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Abstract 
Human-assigned concreteness ratings for words are commonly used in psycholinguistic and computational linguistic 
studies. Previous research has shown that such ratings can be modeled and extrapolated by using dense word-embedding 
representations. However, due to rater disagreement, considerable amounts of human ratings in published datasets are not 
reliable. We investigate how such unreliable data influences modeling of concreteness with word embeddings. Study 1 
compares fourteen embedding models over three datasets of concreteness ratings, showing that most models achieve high 
correlations with human ratings, and exhibit low error rates on predictions. Study 2 investigates how exclusion of the less 
reliable ratings influences the modeling results. It indicates that improved results can be achieved when data is cleaned. 
Study 3 adds additional conditions over those of study 2 and indicates that the improved results hold only for the cleaned 
data, and that in the general case removing the less reliable data points is not useful. 
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1. Introduction 

The importance of distinction between concrete and 
abstract concepts has been long noted in 
psycholinguistics (Paivio, Yuille, & Madigan, 1968). 
The so called ‘concreteness effect’ often finds that 
human participants process concrete words faster 
and more accurately than abstract words, in a variety 
of tasks, such as word naming, recognition, and 
recall, as well as sentence comprehension (Paivio 
1991). Jessen et al. (2000) conducted fMRI studies 
indicating that concrete nouns are processed 
differently in the brain than abstract nouns. 

Notions of concreteness and abstractness have also 
been used in computational approaches, both to 
investigate lexical relations, and for analysis of text. 
Concreteness of words has been widely used for 
metaphor detection (Maudslay et al., 2020; Köper and 
Schulte im Walde, 2017; Beigman Klebanov et al., 
2015; Tsvetkov et al., 2014; Turney et al., 2011). For 
example, when a sentence describes an abstract 
agent performing a concrete action, it can be a strong 
indication of metaphorical usage. Choi and Downie 
(2019) used word concreteness scores to analyze 
trends in popular song lyrics across several decades, 
finding that concreteness in songs has been 
decreasing before the year 1991 and began 
increasing since then. Hills and Adelman (2015) 
analyzed distributions of word concreteness in 
published books; they noted “a systematic rise in 
concrete language in American English over the last 
200 years.” Flor and Somasundaran (2019) 
investigated word concreteness in narrative writing of 
students, finding that concreteness positively 
correlates with rater scores of narrative quality. 

Hill et al. (2014) analyzed the associations that 
concrete and abstract words have in a large corpus. 
They found that the more concrete words have 
smaller sets of context words, while abstract words 
have larger sets of context words. Naumann et al. 
(2018) investigated the concreteness of the contexts 
of concrete and abstract English words. They found 
that abstract words mainly co-occur with abstract 

words, but for concrete words cooccurrence patterns 
differ by part-of-speech. Tater et al. (2022) 
investigated selectional preferences of English nouns 
and verbs, and found that strong preferences exist 
with respect to concreteness and abstractness of 
subject and direct object slot fillers for verbs. 

Early work in psycholinguistics has shown that 
concreteness/abstractness is not dichotomous but a 
matter of degree, and researchers began collecting 
human-assigned ratings for various words and 
producing lexical norms (Paivio et al., 1968). 
Presently three large human-rated datasets of 
concreteness are available for English (Coltheart, 
1981; Brysbaert et al., 2014; Scott et al., 2019). 

In parallel with utilizing the experimental ratings, 
researchers have also been interested in 
extrapolation of concreteness ratings to other words, 
for which ratings are yet unavailable. Notably, the 
interest in using computational linguistic approaches 
to extrapolate human semantic judgments is not 
limited to concreteness ratings, Methods to 
extrapolate ratings for a variety of variables, such as 
sentiment, arousal, and dominance, have been 
studied (Bestgen & Vincze, 2012; Turney & Littman, 
2003); for a synthesis of some approaches see 
Mandera et al (2015). 

Many researchers have reported that utilizing dense 
word representations (word embeddings) from 
distributional semantic language models can be 
useful for predicting and extrapolating concreteness 
values. Mandera et al. (2015) used several 
approaches to learn to predict psycholinguistic values 
from corpus data. For prediction of concreteness 
ratings, they used the data from Brysbaert et al. 
(2014). Using Random Forest learning over word 
vectors, they achieved a correlation of .781 with 
original scores, and even a higher correlation of .796 
when using a KNN approach. Hollis et al. used 
regression over word2vec vectors and achieved a 
correlation r=.833. Paetzold and Specia (2016) used 
bootstrapped regression over word2vec embedding 
vectors from a corpus of 7 billion words. For predicting 
concreteness, their best result had Pearson 
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correlation of r=.862, with human ratings. Thompson 
and Lupyan (2018) used multiple linear regression 
over word vectors and obtained correlation of r=.86 
with human ratings. Ljubešić et al. (2018) utilized 
word embedding vectors trained on Wikipedia to 
predict concreteness scores with SVM regression; 
they reported Spearman correlation of ρ=.872 
between estimated and original values.  

