
Proceedings of the 5th Workshop on Computational Approaches to Discourse (CODI 2024), pages 1–11
March 21, 2024 ©2024 Association for Computational Linguistics

Abstract

Although diagrams are fundamental to
Rhetorical Structure Theory, their
interpretation has received little in-depth
exploration. This paper presents an
algorithmic approach to accessing the
meaning of these diagrams. Three
algorithms are presented. The first of these,
called Reenactment, recreates the abstract
process whereby structures are created,
following the dynamic of coherence
development, starting from simple
relational propositions, and combing these
to form complex expressions which are in
turn integrated to define the comprehensive
discourse organization. The second
algorithm, called Composition, implements
Marcu’s strong nuclearity assumption. It
uses a simple inference mechanism to
demonstrate the reducibility of complex
structures to simple relational propositions.
The third algorithm, called Compression,
picks up where Marcu’s assumption leaves
off, providing a generalized fully scalable
procedure for progressive reduction of
relational propositions to their simplest
accessible forms. These inferred reductions
may then be recycled to produce RST
diagrams of abridged texts. The algorithms
described here are useful in positioning
computational descriptions of rhetorical
structures as discursive processes, allowing
researchers to go beyond static diagrams
and look into their formative and
interpretative significance.

1 Introduction

It has been shown that rhetorical structures and
relational propositions are interchangeable (Potter,
2023a). The structure of an RST diagram can be
restated as a relational proposition and relational
propositions can be returned to RST diagrams.

Relational propositions, as defined by (Mann &
Thompson, 1986a, 1986b, 2000), are implicit
assertions arising between clauses within a text and
are essential to the functioning of the text. They can
be considered as an alter ego of RST relations, with
each assertion consisting of a predicate (or relation)
and two variables (representing a satellite and
nucleus). Because the predicate notation developed
for relational propositions is Python conformant
(Potter, 2023a, 2023b), mapping RST diagrams to
relational propositions opens the possibility of
exploring rhetorical structures algorithmically,
presenting a range of analytic possibilities. The
immediate effect of rendering RST diagrams as
code is to unlock the picture: If, as the saying goes,
a picture is worth a thousand words, the diagram
now becomes a movie. It is a story about what is
happening in a text. The objective of the research
described in this paper was to investigate some of
these possibilities.

Three algorithms are presented, each addressing
a distinct aspect of Rhetorical Structure Theory.
The first of these is called Reenactment. This
algorithm replays the abstract process of structure
formation, demonstrating the step-by-step
construction of discourse formation starting with
elementary relational propositions, and combining
these to form complex expressions which are in
turn integrated to define the comprehensive
discourse organization. The second algorithm,
referred to as the Composition algorithm,
implements Marcu’s strong nuclearity assumption
and demonstrates the reducibility of complex
structures to simple relational propositions. The
third algorithm, called Compression, picks up
where Marcu leaves off, providing a generalized
scalable method for progressive reduction of
relational propositions down to their simplest
possible forms.

These algorithms provide the opportunity for a
direct and deep look into information implicit in

An Algorithmic Approach to Analyzing Rhetorical Structures

Andrew Potter
Computer Science & Information Systems Department

University of North Alabama
Florence, Alabama, USA
apotter1@una.edu

1

RST diagrams. A benefit of this is that it should set
aside any notion that RST diagrams are incapable
of articulating in-depth aspects of discursive
development, or that they are merely static
specifications (Martin, 1992). On the contrary,
although RST is only a partial explanation of
discourse coherence, the part it plays is an
important one. If we can restate RST diagrams in
computational terms and allow these terms to
describe what a diagram is doing, then perhaps we
can begin to enjoy a deeper appreciation for what
they are telling us about the text, and that these
diagrams, far from static depictions of discourse
structure, are actually renderings of a dynamic
process, showing how a discourse germinates from
its elementary units to become a whole that is
greater than its parts.

2 Framework

The interlocking property of rhetorical structures,
where a satellite’s support for a nucleus creates a
span which in turn becomes the satellite for yet
another nucleus, suggests that the typical rhetorical
relation is rhetorically transitive, with the
consequence that their intended effects develop
cumulatively across complex structures, ultimately
converging on an identifiable locus of effect. This
abstract process is an assumption of the research
described here; otherwise, the algorithms would
fail to achieve produce their expected results.
Potter’s (2023a) algorithm for transforming RST
analyses into relational propositions is used to
provide the input for this framework. Throughout
this process, these propositions maintain their
structural isomorphism with RST diagrams.

