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Abstract
Fluent speakers make implicit predictions
about forthcoming linguistic items while pro-
cessing sentences, possibly to increase effi-
ciency in real-time comprehension. However,
the extent to which prediction is the primary
mode of processing human language is widely
debated. The human language processor may
also gain efficiency by integrating new linguis-
tic information with prior knowledge and the
preceding context, without actively predicting.
At present, the role of probabilistic integra-
tion, as well as its computational foundation,
remains relatively understudied. Here, we ex-
plored whether a Delayed Recurrent Neural
Network (d-RNN, Turek et al., 2020), as an
implementation of both prediction and integra-
tion, can explain patterns of human language
processing over and above the contribution of
a purely predictive RNN model. We found that
incorporating integration contributes to explain-
ing variability in eye-tracking data for English
and Hindi.

1 Introduction

Languages are acquired and processed in real time.
The transient quality of spoken language is evident,
as it vanishes the moment it is spoken. And while
written words appear fixed on a page, skilled read-
ers assimilate them in sequence rapidly, seldom
needing to double-back and review past words, and
even skipping words entirely. This transitory aspect
of language, coupled with the remarkable efficiency
and speed at which humans use it, suggests that our
brains harness specialized processes for managing
information that fluidly unfolds in a sequence.

One proposed cognitive mechanism is predic-
tion, the process by which a listener or reader antic-
ipates upcoming linguistic information during lan-
guage comprehension. This anticipation is based
on internalized knowledge of language, previous
local context information, and accumulated world-
knowledge from semantic and episodic long-term

memory. Psycholinguistic research suggests that
individuals often implicitly predict elements such
as the next word or grammatical structure while
engaging with language, which allows for more ef-
ficient processing and understanding (Hale, 2016;
Pimentel et al., 2023; Wilcox et al., 2023a). Predic-
tion can occur at multiple levels, from anticipating
the completion of a familiar phrase to forecasting
the thematic content of a conversation or narrative.
Probabilistic word prediction has been explicitly
implemented in a class of cognitive recurrent mod-
els since the inception of the Recurrent Neural Net-
work (Elman, 1990).

However, an unresolved debate in psycholinguis-
tics centers around the extent to which the human
language processor anticipates upcoming informa-
tion (prediction) and how it assimilates incoming
linguistic information with existing knowledge (in-
tegration, Ferreira and Chantavarin, 2018; Kuper-
berg and Jaeger, 2016; Nieuwland et al., 2020).
A mechanism of probabilistic integration would
not necessarily try to predict upcoming material,
but instead increase efficiency by evaluating the
probability of the preceding context given each
heard/read linguistic item (e.g., the current word).
In recent work (Onnis and Huettig, 2021; Onnis
et al., 2022) this mechanism has been modeled
successfully using n-gram language models as the
backward transitional probability, P(prior context
| word) as a proxy for integration, as opposed to
prediction in the form of forward transitional prob-
ability, P(word | current word).

Here, we conducted an exploratory analysis to
determine whether a recurrent language model im-
plementing integration can explain patterns of hu-
man language processing (online reading times re-
vealed by eye movements from existing psycholin-
guistic datasets) over and above the contribution of
a purely predictive language model. We did so by
comparing two types of Recurrent Neural Networks
(RNNs), namely the classic RNN, and the Delayed
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RNN (d-RNN) as proposed by Turek et al. (2020).
The classic RNN can be considered an implemen-
tation of prediction, while the d-RNN implements
both prediction and integration (see details below).
To test the robustness of our method, we applied it
to reading data from two languages, English and
Hindi, that differ typologically in several ways, re-
flecting their distinct linguistic origins, families,
and structures. Our work has value in attempting to
model probabilistic integration explicitly, as an ad-
ditional important cognitive mechanism underlying
language processing that is currently underappreci-
ated in psycholinguistic modeling.