While human ratings provide the core data for 
extrapolation studies, such ratings are not without 
problems themselves. The published ratings for each 
word are usually average values across several 
human participants, and humans often disagree in 
their judgments; the standard deviations of human 
ratings per word vary considerably. Pollock (2018) 
provided an in-depth critique of crowd-sourced ratings 
of semantic psycholinguistic variables, such as 
concreteness, imageability, and emotional valence. 
Munoz-Rubke et al. (2018) have argued against using 
Likert-type rating scales for rating studies such as 
concreteness. Computational linguists have also 
noted problems with words for which human ratings 
show high disagreement (Tater et al., 2022; Beigman 
Klebanov et al., 2015). 

In this paper we set to investigate to what extent 
words that have considerable rating disagreements 
influence word-embedding-based modeling of 
concreteness ratings. The paper is structured as 
follows. First, we describe the three large, published 
datasets of word-concreteness ratings for English. In 
study 1 we compare twelve word-embedding models 
as to their ability to model the concreteness ratings in 
those datasets. To the best of our knowledge this is 
the largest such comparison to date. In study 2, we 
pick two models and investigate how their predictions 
are influenced by exclusion of words with high 
standard deviations of concreteness ratings. In study 
3 we introduce additional conditions on exclusion of 
such words, which shed light on their influence in the 
modeling process. 

2. Datasets 

The MRC Psycholinguistic Database (Coltheart, 
1981; Wilson 1988) is one of the earliest large 
compilations of linguistic and psycholinguistic values 
for English words. It has concreteness ratings for 
4295 English words, which were derived from 
experimentally established sets where participants 
rated words for perceptual concreteness on a 1-7 
rating scale. In the MRC database they are expressed 
on a 100-700 scale (and rescaled back to 1-7 for the 
current study). Notably, the MRC database does not 
list the per-word standard deviations of the ratings. 

Brysbaert et al. (2014) published a collection of 
37,057 English words (mostly lemmas) with human-
provided concreteness ratings (the BWK dataset). It 
is the largest such collection of ratings for English. 
The authors noted that previous collections of human 
concreteness ratings tended to focus too much on 
visual perception, and so for their rating study they 
emphasized all types of experiences (not only 
sensory, but also actions/activities). In that study, 
participants (native English speakers) received word 

lists and had to rate each word for concreteness, on 
a 5-point Likert scale, where only integer values could 
be chosen. After careful validation and filtering, the 
authors retained only those words that were known by 
at least 85% of the raters, and each word was rated 
by about 25 participants. The resulting concreteness 
score for each word is an average of the scores it 
received from its raters. The authors also released the 
standard deviation values of the ratings for each word. 
The BWK and MRC sets have an overlap of 3,935 
words, and Pearson correlation of concreteness 
ratings is r=.919, a very high level of agreement. 

Scott et al. (2019) published normative ratings for 
5,553 English words on nine psycholinguistic 
dimensions, including concreteness. The authors 
called this data the Glasgow Norms (hereafter the GN 
dataset). In that study, for any given subset of words, 
the same participants provided ratings across all nine 
dimensions, and on average each word was rated by 
33 participants. For concreteness, integer ratings 
were assigned on a 7-point Likert scale. Average 
concreteness values and standard deviations of 
ratings for each word were released by the authors. 
Some of the words in that study were polysemous and 
were presented with a disambiguator, e.g., blubber 
(cry) and blubber (fat). By excluding the 871 such 
entries in that data, we utilize the 4682 single words 
(lemmas) that have concreteness ratings. The GN 
dataset has an overlap of 4,445 words with the BWK 
dataset, and Pearson correlation of average 
concreteness ratings between the sets is r=.93, 
indicating very high agreement of ratings.  

For all three datasets, the published concreteness 
scores are real numbers, in the respective scale 
ranges. It is interesting to note the distribution of 
concreteness scores in the three datasets. Although 
the scales are of different magnitudes, it can be seen 
in the binned distributions (Figure 1) that the BWK 
data is skewed towards the more abstract side, while 
the GN data is skewed to the concrete side of the 
scale. The MRC has more words on the concrete 
side, but the extreme bins are 'underpopulated', 
especially the bin for very abstract words with scores 
in the range of 1-2. 

 

 
Figure 1: Binned distributions of concreteness 

scores in three datasets: MRC, GN, and BWK. 

Score bins on X-axes, word counts on Y-axes. 
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3. Experiments 

3.1 Study 1 

In Study 1 we investigate to what extent vector 
representations of words can be utilized for predicting 
word concreteness scores. Following previous 
studies (Thompson and Lupyan, 2018), we employ 
multiple linear regression as the learning method for 
the experiments. In such setting, the embedding 
vector dimensions serve as predictor variables. 

