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Abstract

Recent psycholinguistic theories emphasize the
interdependence between linguistic expecta-
tions and memory limitations in human lan-
guage processing. We modify the self-attention
mechanism of a transformer model to simu-
late a lossy context representation, biasing the
model’s predictions to give additional weight to
the local linguistic context. We show that sur-
prisal estimates from our locally-biased model
generally provide a better fit to human psycho-
metric data, underscoring the sensitivity of the
human parser to local linguistic information.

1 Introduction

In recent years, transformer models (Vaswani et al.,
2017) have gained prominence in psycholinguistics
due to their impressive predictive performance in
forecasting psychometric measurements such as
reading times (Hao et al., 2020; Merkx and Frank,
2021; de Varda et al., 2023; Hoover et al., 2023; Oh
and Schuler, 2022, 2023, inter alia). These models
excel at capturing complex linguistic dependen-
cies, making them valuable tools in analyzing hu-
man language-processing behaviors. Much of the
work that relates probabilistic estimates from trans-
former models with human processing has been
conducted within the framework of surprisal the-
ory, which posits that the difficulty experienced
during processing is proportional to the negative
logarithm of the probability of a word given its pre-
ceding context. In this context, transformer models,
which are able to generate highly accurate proba-
bilistic predictions for sequences of text, have been
instrumental in providing empirical support for sur-
prisal theory (Wilcox et al., 2020; Shain et al., 2022;
de Varda and Marelli, 2022, 2023). However, de-
spite their substantial predictive power, transformer
models exhibit some design features that lack cog-
nitive plausibility. One significant departure from
human language processing is their ability to access
in parallel the entire linguistic context within their

input size. Unlike these models, human language
comprehension is inherently incremental (Smith
and Levy, 2013). Humans eagerly integrate in their
representation of the context each linguistic unit
as soon as it is encountered, and they cannot typi-
cally store in working memory the whole linguistic
context. Thus, the transformer model’s all-at-once
approach to processing information starkly con-
trasts with the sequential and resource-constrained
manner in which humans receive and interpret lin-
guistic input, suggesting a need for models that
more closely mirror human cognitive limitations
and processing strategies.

To address these limitations, we introduce a mod-
ification to the self-attention mechanism of the
transformer model, aimed at simulating a lossy
memory representation, where linguistic units that
are further away from the current word are assigned
exponentially decaying attention scores. By doing
so, our model aims to replicate the kind of linguistic
processing that characterizes the human language
parser, where recent information plays a significant
role (Goodkind and Bicknell, 2021).

The evaluation of our locally-biased transformer
model involves the employment of the surprisal –
i.e., negative log probability – it assigns to words in
context to predict human psychometric data, con-
sidering five large-scale datasets of eye movements
and self-paced reading times in English. We show
that our locally-biased model provides surprisal
estimates that align more closely with human psy-
chometric data than a standard pre-trained model.

2 Related work

Models that can explain the cognitive cost associ-
ated with sentence processing can be broadly di-
vided into expectation- and memory-based theories.
Expectation-based theories (such as surprisal the-
ory; Levy, 2008; Hale, 2001) emphasize the role
of contextual predictability as a core determinant
of processing demands. Support for such theo-
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ries has come from several studies demonstrating
reduced cognitive load in response to predictable
words (e.g., Frank and Thompson, 2012; Frank
et al., 2015; Wilcox et al., 2020). Memory-based
theories, in contrast, are based on the idea that
integrating the upcoming words into the context
representation depends on the retrieval (Lewis and
Vasishth, 2005) and storage (Gibson, 1998, 2000)
of previous words in working memory. Support for
memory-based theories comes from the difficulty
in integrating words that are linearly distant in a
sentence (dependency locality effects; Grodner and
Gibson, 2005; Fedorenko et al., 2013).

