@inproceedings{decker-amblard-2024-little,
title = "With a Little Help from my (Linguistic) {F}riends: Topic segmentation of multi-party casual conversations",
author = "Decker, Amandine and
Amblard, Maxime",
editor = "Strube, Michael and
Braud, Chloe and
Hardmeier, Christian and
Li, Junyi Jessy and
Loaiciga, Sharid and
Zeldes, Amir and
Li, Chuyuan",
booktitle = "Proceedings of the 5th Workshop on Computational Approaches to Discourse (CODI 2024)",
month = mar,
year = "2024",
address = "St. Julians, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.codi-1.16",
pages = "177--188",
abstract = "Topics play an important role in the global organisation of a conversation as what is currently discussed constrains the possible contributions of the participant. Understanding the way topics are organised in interaction would provide insight on the structure of dialogue beyond the sequence of utterances. However, studying this high-level structure is a complex task that we try to approach by first segmenting dialogues into smaller topically coherent sets of utterances. Understanding the interactions between these segments would then enable us to propose a model of topic organisation at a dialogue level. In this paper we work with open-domain conversations and try to reach a comparable level of accuracy as recent machine learning based topic segmentation models but with a formal approach. The features we identify as meaningful for this task help us understand better the topical structure of a conversation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="decker-amblard-2024-little">
<titleInfo>
<title>With a Little Help from my (Linguistic) Friends: Topic segmentation of multi-party casual conversations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amandine</namePart>
<namePart type="family">Decker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maxime</namePart>
<namePart type="family">Amblard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Computational Approaches to Discourse (CODI 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Strube</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chloe</namePart>
<namePart type="family">Braud</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Hardmeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junyi</namePart>
<namePart type="given">Jessy</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sharid</namePart>
<namePart type="family">Loaiciga</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amir</namePart>
<namePart type="family">Zeldes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chuyuan</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julians, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Topics play an important role in the global organisation of a conversation as what is currently discussed constrains the possible contributions of the participant. Understanding the way topics are organised in interaction would provide insight on the structure of dialogue beyond the sequence of utterances. However, studying this high-level structure is a complex task that we try to approach by first segmenting dialogues into smaller topically coherent sets of utterances. Understanding the interactions between these segments would then enable us to propose a model of topic organisation at a dialogue level. In this paper we work with open-domain conversations and try to reach a comparable level of accuracy as recent machine learning based topic segmentation models but with a formal approach. The features we identify as meaningful for this task help us understand better the topical structure of a conversation.</abstract>
<identifier type="citekey">decker-amblard-2024-little</identifier>
<location>
<url>https://aclanthology.org/2024.codi-1.16</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>177</start>
<end>188</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T With a Little Help from my (Linguistic) Friends: Topic segmentation of multi-party casual conversations
%A Decker, Amandine
%A Amblard, Maxime
%Y Strube, Michael
%Y Braud, Chloe
%Y Hardmeier, Christian
%Y Li, Junyi Jessy
%Y Loaiciga, Sharid
%Y Zeldes, Amir
%Y Li, Chuyuan
%S Proceedings of the 5th Workshop on Computational Approaches to Discourse (CODI 2024)
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julians, Malta
%F decker-amblard-2024-little
%X Topics play an important role in the global organisation of a conversation as what is currently discussed constrains the possible contributions of the participant. Understanding the way topics are organised in interaction would provide insight on the structure of dialogue beyond the sequence of utterances. However, studying this high-level structure is a complex task that we try to approach by first segmenting dialogues into smaller topically coherent sets of utterances. Understanding the interactions between these segments would then enable us to propose a model of topic organisation at a dialogue level. In this paper we work with open-domain conversations and try to reach a comparable level of accuracy as recent machine learning based topic segmentation models but with a formal approach. The features we identify as meaningful for this task help us understand better the topical structure of a conversation.
%U https://aclanthology.org/2024.codi-1.16
%P 177-188
Markdown (Informal)
[With a Little Help from my (Linguistic) Friends: Topic segmentation of multi-party casual conversations](https://aclanthology.org/2024.codi-1.16) (Decker & Amblard, CODI-WS 2024)
ACL