We experimented with fourteen different embeddings 
models, as listed in Table 1. We included the widely 
used word2vec cbow model trained on Google News 
(Mikolov et al., 2013) and refer to it as mikolov.w2v. 
From Baroni et al. (2014) we adopted the word2vec 
cbow model trained on a window of 2 words 
(baroni.w2v), and also a vector model based on SVD 
of PMI word co-occurrence values (baroni.pmi). Two 
GloVe embeddings models (Pennington et al., 2014) 
were used – one trained on a corpus of 6 billion words 
(glove.6b) and a larger model, trained on 42 billion 
words (glove.42b). From the work of Levi and 
Goldberg (2014) we used two word2vec models 
trained on English Wikipedia data: one used a window 
of 5 words around a target word (l&g.w5), the other 
model used dependency parse relations (l&g.deprel). 
The eigenwords embeddings come from the work of 
Dhillon et al. (2015). Lexsub embeddings are a model 
introduced by Melamud (2015). The ftWiki model is a 
model trained on English Wikipedia, part of the Fast 
Text family of models (Bojanowski et al., 2017). The 
paragram model (Wietig et al., 2015) used a large 
database of English paraphrases to tune the word 
embeddings. Numberbatch embeddings (nb17) is a 
model based on the ConceptNet project data (Speer 
and Lowry-Duda, 2017). Two additional models use 
embeddings derived from Transformer architectures. 
We used the popular SentenceBERT library (Reimers 
and Gurevych, 2019) as an embedder, to produce 
static embeddings for the words in our experiments. 
The MiniLM-L6-v2 model produces vectors of 
dimension 368, based on the BERT transformer 
model. The distilroberta-v1 model produces vectors of 
dimension 768, derived from the DistilRoBERTa 
transformer model. In all experiments in this study, all 
vectors were normalized with L2 normalization. 

It is worth noting that different vector models have 
different coverage for the words in the datasets (see 
Table 1). For the BWK data, among the classic 
models, the lowest coverage is by the l&g.deprel 
model, only 26,605 words (72% of the dataset), and 
the highest is by glove.42b, 35,491 words (96% 
coverage). Embeddings derived from SentenceBERT 
achieve full coverage, as such modern models can 
provide embeddings for any string. For the smaller 
MRC and GN datasets, the coverage was much 
better. Lowest coverage for MRC data was 4,140 
words (96%), and for GN data: 4629 words (99%). 

Experiments were performed for the MRC, BWK and 
GN datasets separately. All experiments involved 10-
fold cross validation, with a 9:1 training:testing ratio. 
We used value clamping to prevent regression-based 

predicted values from falling outside of the original 
scales. Predicted values below 1 were reset to 1, and 
those above maxima (5 or 7) were reset to the max 
value. 

Two evaluation measures were used to estimate the 
success of various models. One measure was 
Pearson correlation between the original published 
concreteness values and the predicted values. The 
higher the correlation, the better is the prediction. The 
other measure is Root Mean Square Error (RMSE), 
which measures the average squared difference 
between original and predicted scores. Lower values 
of RMSE indicate better prediction performance. 
Results (micro-averages) for all the experiments are 
presented in Table 1. A single model, nb17, achieved 
the best results in all datasets, on both the correlation 
and the RMSE measures. 

Results for the BWK dataset indicate that all models 
show rather impressive prediction power – 
correlations ranging above 0.8 (except glove.6b), but 
none reaches 0.9. Across different language models, 
the RMSE values for BWK data range between 0.472 
and 0.633. Divided by the scale range, 4, those 
RSMEs are at a magnitude of 12-16% of the score 
range. 

Results for the GN dataset indicate that all models 
show very strong results, all correlations range above 
0.8, and two models – nb17 and lexsub achieve 
correlations above 0.9. The RMSE values for the GN 
data range from 0.572 to 0.872. Those values are 
larger than values obtained for the BWK data. 
However, GN data was rated on a 1-7 scale, and so 
higher error values should be expected. If we divide 
RMSE values by the scale range, we can see that the 
error results in the two experiments are comparable. 
Lowest RMSE values: for BWK data 0.472/4=0.118; 
for GN data 0.572/6=0.095. The highest RMSE: for 
BWK: 0.633/4=0.158; for GN: 0.872/6=0.145. 

The results for MRC data resemble those of GN data, 
although each language model achieves slightly 
worse (lower) Pearson correlation values for MRC 
than for GN, but slightly better (lower) RMSE values 
for MRC than for GN data. 

