@inproceedings{bonard-cortal-2024-improving,
title = "Improving Language Models for Emotion Analysis: Insights from Cognitive Science",
author = "Bonard, Constant and
Cortal, Gustave",
editor = "Kuribayashi, Tatsuki and
Rambelli, Giulia and
Takmaz, Ece and
Wicke, Philipp and
Oseki, Yohei",
booktitle = "Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.cmcl-1.23",
doi = "10.18653/v1/2024.cmcl-1.23",
pages = "264--277",
abstract = "We propose leveraging cognitive science research on emotions and communication to improve language models for emotion analysis. First, we present the main emotion theories in psychology and cognitive science. Then, we introduce the main methods of emotion annotation in natural language processing and their connections to psychological theories. We also present the two main types of analyses of emotional communication in cognitive pragmatics. Finally, based on the cognitive science research presented, we propose directions for improving language models for emotion analysis. We suggest that these research efforts pave the way for constructing new annotation schemes, methods, and a possible benchmark for emotional understanding, considering different facets of human emotion and communication.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bonard-cortal-2024-improving">
<titleInfo>
<title>Improving Language Models for Emotion Analysis: Insights from Cognitive Science</title>
</titleInfo>
<name type="personal">
<namePart type="given">Constant</namePart>
<namePart type="family">Bonard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gustave</namePart>
<namePart type="family">Cortal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tatsuki</namePart>
<namePart type="family">Kuribayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giulia</namePart>
<namePart type="family">Rambelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ece</namePart>
<namePart type="family">Takmaz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Wicke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yohei</namePart>
<namePart type="family">Oseki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose leveraging cognitive science research on emotions and communication to improve language models for emotion analysis. First, we present the main emotion theories in psychology and cognitive science. Then, we introduce the main methods of emotion annotation in natural language processing and their connections to psychological theories. We also present the two main types of analyses of emotional communication in cognitive pragmatics. Finally, based on the cognitive science research presented, we propose directions for improving language models for emotion analysis. We suggest that these research efforts pave the way for constructing new annotation schemes, methods, and a possible benchmark for emotional understanding, considering different facets of human emotion and communication.</abstract>
<identifier type="citekey">bonard-cortal-2024-improving</identifier>
<identifier type="doi">10.18653/v1/2024.cmcl-1.23</identifier>
<location>
<url>https://aclanthology.org/2024.cmcl-1.23</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>264</start>
<end>277</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Language Models for Emotion Analysis: Insights from Cognitive Science
%A Bonard, Constant
%A Cortal, Gustave
%Y Kuribayashi, Tatsuki
%Y Rambelli, Giulia
%Y Takmaz, Ece
%Y Wicke, Philipp
%Y Oseki, Yohei
%S Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F bonard-cortal-2024-improving
%X We propose leveraging cognitive science research on emotions and communication to improve language models for emotion analysis. First, we present the main emotion theories in psychology and cognitive science. Then, we introduce the main methods of emotion annotation in natural language processing and their connections to psychological theories. We also present the two main types of analyses of emotional communication in cognitive pragmatics. Finally, based on the cognitive science research presented, we propose directions for improving language models for emotion analysis. We suggest that these research efforts pave the way for constructing new annotation schemes, methods, and a possible benchmark for emotional understanding, considering different facets of human emotion and communication.
%R 10.18653/v1/2024.cmcl-1.23
%U https://aclanthology.org/2024.cmcl-1.23
%U https://doi.org/10.18653/v1/2024.cmcl-1.23
%P 264-277
Markdown (Informal)
[Improving Language Models for Emotion Analysis: Insights from Cognitive Science](https://aclanthology.org/2024.cmcl-1.23) (Bonard & Cortal, CMCL-WS 2024)
ACL