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Abstract

Good scientific writing makes use of specific
sentence and paragraph structures, providing a
rich platform for discourse analysis and devel-
oping tools to enhance text readability. In this
vein, we introduce SciPara1, a novel dataset
consisting of 981 scientific paragraphs anno-
tated by experts in terms of sentence discourse
types and topic information. On this dataset,
we explored two tasks: 1) discourse category
classification, which is to predict the discourse
category of a sentence by using its paragraph
and surrounding paragraphs as context, and 2)
discourse sentence generation, which is to gen-
erate a sentence of a certain discourse category
by using various contexts as input. We found
that Pre-trained Language Models (PLMs) can
accurately identify Topic Sentences in SciPara,
but have difficulty distinguishing Concluding,
Transition, and Supporting Sentences. The
quality of the sentences generated by all investi-
gated PLMs improved with amount of context,
regardless of discourse category. However, not
all contexts were equally influential. Contrary
to common assumptions about well-crafted sci-
entific paragraphs, our analysis revealed that
paradoxically, paragraphs with complete dis-
course structures are less readable.

1 Introduction

Writing a scientific paper that is understandable to
readers is a challenging task. Well-written scien-
tific papers not only facilitate the comprehension
of scientific discoveries but also reduce the risk of
disseminating inaccuracies and misconceptions in
research (Freeling et al., 2021).

As a rhetorical unit of writing, paragraphs con-
tain valuable information regarding the logical and
narrative connections among sentences (Nunan,
2015). Scientific papers with many well-written

1Code and data are available at https://github.
com/annamkiepura/SciPara.
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Figure 1: An example (taken from Feng et al. (2023))
annotated paragraph with one Topic Sentence (green),
one Supporting Sentence (grey), and one Transition
Sentence (blue). The paragraph topic is indicated in red
and the topic attributes are indicated in orange.

paragraphs are easier to understand. In those para-
graphs, related sentences are grouped and infor-
mation is stitched in a thematically progressing
manner (Weissberg, 1984).

In recent years, significant efforts have been di-
rected at utilizing NLP technologies to process and
comprehend scientific texts. For instance, research
has focused on automatic summarization (Gu et al.,
2022), text generation (Hu and Wan, 2014; Wang
et al., 2019; Chen et al., 2021), as well as argu-
ment mining and discourse analysis (Fergadis et al.,
2021; Gao et al., 2022; Achakulvisut et al., 2019),
all in the context of scientific papers. However,
few efforts have been devoted to identifying well-
written scientific paragraphs from the perspective
of discourse structure.

In this work, we propose Scientific Paragraphs
(SciPara), a novel dataset specifically curated for
studying the structure of scientific paragraphs. Sci-
Para is a collection of scientific paragraphs that
have been manually annotated by professional ed-
itors with strong biomedical backgrounds. The
annotations include paragraph-level discourse com-
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pleteness, sentence-level discourse categories, and
word-level occurrences of the paragraph topic. By
training various language models on SciPara, we
address the following research questions (RQs):

RQ1 Can language models distinguish sentences
of different discourse categories?

RQ2 Can Topic, Concluding, and Transition Sen-
tences be generated from the rest of the correspond-
ing paragraphs?

RQ3 Are paragraphs with complete discourse
structure more readable?

Our main contributions are as follows: 1) We
propose a manually annotated dataset of scientific
paragraphs, which is, to the best of our knowledge,
the first dataset specifically designed for the study
of the discourse structure of scientific paragraphs;
2) We fine-tune language models to perform sen-
tence classification and generation tasks on our
dataset; 3) We perform an in-depth analysis of the
paragraph discourse structure with respect to our
experimental results.

2 SciPara: A New Dataset for Discourse
Structure of Scientific Paragraphs

Our goal is to facilitate the analysis of scientific
paragraph discourse structure on two levels:

Sentence level How do individual sentences re-
late to the paragraph’s discourse structure?

Subsentence level What are the paragraph’s
topic and its corresponding attributes?

In this section, we outline the protocol given to
the annotators for creating SciPara (see Figure 2a).

2.1 Initial paragraph filtering

To preserve the coherence of the paper’s narrative,
annotators processed paragraphs in their order of
occurrence. We instructed annotators to skip para-
graphs that had parsing errors, such as incorrect
sentence splits, or that contained less than three
sentences. The annotators were required to label
such paragraphs as “Bad Parse” and “Too Short”
respectively.

2.2 Sentence-level annotation

We tasked annotators with categorizing each sen-
tence of a paragraph into one of the following six
discourse categories:

Topic Sentence A sentence that encapsulates the
central theme of the paragraph. The information
presented in a Topic Sentence is typically expanded
upon in the other sentences of the paragraph (Mc-
Carthy et al., 2008).

Supporting Sentence A sentence that bolsters
the Topic Sentence(s) with relevant information
such as explanations, elaborations, and examples.

Concluding Sentence A sentence that summa-
rizes and closes the narrative of the paragraph.

Transition Sentence A sentence that connects
the current paragraph to the next paragraph, thereby
maintaining the coherence of the paper.

Off-Topic Sentence A sentence that lacks infor-
mation pertinent to the topic of the paragraph.