2 Model Architectures

We evaluate two Recurrent Neural Network ar-
chitectures: a vanilla Recurrent Neural Network
(RNN, Elman, 1990), and a variant that introduces
a processing delay (d-RNN, Turek et al., 2020).
The former has a long tradition in cognitive model-
ing (Elman, 1990; Rohde and Plaut, 1997; Chris-
tiansen and Chater, 1999; Cartling, 2008), as it is
naturally suited to implement forward prediction
over sequential inputs. The latter was first proposed
in the context of NLP, to incorporate sensitivity to
backward dependencies (i.e., approximating bidi-
rectional RNNs); however, it has also been used to
model language acquisition (Alhama et al., 2021).

RNNs are forward models by design because
they are trained to predict the upcoming word in a
sentence (xt+1) based on two sources of informa-
tion: the current word xt and the hidden state of
the network, computed in the previous step (ht−1).
The d-RNN implements next-word prediction in
the same way, but its key feature is the addition of
a processing delay d such that, for an input word
xt, its output is produced at time t + d (i.e. the
predicted word is ŷt+d). Thus, the weights of the
d-RNN are only updated after d extra words, de-
laying learning. Turek et al. (2020) showed that
a large enough delay approximates bidirectional
processing, suggesting that the delay allows the
network to capture backward dependencies. Im-
portantly, while bidirectional models do exploit
context to the left and right of a target word to be
predicted, they appear unsuited as cognitive mod-
els of real-time incremental language processing,
as they require entire sentences or paragraphs to
compute their predictions. Instead, and crucially,
the d-RNN combines classic forward prediction
for incremental input with sensitivity to backward

dependencies, making it a suitable cognitive model
of prediction and integration.

3 Data

Sources. The choice of English and Hindi is
based on three criteria. First, we required lan-
guages with different word order, to ensure enough
variability in forward and backward dependencies.
While English is strictly SVO, Hindi favours SOV
order. Second, we chose languages that differ in
terms of morphological typology. Our statistical
analysis is done at the word level, so we use this
criterion to ensure the languages are comprised of
words that cannot easily be separated into multiple
morphemes, as in agglutinative languages. English
is an analytic language that uses specific words
rather than inflection to express syntactic relations.
Generally, this entails having one morpheme per
word. Hindi is a fusional language: it ‘fuses’ mor-
phemes together in a word where it is not easy
to distinguish the individual morphemes (Ramoo,
2021).

Thirdly, for model training and validation against
human reading patterns (specifically, eye fixa-
tions on words), we sourced publicly accessible
datasets for each language, containing texts of a
uniform style. We utilized the Potsdam-Allahabad
Hindi Eye-tracking Corpus (PAC, Husain et al.,
2015; Vasishth, 2021) comprising word-level eye-
tracking data from 30 individuals reading 83 sen-
tences sourced from newspapers. For English, our
source was the Multilingual Eye-tracking Corpus
(MECO, Siegelman et al., 2022), which includes
eye-tracking data captured from 46 participants
reading 112 encyclopedic sentences. Both hu-
man reading datasets align with expository writ-
ing, prompting us to select Wikipedia articles for
training our language models. These articles pro-
vide a congruent encyclopedic text style and are
widely available across languages from Wikimedia
Foundation dumps.

Pre-processing. We pre-process the Wikipedia
articles and the PAC and MECO sentences using
the Stanza library (Qi et al., 2020) for tokeniza-
tion, Part-of-Speech annotation and lemmatization.
We use lowercased text and remove all punctua-
tion (but we process sentences separately). In the
case of Wikipedia texts, we remove article titles
using regular expressions, and randomly sample
200,000 sentences for each language. The chosen
corpora appear comparable in their mean sentence
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lengths: 18.73 and 21.07 words-per-sentence (wps)
for the English training set and MECO sentences,
respectively, and 18.94 and 16.2 wps for the Hindi
training set and PAC sentences, respectively.

We introduce an unknown token to handle out-
of-vocabulary (OOV) and rare words. When set-
ting low frequency words in the corpus to the un-
known token, we are reducing the vocabulary size
the RNNs need to train on. This simplifies the task,
reducing training time (Chen et al., 2019), but it
also reduces the amount of text in MECO and PAC
sentences. We find that a cut-off word frequency
of 24 leaves us with almost 90% of the data within
MECO and PAC, while the vocabulary of the train-
ing set in English and Hindi is reduced to some 11
thousand words.