3.2 Study 2 

The background for Study 2 stems from the criticism 
that some researchers have pointed toward the 
reliability of psycholinguistic ratings with Likert-type 
scales. Munoz-Rubke et al. (2018) have noted that 
when participant ratings are averaged and assigned 
as final word scores, for categories such as 
concreteness, the approach may have important 
limitations, as the results can be highly distorted by 
outliers. Specifically for concreteness values norms 
from the Brysbaert et al. (2014) study, Pollock (2018) 
has argued that the mean concreteness values for 
words do not reflect the judgments that actual 
participants made: “this problem applies to nearly 
every word in the middle of the concreteness scale.” 
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  BWK data GN data MRC data 

Model name dims coverage Pearson RMSE Coverage Pearson RMSE coverage Pearson RMSE 

sbert Mini-LM6-v2 368 37057 0.825 0.573 4681 0.858 0.736 4295 0.812 0.708 

sbert distilroberta-v1 768 37057 0.815 0.588 4681 0.797 0.872 4295 0.752 0.807 

mikolov.w2v 300 33975 0.848 0.539 4629 0.887 0.661 4220 0.854 0.627 

nb17 300 35488 0.885 0.472 4679 0.917 0.572 4292 0.883 0.569 

glove.42b 300 35491 0.821 0.579 4682 0.855 0.745 4290 0.814 0.704 

glove.6b 300 31619 0.783 0.633 4680 0.825 0.811 4261 0.784 0.752 

l&g.deprel 300 26605 0.868 0.507 4651 0.891 0.649 4195 0.874 0.588 

ftWiki 300 35319 0.850 0.535 4680 0.878 0.686 4294 0.849 0.640 

Lexsub 600 28274 0.874 0.496 4677 0.905 0.612 4232 0.879 0.577 

Eigenwords 200 28276 0.865 0.511 4651 0.883 0.673 4140 0.867 0.601 

l&g.w5 300 27212 0.834 0.563 4657 0.870 0.706 4214 0.850 0.636 

Paragram 300 35308 0.805 0.601 4682 0.811 0.840 4286 0.773 0.768 

baroni.ppmi 500 30260 0.839 0.555 4681 0.877 0.690 4261 0.851 0.638 

baroni.w2 400 30260 0.811 0.596 4681 0.880 0.688 4261 0.841 0.656 

Table 2: Results of word-concreteness score prediction for three datasets, with 14 different vector-space 
models. Dims is the number of dimensions per vector. The columns labeled Coverage are counts of words 

that had vectors in the respective language model. For Pearson correlations, higher value means better 
prediction; for RMSE, lower value means better prediction. 

 

He recommended that researchers who use such 
ratings pay attention to the standard deviations of 
ratings and use only the stimuli for which standard 
deviations are as low as possible. The relevance of 
such critique to our work is quite direct. What would 
happen if we excluded from our data all items (words) 
that are 'less reliable'? Would it improve the 
concreteness prediction models? On the other hand, 
excluding some data would make the datasets 
smaller; and having less data may lead to inferior 
learning. 

Beigman Klebanov and Beigman (2014) and Jamison 
and Gurevych (2015) have suggested that, in 
supervised machine learning, the presence of difficult 
items in the training sets is detrimental to learning 
performance and that performance can be improved 
if systems are trained on only easy data. They define 
‘easy’ as less controversial in human annotations. 
This seems exactly analogous to our current case. 
Words that have high standard deviations (SD) of 
human-rated concreteness are 'less reliable' as to 
their real concreteness value, they are more 'difficult' 
cases. Excluding them from the training data may 
leave just the more reliable, 'easier' data for learning 
and thus might lead to improved model performance. 

Standard deviations of rating values for each word are 
available for the BWK and the Glasgow Norms 
datasets. To understand the potential scope of data 
reduction, we plot the number of words in each 
dataset as a function of different SD value thresholds, 
and also by score-bins of the ratings. Figure 2 (left 
panel) presents the plot for the BWK dataset. The 
black bars represent the data when nothing is 
excluded, corresponding to Figure 1. The red bars 

indicate the counts of remaining words when all words 
with SD>1.5 are excluded. Such exclusion affects 
mostly words in the score bins 2-3 and 3-4. The green 
bars indicate the counts when all words with SD>1.2 
are excluded. Again, we can see that the largest data 
reduction occurs for words in the score bins 2-3 and 
3-4. With exclusion threshold of SD>1.0 (maroon-
color bars), almost all words in bins 2-3 and 3-4 get 
excluded. The exclusion rates are much more gradual 
for score bins 1-2 and 4-5, which are closer to the 
extremes of the concreteness rating scale. 

Figure 2 (right) presents the distributions of words for 
the GN dataset. The black bars represent the data 
when nothing is excluded, corresponding to Figure 1. 
Data reduction thresholds for this set are somewhat 
different. At the exclusion threshold of SD>1.0, only 
the bin of scores 6-7 retains some considerable 
number of words, while all other bins are almost 
emptied. Data reduction is especially dramatic for bins 
of scores 3-4 and 4-5 (the middle of the rating scale). 