Redundant Sentence A sentence whose content
has already been stated in an earlier sentence of the
paragraph.

We refer to paragraphs with at least one Topic
Sentence and at least one Concluding or Transition
Sentence as paragraphs with complete discourse
structure. All other paragraphs are considered to
have an incomplete discourse structure (see Table
2).

During the annotation, a few paragraphs turned
out to have no Topic Sentences. We instructed
annotators to halt the annotation of such paragraphs
and to proceed to the next.

2.3 Subsentence-level annotation
The annotators then moved on to the subsentence-
level task, see Figure 2b. The first step was to
identify noun phrases in the Topic Sentence(s) that
pertained to the topic of the paragraph. Inspired by
Ajjour et al. (2023), we defined the paragraph topic
hierarchically:

Topic Ontology A noun phrase that best encap-
sulates the topic of the paragraph.

Topic Attribute A noun phrase that describes an
aspect of the Topic Ontology.

We allowed for exactly one Topic Ontology and
up to seven unique Topic Attributes per paragraph.
A handful of paragraphs had multiple Topic Sen-
tences; however, in all cases, the multiple Topic
Sentences had the same Topic Ontology and Topic
Attributes.

Next, the annotators identified all re-occurrences
of the paragraph topic (both Topic Ontology and
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Topic Attributes) in the other sentences of the
paragraph. Re-occurrences could be either exact
matches or semantically similar noun phrases.

When a sentence s did not contain the paragraph
topic, we asked annotators to identify links between
s and the other sentences of the paragraph. Links
are noun phrases that can be found in both s and
at least one other sentence of the paragraph that
contains the paragraph topic annotations. Finally,
we asked annotators to label sentences that contain
neither the paragraph topic nor links as “Off-Topic
Sentences”.

2.4 Data sources
We obtained 62 scientific papers from two datasets:
Semantic Scholar Open Research Corpus (S2ORC)
(Lo et al., 2020) and Europe PMC2. S2ORC is a
comprehensive repository consisting of 81 million
scientific papers in English. Europe PMC is an
open-access repository containing 43 million pub-
lications and preprints enriched with links to sup-
porting data, reviews, and other relevant sources.

We investigated paragraphs from INTRODUC-
TION and DISCUSSION sections only. This is be-
cause these sections aim to deliver narratives, as
compared to, say, RESULTS sections, which typ-
ically aim to list but not necessarily analyse the
papers’ findings (Nair et al., 2014).

Due to the need for clear sectioning, we only
used papers from the fields of medicine and
biomedicine. Papers from such fields often follow
the IMRaD format and contain INTRODUCTION,
METHODS, RESULTS, and DISCUSSION sections
(Nair et al., 2014).

For the annotation tasks, we enlisted the exper-
tise of four proficient biomedical editors who are
members of the European Medical Writers Asso-
ciation (EMWA)3. Annotation was performed on
the interactive data annotation platform Doccano
(Nakayama et al., 2018).

2.5 SciPara statistics
The SciPara dataset consists of 981 paragraphs and
4071 sentences, see Table 1. Across these para-
graphs, the annotators identified more than 700
instances of Topic Ontologies and over 2800 in-
stances of Topic Attributes. In total, 432 para-
graphs have complete discourse structure and 309
paragraphs have incomplete discourse structure,
see Table 2. We kept the 240 paragraphs that were

2https://europepmc.org/
3https://www.emwa.org

not annotated for discourse completeness so that
we could study the influence of context information
in the discourse sentence generation task.

Statistic Count Statistic Count

# Papers 62 # Topic Sentences 724
# Paragraphs 981 # Supporting Sentences 2,869
# Sentences 4,071 # Concluding Sentences 273
# Topic Attribute 2,821 # Transition Sentences 188
# Topic Ontology 724 # Off-topic Sentences 3
- - # Redundant Sentences 14

Table 1: Overall statistics of our SciPara dataset.

Topic
Sentence

Concluding
Sentence

Transition
Sentence

Discourse
Structure

Count

✓ ✓ ✗ Complete 250
✓ ✗ ✓ Complete 177
✓ ✓ ✓ Complete 5
✓ ✗ ✗ Incomplete 284
✗ ✓ ✗ Incomplete 7
✗ ✗ ✓ Incomplete 4
✗ ✗ ✗ Incomplete 14

Table 2: Structure assessment for sentence-level anno-
tation. We exclude paragraphs with both Concluding
and Transition Sentences but no Topic Sentences on pur-
pose, since subsentence-level annotation for this type of
paragraphs was not possible (Topic Ontology must be
labeled from the Topic Sentence).

Due to the unexpected absence of annotator 3,
we present the inter-annotator agreement (IAA) re-
sults for annotators 1, 2, and 4 only, see Table 3.
For sentence-level annotation, we calculated Co-
hen’s Kappa coefficients (Cohen, 1960) for each
pair of annotators. As for subsentence-level anno-
tation, where Topic Ontology and Topic Attributes
do not have fixed discourse categories and can vary
in length, we evaluated the IAA based on lexical
overlap of annotations measured by ROUGE scores
(Lin, 2004). High ROUGE-1 and ROUGE-2 scores
therefore indicate better agreement between pairs
of annotators.