The type-token ratio (TTR) calculated after the
vocabulary size reduction shows MECO and PAC
have a higher degree of lexical variety than the
RNN training sets1. This is as expected since
these datasets contain fewer sentences compared
to the amount sampled from Wikipedia. Moreover,
the similarity of the training sets’ TTRs indicates
that the RNNs’ task difficulty is similar across lan-
guages.

Finally, MECO and PAC require minor pre-
processing. In both human reading datasets, we
remove skipped words, as they do not help us
quantify the predictability of a word and the pro-
cessing effort required to read it. The code used
for preprocessing and the rest of our research is
available at https://github.com/ninadelcaro/
predict-integrate-cmcl.

4 Experimental Setup

Language Models. We use the code for the RNN
and d-RNN by Alhama et al. (2021), with a delay
of 1 for the d-RNN. Both networks have three lay-
ers: an embedding layer, a recurrent one, and a
fully connected layer with softmax activation. We
feed the networks with the tokenized sentences
described above, and we use cross-entropy loss
on next-word prediction objective. We update the
weights with Stochastic Gradient Descent. We train
until the loss becomes stable (around 45 epochs)
in the classic RNN and use the same number of
epochs to train the d-RNN (41 epochs for English
and 45 for Hindi).

Hyperparameter optimization is done using ran-

1MECO: TTR = .34; PAC: TTR = .25; English train-
ing set: TTR = .0023; Hindi training set: TTR = .0022

dom search (Bergstra and Bengio, 2012). We train
on 80% of the Wikipedia articles, using 10% as
the validation set and the other 10% as the testing
set. The hyperparameters we optimize are the word
embedding and hidden state dimensions as well as
the learning rate. We select the RNN model with
the lowest loss on the validation set and make sure
there is no overfitting by comparing the validation
loss to the training loss. Our final model has a hid-
den state size of 682, an embedding size of 426,
and a learning rate of 0.001. We use these same
hyperparameters across all models (i.e., for both
RNN variants and languages).

Predictor Variables from Language Models.
Following established computational psycholin-
guistics literature, we use per-word information-
theoretic measures of entropy and surprisal (Hale,
2016). Word surprisal is the negative log-
probability of said word, and it intuitively quan-
tifies its unexpectedness. This measure has been
linked to human sentence processing difficulty
and is predictive of eye movements (Levy, 2008;
Wilcox et al., 2023b; Aurnhammer and Frank,
2018; Boston et al., 2008; Ehrlich and Rayner,
1981; Merkx and Frank, 2021; Oh and Schuler,
2023; Demberg and Keller, 2008; Smith and Levy,
2013; Shain et al., 2020). Entropy, on the other
hand, quantifies the degree of uncertainty over pos-
sible outcomes (Shannon, 1948), and it has also
been shown to correlate with human sentence pro-
cessing effort (Keller, 2004; Linzen and Jaeger,
2014; Wilcox et al., 2023b; Hale, 2003; Linzen
and Jaeger, 2016; Roark et al., 2009). We com-
pute these metrics for each word in the MECO and
PAC datasets, using the probability distributions
predicted by our language models.

Outcome Variables: Eye gazes while reading.
Metrics of reading processing difficulty available
from MECO and PAC include: first fixation dura-
tion, first-pass reading time, and total fixation time.
Because no consensus exists on whether these mea-
sures underlie separate cognitive processes, these
reading times (RTs) were used as dependent vari-
ables in separate regression models (Agrawal et al.,
2017; Boston et al., 2008; Keller, 2004; Merkx
and Frank, 2021). RTs were log-transformed for
normalization, variance stabilization, and outlier in-
fluence reduction (Aurnhammer and Frank, 2018).

