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Abstract
Word associations, i.e., spontaneous responses to a cue word, provide not only a window into the human mental
lexicon but have also been shown to be a repository of common-sense knowledge and can underpin efforts in
lexicography and the construction of dictionaries. Especially the latter tasks require knowledge about the relations
underlying the associations (e.g., Taxonomic vs. Situational); however, to date, there is neither an established
ontology of relations nor an effective labelling paradigm. Here, we test GPT-4’s ability to infer semantic relations for
human-produced word associations. We use four human-labelled data sets of word associations and semantic
features, with differing relation inventories and various levels of annotator agreement. We directly prompt GPT-4 with
detailed relation definitions without further fine-tuning or training. Our results show that while GPT-4 provided a good
account of higher-level classifications (e.g., Taxonomic vs Situational), prompting instructions alone cannot obtain
similar performance for detailed classifications (e.g., superordinate, subordinate or coordinate relations) despite high
agreement among human annotators. This suggests that latent relations can at least be partially recovered from
word associations and highlights ways in which LLMs could be improved and human annotation protocols could
adapted to reduce coding ambiguity.
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1. Introduction

The word association test (WAT) provides important
information about the organisation of the mental
lexicon. In a typical study, participants are pre-
sented with a cue word (e.g., dog) and produce the
first word(s) that come to mind (e.g., cat or bark).
This procedure is often referred to as free word as-
sociation as participants are not restricted in their
responses, making it one of the most general meth-
ods to obtain subjective behavioural estimates of
word meaning (Deese, 1965).

In recent years, online crowd-sourcing ap-
proaches such as the Small World of Words project
have demonstrated that this approach is highly
scaleable, with several datasets including millions
of responses published in Dutch, English, Spanish
and Chinese (De Deyne et al., 2019). As such,
word associations provide valuable resources for
the fields of lexicography and semantic typology,
which study the availability and organization of
senses and meaning within and across languages.

A common type of analysis of these data involves
classifying responses according to a semantic on-
tology that covers taxonomic (dog – cat), concept
properties (dog – tail), situational properties (dog –
park) or introspective properties (dog – friend). This
is of interest to cognitive science, where these clas-
sifications can shed light on the nature of our men-
tal representation and the time course over which

this information becomes available (Fitzpatrick and
Thwaites, 2020), (Garrard et al., 2001), metaphor
comprehension and analogies (Lu et al., 2022).

Word associations have also shown promise as a
tool to derive common sense knowledge (Liu et al.,
2021). In this respect, recent work suggests that
they could fill the gaps in other lexical knowledge
graphs. While word associations do not capture
the depth of other approaches (e.g., the number of
senses of a word), they do capture frequent senses
and measure what aspects of meaning are domi-
nant among a community of speakers. Importantly,
word associations are informed not only by our lin-
guistic environment but encode extra-linguistic ex-
periential information as well that is difficult to reveal
by only studying how words co-occur in language
(Fitzpatrick and Thwaites, 2020). Various super-
vised and unsupervised approaches to predict as-
sociations from text had correspondingly mixed suc-
cess (Griffiths et al., 2007; Cattle and Ma, 2017;
Liu et al., 2022).

Large language models (LLMs) like GPT-4
(Achiam et al., 2023) have shown unprecedented
abilities not only to generate naturalistic text but
also to support complex data annotation (Gilardi
et al., 2023) and annotation of single words or word
pairs for comparison with human similarity judg-
ments, induction and lexical ratings (e.g., concrete-
ness) (Han et al., 2024; Marjieh et al., 2023; Trott,
2023).
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Here we test the ability of GPT-4 (Achiam et al.,
2023), a state-of-the-art LLM, to recover semantic
relations for human-produced word associations.
This is of interest for three reasons. First, this new
generation of models, with the capacity to encode
long prompts, does not have the same working
memory constraints human annotators have when
confronted with extensive fine-grained semantic
ontologies. Second, we extend a line of work that
assesses the utility of LLMs as cognitive models to
the task of semantic relation labelling. Third, from
a practical perspective, a model that can automat-
ically predict semantic relations can support the
construction or augmentation of lexical or common-
sense databases.