Sentence-level annotations of Topic, Support-
ing, and Concluding discourse categories showed a
high agreement among annotators when compared
against a reference rubric for Cohen’s Kappa scores
interpretation (McHugh, 2012), which we summa-
rize in the legend of Table 3. For example, for
Topic Sentence identification, all of the analyzed
data subsets fall into the “strong agreement” cat-
egory. This indicates that the task of identifying
these discourse types was clearly defined and the
annotators understood the instructions well. The
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(a) Sentence-level annotation process for a paragraph p. The process starts with an initial filtering to determine whether p is
well-parsed and has at least three sentences. Next, the annotators identify the discourse category of each sentence in p. If p has at
least one Topic Sentence, then annotators perform subsentence-level annotation to locate all occurrences of the paragraph topic.

Start No
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(b) Subsentence-level annotation process for a paragraph p. Starting with labeling the Topic Ontology in the Topic Sentence s,
the subsentence-level annotation identifies Topic Attributes throughout the paragraph.

Figure 2: Overview of the SciPara data annotation process for a given paragraph p.

Subset A B C

Annotator Group 1&2 2&4 1&4 1&4 1&4

κ - Topic Sent. 0.79 0.72 0.92 0.97 0.96
κ - Supp. Sent. 0.75 0.68 0.78 0.68 0.78
κ - Concl. Sent. 0.69 0.78 0.60 0.64 0.53
κ - Trans. Sent. 0.69 0.40 0.22 0.08 0.26

(a) IAA results for sentence-level annotation.

Subset A B C

Annotator Group 1&2 2&4 1&4 1&4 1&4

R-1 (f-measure) 0.59 0.61 0.67 0.63 0.61
R-2 (f-measure) 0.43 0.48 0.50 0.45 0.41

(b) IAA results for subsentence-level annotation (stopwords
are removed for all measures).

Table 3: Inter-annotator agreement (IAA) results for
sentence-level and subsentence-level (κ ≤ 0.4 = poor
agreement; 0.4 < κ ≤ 0.6 = fair agreement; κ > 0.6 =
strong agreement). Subsets A, B, and C contain 36, 36,
and 50 paragraphs, respectively.

agreement was considerably lower for Transition
Sentences, which we discuss in more detail in Lim-
itations.

For subsentence-level annotations, given that the
average length of Topic Ontology and Topic At-
tributes was around 3 to 4 words, a lexical overlap
score above 0.4 is considered as high. Thus, it sug-
gests that the subsentence-level task was also well
understood by the annotators, suggesting that the
curated dataset has good quality.

3 Methods

In the following section, we detail the experimental
methods applied to the SciPara dataset to address
our research questions. Notably, our experiments
primarily utilized the annotations corresponding
to the sentence-level task, and the Topic Ontology
annotations from the subsentence-level task. We
plan to incorporate other annotation types, such as
Topic Attributes and links, in future studies.

3.1 Discourse category classification

Underlying RQ1 is the following sequential sen-
tence classification task (Cohan et al., 2019): Identi-
fying the discourse category of a sentence Y based
on the context of Y . By context, we refer to the
paragraph P containing Y and the subsequent para-
graph P ′. We ignored Off-Topic and Redundant
Sentences because of their rarity and considered
only Topic, Concluding, Transition, and Support-
ing Sentences.

For each sample, we concatenated the paragraph
P and the subsequent paragraph P ′, then we in-
dicated Y by wrapping it with the special token
[SENT]. We also inserted a [PARASEP] token
between P and P ′ to indicate the paragraph bound-
aries. The sample was then presented as input to
two language models we explored: BioBERT (Lee
et al., 2020) and SciBERT (Beltagy et al., 2019).
To compute the probability of each discourse cat-
egory in either model, we presented the [CLS]
embedding as input to a Softmax classifier.
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Model
Topic Sent. Concluding Sent. Transition Sent. Supporting Sent.

P R F1 P R F1 P R F1 P R F1

BioBERT 98.85 97.73 98.29 11.69 33.33 17.31 7.52 50.00 13.07 93.91 55.10 69.45
SciBERT 98.85 97.73 98.29 7.41 74.07 13.47 4.76 5.00 4.88 94.63 35.97 52.13

Table 4: Results on discourse category classification in terms of Precision (P), Recall (R), and F1 score.

The training objective was to minimize the fol-
lowing log cross-entropy loss:

L = − log

(
exp(sp)∑|C|
j=1 exp(sj)

)
,

where C represents the discourse categories of
Topic, Concluding, Supporting, and Transition Sen-
tences, sj is the logit for the j-th discourse category
label (j = 1, . . . , 4), and sp is the logit for the pos-
itive label (p is the index of the correct label).

To avoid over-representing Supporting Sen-
tences in the Discourse Category Classification
task, we balanced the label distribution in the Train
and Dev sets. However, we did not perform this bal-
ancing for the Test set to determine the real-world
performance of the classifiers. Note that we also
tried other balancing methods, such as weighting
the loss per category based on their frequency, but
none worked as well.