Marcu’s strong nuclearity assumption, also
known as the strong compositionality criterion,
says that when two complex text spans are
connected through a rhetorical relation, the same
rhetorical relation holds between the nuclei of the
constituent spans (Marcu, 1996, 2000). This means
that from relations between spans, simple
structures may be inferred. The algorithmic
implementation of this supports its application to
RST analyses of any size. The reenactment
algorithm implements a bottom-up perspective on
RST structures by enacting the dynamic process of
structure development, starting with elementary
relational propositions, and combining these to
form a complex expression ultimately of the
comprehensive discourse organization. The

Compression algorithm implements a technique
previously proposed by Potter (2023b). As a
generalization of strong nuclearity, it progressively
eliminates the precedent satellite within the RST
nuclear path to reduce the relational proposition to
its simplest possible expression. The technique
specifies delimited transitivity for handling
multinuclears and unrealized relations. Taken
together the three algorithms provide a
foundational set of capabilities for analyzing
rhetorical structures and exploring various features
of the theory, such as inference, transitivity,
reducibility, intentionality, and structural
dynamics. In short, the algorithms can be used for
investigating a range of discourse characteristics
following a well-defined algorithmic approach.
These algorithms are neither large nor complex.
They are of interest more for what they do rather
than for how they do it. What they do is offer
insights into the nature of discourse. How they do
this is largely reliant on the representation of RST
structures as Pythonic relational propositions. I
believe their simplicity is a by-product of the
alignment of the theory with the discursive
organizations it describes.

3 Related Work

While the literature on Rhetorical Structure Theory
is vast, only a rather narrow strand of that research
is relevant to this study. This naturally
encompasses the founding RST documents,
including but not limited to Mann and Thompson
(1988) and Mann and Thompson (1987). These
publications define Rhetorical Structure Theory
(RST) as a descriptive theory of text organization,
as a tool for describing and characterizing texts in
terms of the relations that hold among the clauses
within a text. A detailed exemplification of the
theory can be found in Mann, et al.’s (1992)
analysis of a fund-raising text. Matthiessen and
Thompson (1987) provide an in-depth discussion
of the theoretical foundations of RST.

Of continuing research interest in RST has been
the possibility that it could be used as a text
summarization technology. Most prominent in this
area has been the works of (Marcu, 1997, 1998a,
1998b, 1998c, 1999, 2000). There has also been
ongoing work in extending and refining the RST
relation set. Generally this has been aimed at
enhancing the ability of parsers to correctly identify
relations while at the same time increasing the

2

specificity of relations (Carlson & Marcu, 2001;
Zeldes, 2017).

Other research has been aimed at enriching the
theory. In particular, Marcu is known for
articulating the aforementioned strong nuclearity
assumption. Stede (2008) explored the problems of
nuclearity. In his investigation of different types of
salience phenomena, he found that nuclearity as
defined in RST tends to conflate information from
different realms of description within a single
structure. He proposed a multilevel analysis
approach that would reconcile these issues. A
variety of formalisms have been developed that
would address limitations in RST (e.g., Asher &
Lascarides, 2003; Webber & Prasad, 2009; Wolf &
Gibson, 2005). An assumption made for this paper
is that the theory and practice of RST is sufficiently
well developed as to produce useful and interesting
analyses.

In a parallel but lesser-known universe is the
theory of relational propositions. This theory is an
antecedent to the conceptualization of RST. With
relational propositions, relations between satellites
and nuclei are treated as implicit coherence-
producing assertions (Mann & Thompson, 1986b).
A relational proposition consists of a predicate and
a pair of arguments. The predicate corresponds to
the RST relation, and the arguments correspond to
its satellite and nucleus. A shortcoming in the early
work in relational propositions was its limitation to
elementary expressions. There were no provisions
for complex structures. Mann and Thompson
(2000) attempted to address this but without
success. That leaves off where this research begins.

Potter (2019a, 2023b) devised a functional notation
to support representation of complex relational
propositions. The original objective was to develop
a deductive interpretation of RST, one that would
support investigation of logical operations such as
transitive implication in discourse. That work
provided an initial proof of concept for the
algorithms described in this paper. However, rather
than rely on propositional logic, the discourse
features of interest were accessed directly.