Statistical Inference Model. As in previous re-
search (Agrawal et al., 2017; Aurnhammer and
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Frank, 2018; Boston et al., 2008; Merkx and Frank,
2021), we analyze the relationship between the per-
word information-theoretic metrics of entropy and
suprisal from our language models as predictors,
and human reading times as outcomes, using Gen-
eralised Linear Mixed Effects Regression models
(GLMER) that incorporate both fixed and random
effects. The hierarchical structure of MECO and
PAC reading data makes the word-level observa-
tions non-independent, because the sentences con-
tain words that are embedded in sentences that are
read by specific participants. Therefore, we require
random intercepts for the participant and the word
read to be part of the linear regression models.

We use nested modelling to compare GLMER
models with additional independent variables to
a baseline GLMER model. Besides random ef-
fects, the baseline regresses the eye-tracking data
on these control fixed effects covariates known to
affect reading times: word length, and order of
appearance of each word within the sentence pre-
sented to the reader. Model comparison is per-
formed with a log-likelihood ratio test, allowing us
to test whether a single predictor added at each step
explains any more variance in the outcome variable
by improving the model fit.

Entropy and surprisal are not correlated (Pear-
son’s r(119306) = 0.36, p < 0.001) in the RNN
regression, but they are in the d-RNN regression
(Pearson’s r(119306) = 0.99, p < 0.001). There-
fore, we choose to separate these two metrics in
two sets of stepwise GLMER models, one using en-
tropy and another using surprisal as predictor vari-
ables. Each set consists of a) the baseline model, b)
a model adding the RNN’s metric, and c) a model
adding the d-RNN’s metric to the previous model.
We can thus rigorously evaluate our key theoretical
conjecture: does the d-RNN architecture, which
incorporates a form of language integration, con-
tribute incremental variance over and above an
RNN that operates solely on a predictive mech-
anism?

5 Results

Table 1 presents the core outcomes of our GLMER
analysis, with detailed model comparisons, log-
likelihood ratio tests, and α significance levels pro-
vided in Appendix A.

English. For the English reading dataset, word
entropy of the RNN did not improve the baseline
model for any of the three dependent variables,

English Hindi
Metric Model Ent. Surp. Ent. Surp.

FFD
RNN .39 .002 .02 .11
d-RNN .01 .13 .1 .19

TFD
RNN .22 <.001 <.001 <.001
d-RNN <.001 .07 .02 .3

FPRT
RNN .8 .002 .02 .08
d-RNN .08 .56 .02 .05

Table 1: Nested model comparison results for human
reading time outcomes. Each model comprises various
predictors—RNN Model with baseline predictors plus
RNN metric, and d-RNN Model with added d-RNN
metric. The table shows p-values from log-likelihood
ratio tests for model comparisons. FFD: First Fixation
Duration; TFD: Total Fixation Duration; FPRT: First
Pass Reading Time; Ent.: Entropy; Surp.: Surprisal.

whereas the d-RNN’s entropy did so when consid-
ering first fixation and total fixation duration as
dependent variables. Conversely, adding the sur-
prisal of the RNN improved model fit for all three
dependent variables, while adding the surprisal of
the d-RNN did not improve model fit further.

Hindi. In the Hindi reading dataset, adding the
RNN’s word entropy to the baseline model im-
proved the model, and so did adding the d-RNN’s
entropy when predicting total fixation duration and
first pass reading time. On the other hand, model
comparison revealed no model fit improvement
when entering word surprisal, with a notable ex-
ception: the addition of the RNN’s surprisal to the
model regressing total fixation duration.

6 Discussion

The ephemeral nature of language is evident, as
it rapidly vanishes from our sensory experience
upon its completion – being spoken or read. While
current psycholinguistics research primarily em-
phasizes probabilistic prediction as a mechanism
that facilitates efficient language learning and real-
time processing, the computational modeling of
integration and its interplay with prediction in hu-
man sentence processing remain less understood.
Addressing this, we used an RNN to model pure
prediction and a d-RNN for the combined processes
of prediction and integration, and assessed the rela-
tionship between language model-derived entropy
and surprisal measures and eye-tracking data.