The design for study 2 is as follows. We investigate 
how gradual elimination of some data from the 
datasets influences the quality of the learned models. 
For each dataset, we exclude all words that exceed a 
given SD threshold and train a multiple regression 
model with 10-fold cross-validation. This mode of 
exclusion is systematic. For the sake of comparison, 
we also check what happens if the same number of 
words are excluded, but chosen randomly, rather than 
by an SD threshold. For example, for BWK data 
(37,057 words), for a threshold of SD≤1.4 we exclude 
7,053 words, and experiment (full 10-fold cross- 
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Figure 2: Binned distributions of concreteness scores, data exclusion by SD thresholds. 
 

validation) with the remaining 30,004 words. In a 
matching control condition, we exclude 7,053 words 
randomly chosen, and run the experiment with the 
remaining 30K words. 

For the BWK dataset, the systematic exclusion steps 
are from SD value of 1.0 to 0.6 with a step of 0.1 (more 
data is excluded on each step). For the GN data, the 
SD thresholds are from 2.0 to 1.0 with a step of 0.1. 
For each dataset we also use a condition where no 
words are excluded, as in study 1. Table 2 presents 
the counts of remaining words for each condition. 

 

Inclusion BWK data GN data 

All data 37057 (100%) 4682 (100%) 

SD≤2.0  4599 (98%) 

SD≤1.9  4485 (96%) 

SD≤1.8  4260 (91%) 

SD≤1.7 36942 (99%) 3901 (83%) 

SD≤1.6 36345 (98%) 3383 (72%) 

SD≤1.5 34375 (93%) 2748 (59%) 

SD≤1.4 30004 (81%) 2198 (47%) 

SD≤1.3 23916 (64%) 1738 (37%) 

SD≤1.2 17814 (48%) 1357 (29%) 

SD≤1.1 12681 (34%) 1069 (23%) 

SD≤1.0 8847 (24%) 825 (18%) 

SD≤0.9 6118 (17%)  

SD≤0.8 4147 (11%)  

SD≤0.7 2860 (7%)  

SD≤0.6 1998 (5%)  

Table 2: Number of remaining words in two datasets, 
by inclusion thresholds on SD values. 

 
For Study 2 we use two embedding models from 
Study 1 that have good performance and also have 
good lexical coverage over the BWK and GN datasets 
– nb17 and sbert MiniLM-L6-v2. Note that the number 
of words used in each experimental condition, as 
presented in Table 2, applies only to the sbert model, 
as it has full coverage of the datasets; nb17 has lower 
coverage and thus the number of words used is 
slightly lower in each respective condition. Just as in 

study 1, RMSE and Pearson correlation are used as 
evaluation measures in study 2.  

Results for the BWK dataset are presented in Figure 
3. The correlation results with sbert and nb17 are 
quite similar (Figure 3, left panels). When very little 
data is excluded (thresholds 1.7 and 1.6), the results 
of systematic or random exclusion are quite the same, 
and very close to those of no exclusion. However, the 
results begin to separate from threshold 1.5. The 
results from systematic exclusion become higher and 
higher with each successive exclusion threshold, they 
reach beyond correlation of .9, and for nb17 – even 
beyond .95. The peak results are achieved at SD≤0.8. 
After that threshold, the correlation values begin 
decreasing, though they are still higher than for the 
full dataset. For the control conditions with random 
exclusion, the correlation values do not improve with 
successive exclusions, they even have a slight 
tendency of decreasing, and never get higher than 
values for the full-data condition. 

RMSE results for the BWK dataset are presented in 
Figure 3, right-side panels. Note that for RMSE, lower 
error values indicate better performance. The results 
with nb17 and sbert are quite similar. For inclusion 
thresholds 1.7 to 1.3, the RMSE results for systematic 
or random exclusion are very close to each other, and 
approximately the same as under the no-exclusion 
condition. However, as more and more data gets 
excluded, RMSE values for systematic exclusion 
begin decreasing; the decrease even accelerates (the 
black-color lines curve down), whereas the error 
levels for random exclusion (orange-colored lines) 
remain the same, or even increase slightly. Notably 
the separation of results between systematic and 
random conditions begins at SD≤1.2 for the nb17 
model and at SD≤1.0 for the sbert model. 

Results for the GN dataset are presented in Figure 3. 
The correlation results with nb17 and sbert are quite 
similar (Figure 3, left panels). The trends are also 
similar to those of the BWK dataset results. When 
very little data is excluded (thresholds 2.0 to 1.8), the 
results of systematic or random exclusion are quite 
similar, and very close to those of the no-exclusion 
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condition. For further thresholds, systematic 
exclusion leads to higher correlation results, until 
threshold levels of 1.3 or 1.2, and then the correlation 
results start decreasing quite sharply. The sharp 
decreases might be due to the sharp reduction in the 
size of the dataset, or due to the dramatic change in 
the distribution of values in the reduced corpus (see 
Figure 2). The best correlation results are, for sbert: 
r=.887; for nb17: r=.944; all when SD≤1.4. Under the 
random exclusion, the correlations tend to decrease. 

