@inproceedings{delcaro-etal-2024-predict,
title = "Predict but Also Integrate: an Analysis of Sentence Processing Models for {E}nglish and {H}indi",
author = "Delcaro, Nina and
Onnis, Luca and
Alhama, Raquel",
editor = "Kuribayashi, Tatsuki and
Rambelli, Giulia and
Takmaz, Ece and
Wicke, Philipp and
Oseki, Yohei",
booktitle = "Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.cmcl-1.9",
doi = "10.18653/v1/2024.cmcl-1.9",
pages = "101--108",
abstract = "Fluent speakers make implicit predictions about forthcoming linguistic items while processing sentences, possibly to increase efficiency in real-time comprehension. However, the extent to which prediction is the primary mode of processing human language is widely debated. The human language processor may also gain efficiency by integrating new linguistic information with prior knowledge and the preceding context, without actively predicting. At present, the role of probabilistic integration, as well as its computational foundation, remains relatively understudied. Here, we explored whether a Delayed Recurrent Neural Network (d-RNN, Turek et al., 2020), as an implementation of both prediction and integration, can explain patterns of human language processing over and above the contribution of a purely predictive RNN model. We found that incorporating integration contributes to explaining variability in eye-tracking data for English and Hindi.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="delcaro-etal-2024-predict">
<titleInfo>
<title>Predict but Also Integrate: an Analysis of Sentence Processing Models for English and Hindi</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nina</namePart>
<namePart type="family">Delcaro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luca</namePart>
<namePart type="family">Onnis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raquel</namePart>
<namePart type="family">Alhama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tatsuki</namePart>
<namePart type="family">Kuribayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giulia</namePart>
<namePart type="family">Rambelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ece</namePart>
<namePart type="family">Takmaz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Wicke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yohei</namePart>
<namePart type="family">Oseki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Fluent speakers make implicit predictions about forthcoming linguistic items while processing sentences, possibly to increase efficiency in real-time comprehension. However, the extent to which prediction is the primary mode of processing human language is widely debated. The human language processor may also gain efficiency by integrating new linguistic information with prior knowledge and the preceding context, without actively predicting. At present, the role of probabilistic integration, as well as its computational foundation, remains relatively understudied. Here, we explored whether a Delayed Recurrent Neural Network (d-RNN, Turek et al., 2020), as an implementation of both prediction and integration, can explain patterns of human language processing over and above the contribution of a purely predictive RNN model. We found that incorporating integration contributes to explaining variability in eye-tracking data for English and Hindi.</abstract>
<identifier type="citekey">delcaro-etal-2024-predict</identifier>
<identifier type="doi">10.18653/v1/2024.cmcl-1.9</identifier>
<location>
<url>https://aclanthology.org/2024.cmcl-1.9</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>101</start>
<end>108</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Predict but Also Integrate: an Analysis of Sentence Processing Models for English and Hindi
%A Delcaro, Nina
%A Onnis, Luca
%A Alhama, Raquel
%Y Kuribayashi, Tatsuki
%Y Rambelli, Giulia
%Y Takmaz, Ece
%Y Wicke, Philipp
%Y Oseki, Yohei
%S Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F delcaro-etal-2024-predict
%X Fluent speakers make implicit predictions about forthcoming linguistic items while processing sentences, possibly to increase efficiency in real-time comprehension. However, the extent to which prediction is the primary mode of processing human language is widely debated. The human language processor may also gain efficiency by integrating new linguistic information with prior knowledge and the preceding context, without actively predicting. At present, the role of probabilistic integration, as well as its computational foundation, remains relatively understudied. Here, we explored whether a Delayed Recurrent Neural Network (d-RNN, Turek et al., 2020), as an implementation of both prediction and integration, can explain patterns of human language processing over and above the contribution of a purely predictive RNN model. We found that incorporating integration contributes to explaining variability in eye-tracking data for English and Hindi.
%R 10.18653/v1/2024.cmcl-1.9
%U https://aclanthology.org/2024.cmcl-1.9
%U https://doi.org/10.18653/v1/2024.cmcl-1.9
%P 101-108
Markdown (Informal)
[Predict but Also Integrate: an Analysis of Sentence Processing Models for English and Hindi](https://aclanthology.org/2024.cmcl-1.9) (Delcaro et al., CMCL-WS 2024)
ACL