3.2 Discourse sentence generation
To address RQ2, we investigated the influence of
context on the generation of Topic (resp. Conclud-
ing, Transition) Sentences. As context we used ei-
ther the remainder of the corresponding paragraph
P , or we additionally included other information
X , such as the Topic Ontology, or out-of-paragraph
information, such as the paper’s abstract and the
subsequent or previous paragraph.

We describe the generation task formally here.
Let P be a paragraph and let Y be a Topic (resp.
Concluding, Transition) Sentence in P . The train-
ing objective is to minimize the following negative
log-likelihood:

L = − log p (Y |P \ Y,X)

= −
|Y |∑

i=1

log p (yi|y1:i−1, P \ Y,X) ,

where yi is the i-th token of Y , P \ Y represents
the paragraph P without Y , and X represents addi-
tional information.

We explored two classes of Pre-trained Lan-
guage Models (PLMs): 1) causal language models

(CLMs) that generate text in an auto-regressive
manner, such as OPT (Zhang et al., 2022) and
GPT-Neo (Black et al., 2022), and 2) sequence-
to-sequence models (Seq2Seq) that learn mappings
between the input and output sequences, such as
BART (Lewis et al., 2020) and T5 (Raffel et al.,
2020). To ensure a fair comparison, we chose mod-
els with a similar number of parameters (OPT-base
and GPT-Neo both have 125M parameters, BART-
base has 140M, and T5 has 220M). The inputs to all
models were formed as P \Y concatenated with X .
For CLMs, we additionally appended a separation
token <|endoftext|>. For Topic Sentence genera-
tion with BART and T5, we prepended the input
with “Truncated Paragraph:” and also appended
“Topic Sentence:”. The inputs for BART and T5 for
generating Concluding and Transition Sentences
were formed analogously.

For the discourse sentence generation task and
each discourse category, we used only paragraphs
that had at least one sentence of the corresponding
discourse category, see Table 5.

Discourse category classification Train Dev Test

# Topic Sentences 124 44 88
# Supporting Sentences 141 27 392
# Concluding Sentences 136 32 27
# Transition Sentences 137 31 20

Discourse sentence generation Train Dev Test

# Topic Sentences 579 85 60
# Concluding Sentences 216 25 32
# Transition Sentences 129 34 25

Table 5: Statistics of datasets created for discourse cate-
gory classification and discourse sentence generation.

3.3 Evaluation
For the discourse category classification task, we
report the precision, recall, and F1 score for each
discourse category. Higher scores indicate better
performance. For the discourse sentence genera-
tion task, we compared the generated discourse
sentences against the ground-truth sentences us-
ing summarization metrics such as ROUGE scores
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(Lin, 2004) and BERTScore (Zhang et al., 2019),
as well as the translation metric METEOR (Baner-
jee and Lavie, 2005). Higher scores indicate that
the generated discourse sentences more closely re-
semble the ground-truths.

To quantify the readability of paragraphs, we
used three automatic readability metrics, namely,
Flesch-Kincaid Grade Level (FKG, Kincaid et al.
(1975)), the New Dale-Chall Readability Formula
(NDC, Chall and Dale (1995)), and the Automated
Readability Index (ARI, Senter and Smith (1967))4.
For these metrics, higher scores indicate higher
reading difficulty and thus lower readability.

3.4 Implementation details
For the classification task, the BioBERT and SciB-
ERT models were trained for 3 epochs with a learn-
ing rate of 2e-5, a dropout rate p = 0.1, and a batch
size of 1.

For the generation task, all PLMs were trained
for 2 epochs using the Trainer and TrainingArgu-
ments classes from the Transformers library5. We
used the AdamW optimizer (Loshchilov and Hutter,
2017) with a learning rate of 2e-5 and early stop-
ping. The batch size was set to 2. For the inference
step, we used beam search with num_beams = 3,
top_k = 10, and temperature = 0.95.

All models were fine-tuned using a single A100
GPU provided by Google Colab. We kept batch
sizes low to allow for experimenting with various
context sizes.

4 Results and Discussion

4.1 PLMs accurately identify Topic Sentences
As shown in Table 4, on the discourse category
classification task, both BioBERT and SciBERT
achieved the highest scores of 98.29 F1 on Topic
Sentences, indicating that this discourse category
is the easiest to identify. Because 98.86% of Topic
Sentences in our Test set were the first sentence of
their respective paragraphs, a possible explanation
of this finding is that the positional information of
Topic Sentences can be easily captured and learned
by the models.

The second-highest scores were recorded for
Supporting Sentences, and the lowest scores for
Transition and Concluding Sentences. We hypothe-
sise that the poor performance on Concluding and

4All metrics were computed with the Python package py-
readability-metrics.