This was expedited by using Potter’s (2023a)
program for mapping of RST diagrams to relational
propositions. Automating this step enables
scalability, reduces the likelihood of error, and
eliminates a lot of tedium. Because the notation
used for these relational propositions is conformant
with the Python programming language, the
algorithm effectively converts a diagram into
machine processable code. An RST analysis like
the Arithmetic analysis shown in Figure 1 can be
automatically converted to its relational
proposition:

concession(
 condition(
 2,1),
 evidence(
 condition(
 5,
 concession(
 7,6)),
 antithesis(
 4,3)))

These encoded relational propositions are the
drivers for the algorithms described here. Each
relation has a corresponding function within the

Figure 1: Reenacting a Rhetorical Structure (text from Cheng,
2022)

condition(2,1)
concession(7,6)
condition(5,concession(7,6))
antithesis(4,3)
evidence(condition(5,concession(7,6)),antithesis(4,3))
concession(condition(2,1),evidence(condition(5,concession(7,6)),antithesis(4,3)))

3

code, called a relation handler, so that performance
of the relational proposition causes execution of the
defined functions.

4 Algorithmic Analyses of Rhetorical
Structures

As introduced earlier, this paper describes three
algorithms for analyzing rhetorical structures.
Reenactment models the bottom-up production of
discourse organization. Composition implements
Marcu’s (2000) strong nuclearity. And
Compression leverages the asymmetry of RST
relations to implement transitive inference directly
into relational propositions.

Each of these algorithms uses Pythonized
relational propositions as input. For each algorithm
there is a set of functions called relation handlers,
one handler per relation. Typically, these functions
return a tuple-formatted relational proposition, i.e.,
the name of the relation and a nested tuple
containing satellite and nucleus identifiers,
including the relation names and tuple information
for any relational propositions nested within them.
At runtime the handlers are invoked in order of
precedence as specified by the relational
proposition. Each algorithm defines a collector
function that manages the values returned by the
relation handlers. The output consists of one or
more relational propositions, constituting the
reenactments, inferences, or compressions as
determined by the algorithm.

Input to each algorithm starts with RST analyses
created using RSTTool or RST-Web (O'Donnell,
1997; Zeldes, 2016). These analyses are
transformed into relational propositions using
Potter’s (2023a) conversion tool. The relational
propositions are then input to the algorithms which
transform them into reenacted, inferred, or
compressed relational propositions. These
relational propositions may be analyzed as is, or
they may be used to construct new RST analyses.
The following sections provide detailed
descriptions of the algorithms and their
applications.1

4.1 Reenactment Algorithm

The hierarchical appearance of RST diagrams
encourages the impression of top-down tree
structures. But these trees do not sprout branches as

1 https://github.com/anpotter/aaars

it were from a root, branch, or stem. On the
contrary, from a functional perspective, the
diagrams are upside down: the segment nodes at
the lower part of the diagram combine to form
composite structures. These composite structures
become increasingly complex at higher levels of
the diagram. Although a completed diagram might
seem to depict a static situation, what is revealed
there is the end-state of a dynamic process. By
modeling the abstract bottom-up process of
discourse organization, the reenactment algorithm
provides guidance for reading RST diagrams. The
replay of a rhetorical structure shows how
elementary discourse units combine logically to
form relational propositions and how these
propositions combine with other relational
propositions to create increasingly complex
expressions until a comprehensive analysis
emerges. It is this comprehensive analysis that is
modeled in an RST analysis.

The reenactment algorithm performs a bottom-
up evaluation of a nested relational proposition.
The design of the algorithm is simple. A relational
proposition is evaluated as a Python expression. A
relation handler is invoked whenever the relation
occurs within an expression. These relation
handlers convert a relational proposition from code
to data. The function returns the name of the
relation and a nested tuple containing identifiers for
its satellite and nucleus. The contents of the tuple
reflect the depth of the nesting of the relational
proposition. The tuple representation of the
relational proposition is assembled in precedence
order, working from the inside out. The replay

Figure 2: A Fully Compressible Analysis

evidence(volitional_cause(circumstance(2,3),4),1)
evidence(volitional_cause(3,4),1)
evidence(4,1)
1

4

https://github.com/anpotter/aaars

manages the recursion of the expression and
collects the output.