In recent years, there have been proposals to rec-
oncile expectation- and memory-based approaches
into unified models. While the first combined the-
ories posited limited (Demberg and Keller, 2008,
2009) or no interaction between memory and pre-
dictability (Rasmussen and Schuler, 2018; see
Futrell et al., 2020), some recently developed
frameworks account for complex interactions be-
tween the two (Futrell et al., 2020; Hahn et al.,
2022). In particular, lossy-context surprisal theory
(henceforth LCST; Futrell et al., 2020) holds that
the processing difficulty associated with a word is
proportional its surprisal, conditioned by a lossy
(i.e., noisy) memory representation of the context.
Hahn et al. (2022) presented a computationally-
specified model of LCST (resource-rational LCST)
that computes retention probabilities for each word
in the context, based on the word’s identity and
position in the sentence. Similarly, Kuribayashi
et al. (2022) have shown that reducing the num-
ber of words in input to language models improves
the fit of the surprisal estimates to human reading
times. Our modelling approach is reminiscent of
LCST in that it assumes that the processing cost as-
sociated with a word is proportional to its surprisal,
conditioned by the previous context where linearly
distant words contribute less to its prediction.

In our modelling effort, we modify the atten-
tion scores of a transformer model to mimic the
human difficulty in retrieving distant linguistic el-
ements. We are not the first in drawing a paral-
lelism between the self-attention mechanism and
(cue-based) memory retrieval (Merkx and Frank,
2021; Hyun et al., 2022; Oh and Schuler, 2022;
Timkey and Linzen, 2023). Indeed, like the self-
attention mechanism scores the weights to assign
to the words in input based on the compatibility be-
tween keys and queries, cue-based retrieval theories

Figure 1: Visual example of our custom modification
of the model’s attention pattern. The original attention
scores (left) and the exponentially decaying bias (center)
are summed to derive the combined attention scores
(right).

posit that items in working memory are accessed
by comparing the retrieval cues of the current word
with the features of the items in working memory
(Timkey and Linzen, 2023). Our choice to bias the
transformer model’s retrieval process towards the
recent linguistic context is supported by vast evi-
dence in psycholinguistics showing that local infor-
mation holds a privileged role in human language
processing, with a chief example being word fre-
quency. Indeed, it is well-known that the frequency
of a word (which is proportional to its unigram
probability) influences its reading times above and
beyond its contextual predictability (Rayner, 1998;
Shain, 2023). Furthermore, other studies have de-
tected an effect of N-gram surprisal beyond the
effect of surprisal as calculated from larger sen-
tential contexts (Goodkind and Bicknell, 2021).
Note that the idea of assigning reduced weights
to distal elements has a long-standing tradition in
psychologically-oriented computational models of
semantic memory: one of the first distributional
semantic models, the Hyperspace Analogue to Lan-
guage (HAL; Lund and Burgess, 1996), weighs
word-by-word co-occurrences as a function of their
linear distance. It is noteworthy that the idea that
human language processing privileges recent infor-
mation was explicitly implemented in early work
in computational semantics, and lost with later de-
velopments in the field.

3 Methods and materials

We modified the pre-trained GPT-2 model (Rad-
ford et al., 2019) to increase the attention weights
associated to the nearby words. We conducted our
analyses on the smallest GPT-2 variant, as it has
been proven to be particularly effective at mod-
elling human reading times (Shain et al., 2022).

All the code supporting our analyses is publicly
available on GitHub.1

1 � https://github.com/Andrea-de-Varda/local_
attention_reading_times
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3.1 Locally biased attention

Attention weights are initially computed using the
standard dot-product attention, involving the mul-
tiplication of the query matrix with the transpose
of the key matrix (W = QKT ). Then, an ex-
ponential decay bias matrix B is computed using
an exponential decay function based on the abso-
lute differences between positions in the sequence,
scaled by a decay rate. Thus, the bias is computed
as Bi,j = e−λ|i−j|, where i, j ∈ {0, 1, . . . , n− 1}
indicate the position of two tokens in the sequence,
n specifies the sequence length, and λ is the decay
rate. As a final step, we blend together the origi-
nal attention weights with the exponential decay
bias with a weighted sum to obtain the final atten-
tion weights A = (1− α) ·W + α · B. As a last
step, the softmax function is applied to A. A visual
summary of this procedure is provided in Figure 1.
Note that both α and λ serve as free parameters in
our modified attention mechanism. To identify the
optimal values for these parameters, we employed
hyperparameter tuning techniques as detailed in
§3.4.