The RMSE results for the GN data are presented in 
Figure 3, right-side panels. The results for systematic 
exclusion are similar to the RMSE results in the BWK 
dataset – at first the error levels are quite similar to 

those under the no-exclusion condition, but then the 
RMSE values get increasingly lower and lower (black-
color lines tend to curve down). The results for 
random exclusion are markedly different from 
systematic exclusion. At first the error levels are close 
to those under the no-exclusion condition, but then 
the RMSE values begin rapidly increasing (orange 
lines curve up), indicating worsening performance. 

The results of study 2 indicate that when the 'less 
reliable' data is excluded from the datasets, 
regression models based on word-embeddings can 
achieve much better results that with the full data.  

 

 
Person Correlation                                                               RMSE 

    

    

    

    

Figure 3: Pearson correlations (left) and RMSE (right) for predicting concreteness scores on two datasets, as 

a function of data reduction (systematic by SD thresholds, or random), using two different language models. 

Data points marked 'ALL' represent a condition where all available words were included. 
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3.3 Study 3 

An important aspect in study 2 was the change in 
distribution of concreteness values, under the 
systematic exclusion condition. Do models achieve 
better results because they learn on increasingly 
'cleaner' data, or simply because of the different 
distribution of values? And what about the 'less 
reliable' values? Should we exclude them from 
modeling at all? How would models trained on 
cleaner, reduced data perform on unfiltered data? 
Study 3 addresses those questions. 

In study2, we tested what happens when the dataset 
was successively reduced. Under systematic 
reduction, both the training folds and the testing folds 
were reduced as per the SD thresholds. In the other 
condition, random exclusion was used for all folds. In 
study 3 we add two new conditions where we mix the 
data exclusion methods. In a condition called SR, 
data reduction in training folds uses systematic 
reduction (by SD thresholds), but in the testing folds 
a comparable amount of data is excluded randomly. 
This condition evaluates what happens when training 
data is systematically cleaned (and the distribution of 
concreteness scores changes), but the testing data is 
just randomly reduced, and so it keeps the same 
distribution as the whole dataset. Under another 
condition, called RS, we reverse the reduction 
methods. Data for the testing folds is reduced 
systematically (by SD thresholds), but the training 
folds get a proportional random reduction. Thus, the 
models are trained on approximately the same 
distribution as the whole dataset, but are tested on 
just the 'cleaner' data. The overall amounts of 
included data decrease in the same way under the 
new conditions, just as in study 2. For study 3 we used 
the same datasets and same vectors as in study 2. All 
experiments were run with 10-fold cross-validation. 
Results are presented in Figure 4. For ease of 
comparison, the results from study 2 are shown again, 
with the results of the new conditions added (yellow 
lines for SR and green lines for RS). 

When models are trained on increasingly 'cleaner' 
data, their ability to predict values for 'non-cleaned' 
data (yellow lines) keeps up with models that do not 
'clean' the data (red lines), both for correlation and 
RMSE. However, after certain levels of data reduction 
the 'clean'-trained models begin losing it – they 
achieve slightly lower correlations and make 
dramatically larger errors, as compared to models that 
train and test on randomly-reduced data (red lines). 
Comparing yellow lines to black lines (in both cases 
models train on cleaned data) shows that the 
composition of the test data makes a huge difference 
– when test data is also clean, the best overall results 
are achieved, but when the test data is unfiltered, the 
worst results are achieved (lowest correlations and 
largest errors). 

Next, we consider models that test on just the clean 
data, but train on cleaned (black) or unfiltered data 
(green lines). Looking left to right on each panel (left 
side) in Figure 4, the green line keeps up with the 
black line until SD 1.2 (BWK) or SD 1.4 (GN), 

reduction to about 47% of the full data. After that the 
green lines show worse results than the black lines, 
but still better than the other lines. It seems that the 
models trained on unfiltered data retain most of the 
information needed to predict clean data; that is until 
the distributions become so different that prediction 
deteriorates (the respective RMSE values start rising 
while correlations get lower). 

4. Discussion 

Many previous studies used the large BWK dataset. 
Thompson and Lupyan (2018) reported a correlation 
of r=.86; Hollis et al. (2017) reported a correlation of 
r=.833; Mandera et al. (2015) obtained a correlation 
of r=.781. Ljubešić et al. (2018) reported Spearman 
correlation ρ=.887 on BWK data and ρ=.872 on MRC 
data. Paetzold and Specia (2016) reported a 
correlation of r=.862 on MRC data. Our results in 
study 1 indicate that comparable or better prediction 
levels can be obtained with several different language 
models, using ordinary multiple regression. While 
previous studies have used BWK and MRC datasets, 
the current study is first to also use the Glasgow 
Norms data for concreteness prediction. The results 
resemble those of BWK and MRC data. None of the 
previous studies used RMSE as an evaluation 
measure for concreteness ratings prediction. In study 
1, RMSE results for BWK data are typically lower than 
for MRC and GN data, probably due to differences in 
scales. Beyond that, RMSE results for different 
embedding models are quite similar to correlation 
results – embeddings that get better correlations also 
show lower error results. 