A highly influential ontology in the cognitive sci-
ences is the Wu-Barsalou (WB) ontology (Wu and
Barsalou, 2009). The WB scheme is hierarchically
organised and consists of four major relation types,
which we will refer to as Level 1: Taxonomic rela-
tions, Entity/concept properties, Situational prop-
erties and Introspective properties. More detailed
Level 2 distinctions are nested within each relation
class (e.g., Subordinate, Coordinate are proper-
ties nested under Taxonomic relations). While the
WB ontology was initially developed to investigate
grounding in semantic representations, it has since
been applied broadly across many property list-
ing tasks (PLT, see Bolognesi et al., 2017, for an
overview) and was recently adapted to the WAT
(Liu et al., 2022; Chen et al., 2024). The scheme
has been adapted over the years to suit the needs
of individual researchers. However, these changes
tend to be minor simplifications of Level 2 distinc-
tions such as grouping Buildings and Location or
Subordinates and Individuals (see Bolognesi et al.,
2017; Liu et al., 2022).

In contrast to the WAT, the PLT is often assumed
to be less ambiguous and consequently easier to
annotate because the properties can be phrases
(e.g., dog - is a kind of animal) that can be easily
mapped onto the ontology (Superordinate). How-
ever, an inspection of existing semantic feature
generation studies suggests that features are often
coded by the annotators as a single-word response
(e.g., zebra – horse), similar to a word association.
In the PLT of Vivas et al. (2021), for example, 18%
of features consisted of a single words, whereas in
Bolognesi et al. (2017), 92% of features consisted
of a single word. Consequently, presumed ambigu-
ity is not limited to word association per se but is
also highly prevalent in semantic feature norms.

1.1. Current work
This study will use previously annotated datasets
for word associations and semantic features. The
latter are included as contrast cases that allow us to
contextualise our findings, as the semantic relation

is often included in the participant response. We
focus primarily on the Wu-Barsalou semantic ontol-
ogy (WB), which is widely used in cognitive psychol-
ogy and GPT-4 as a state-of-the-art (SOTA) LLM.
To the best of our knowledge, we are the first to
use GPT-4 for the task of relation labelling, despite
its remarkable performance for related tasks where
limited context is available (e.g., pairwise similarity
judgments). Focusing on a single model provides
us with an opportunity to analyse (mis)classification
and inconsistencies across the different datasets
and levels in the label hierarchy. In sum, we ad-
dress the following research questions:

• To what degree can latent semantic relations
be recovered in SOTA LLMs?

• How does performance vary for broad vs fine-
grained relation labels?

• How does the nature of the task (WAT vs PLT)
affect the results?

• What are the most common confusions, and
to what degree do these reflect limitations of
the model or inherent ambiguity due to word
association data or existing coding schemes?

2. Methods

We introduce the primary relation ontology, which
researchers have adopted for classifying word as-
sociations, the datasets, and the LLM that will be
used in current work.

2.1. Datasets
The current study includes four recent datasets.
Studies were included according to the following
criteria: 1) the use of the WB scheme (or a close
derivative) for the relation annotation; 2) including
a large number of concepts; 3) the availability of
English translations in the published data for non-
English datasets; and 4) the use of multiple an-
notators with the inter-rater agreement information
included in the original study. All data sets share
the same four Level 1 relations (Taxonomic, En-
tity, Situational, and Introspective) but differ in their
Level 2 labels. See more details of the labels along
with other dataset statistics in Table 1.

2.1.1. Bolognesi-2017

The PLT dataset in Bolognesi et al. (2017) consists
of English concept-feature pairs that were carefully
annotated through an ontology that resembles a
decision tree. This relation ontology has been up-
dated from the WB ontology to accommodate both
concrete and abstract concepts effectively. The
resulting dataset had a high inter-rater agreement
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Bolognesi-2017: #C = 180, #(C,R) = 1919, #L2 = 20
TAXONOMIC RELATION (T): Synonyms, description and linguistic clues (syn), Antonyms (ant),
Superordinates (sup), Subordinates and instances (sub), Coordinate (coor)
ENTITY PROPERTY (E): Perceptual properties (perc), Non-perceptual properties (sys), Components,
materials and substances (comp), Larger wholes, thematic larger wholes, and disciplines (whol), Entity
behaviors (beh)
SITUATIONAL PROPERTY (S): Objects (obj), Participants (par), Actions (act), Properties of contextual
entities (other), Function (fun), Locations, containers, and buildings (loc), Time and events (time)
INTROSPECTIVE PROPERTY (I): Evaluations (eval), Emotions (emo), Contingencies and complex
cognitive operations (cont)