3.2 Data

The analyses were run on three eye-tracking and
three self-paced reading datasets. The eye-tracking
resources we considered were the Provo corpus
(Luke and Christianson, 2018; N = 26592), the
English portion of the MECO corpus (Siegelman
et al., 2022; N = 2096), and the UCLET corpus
(Frank et al., 2013, N = 1726). The three self-
paced reading datasets were the UCLSPR dataset
(Frank et al., 2013, N = 1726), the Brown corpus
(Smith and Levy, 2013; N = 5862), and the Nat-
ural Stories reading times corpus (NatStor, Futrell
et al., 2021; N = 8779). In our analysis of the eye-
tracking data, we focused on first-pass gaze dura-
tion times, in accordance with previous research in
computational psycholinguistics (see for instance
Aurnhammer and Frank, 2019; Goodkind and Bick-
nell, 2018; Smith and Levy, 2013; Wilcox et al.,
2020). For words that did not receive any fixation,
we assigned a gaze duration time of zero. We ex-
cluded words located at the beginning of sentences
from our analyses. Beyond this exclusion, we did
not implement any further filtering criteria. To ob-
tain word-level gaze duration times, we calculated
the average word reading times across all partici-
pants. Likewise, for the self-paced reading tasks,

2N is the number of datapoints after data aggregation.

we calculated the average reaction times on the
target word across participants.

3.3 Analyses

In our analyses, the dependent variable of interest
(either gaze duration or self-paced reading times)
was predicted with a linear model including sur-
prisal, subtitle-based log-frequency (Brysbaert and
New, 2009), and orthographic length as regres-
sors.3 Surprisal values obtained with our locally
biased transformer model (sloc) were compared
with the estimates produced by the original GPT-2
model (sorig). For each psychometric dataset, we
identified the best model with the Akaike Informa-
tion Criterion (AIC; Akaike, 1998). In particular,
we subtracted the AICloc obtained with sloc to the
AICorig obtained with sorig to obtain a ∆AIC. In
interpreting the ∆AIC scores, we refer to the guide-
lines offered by Burnham and Anderson (2004),
which indicate that if two models have a ∆AIC ≤ 2,
they both have substantial support; if 4 ≤ ∆AIC
≤ 7, the best model has considerably more support,
and if ∆AIC ≥ 10, the worse model has essentially
no support4.

3.4 Hyperparameter tuning

To identify the best values for the parameters α and
λ (see §3.1), we iteratively sampled from the hy-
perparameter space – restricted to λ ∈ (0, 100) and
α ∈ (0, 1) – using a Tree-structured Parzen Estima-
tor algorithm. For each (λ, α) pair, we specified a
locally-biased GPT-2 model with such hyperparam-
eters, and derived surprisal values for the sentences
in the Provo corpus. Then, we fit a linear model
predicting the reading times in the Provo corpus
from the obtained surprisal values, log-frequency,
and word length; through hyperparameter tuning
we seeked to minimize the negative log likelihood
of the model (Ntrials = 100). As a result of this
procedure, we identified λ = 82.86 and α = 0.37
as the optimal values for the two parameters. The
parameters obtained in the Provo corpus were trans-
ferred to the other behavioral datasets without fur-
ther tuning.

3The exact linear model specification was DV ∼
LENGTH(wi) + FREQUENCY(wi) + SURPRISAL(wi)

4In terms of relative likelihood, if ∆AIC ≤ 2 the worse
model is 0.3678 times as probable as the best model to mini-
mize the information loss; with 4 ≤ ∆AIC ≤ 7, this proba-
bility is in the range (0.0302, 0.1353), and with ∆AIC ≥ 10
the probability is lower than 0.0067.
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Figure 2: From the top left, clockwise: A. Average per-
word surprisal as computed with the biased model and
the baseline; B. Correlation of the obtained surprisal
estimates with log frequency; C. Correlation of the sur-
prisal estimates with the psychometric measurements; D.
∆AIC between the locally biased model and the original
model.

4 Results

The results of our analyses are reported in Figure 2.
Our locally biased transformer assigned higher av-
erage per-word surprisal values to the input texts
across all datasets (A), showing a reduced autore-
gressive accuracy with respect to its unbiased coun-
terpart. The obtained surprisal estimates correlated
more strongly with log frequency values (B) and
with the behavioral responses considered (C). Fur-
thermore, our comparison between the biased and
the original GPT-2 model (D) revealed that our
modification of the attention mechanism caused a
substantial increase in predictive performance in
three behavioral datasets, encompassing both eye-
tracking (MECO, ∆AIC = −21.55; Provo, ∆AIC
= −13.72) and self-paced reading (Brown, ∆AIC
= −12.55). Our manipulation had no effect in the
UCL corpus (UCLET, ∆AIC = −0.59; UCLSPR,
∆AIC = −0.06) and resulted in a poorer fit in the
NatStor dataset (∆AIC = 4.31).