As the function makes its way through the
relational proposition, it constructs the expression
as it goes. In other words, it performs the relational
proposition. A completed relational proposition can
thus be thought of not as a static entity but as the
result of an abstract process. And because relational
propositions are isomorphic with their respective
RST diagrams, the interpretation of the diagram
can be understood as consistent with the
performance of the relational proposition. As the
reenactment in Figure 1 shows, RST structures
define themselves from elementary relational
propositions which combine to form complex
expressions, enacting a logical process through
which rhetorical intentionality emerges. This
abstract process follows the precedence of the
relational proposition.

4.2 Composition Algorithm

The composition algorithm is an implementation of
Marcu’s strong compositionality criterion. The
criterion states that any relation between two spans
will also hold between the nuclei of those spans
(Marcu, 2000). Thus, simplified structures may be
inferred from complex structures. In discussions of
the criterion, it seems to be assumed that both the
satellite and nucleus are themselves complex spans
(e.g., Das, 2019; Demberg, Asr, & Scholman,
2019; Egg & Redeker, 2010; Marcu, 1996; Sanders
et al., 2018; Stede, 2008). However, for the
criterion to be delimited in this way suggests that
relations between elementary units and relations
between complex spans are in some way
fundamentally different from one another. While
there would be no difficulty in limiting the
algorithm to comply with this, I have adopted a
broader interpretation: nuclearity arises as a result
of the relation of a unit or span to some other unit
or span; hence the criterion is more broadly
applicable. The only constraint is that at least one
part of the relation be a span. Otherwise, any
inference would be a simple repetition. Thus, the
algorithm as written permits inferences in which
either the satellite or the nucleus is an elementary
unit, so that, for example, from the relational
proposition:

volitional_cause(
 circumstance(
 2,3),4)

the algorithm makes the inference:

volitional_cause(3,4)

The algorithm evaluates the relation handlers for
the relational proposition, collects the relational
tuples, and determines which of those meet the
compositionality criterion. The set of inferences
generated from the RST analysis shown in Figure
1 are listed in Table 1.

4.3 Compression Algorithm

The compression algorithm is a procedure for
progressive reduction of relational propositions to
their simplest accessible form. By evaluating the
expression in precedence order, the expression is
progressively reduced from the innermost
relational propositions outward. With each iteration
the relation and satellite of the precedent
proposition is eliminated. In effect, the relational
proposition collapses inward. Usually, but not
always, the ultimate reduction will be the single
elementary discourse unit identifiable as the locus
of intended effect. When not, it will be the simplest
accessible relational proposition containing the
nucleus that would have been the locus of intended
effect, were that relation realizable. In other words,
the algorithm takes the compression as far as it can,
and yet acknowledges that some relations are by

Table 1: Inferences Generated by Composition
Algorithm

InferenceRelational Proposition
6concession(

7,6)
condition(5,6)condition(

5,
concession(

7,6))
3antithesis(

4,3)
evidence(concession(7,6),3)evidence(

condition(
5,
concession(

7,6)),
antithesis(

4,3))
concession(1,antithesis(4,3))concession(

condition(
2,1),

evidence(
condition(

5,
concession(

7,6)),
antithesis(

4,3)))

5

definition or by position resistant to reduction. The
Tax Program analysis (Figure 2, above) provides a
simple example of a fully compressible analysis.
With each step, the innermost relation and its
satellite are eliminated. The CIRCUMSTANCE and
its satellite are dropped first. Next VOLITIONAL-
CAUSE and its satellite are dropped, followed by
elimnating the satellite from the EVIDENCE
relation, ultimately leaving only segment 1: the
program as published for calendar year 1980
really works. Applying this procedure to a variety
of RST analyses has yielded positive results.
However, not all RST analyses are as simple as the
Tax Program.

Some relations are not compressible and require
special treatment. These include multinuclears,
relations with unrealized satellites, and attribution
relations. While multinuclears may seem
syntactically and semantically simple, they present
complications. The nuclei within a multinuclear
relation may consist solely of elementary discourse
units, but quite commonly these nuclei are complex
relational propositions that must themselves be
reduced. So, on one level multinuclears may be
treated as unanalyzable virtual units, but on the
other, it is necessary to analyze the members of the
relation, subjecting each to the compression
process.