5https://github.com/huggingface/
transformers

Model R-1 R-2 R-L FBERT MTR

Topic Sentence Generation

OPT-base 21.64 4.44 17.40 18.62 15.20
GPT-Neo 22.26 4.77 17.52 18.25 15.60
BART-base 24.33 4.72 18.49 24.67 15.39
+ PP 25.82 5.83 19.54 25.75 17.32
+ PP + A 24.90 6.15 18.98 24.78 16.88
+ PP + A + TO 33.50 16.72 28.12 30.67 25.05
T5-base 23.23 5.12 17.61 18.19 15.74
+ TO 30.92 15.20 26.55 24.89 23.57

Concluding Sentence Generation

OPT-base 22.06 4.55 18.90 21.17 14.96
GPT-Neo 19.84 3.98 15.36 23.75 13.13
BART-base 24.11 2.84 15.55 24.52 15.39
+ PP 22.50 3.91 16.87 26.11 15.42
+ PP + A 24.52 5.23 18.84 29.89 16.07
T5-base 17.35 3.34 13.26 6.25 11.64

Transition Sentence Generation

OPT-base 15.50 2.21 12.31 6.42 9.50
GPT-Neo 15.38 2.18 11.77 3.40 7.88
BART-base 17.00 3.27 11.35 13.99 16.33
+ NP 23.85 4.51 15.94 17.80 19.86
+ NP + A 21.43 3.21 14.54 13.72 15.92
T5-base 12.22 2.70 8.71 2.59 8.86

Table 6: Results on discourse sentence generation. For
ROUGE scores, we report the f-measures for ROUGE-
1, ROUGE-2, and ROUGE-L. For BERTScore, we
report the F1 score (FBERT). MTR denotes the ME-
TEOR score. PP indicates the addition of the Previous
Paragraph to the input, whereas NP, A and TO indicates
the addition of the Next Paragraph, the Abstract, and
the Topic Ontology, respectively.

Transition Sentences may be because both types of
sentences tend to appear at the end of paragraphs,
which means the model cannot rely on learning
positional information alone in distinguishing the
two classes. In the Appendix A, when considering
Concluding and Transition Sentences as a single
class, performance across all metrics improved.

Based on the confusion matrices in Figure 3,
BioBERT and SciBERT respectively tended to mis-
classify Supporting Sentences as Transition and
Concluding Sentences. A possible explanation is
that Supporting Sentences may be very diverse, and
because we heavily downsampled Supporting Sen-
tences to balance the four discourse categories for
this task, our models were not able to learn this
diversity.

4.2 Influence of context

On the discourse sentence generation task, both
CLM and Seq2Seq models achieved the highest
ROUGE F1 scores on Topic Sentences and the low-
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Figure 3: Confusion matrices for discourse category classification with BioBERT and SciBERT.

est scores on Transition Sentences, see Table 6.
This finding was true regardless of whether context
contained additional information or not, although
the best generation scores across all discourse cate-
gories were achieved when additional information
was included.

To delve deeper into whether sentences of a
given discourse category carry information beyond
the current paragraph, we conducted training of sep-
arate Seq2Seq models on text beyond the current
paragraph (namely, using previous/next paragraphs
and the abstract) as part of the input).

The BART model generated the best Concluding
Sentences when the input contained the previous
paragraph and the abstract in addition to the current
paragraph. BART also generated the best Topic
Sentences when the context included the Topic On-
tology, abstract, and the previous paragraph.

As for Transition Sentences, incorporating the
next paragraph resulted in the greatest improve-
ment, but including the abstract deteriorated the
performance. These findings suggest that pertinent
information related to Topic, Concluding, and Tran-
sition Sentences can be found at diverse positions
in a discourse category-dependent manner.

4.3 Trade-off between discourse structure and
text readability

Text readability refers to the ease with which a
reader can understand a written text (Zamanian and
Heydari, 2012). The relationship between the com-
pleteness of discourse structure and text readability
offers valuable insights. It sheds light on how the
organization of a paragraph influences a reader’s
comprehension, engagement, and retention of in-
formation from a written piece.

To understand how discourse structure complete-

ness relates to readability, we compared the read-
ability across two groups of paragraphs: paragraphs
with complete discourse structure and paragraphs
with incomplete discourse structure. We filtered
out paragraphs containing less than 100 words6.
Then, we computed the readability of remaining
paragraphs using the three previously mentioned
metrics (FKG, NDC, and ARI).

Structure FKG NDC ARI

Complete 16.75 12.68 17.98
Incomplete *15.82 12.60 *16.75

Table 7: Readability measures for paragraphs with com-
plete and incomplete discourse structures. Higher scores
indicate that the paragraph is more challenging to read.
* indicates statistical significance at p < 0.05.

We found that the paragraphs in SciPara are gen-
erally difficult texts to read, regardless of discourse
structure completeness. This is evident by the aver-
age FKG scores of around 16 (see Table 7), which
means that a university-level education would be
required to comprehend these SciPara paragraphs.
This result is not surprising, given that SciPara was
constructed from scholarly works that are written
for the scientific community.

Additionally, our results revealed that para-
graphs with complete discourse structure are as-
sociated with greater reading difficulty than incom-
pletely structured paragraphs. This is consistent
with the work of Plavén-Sigray et al. (2017), who
found that abstracts, which typically have complete
discourse structures, are more challenging to read
than the full text. As a complete discourse structure
indicates a tightly connected reasoning chain, our

6As required by py-readability-metrics.
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results imply a paradoxical trade-off between text
readability and discourse structure: well-crafted
scientific texts with complete discourse structures
are inherently more difficult to comprehend.