The d-RNN’s entropy contribution across lan-
guages suggests that language models incorporat-
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ing integration explain variability in eye-tracking
data beyond prediction alone, although surprisal
did not yield similar results. A tentative interpreta-
tion is that the time course of integration is better
reflected in a metric like entropy, which measures
uncertainty based on the current state of knowl-
edge of the model, rather than in an a-posteriori
and word-specific metric like surprisal. This may
be a consequence of the specific operationaliza-
tion of integration provided by the d-RNN, which
delays learning until subsequent words have been
processed. Such operationalization is in fact rem-
iniscent of the lookahead mechanism used in the
parsing literature, which peeks at a number of up-
coming tokens in a sentence in order to decide be-
tween alternative syntactic analyses (Marcus, 1980;
Stabler, 1983; Nozohoor-Farshi, 1986).

The different outcomes in English and Hindi
data could suggest that integration and prediction
may be employed differently in various languages,
possibly influenced by the distinct word orders of
the languages we examined—English being SVO
and Hindi SOV— and how they interact with RNN
model metrics and eye-tracking measures. These
observations call for additional investigations into
a broader spectrum of languages to discern how
language structure might tip sentence processing
toward either integration or prediction.

Note that in modeling reading processes, we
strived for cognitive plausibility. While more
recent and powerful architectures such as bidi-
rectional recurrent networks and encoder-decoder
transformers could potentially implement integra-
tion, they also do it using text from the future, i.e.
they require entire sentences or passages to pre-
dict a masked word and train its algorithm. Since
relying on future words is not cognitively plausi-
ble when processing language word-by-word incre-
mentally, we opted for classic RNN implementa-
tions. Other models like Long-Short Term Memory
Networks (Hochreiter and Schmidhuber, 1997) and
decoder-only transformers trained unidirectionally
(Radford et al., 2019) meet our requirements, and
we leave the investigation of their suitability to
future work.
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A Appendix

English Hindi
Outcome Predictors AIC χ2 p-value AIC χ2 p-value

First fixation duration
Baseline 55443 23932
RNN entropy 55444 0.74 .39 23928 5.8 .02
d-RNN entropy 55440 6.36 .01 23927 2.75 .1

Total fixation duration
Baseline 94736 37375
RNN entropy 94737 1.52 .22 37366 11.16 <.001
d-RNN entropy 94727 12.08 <.001 37363 5.23 .02

First pass reading time
Baseline 72201 32505
RNN entropy 72203 0.06 .8 32502 5.84 .02
d-RNN entropy 72202 2.97 .08 32499 5.06 .02

Table 2: Results of stepwise nested model comparisons predicting human reading time outcomes. Each inference
model includes different predictors: Baseline Model (word length, sentence position, and subject and word random
intercepts), RNN Entropy Model (Baseline predictors plus RNN word entropy), and d-RNN Entropy Model (RNN
Model predictors plus d-RNN word entropy). Models are assessed using log-likelihood ratio tests.

English Hindi
Outcome Predictors AIC χ2 p-value AIC χ2 p-value

First fixation duration
Baseline 55443 23932
RNN surprisal 55436 9.22 .002 23931 2.54 .11
d-RNN surprisal 55436 2.27 .13 23932 1.74 .19

Total fixation duration
Baseline 94736 37375
RNN surprisal 94709 28.96 <.001 37360 17.7 <.001
d-RNN surprisal 94708 3.23 .07 37360 1.08 .3

First pass reading time
Baseline 72201 32505
RNN surprisal 722194 9.84 .002 32504 3.1 .08
d-RNN surprisal 722195 0.34 .56 32503 3.72 .05

Table 3: Results of stepwise nested model comparisons predicting human reading time outcomes. Each inference
model includes different predictors: Baseline Model (word length, sentence position, and subject and word random
intercepts), RNN surprisal Model (Baseline predictors plus RNN word surprisal), and d-RNN surprisal Model (RNN
Model predictors plus d-RNN word surprisal). Models are assessed using log-likelihood ratio tests.
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