5 Discussion

In this study, we have demonstrated that a modifica-
tion of the GPT-2 model to emphasize local context
via a locally-biased attention mechanism results in
surprisal estimates that are more strongly correlated
with human reading times, and generally display a
better fit to human psychometric data. An excep-
tion to this second observation is offered by the

NatStor and UCL corpora; in Appendix A, we re-
port tentative evidence that the model improvement
seems to be related to the average sentence length
in the corpus. In particular, our locally-biased at-
tention seems to be particularly beneficial in cases
where the sentences are longer. This finding is
compatible with the idea of a lossy representation
of the context, where memory constraints become
more marked for longer text sequences. Future ap-
proaches could consider dynamically manipulating
the α parameter as a function of sentence lenght,
adjusting the strength of the bias to cases where the
human memory is taxed more strongly.

In LCST, the way memory representations de-
grade typically results in a word’s contextual pro-
cessing cost approaching its context-independent
processing cost, as predicted by its standalone prob-
ability (Futrell et al., 2020). Essentially, as the
fidelity of a listener’s memory representations di-
minishes, their anticipations increasingly align with
the prior, context-independent unigram probability.
Our findings empirically demonstrate that this is
the case, as the surprisal estimates from our locally-
biased transformer tend to regress towards word
frequency estimates (Figure 2, B). While our in-
tervention on the attention mechanism is directly
inspired by LCST, it should be noted that this imple-
mentation does not respect all the assumptions of
the theory. In particular, LCST posits as an assump-
tion the inaccessibility of the context (Claim 3);
here, the context is always available to the model,
albeit reduced attention weights are assigned to the
elements that are linearly distant from each other.

Importantly, our modification of the attention
mechanism resulted in models that were less per-
formant in next-word prediction (see Figure 2,
A). This is of course to be expected, as the ad-
dition of the exponential decay bias to the atten-
tion scores produces final attention weights that
deviate from the ones that have been optimized
for autoregression. Nonetheless, our results show
that a worse NLP model can constitute a better
cognitive model in terms of fit to psychometric
data. This result challenges the quality-power hy-
pothesis (QP; Wilcox et al., 2023), which posits
that more accurate language models (i.e., models
whose surprisal estimate better approximate the val-
ues from the data-generating distribution) should
provide surprisal estimates that better fit behavioral
data. However, QP does not hold if the probabilis-
tic information that humans deploy in real time
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is systematically biased with respect to the data-
generating distribution. One example of this sys-
tematic deviation is offered by the sensitivity of the
human parser to local word co-occurrence statistics
(Goodkind and Bicknell, 2021), which is exactly
what we model in the present paper. Thus, our
results show that human-like language processing
might inherently involve biases and limitations that
deviate from optimal statistical models.

Limitations

This study, while providing insights into the in-
tegration of cognitive constraints in transformer
models, is not without limitations. The approach
assumes a fixed attention decay rate, a simplifi-
cation that might not fully capture the dynamic
nature of human memory in language processing.
Furthermore, while we consider more psychome-
tric datasets than most studies in computational
psycholinguistics, the fact that we have only five
corpora does not allow us to draw conclusive in-
ferences on the impact of average sentence length
on the relative performance of our locally biased
models.
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A Sentence length

In our main analysis, we found that the surprisal
estimates from our locally biased model were asso-
ciated with a better fit to human psychometric data
in the MECO, Provo, and Brown datasets, while
our locally-biased model performed on par with
the original GPT-2 model in the UCL datasets, and
worse than its counterpart in the NatStor corpus.
We noted that the relative performance of the lo-
cally biased model was particularly improved in
datasets with long average sentence length (MECO,
Provo, and Brown). Indeed, the Pearson correlation
between mean sentence length (i.e., average num-
ber of word per sentence) and ∆AIC is r = −0.77
(p = 0.07). While the number of observations
(N = 6) and the absence of statistical significance
does not license strong conclusions on this regard,
we remark that this trend is compatible with the
idea of a lossy representation of the context, where
memory constraints are more pronounced in pro-
cessing longer text sequences.
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