5 Related Work

Previous works on automatic classification of dis-
course category of sentences from scientific pa-
pers are Dernoncourt and Lee (2017), Cohan et al.
(2019), Gonçalves et al. (2020), Dayrell et al.
(2012), Fisas et al. (2015), and Li et al. (2022).
The discourse categories used reflected various
roles within the scientific paper. For example,
Dayrell et al. (2012) used BACKGROUND, GAP,
PURPOSE, METHOD, RESULT, and CONCLUSION

as discourse categories, and Fisas et al. (2015)
used BACKGROUND, CHALLENGE, APPROACH,
OUTCOME, and FUTURE WORK. Li et al. (2022)
analyzed sentence roles specifically in RELATED

WORK sections, introducing categories like “multi-
document summarization” and “transition” for sen-
tences bridging various topics. Our work distin-
guishes itself by examining discourse sentences in
relation to their function in paragraph development,
with annotations for “Transition Sentences” allow-
ing us to comprehend how discourse expands over
consecutive paragraphs, which is fundamental to
our proposed research questions.

Moreover, there is a scarcity of research on gen-
erating sentences across these discourse categories.
Shieh et al. (2019) and Song et al. (2022) conducted
related studies, with the former generating abstract
“conclusions” and the latter generating topic-word-
constrained sentences. Our approach, however, ex-
plores generating “Topic Sentences” and other cat-
egories from the remainder of the corresponding
paragraph and varying additional contexts, such as
preceding paragraphs, thus addressing a research
gap.

6 Conclusion

We introduced the SciPara dataset which comprises
scientific paragraphs with expert annotations of sen-
tence discourse category and of topic information.
Leveraging pre-trained language models, we ex-
plored two tasks: discourse category classification
and discourse sentence generation. While the mod-
els demonstrated high accuracy in identifying Topic
Sentences, they encountered challenges in distin-
guishing Concluding, Transition, and Supporting
Sentences, underscoring the inherent complexities

in automating discourse category classification.
We also examined the influence of contextual in-

put on generating discourse sentences. Our findings
indicate that language models perform better with
increased context, but that the context most useful
depends on the sentence discourse category. For in-
stance, Topic Ontology plays the most crucial role
for Topic Sentence generation, whereas the next
paragraph has the largest influence on Transition
Sentence generation.

We also assessed the readability of SciPara para-
graphs. Surprisingly, our analysis reveals an in-
triguing paradox on the relationship between dis-
course structure and readability. Scientific para-
graphs containing at least one Topic Sentence and
at least one Concluding or Transition sentence are
commonly perceived as well-written. However,
such paragraphs are more challenging to read.

7 Limitations

The limitations of our work include:

• SciPara is a high quality dataset. However,
the acquisition of expert-annotated data is a
resource-intensive process, which made ex-
panding SciPara to a larger size difficult. This
has resulted in a limited number of samples for
certain discourse categories, notably Conclud-
ing Sentences (273) and Transition Sentences
(188).

• Our annotation protocol exclusively targets
scientific paragraphs within the INTRODUC-
TION and DISCUSSION sections because these
sections are likely to have narrative structures.
However, we refrained from including other
sections due to the associated complexity.

• The readability metrics FKG, NDC, and ARI
were developed to assess general domain text,
not academic texts. Even so, we used them
in this work because we were unable to find
more fitting readability metrics.

Our future work will delve into a more com-
prehensive examination of the discourse structure
across various sections of scientific papers. We
are committed to finding innovative approaches to
mitigate the cost and effort associated with human
annotation, enabling the collection of a more exten-
sive and diverse set of samples.
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82.

PK Ramachandran Nair, Vimala D Nair, PK Ramachan-
dran Nair, and Vimala D Nair. 2014. Organization of
a research paper: The imrad format. Scientific writ-
ing and communication in agriculture and natural
resources, pages 13–25.

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Yasu-
fumi Taniguchi, and Xu Liang. 2018. doccano: Text
annotation tool for human. Software available from
https://github.com/doccano/doccano.

David Nunan. 2015. Teaching English to speakers of
other languages: An introduction. Routledge.

Shiro Otake, Shotaro Chubachi, Ho Namkoong, Ken-
suke Nakagawara, Hiromu Tanaka, Ho Lee, At-
suho Morita, Takahiro Fukushima, Mayuko Watase,
Tatsuya Kusumoto, Katsunori Masaki, Hirofumi
Kamata, Makoto Ishii, Naoki Hasegawa, Norihiro
Harada, Tetsuya Ueda, Soichiro Ueda, Takashi Ishig-
uro, Ken Arimura, and Koichi Fukunaga. 2021.
Clinical clustering with prognostic implications in
japanese covid-19 patients: Report from japan covid-
19 task force, a nation-wide consortium to investigate
covid-19 host genetics. SSRN Electronic Journal.

Pontus Plavén-Sigray, Granville James Matheson,
Björn Christian Schiffler, and William Hedley
Thompson. 2017. The readability of scientific texts
is decreasing over time. Elife, 6:e27725.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

RJ Senter and Edgar A Smith. 1967. Automated read-
ability index. Technical report, Cincinnati Univ OH.

