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Abstract

The identification of political actors who put
forward claims in public debate is a crucial
step in the construction of discourse networks,
which are helpful to analyze societal debates.
Actor identification is, however, rather chal-
lenging: Often, the locally mentioned speaker
of a claim is only a pronoun (“He proposed
that [claim]”), so recovering the canonical
actor name requires discourse understanding.
We compare a traditional pipeline of dedicated
NLP components (similar to those applied to
the related task of coreference) with a LLM,
which appears a good match for this generation
task. Evaluating on a corpus of German actors
in newspaper reports, we find surprisingly that
the LLM performs worse. Further analysis re-
veals that the LLM is very good at identifying
the right reference, but struggles to generate the
correct canonical form. This points to an under-
lying issue in LLMs with controlling generated
output. Indeed, a hybrid model combining the
LLM with a classifier to normalize its output
substantially outperforms both initial models.

1 Introduction

Political decision-making in democracies is gen-
erally preceded by political debates taking place
in parliamentary forums (committees, plenary de-
bates) or different public spheres (e.g., newspapers,
television, social media). One way in which po-
litical scientists have analyzed such processes is
to adopt the framework of political claims analy-
sis (Koopmans and Statham, 1999), identifying the
claims (i.e., calls for or against specific courses
of action) and actors involved in a given debate.
Actors, claims, and the relations between them can
then be represented as bipartite discourse networks
(Leifeld and Haunss, 2012; Leifeld, 2016), such
as shown in Figure 1. Such networks permit re-
searchers to investigate debates on a fine-grained
level, identifying, e.g., discourse coalitions, deci-
sion makers, or argumentative clusters.
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Figure 1: Discourse network with actors as circles and
claims as squares (adapted from Padó et al., 2019)

While early work on discourse networks was
based on manual analysis, widespread use of dis-
course networks requires quick, ideally automatic,
methods to construct them from text. This calls
for NLP methods to (1) detect instances of claims,
assign them to their categories (ci in Figure 1), and
(2) identify actors for these claims in terms of some
canonical representation (ai), cf. Padó et al. (2019).

At least for newswire, there are several NLP
models for claim detection and categorization (Sub-
ramanian et al., 2018; Padó et al., 2019). In con-
trast, there is little work on actor identification.
Arguably, this is because claims are easier to han-
dle: Both detection and categorization are sentence-
level classification tasks which can be modeled
based on predominantly sentence-internal features.
In contrast, actor identification calls for a substan-
tial amount of discourse understanding: models
must locally identify an actor for the claim, but
since these are often just a pronoun or a definite
description (cf. Table 1), they must globally find a
reasonable canonical representation for that actor.

This paper asks whether this situation has im-
proved with the emergence of prompt-based LLMs
(Liu et al., 2023) and their promise for text-to-
text generation, which appears to be a good match
for the actor identification task. We contrast an
LLM-based architecture with a traditionally trained
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Local mention of actor Canonical version

1 President Joe Biden pleaded with Republicans . . . Joe Biden
2 Biden signaled a willingness to make significant changes . . . Joe Biden
3 “We can’t let Putin win”, he said. Joe Biden
4 However, Senate Republicans later on Wednesday blocked . . . Senate Republicans
5 A U.S. official said Washington had less than $1B . . . U.S. official

Table 1: Actor mentions and their canonicalizations in newswire article (https://shorturl.at/WZ159)

pipeline of dedicated NLP components on a Ger-
man dataset with actor-claim annotation (Blokker
et al., 2023). We find that, surprisingly, the tradi-
tional architecture outperforms the LLM. Our error
analysis shows that the LLM often identifies the
correct actor entity, but fails to generate the canoni-
cal actor name. We attribute this to the general dif-
ficulty in controling what exactly LLMs generate, a
problem which has given rise to a substantial body
of work (Zheng et al., 2023). In line with this inter-
pretation, we show that combining the LLM with
the traditional model (for post-processing) achieves
substantially better performance on the actor iden-
tification task than either model alone.

2 Methods

2.1 Actor Identification: Task Definition

Table 1 shows mentions of actors making claims
in a newswire article and the canonical actors they
refer to, i.e., input–output pairs for actor mapping.