Relations with unrealized satellites include
CONDITION, PURPOSE, UNLESS, and OTHERWISE.
Unrealized relations do not permit inference or
realization of the nucleus from the satellite. With
the CONDITION relation the satellite presents a
hypothetical, future, or otherwise unrealized
situation such that realization of the nucleus is

dependent on it. Hence the nucleus remains
hypothetical. Similar dependencies hold for
UNLESS and OTHERWISE. With PURPOSE, the
nucleus is an activity that must be performed in
order for the satellite to be realized. The relation
between the satellite and nucleus holds but has not
been realized. The compressibility of these
relations depends on their position within a
relational proposition. If the relation is positioned
as the satellite of a relational proposition, it may be
eliminated, but if it is the nucleus, it may not. This
is because the process of reduction involves the
progressive elimination of satellites. This,
particularly when combined with multinuclear
relations, can result in structures that are resistant
to compression. The New Brochure Time analysis
shown in Figure 3 is an example of this. There the
OTHERWISE relation cannot be reduced because
neither the satellite nor the nucleus is realized.
SAME-UNIT is a pseudo-relation used for linking
discontinuous text fragments that are really a single
discourse unit. It is modeled on the multinuclear
schema. The compression completes after only one
reduction.

Alternatively, it can be useful to relax the
reducibility constraint in order to focus on
intentional development. For example, this can be
of interest when the unrealized relations involve
actions that might be taken by the reader. This is the
case for the CONDITION and OTHERWISE relations
for the New Brochure Time analysis shown above
in Figure 3, presumably the writer of the text
expected that these conditions would hold for to

Figure 3: A Partially Compressible Analysis

justify(cause(1,2),otherwise(6,same_unit(condition(4,3),5)))
justify(2,otherwise(6,same_unit(condition(4,3),5)))

6

some readers. With the constraints removed, the
analysis reduces to same_unit(3,5), or
Anyone…should have their copy in by December 1.

Sometimes, as a compression proceeds, a non-
compressible relation will be shifted from a nuclear
to a satellite position. When this occurs, the
relation can be eliminated. This can be observed in
the process shown in Figure 4. There are two
SEQUENCE relations in the analysis, one as satellite
and the other as nucleus of an ELABORATION
relation. When the ELABORATION is eliminated, it
takes with it its satellite, thus eliminating the first
of the SEQUENCE relations. The remaining
SEQUENCE is now satellite to the INTERPRETATION
relation, making it eligible for elimination, which
occurs when it becomes the precedent relational
proposition. The status of the ATTRIBUTION
relation has been debated from time immemorial,
so perhaps it is fitting that it should require special
attention here. Mann and Thompson (1987)
rejected it as a legitimate relation, but it was
subsequently instated and refined by Carlson and
Marcu (2001), as well as by Zeldes (2023), and yet
provisionally rejected by Stede, Taboada, and Das
(2017) and reduced to alternative relations by
(Potter, 2019b). For the present research, ours is not
to reason why, but rather to process any and all
analyses as they presented. ATTRIBUTION is treated
(at least optionally) as irreducible in part because
sourcing of information is often part of the intended
effect, particularly when the intention of the
attributed material differs from that of the writer.

In order to assess the algorithm’s applicability
over larger texts, the compression algorithm was
tested on several analyses from the GUM corpus
(Zeldes, 2017). Because these analyses make

frequent use of multinuclear relations, this resulted
in reduced compressibility, so that the results are
sometimes lengthy in their own right. Code was
added to the algorithm to enable recovery of
compressed texts. The results of this suggest
coherence is preserved, albeit with some
irregularities in surface cohesion and punctuation.
For the GUM Academic Thrones analysis, the
original contains 87 segments, and compression
reduced this to 17 segments. The compressed text
was mapped to its relational proposition to create
an RST analysis relationally consistent with the
source. The compressed text generated by the
compression is shown in Figure 5. For readability,
line breaks were inserted for each of the
ORGANIZATION-HEADING relations. This text,
along with the relational proposition, was used to
create the RST analysis shown in Figure 6. The
original segment identifiers are preserved for

Figure 4: Reduction of Multinuclear Relations (Adapted from Lu et al., 2019)

Figure 5: Academic Thrones Compressed Text

AComparative Discourse Analysis of Fan Responses to Game of
Thrones

For us , as digital humanists , defining the “ transmedia fan ” is of
particular relevance

Methodology

As a first step the current project undertakes a comparative
discourse analysis of online conversations of Game of Thrones
fans . As a pilot project , the current work takes the content of
both comment threads and analyzes each thread separately
Through this analysis , a categorization of themes emerges A
comparison of categories and sub-categories between both
groups provides preliminary findings to support an emergent
model , or models , of the “ transmedia fan ” .