Alexander Te-Wei Shieh, Yung-Sung Chuang, Shang-
Yu Su, and Yun-Nung Chen. 2019. Towards under-
standing of medical randomized controlled trials by
conclusion generation. In Proceedings of the Tenth
International Workshop on Health Text Mining and
Information Analysis (LOUHI 2019), pages 108–117.

Tianbao Song, Jingbo Sun, Xin Liu, Jihua Song, and
Weiming Peng. 2022. Topic-word-constrained sen-
tence generation with variational autoencoder. Pat-
tern Recognition Letters, 160:148–154.

Sadia Sultan and Syed Irfan. 2016. Adult primary
myelodysplastic syndrome: Experience from a ter-
tiary care center in pakistan. Asian Pacific journal of
cancer prevention: APJCP, 17:1535–7.

Qingyun Wang, Lifu Huang, Zhiying Jiang, Kevin
Knight, Heng Ji, Mohit Bansal, and Yi Luan. 2019.
PaperRobot: Incremental draft generation of scien-
tific ideas. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1980–1991, Florence, Italy. Association for
Computational Linguistics.

21

https://doi.org/10.1159/000218115
https://doi.org/10.1159/000218115
https://doi.org/10.1159/000218115
https://doi.org/10.18653/v1/2022.naacl-main.397
https://doi.org/10.18653/v1/2022.naacl-main.397
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.3758/brm.40.3.647
https://doi.org/10.3758/brm.40.3.647
https://doi.org/10.11613/BM.2012.031
https://doi.org/10.11613/BM.2012.031
https://github.com/doccano/doccano
https://github.com/doccano/doccano
https://doi.org/10.2139/ssrn.3997875
https://doi.org/10.2139/ssrn.3997875
https://doi.org/10.2139/ssrn.3997875
https://doi.org/10.2139/ssrn.3997875
https://doi.org/10.7314/APJCP.2016.17.3.1535
https://doi.org/10.7314/APJCP.2016.17.3.1535
https://doi.org/10.7314/APJCP.2016.17.3.1535
https://doi.org/10.18653/v1/P19-1191
https://doi.org/10.18653/v1/P19-1191


Robert C Weissberg. 1984. Given and new: Paragraph
development models from scientific english. Tesol
Quarterly, 18(3):485–500.

Mostafa Zamanian and Pooneh Heydari. 2012. Read-
ability of texts: State of the art. Theory and Practice
in Language Studies, 2:43–53.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

22

https://api.semanticscholar.org/CorpusID:39229933
https://api.semanticscholar.org/CorpusID:39229933


A Merged Confusion Matrix

Top
ic

Su
pp

ort
ing

Con
c.&

Tra
ns.

Predicted Class

Top
ic

Su
pp

ort
ing

Con
c.&

Tra
ns.

Tr
ue

 C
la

ss

86 0 2

1 216 175

0 14 33

0
25
50
75
100
125
150
175
200
225

(a) BioBERT

Top
ic

Su
pp

ort
ing

Con
c.&

Tra
ns.

Predicted Class

Top
ic

Su
pp

ort
ing

Con
c.&

Tra
ns.

Tr
ue

 C
la

ss

86 0 2

1 141 250

0 8 39

0
25
50
75
100
125
150
175
200
225

(b) SciBERT

Figure 4: Confusion matrix after merging the categories of Concluding and Transition Sentences.

B Dataset Example

Discourse category Sentence

Topic Sentence
(#1) This study was the first in Japan to perform a cluster analysis of
COVID-19 patients.

Supporting Sentence

(#2) We identified four clinical sub-phenotypes, namely the “young
healthy cluster" (Cluster 1), “middle-aged cluster" (Cluster
2), “middle-aged obese cluster" (Cluster 3), and “elderly clus-
ter" (Cluster 4), which were associated with different outcomes in
Japanese patients with COVID-19.

Supporting Sentence
(#3) Previous reports, including ours, have shown that comorbidities
and mortality rates in Japan differed from inpatient studies in other
countries.

Supporting Sentence
(#4) Thus, the identification of the meaningful sub-phenotypes of
Japanese COVID-19 patients is important.

Supporting Sentence
(#5) Notably, our study used simple baseline characteristics as vari-
ables for cluster analysis.

Supporting Sentence
(#6) Several previous studies have shown that cluster analysis is
useful for phenotyping and predicting COVID-19 outcomes.

Supporting Sentence
(#7) However, most of these studies used complicated variables, com-
bining a wide range of blood test results for clustering.

Supporting Sentence
(#8) Promptly indefinable is an important feature of defining COVID-
19 sub-phenotypes.

Concluding Sentence
(#9) We believe that the present simple clustering may be of great help
to clinicians in predicting prognosis and performing individualized
therapy.

Table 8: An example paragraph with one Topic Sentence, seven Supporting Sentences, and one Concluding Sentence.
Paragraph topic is marked with bold font, while topic attributes are marked with italics. Source: Otake et al. (2021)

.
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Discourse category Sentence

Topic Sentence
(#1) Among other factors, the SNARC effect is considered to be
linked to the finger counting direction.