Study 2 was motivated by the notion of unreliable 
word concreteness ratings, which reflect considerable 
disagreements among human raters. In the BWK 
dataset, less than 50% of the words have standard-
deviation values below 1.2, and only 24% have SD 
values below 1.0. In the GN dataset less than 29% of 
the words have SD values below 1.2 and just 18% 
have values below SD 1.0. Study 2 investigated how 
exclusion of unreliable data points influences 
regression modeling. It was found that when human 
raters agree more on concreteness of words, such 
ratings can be modeled/predicted very well with 
vector space models. Higher correlations and lower 
errors are obtained as compared to learning on the 
full data.  

However, the distributions of concreteness scores in 
the BWK and the GN datasets change drastically 
when less reliable words are excluded – most 
unreliable words are in the middle of the distributions 
and are excluded with successive data cleaning. 
Study 3 investigated whether results in study 2 were 
due to changes in concreteness score distributions. 
The results showed that training on clean data does 
not generalize well to unfiltered data, especially with 
regard to magnitude of errors (RMSE). On the other 
hand, training on unfiltered data and testing on just 
the clean data reveals that the models have enough 
information to predict scores for clean data, especially  
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Figure 4: Pearson correlations (left) and RMSE (right) for predicting concreteness scores on two datasets, 

with four methods of data reduction, using two different language models.  
 

on the correlation measure, but less so on RMSE. 
Thus, if we are only interested in predicting 
concreteness for ‘reliable’ words, cleaning the training 
data can be useful. If the potential ‘reliability’ of new 
words is unknown (as would be the case for most new 
words), filtering the training data is not recommended. 

We continue the discussion in relation to the 
distinction between easy and difficult cases. Uma et 
al (2021) provide an extensive review on the influence 
of hard cases for machine learning, where difficulty 
arises from disagreements in human annotation. They 
provide a taxonomy of potential reasons for 
disagreement. Among the sources of disagreement, 
Uma et al. mention a) annotator/rater errors b) 
problems with the task interface, c) problems with task 

definition, d) situational item difficulty, e) genuine 
ambiguity of the data, and f) rater subjectivity. 

Annotator/rater errors can be mistakes or slips made 
due to inattention, or other random factors. Interface 
issues can arise when task interface may have 
technical complications (e.g., selecting text spans). 
Problems with task definition may lead to 
disagreements when the task is not well defined, 
includes vague statements, or, in case of 
classification, classes that are not mutually exclusive. 
Item difficulty (for rating/annotation) relates to cases 
when the interpretation of the data is unclear. For 
example, for image labelling, if the image is too 
blurred, annotators may disagree as to what they 
actually see there, and thus disagree on a label. In the 
task of textual entailment, an item may be difficult 
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because the text is convoluted and a core assertion is 
not easy to discern. As noted by Uma et al., the 
problem is not that an item lacks a ‘true’ label, only 
that the ‘true’ label is difficult to distinguish. As they 
note, the conclusion either follows from the premise, 
or it doesn’t, but not both. This contrasts with the 
ambiguity category, where the data items can be truly 
ambiguous, i.e., have different valid interpretations. 
Uma et al. mention that ambiguity cases have been 
shown to arise in annotation of anaphora and of POS 
tags. The final category, subjectivity of judgement, 
relates to cases where annotators/raters hold 
different opinions. The prototypical example is 
annotation of offensive language, where annotators 
may disagree on whether a given expression is 
offensive, and different opinions can be 
simultaneously valid.  

Notably, the above taxonomy was developed in 
relation to disagreements on tasks that involve data 
classification, and the labels are on nominal scales 
(but the amount of disagreement can be expressed 
on continuous scales). Uma et al. (2021) presented 
several studies around the question on how to 
integrate disagreements into machine learning 
processes. There were few studies with data on other 
scales. The study by Jamison and Gurevych (2015) 
included a dataset on biased language, where the 
labels were on an ordinal scale (no bias, some bias, 
very biased), and a dataset on affect recognition for 
text snippets, with a scoring scale of 0-100. Loukina 
et al. (2018) investigated automated speech scoring 
(for language proficiency assessment), where spoken 
segments were scored on a 1-4 integer scale. In both 
studies the question was whether training on the 
easier data (with clear-cut cases and less 
disagreement) would be beneficial for training ML 
systems. The results were mixed. Jamison and 
Gurevych found that for data on nominal scales 
(classification tasks), training on easier data leads to 
improved performance. For affect data, training on 
easier cases can lead to improved results, when 
testing on easy cases, but only marginal or no 
improvement when testing on all data or just the hard 
cases. Loukina et al. found that training on easy data 
(as compared to mixed data) did not lead to better 
performance on test data. On the other hand, they 
found that the choice of data for testing the systems 
did matter – performance on easier testing data was 
always better than performance of mixed testing data. 
Yet, evaluation on just the easier cases should not be 
dismissed, as it provides an important validity 
indicator: making many errors on difficult cases might 
be tolerable, making many errors on clear-cut cases 
may raise serious doubts about validity of the system.  