One possible approach is to treat this task as
entity linking (Sevgili et al., 2022), typically re-
alized as classification where the classes are the
set of entities from a knowledge base (KB) such
as Wikidata. While frequent actors (cf. lines 1–3)
are mostly represented in such KBs, texts also in-
troduce ad-hoc actors through plurals (line 4) or
unspecific descriptions (line 5) which are generally
not part of KBs. That rules out pure entity linking.

Instead, we formalize actor identification di-
rectly as canonical name string prediction: Models
are presented with a claim, along with its context
within an article, and are tasked with predicting
a string representing that actor. For actors which
commonly recur across claims, this string will be
a canonical form of the actor’s full name, while
for singleton actors, this string will be the verbatim
realization of an actor mention from the article.

While this formalization seems to ignore much
of the structure of the task (after all, actor names
are not fundamentally arbitrary strings), it has the

benefit of allowing fair comparisons between vastly
different model architectures: Text generation mod-
els can produce short strings directly, and other
modeling approaches can take advantage of task
structure internally, while still outputting a string.
For example, we could approach the task with a
coreference model, extended with a component
which chooses the most canonical realization in
each coreference chain from among the mentions.1

2.2 A Traditional Pipeline Architecture

The first method we apply to this task is a pipeline
of two “traditional” NLP approaches: an entity
extractor for actor mentions, and a classifier for
associating mentions with canonical actor names.

Our mention extractor is a CRF-based sequence
labeler. As input, we provide full articles in which
the target claim has been marked and encode the
input with a pretrained XLM-RoBERTa encoder
(Conneau et al., 2020), which we fine-tune during
training. The CRF’s task is to extract mentions of
the actor for the marked claim. As each claim must
have at least one actor mention, we constrain (Pa-
pay et al., 2022) our CRF to always predict at least
one actor mention. In order to map actor mentions
to canonical forms, we employ a simple neural clas-
sifier based on the same XLM-RoBERTa encoder
as above. As classes, we use the set of all canonical
actor names which occur at least twice in the train-
ing partition of our data (see Section 3.1), along
with a special ‘verbatim’ class for the remaining
cases. In these cases, the string output we predict
is the exact text of the actor mention.

2.3 An LLM-Based Architecture

In our LLM-based approach, we treat actor iden-
tification as an end-to-end task by combining the
subtasks of actor detection and mapping within the
prompt to directly predict the canonicalized actor.

1We do not evaluate a coreference model since full coref-
erence is known to be a very hard task (see, e.g., Peng et al.,
2015) and actor identification only requires solving a subpart.
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Due to the limited availability of language-specific
LLMs, we opted to experiment with the Llama 2
language model (Touvron et al., 2023) for both
base- and instruction model options in all available
size variants. This model family could be used
on German, despite being predominantly trained
on English corpora, because of the cross-lingual
transferability that is shown to occur in such multi-
lingual LLMs (Choenni et al., 2023).

We assess this task in zero- and few-shot set-
tings, employing current best practices for robust
prompt construction. These include: (1) using dif-
ferent instruction paraphrases for prompt templates,
given the fact that ’canonical name’ is not a very
established concept (cf. Appendix A); (2) selecting
exemplars semantically similar to the input (Mar-
gatina et al., 2023); and (3) varying exemplar quan-
tity and order within the prompt (Lu et al., 2022).
We construct the prompts by combining the English
task description as prompt instruction with the pre-
processed article in German (again, cf. Appendix
A). Due to the context length limitation, we prepro-
cess articles by extracting the target claim, marked
with special tags, with its surrounding context at
the sentence level. We use greedy decoding.

In these trials, zero-shot Llama-2-70b-chat out-
performs all few-shot settings. We choose this
setting for the rest of the paper.

3 Experimental Setup

3.1 Data

As gold standard for our studies we use DEbateNet
(Blokker et al., 2023), a German large corpus re-
source for the analysis of the domestic debate on
migration in Germany in 2015. After domain ex-
perts from political science developed a codebook
for the policy domain, roughly 700 newspaper arti-
cles from the German left-wing quality newspaper
“taz – die tageszeitung” with a total of over 550,000
tokens were annotated for actors, claims, and their
relations. For each article, all claims are marked
and labeled, and each claim is associated with a
canonical actor (our gold standard), yielding a col-
lection of about 1,800 actor-attributed claims. Most
claims are also associated with a named entity men-
tion from the vicinity of the claim, though this may
not be the nearest mention, cf. Table 1. We use the
established DEbateNet train–dev–test split, with
1383 claims in train, 220 in dev, and 207 in test.