Conclusion

The present research represents a first step The question is ,
fundamentally , an examination Future research should explore
the negotiation tactics The current study will contribute to the
development of further qualitative and quantitative research This
project is of relevance to researchers in media studies , fan
studies , information studies and digital humanities.

7

reference. The rhetorical structure as well as the
text survived the compression process. For the
complete original text, see Forcier (2017).

The compression algorithm supports a
longstanding view about nuclearity: simple
summarizations should be possible merely by
lopping off satellites. Moreover, this is reflected in
a limitation that surfaced during testing. In analyses
of longer documents where the JOINT relation and
its variants are necessary to hold the structure
together, guideposts such as ORGANIZATIONAL-
HEADING become helpful for assuring readability.
This is as true for the compressions as it is for the
original texts.

 In compressions of longer texts, such as the
GUM analysis of Nancy Pelosi’s speech on George
Floyd, where such guideposts are lacking, minor
digressions which work well in the original spoken
medium become difficult in the transcript, and
these difficulties are apparent in the compressions.
That these reflect the features of the original should
be understood as an affirmation of RST as an
explanation of discourse coherence. The features of
the document are carried forward through multiple
layers of analysis.

As to whether the compression algorithm’s
contribution provides anything new or unique, I
would argue that it affirms claims often left to
intuition, and that it does so in a systematic and
repeatable manner. The code is freely available to
anyone who cares to take it for a test drive.
Moreover, the approach is generalizable to other
RST problems – once their solutions can be stated
algorithmically, they can be readily evaluated and
applied to a wide range of cases.

5 How it Works

The algorithms described here all share a common
design. Each consists of two parts: a set of relation
handlers and a core algorithm. A handler is
provided for each relation in the RST relation set.
These handlers are functions evaluated in response
to each occurrence of their corresponding relation
in a relational proposition. They are simple one-
liners. Each handler returns a tuple containing the
function’s name and a nested tuple containing its
satellite and nuclear identifiers. The functions
obtain their names at runtime using a system call.
Thus, in the reenactment and composition
algorithms, an occurrence of the relational
proposition concession(1,2) will return the
tuple: ('concession',(1,2)), and an occurrence
of the relational proposition evidence(3,
concession(1,2)) will return the tuple:
('evidence',(3,('concession',(1,2)))

When a relational proposition is evaluated, each
handler is called in precedence order, with each
function returning its name and arguments to the
calling function. In this way, the program
essentially performs the relational proposition,
starting with the innermost (hence higher
precedence) functions, working outward to the
edges of the expression. The reenactment
algorithm exploits that process.

The compress algorithm is only slightly more
complicated. Each of its relation handlers makes a
call to the core compression algorithm, passing it
its relation name and arguments. Special handling
for nonreducible relations is specified syntactically
in the handler functions. The evaluation of the

Figure 6: Compressed GUM Academic Thrones RST Analysis

8

relational proposition shown at the top of Figure 7
invokes each of the cited relation handlers and each
of these call the compress function, first
circumstance, followed by volitional_result,
antithesis, concession, evidence, and finally
the outermost relation, background. This leaves
little for the core algorithm to do. Since
multinuclears are non-compressible, the algorithm
simply formats them and returns the formatted
expression. For compressible relations, the
algorithm simply replaces the current relational
proposition with its nucleus, thus for each step
eliminating the relation and satellite. Functionally,
it infers the nucleus from the relational proposition.
This is consistent with Marcu’s strong nuclearity
assumption. Because this process is implicit within
the relational proposition, we can say it is also
implicit within the RST diagram from which the
proposition is derived, and therefore inferable from
within the text itself. Figure 7 shows the complete
code for the compress algorithm. For space
reasons, the list of relation handlers has been
limited to what is required for the example.

6 Conclusion

An RST analysis can be understood as an
explanation of the organizational composition of a

text. By identifying the text structure, by showing
how its elements come together, an RST analysis
explains how the text accomplishes what it is
intended to do. The algorithms described in this
paper contribute to that explanation. Reenactment
is a step-by-step articulation of coherence
development. The composition algorithm identifies
relational propositions implicit within the text. The
compress algorithm performs a deconstruction of
the structure from its totality down to its intentional
essence. These algorithms show that rhetorical
structures can be studied in terms of their relational
propositions. The relational propositions generated
by the algorithms are inferences which follow
directly from the source rhetorical structure. For
each inference there is an isomorphic RST analysis
and a corresponding text, that is, a structure within
the structure and a text within the text. Thus, these
simple algorithms provide interpretations of
rhetorical structures as discursive processes,
enabling the analyst to move beyond static
diagrams and study formative and interpretative
features of rhetorical structure. By positioning the
algorithms within the framework of relational
propositions, considerable simplicity is achieved.
The algorithms extend the scope of RST as a tool
for explaining discourse organization.