It is interesting to note how ratings of psycholinguistic 
variables, such as concreteness, valence, affect, etc., 
relate to the above taxonomy of rater disagreements. 
Concreteness scores from human raters are typically 
obtained on Likert scales. While attention and other 
random errors might be involved, Munoz-Rubke et al. 
(2018) also mention potential outlier effects. There 
could also be issues with reliability of raters (though 
responses from unreliable raters were eliminated in 
the Brysbaert et al. (2014) study). Task definition for 

rating concreteness/abstractness has also been 
criticized. Brysbaert et al. (2014) made special 
emphasis in rater instructions on concreteness in 
other modalities beyond visual perception, however, 
their results do not differ much from MRC and GN 
datasets, where such instructions were not explicitly 
presented. Attributing rater disagreement in 
concreteness ratings to ‘situational item difficulty’ is 
not quite plausible since ratings involved single 
words. A more plausible explanation for disagreement 
may be in the genuine ambiguity of some words, 
and/or the very subjective nature of concreteness 
ratings (Pollock, 2018).  

Cases of ambiguity may arise when words have 
multiple senses or even just different parts of speech. 
For example, in the BWK dataset (scale 1-5), the word 
‘official’ has concreteness of 2.53 and SD of 1.43, 
while ‘officially’ has concreteness 1.63 and much 
lower SD of 0.83. It might be that some raters 
interpreted ‘official’ as a noun (and thus denoting a 
person), while others considered the adjective 
meaning (which is more abstract). The word ‘officially’ 
is related to the same core meaning but has no such 
ambiguity. Perhaps concreteness ratings should be 
assigned per sense and not per wordform. Indeed, the 
Glasgow Norms (scale 1-7) have taken an early step 
in that direction, where 871 polysemous words were 
presented with a disambiguator, and thus the 
concreteness rating is per sense. However, even in 
such a disambiguated subset considerable variability 
of individual ratings exists – 360 entries on that list 
have SD>1.5, and the average SD of the 
disambiguated subset is 1.36. It seems raters 
disagreed even while rating specific senses of words.  

The notion of collecting ratings per word sense is also 
related to predicting concreteness from word 
embeddings. Most of the classical word embeddings 
datasets (such as Google News word2vec, GloVe, 
etc) are not sense disambiguated, and their 
embeddings represent either a mix of senses or the 
most prevalent senses of words. For compatibility with 
such data, we opted to use Sentence-BERT 
embeddings in a similar way (i.e., per wordform). We 
opted to not use contextual BERT (or similar) 
embeddings per word and average them across 
multiple contexts. The issue in such case would be 
which contexts should be used for such averaging, 
and whether selection of contexts could have an 
influence on the senses that are implicitly modeled. 
However, this path that was not taken is also a path 
for future research. By carefully selecting contexts 
over which one averages contextual embeddings, a 
researcher might thus obtain sense-specific vectors, 
and potentially model sense-specific concreteness 
(and other psycholinguistic variables).  

In sum, there seems more future work might be 
needed, both for collecting more reliable 
concreteness ratings, and for developing more 
sophisticated computational models of concreteness. 

5. Conclusion 

We investigated modeling of word-concreteness 
ratings with word embeddings. Study 1 demonstrated 
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that human-produced concreteness scores can be 
successfully predicted by using ordinary multiple 
regression with word embeddings. We compared 14 
embedding models over three different datasets of 
human-produced concreteness scores. In all cases 
we obtained high Pearson correlation values 
(between .8 and .9) between original and estimated 
ratings. Using the RMSE evaluation measure, we find 
that all models achieve relatively low average error 
levels (mostly ranging from .5 to .8), which translates 
to 10-15% on the corresponding rating scales. 
Studies 2 and 3 investigated the effect of words that 
have 'less reliable' human-ratings. Rater 
disagreements for any given word result in higher 
standard-deviation of scores for that word. Using two 
datasets where standard deviation values for each 
word were released, we investigated how exclusion of 
words with high standard deviation values affects 
embedding-based regression models that learn to 
estimate the concreteness scores for words. We find 
that systematic exclusion of 'less reliable' words from 
the learning data can lead to evident improvement of 
results. However, study 3 indicates that such 
improvements stem from drastic changes in the 
distribution of concreteness scores when data is 
'cleaned'. Training on filtered data does not generalize 
well to unfiltered data, whereas training on unfiltered 
data has enough information for modeling values for 
clean data. 
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