Evaluation Pr Re F1

LLM
exact match 42.66 43.46 43.06
up to formatting 43.56 44.39 43.98
up to canonic. 62.39 63.55 62.96

dedicated
pipeline

exact match 48.66 59.35 53.47
up to formatting 48.66 59.35 53.47
up to canonic. 54.79 66.82 60.21

Table 2: Results for the LLM and traditional pipeline
models in the different evaluation settings

3.2 Evaluation

Both models are evaluated and compared via F1-
score. In order to gain a more detailed understand-
ing, we use three evaluation settings:

In the strictest exact-match setting, predictions
are counted as correct only if they exactly match
the gold-standard actor string. This setting can be
performed automatically.

In our correct-up-to-formatting setting, predic-
tions are counted as correct if they match the gold
standard string modulo text formatting differences
(e.g. whitespace differences, capitalization, punc-
tuation). This setting tells us how often a model
is “almost right” but receives no credit in the strict
setting. We carry out this evaluation manually.

Finally, our correct-up-to-canonicalization set-
ting counts predictions as correct if they predict the
correct entity, even if a different referring expres-
sion is generated. For example, “the chancellor” or
“Merkel” would be considered correct predictions
for the gold-standard actor “Angela Merkel.” As
with before, this evaluation is performed manually.

4 Results and Analysis

Main results. Table 2 summarizes the perfor-
mance of our two models under our three evalua-
tion settings. We first consider our strictest setting,
exact match. We find results in the range of 40–50
points F1 score, in line with the assumption that
actor mapping is a difficult task. Both models have
somewhat higher recall than precision, and the dedi-
cated pipeline outperforms the LLM by 10 point F1

score. This is somewhat surprising, given LLMs’
well-known capabilities in instruction-following
text generation (Brown et al., 2020; Webson and
Pavlick, 2022; Zhou et al., 2023).

We form two non-mutually exclusive hypotheses
for this performance gap: either that the traditional
model, through its supervised training, came to be
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more competent at predicting the correct political
actor, or, through virtue of its inductive biases, it
came to better and predicting the exact canonical
name. We examine these hypotheses by evaluating
the model with the other two settings. We also
carry out a qualitative analysis of errors made by
the LLM-based model (see Table 3).

One simple factor that would lead an essentially
correct LLM to be inexact is formatting errors in its
output – either mismatched spacing, punctuation,
or capitalization, or natural language responses that
could not be correctly post-processed. Such effects
should show up as a difference between the ‘exact
match’ and the ‘up to formatting’ setting. How-
ever, the numbers (43.06 F1 vs. 43.98 F1) show
that these types of error account for less than one
percentage point. Our qualitative error analysis
(Table 3, top part) finds (few) cases of formatting
errors, which often co-occur with other problems
(unexpected LLM responses, gold standard errors).
We conclude that such errors have a relatively mi-
nor effect on performance.

The reliance of our exact evaluation metric on
gold-standard canonical forms provides another
opportunity for a largely correct model to show
low performance due to an inability to pick the
exact canonical form required. This factor should
come to the fore when we compare exact match re-
sults to the ’up-to-canonicalization’ setting. Indeed,
for this setting, both models show a substantial in-
crease in performance – which implies that canon-
icalization represents a large part of the difficulty
for this task. Interestingly, the LLM shows a much
larger improvement, ultimately outperforming the
traditional pipeline by about 2.5 points F1. Our
qualitative error analysis in Table 3 (center part) in-
dicates that our LLM predictions have a hard time
hitting the right level of verbosity: they are either
too verbose, spuriously including government posi-
tions (e.g. [Interior Minister] Thomas de Maizière),
or not verbose enough, omitting first names (e.g.
[Angela] Merkel).