Figure 7: How it Works

Input relational
proposition

Relation handlers

Core algorithm

Compression
output

9

References
Nicholas Asher, & Alex Lascarides. 2003. Logics

of conversation. Cambridge, UK: Cambridge
University Press.

Lynn Carlson, & Daniel Marcu. 2001. Discourse
tagging reference manual (TR-2001-545).
Retrieved from Marina del Rey, CA:
ftp://ftp.isi.edu/isi-pubs/tr-545.pdf

Eugenia Cheng. 2022. The Joy of Abstraction.
Cambridge: Cambridge University Press.

Debopam Das. 2019. Nuclearity in RST and
signals of coherence relations. In Amir Zeldes,
Debopam Das, Erick Maziero Galani, Juliano
Desiderato Antonio, & Mikel Iruskieta (Eds.),
Proceedings of the Workshop on Discourse
Relation Parsing and Treebanking 2019 (pp.
30-37). Minneapolis, Minnesota: Association
for Computational Linguistics.

Vera Demberg, Fatemeh Torabi Asr, & Merel
Scholman. 2019. How compatible are our
discourse annotations? Insights from mapping
RST-DT and PDTB annotations.

Markus Egg, & Gisela Redeker. 2010. How
complex is discourse structure? In Proceedings
of the Seventh conference on International
Language Resources and Evaluation
(LREC’10) (pp. 1619-1623). Valletta, Malta:
European Languages Resources Association
(ELRA).

Eric Forcier. 2017. Re(a)d wedding: A
comparative discourse analysis of fan
responses to Game of Thrones. Digital
Humanities.

Ruqian Lu, Shengluan Hou, Chuanqing Wang, Yu
Huang, Chaoqun Fei, & Songmao Zhang.
2019. Attributed Rhetorical Structure
Grammar for domain text summarization.
arxiv.org.

William C. Mann, Christian M. I. M. Matthiessen,
& Sandra A. Thompson. 1992. Rhetorical
structure theory and text analysis. In William
C. Mann & Sandra A. Thompson (Eds.),
Discourse description: Diverse linguistic
analyses of a fund-raising text (pp. 39-78).
Amsterdam: John Benjamins.

William C. Mann, & Sandra A. Thompson. 1986a.
Assertions from discourse structure. In HLT
'86: Proceedings of the workshop on strategic
computing natural language (pp. 257-270).
Morristown, NJ: Association for
Computational Linguistics.

William C. Mann, & Sandra A. Thompson.
1986b. Relational propositions in discourse.
Discourse Processes, 9(1), 57-90.

William C. Mann, & Sandra A. Thompson. 1987.
Rhetorical structure theory: A theory of text
organization (ISI/RS-87-190). Retrieved from
Marina del Rey, CA:

William C. Mann, & Sandra A. Thompson. 1988.
Rhetorical structure theory: Toward a
functional theory of text organization. Text -
Interdisciplinary Journal for the Study of
Discourse, 8(3), 243-281.

William C. Mann, & Sandra A. Thompson. 2000.
Toward a theory of reading between the lines:
An exploration in discourse structure and
implicit communication. Paper presented at the
Seventh International Pragmatics Conference,
Budapest, Hungary.

Daniel Marcu. 1996. Building up rhetorical
structure trees. In Proceedings of the
Thirteenth National Conference on Artificial
Intelligence (Vol. 2, pp. 1069-1074). Portland,
Oregon: American Association for Artificial
Intelligence.

Daniel Marcu. 1997. From discourse structures to
text summaries. In Proceedings of the
ACL'97/EACL'97 Workshop on Scalable Text
Summarization (pp. 82-88). Madrid, Spain.

Daniel Marcu. 1998a. Improving summarization
through rhetorical parsing tuning. In The Sixth
Workshop on Very Large Corpora (pp. 206-
215). Montreal, Canada.

Daniel Marcu. 1998b. The rhetorical parsing,
summarization, and generation of natural
texts. (Doctor of Philosophy dissertation),
University of Toronto, Toronto, Canada.