Supporting Sentence
(#2) Fischer (2008) has shown that the SNARC effect was not sig-
nificant (associated p-value of .061) in participants starting finger
counting with their right hand (right-starters).

Supporting Sentence
(#3) It differed significantly from the SNARC effect observed in
left-starters.

Supporting Sentence (#4) The latter group also revealed a significant SNARC effect.

Supporting Sentence
(#5) Moreover, the variance in the SNARC effect was greater among
right-starters.

Supporting Sentence
(#6) This observation was only partly replicated in a large-scale on-
line study (Cipora, Soltanlou, et al., 2019), which showed a difference
between left- and right-starters in the same direction.

Supporting Sentence
(#7) Still, it was associated with a negligibly small effect size (Cohen’s
d = 0.12).

Supporting Sentence
(#8) However, Bayesian analysis has shown that the result was incon-
clusive and was leaning towards supporting the null hypothesis.

Supporting Sentence
(#9) At the same time, unlike in Fischer (2008), a robust SNARC
effect was found in right-starters, and there was no significant differ-
ence in variance between left- and right-starters.

Supporting Sentence
(#10) Further studies have also demonstrated a robust SNARC in
right-starters (Fabbri, 2013; Prete & Tommasi, 2020).

Supporting Sentence

(#11) Additionally , in several countries where the majority of people
start finger counting with their right hand (e.g., Belgium and Italy),
the SNARC effect has been observed in multiple studies (e.g., Cutini,
Scarpa, Scatturin, Dell’Acqua, & Zorzi, 2014; Gevers, Ratinckx, de
Baene, & Fias, 2006; Mapelli, Rusconi, & Umilta, 2003).

Concluding Sentence
(#12) To sum up, there seems to be some evidence, however mixed,
that finger counting is associated with the SNARC effect (see also
Riello & Rusconi, 2011).

Supporting Sentence
(#13) Having seen these results, one might ask why the SNARC
effect should be related to the finger counting direction.

Transition Sentence
(#14) The research on the embodiment of numerical cognition can
illuminate this issue.

Table 9: An example paragraph with one Topic, Transition, Concluding, and Transition Sentence each. Paragraph
topic is marked with bold font, while topic attributes are marked with italics. Links are marked with underline.
Source: Hohol et al. (2022).
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Discourse category Sentence

Topic Sentence
(#1) In December 2019, a disease outbreak was noticed after a
massive admission of patients with common clinical symptoms of
pneumonia in the local hospitals of Wuhan City, China.

Supporting Sentence

(#2) Upon further investigations, the World Health Organization con-
firmed that the novel coronavirus, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), was responsible for these clinical symp-
toms and further denominated this disease as coronavirus disease
(COVID-19).

Supporting Sentence
(#3) Its clinical course is diverse, ranging from mild self-limited
illness to life-threatening organ dysfunctions.

Table 10: Example badly-structured paragraph with only one Topic Sentence and two Supporting Sentences.
Paragraph is marked with bold font, while topic attributes are marked with italics. Source: Otake et al. (2021).

Discourse category Sentence

Supporting Sentence (#1) Most published data on MDS is from Western countries.

Supporting Sentence (#2) Published local data are scarce.

Supporting Sentence
(#3) There are few studies available from Pakistan (Irfan et al., 1998;
Ehsan et al., 2010; Rashid et al., 2014).

Transition Sentence
(#4) The purpose of this study is to demonstrate demographical, clini-
cal and the hematological features of adults primary MDS patients
who visited our tertiary care center from 2010 till the end of 2014.

Table 11: An example paragraph with only one Transition Sentence and four Supporting Sentences. As this
paragraph does not contain a Topic Sentence, the subsentence level part of the annotation task was not completed.
Source: Sultan and Irfan (2016).
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Discourse category Sentence

Supporting Sentence
(#1) It was determined that CRAMP expression in BALB/c-derived
mast cells was inducible by LPS, which also induces production of
certain cytokines, including IL-13.

Supporting Sentence
(#2) This is of interest since IL-13 (and IL-14) can reportedly suppress
induction of cathelicidin production by some cell types, such as
antigen-exposed keratinocytes.

Supporting Sentence
(#3) In contrast, activation of mast cells with IL-4 appears to increase
accumulation of cathelicidin protein.

Supporting Sentence

(#4) It was also reported that skin obtained from patients with atopic
dermatitis have decreased cathelicidin LL-37 levels compared to
normal skin and thus supports high levels of vaccinia virus replication,
as is characteristic of eczema vaccinatum.

Supporting Sentence
(#5) Atopic dermatitis skin is characterized by overexpression of IL-4
and IL-13.

Concluding Sentence

(#6) Thus, although mast cells may be a source of cathelicidins, as
described above, their presence and activation in skin could in fact,
through production of certain cytokines, result in suppression of
production of the antimicrobial peptides by other cell types.

Table 12: An example paragraph with only one Concluding Sentence and five Supporting Sentences. As this
paragraph does not contain a Topic Sentence, the subsentence level part of the annotation task was not completed.
Source: Li et al. (2009).
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