We take this as evidence that our LLM-based
model is adept at selecting the correct actor, but
struggles to select the canonical form. This is some-
what to be expected, as our LLM-based model has
neither a training signal nor a strong inductive bias
to prefer any particular canonical form. However,
as mentioned in Section 2.3, preliminary experi-
ments with a few-shot setting where we included
canonical forms in prompts showed no improve-
ments over our proposed model. We believe that

Error
Type Model output Ground

Truth

Fo
rm

at

Bayern The claim is Bayern
(Bavaria)

EU-Kommission
(EU commission)

EU-
Kommision
[sic]

C
an

on
ic

al
iz

at
io

n

Bundesinnenminister
(federal minister of the
interior) Thomas de
Maizière

Thomas de
Maizière

Kommissions-
präsident (commission
president) Jean-Claude
Juncker

Jean-Claude
Juncker

Zimmermann Klaus F. Zim-
mermann

Merkel Angela
Merkel

W
ro

ng
A

ct
or

EU-Kommission
(EU commission)

Jean-Claude
Juncker

Germany Thomas Bauer

Table 3: Some illustrative examples of the errors ex-
hibited by the LLM-based actor identification model:
German outputs with English translations

this indicates that the task of predicting ’canoni-
cal names’ remains a non-straightforward task for
LLMs even in the presence of training data.

Finally, responses which bungled the refer-
ence completely (Table 3, bottom part) sometimes
tended to be plausible, e.g. metonymyic, mistakes,
such as predicting the EU commission instead of
Jean-Claude Juncker, its president.

Hybrid model. The observations on the errors
motivate a follow-up experiment with a hybrid ap-
proach combining both our traditional and LLM-
based models. This hybrid is structurally similar to
our traditional model, but it is provided the LLM’s
prediction in addition to its other inputs. In this
way, the LLM can decide which actor made the
claim, while the traditional pipeline can be respon-
sible for predicting that actor in a canonical form.
Table 4 shows that this approach has similar prop-
erties to the individual models (no effect of format-
ting, but a large effect of canonicalization) but that
it represents, crucially, a substantial improvement
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Evaluation Pr Re F1

exact match 54.33 64.49 58.97
up to formatting 54.33 64.49 58.97
up to canonic. 64.96 76.39 70.21

Table 4: Results for the hybrid model in the different
evaluation settings

in terms of quality: In the strictest setting (exact
match), it achieves an F1 score of 59 points (previ-
ous best: 53 F1), and in the laxest setting it obtains
70 points F1 (previous best: 63 F1).

5 Conclusion

In this work, we investigate alternative approaches
to tackling the discourse-level actor identification
task, comparing LLM prompting with a conven-
tional NLP pipeline. We find that our LLM better
recognize the appropriate actor entities compared
to the traditional pipeline, but has a harder time con-
trolling the exact output. This problem cannot be
solved easily with tuning, as the failure of our few-
shot setup shows, which is also in line with recent
studies on the controllability of LLM output (Reif
et al., 2022; Sun et al., 2023). Our solution is a
hybrid model which integrates the LLM-generated
output as a cue in the pipeline approach, resulting
in a clear improvement over the individual models.

The current study is limited in several respects:
It only considers one LLM, one corpus, and one
evaluation. In the future, we also plan to carry out
an extrinsic evaluation of our actor identifier on
generating full discourse networks. In terms of fu-
ture directions, we believe that actor identification
is a task which could plausibly profit from retrieval-
augmented generation (RAG) proposed by Lewis
et al. (2020) which would give the LLM access to
information beyond the current discourse.
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A Prompt Templates

# Instruction templates

1 "Extract only the entity that made the claim in the article. The claim is surrounded with
<claim>and <\claim>tags. Output only the entity without any additional explanation.
Article: [ARTICLE]"

2 "Extract and standardize only the entity that made the marked claim in the article. The
claim is surrounded with <claim>and <\claim>tags. Output only the standardized
entity without any additional explanation. Article: [ARTICLE]"

3 "Retrieve the party or parties responsible for the statement in the given article, con-
tained within <claim>and <\claim>tags. Output only the entity without further elabo-
ration. Article:[ARTICLE]"

4 "Identify and output the entity or entities that made the claim within the specified article,
enclosed by <claim>and <\claim>tags. Do not include any supplementary information.
Article: [ARTICLE]"

Table 5: Prompt template instruction paraphrases used for robustness check for zero- and few-shot setting.
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