Daniel Marcu. 1998c. To build text summaries of
high quality, nuclearity is not sufficient. In
Working Notes of the AAAI-98 Spring
Symposium on Intelligent Text Summarization.
Stanford, CA: AAAI.

Daniel Marcu. 1999. Discourse trees are good
indicators of importance in text. In Advances in
automatic text summarization (pp. 123-136).

Daniel Marcu. 2000. The theory and practice of
discourse parsing and summarization.
Cambridge, MA: MIT Press.

J. R. Martin. 1992. English text: System and
structure. Philadelphia: John Benjamins.

Christian M.I.M. Matthiessen, & Sandra A.
Thompson. 1987. The structure of discourse
and 'subordination'. In John Haiman & Sandra
A. Thompson (Eds.), Clause combining in
grammar and discourse (pp. 275-329).
Amsterdam: John Benjamins.

Michael O'Donnell. 1997. RST-Tool: An RST
analysis tool. In Proceedings of the 6th

10

ftp://ftp.isi.edu/isi-pubs/tr-545.pdf

European Workshop on Natural Language
Generation. Duisburg, Germany: Gerhard-
Mercator University.

Andrew Potter. 2019a. Reasoning between the
lines: A logic of relational propositions.
Dialogue and Discourse, 9(2), 80-110.

Andrew Potter. 2019b. The rhetorical structure of
attribution. In Amir Zeldes, Debopam Das,
Erick Maziero Galani, Juliano Desiderato
Antonio, & Mikel Iruskieta (Eds.),
Proceedings of the Workshop on Discourse
Relation Parsing and Treebanking
(DISRPT2019) (pp. 38-49). Minneapolis, MN:
Association for Computational Linguistics.

Andrew Potter. 2023a. An algorithm for
Pythonizing rhetorical structures. In Sara
Carvalho, Anas Fahad Khan, Ana Ostroški
Anić, Blerina Spahiu, Jorge Gracia, John P.
McCrae, Dagmar Gromann, Barbara Heinisch,
& Ana Salgado (Eds.), Language, data and
knowledge 2023 (LDK 2023): Proceedings of
the 4th Conference on Language, Data and
Knowledge (pp. 493-503). Vienna, Austria:
NOVA CLUNL.

Andrew Potter. 2023b. Text as tautology: an
exploration in inference, transitivity, and
logical compression. Text & Talk, 43(4), 471-
503. doi:doi:10.1515/text-2020-0230

Ted J M Sanders, Vera Demberg, Jet Hoek, Merel
C.J. Scholman, Fatemeh Torabi Asr, Sandrine
Zufferey, & Jacqueline Evers-Vermeul. 2018.
Unifying dimensions in coherence relations:
How various annotation frameworks are
related. Corpus Linguistics and Linguistic
Theory, 17(1), 1-71.

Manfred Stede. 2008. RST revisited:
Disentangling nuclearity. In Cathrine
Fabricius-Hansen & Wiebke Ramm (Eds.),
‘Subordination’ versus ‘coordination’ in
sentence and text – from a cross-linguistic
perspective (pp. 33-58). Amsterdam:
Benjamins.

Manfred Stede, Maite Taboada, & Debopam Das.
2017. Annotation guidelines for rhetorical
structure. Retrieved from Potsdam and
Burnaby:
http://www.sfu.ca/~mtaboada/docs/research/R
ST_Annotation_Guidelines.pdf

Bonnie Webber, & Rashmi Prasad. 2009.
Discourse structure: Swings and roundabouts.
Oslo Studies in Language, 1(1), 171-190.

Florian Wolf, & Edward Gibson. 2005.
Representing discourse coherence: A corpus-

based analysis. Computational Linguistics,
31(2), 249-287.

Amir Zeldes. 2016. rstWeb – A browser-based
annotation interface for Rhetorical Structure
Theory and discourse relations. In Proceedings
of NAACL-HLT 2016 (Demonstrations) (pp. 1-
5). San Diego, California: Association for
Computational Linguistics.

Amir Zeldes. 2017. The GUM corpus: Creating
multilayer resources in the classroom.
Language Resources and Evaluation, 51(3),
581-561.

Amir Zeldes. 2023, November 20. Rhetorical
Structure Theory annotation - RST++.
Retrieved from https://wiki.gucorpling.org/
gum/rst

11

http://www.sfu.ca/~mtaboada/docs/research/RST_Annotation_Guidelines.pdf
http://www.sfu.ca/~mtaboada/docs/research/RST_Annotation_Guidelines.pdf

