for RE QA pairs by ran-
domly selecting three unrelated pairs of chemother-
apy events and time expressions. Additionally, our
limited use of just 1% of the unlabeled dataset re-
sulted in decreased performance across all three
disease types, suggesting that we didn’t fully ex-
ploit the continuous training capabilities.

Furthermore, our experiments only considered
entities within the same sentence, overlooking
cases where entities span multiple sentences in the
ChemoTimelines dataset. This oversight could sig-
nificantly impact model performance evaluation.
NER and RE tasks are sensitive to prompt design,
and our initial single prompt strategy may not have
been optimal. More comprehensive training and
experiments, including ablation tests, will be nec-
essary to evaluate and enhance our system’s perfor-
mance and efficiency thoroughly.

6 Conclusion and Future Work

This paper presents our end-to-end system for ex-
tracting Chemotherapy Treatment Timelines from
the Clinical NLP ChemoTimelines share the task.
We explored various instruction tuning strategies
for open-source generative LLMs, providing a start-
ing point for developing NER and RE models in
the medical domain. Our future work will ex-
plore the implementation of outcome supervision
and process-based reward mechanisms in reinforce-
ment learning training to address the issue of false
positive predictions (Gao et al., 2024).
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