Vivas-2022 #C= 400, #(C,R) = 2669, #L1 = 33
TAXONOMIC RELATION (T): Synonym (syn), Ontological category (ont), Superordinate (super),
Coordinate (coord), Subordinate (subord)
E: External component (excomp), Internal component (incomp), External surface property (exsurf),
Internal surface property (insurf), Substance/Material (mat), Spatial relation (spat), Systemic property
(sys), Larger whole (whole), Entity behavior (beh), Abstract entity property (abstr)
SITUATIONAL PROPERTY (S): Person (person), Living thing (living), Object (object), Social organi-
zation (socorg), Social artifact (socart), Building (build), Location (loc), Spatial relation (spat), Time
(time), Action (action), Event (event), Function (func), Physical state (physt), Social state (socst)
INTROSPECTIVE PROPERTY (I): Affect/emotion (emot), Evaluation (eval), Representational state
(rep), Cognitive operation (cogop), Contingency (contin), Negation (neg)

Chen-2024 #C = 505, #(C,R) = 2292, #L2 = 21
TAXONOMIC RELATION (T): Synonym (syn), Superordinate (super), Coordinate (coord), Subordinate
(sub), Antonym (ant)
ENTITY PROPERTY (E): Components/Material/Substance (comp), Whole (E-whole), Entity property
(prop), Entity behavior (beh), Typical state (state)
SITUATIONAL PROPERTY (S): Function (function), Location/Container/Building (loc), Object (obj),
Action (action), Agent (agent), Time/Events (time), Contextual entity property (context), Situational
state of target (targetstate)
INTROSPECTIVE PROPERTY (I): Evaluation (eval), Emotion (emo), Contingencies and complex
cognitive operations (contin)

Liu-2022 #C = 340, #(C,R) = 476, #L2 = 15
TAXONOMIC RELATION (T): Synonym (syn), Antonym (ant), Category-Exemplar-Pairs (cat), Members-
of-same-Category (coord)
ENTITY PROPERTY (E): PartOf (part), Material-MadeOf (mat), HasProperty (prop)
SITUATIONAL PROPERTY (S): Time (time), Location (loc), Function (func), Has-Prerequisite (preq),
Result-In (result), Action (action), Thematic (them)
INTROSPECTIVE PROPERTY (I): Emotion-Evaluation (emo)

Table 1: Summary of datasets. #C denotes the number of unique cues, #(C,R) denotes the number of
unique cue-response pairs, #L2 denotes the number of Level 2 relations. The dataset-specific L2 labels
are in italics.

with Cohen’s κ = .886 for the Level 1 distinctions,
and κ = .866 for the Level 2 distinctions.

2.1.2. Vivas-2022

The Vivas et al. (2021) Features PLT dataset con-
sisted of noun-feature pairs collected from Span-
ish speakers across a range of concrete seman-

tic domains. The reported inter-rater agreement
measured as Krippendorff’s α was high: .78 for
novice coders and .86 for trained coders (Vivas
et al., 2021). The ontology closely followed the
original WB scheme. In the current analyses, we
did not include additional quantifier codes and two
codes that were not used by any of the annotators
(C-INDIV and S-MANNER). A separate set of Meta-



71

codes (e.g., hesitations, repetition, comments) was
also not included in the current results.

A second dataset,Vivas-2022 Asso, was derived
by extracting a key word (e.g., zebra, music instru-
ment). This way, additional relational cues such
as <is a> were removed, allowing us to define a
baseline to determine how these relation indicators
reduce ambiguity when annotating PLT data.1

2.1.3. Chen-2024

The Chen et al. (2024) WAT data consists of a
semantic ontology derived from the WB ontology.
The cues and responses were derived from the
English Small World of Words project (De Deyne
et al., 2019). The stimuli comprised 507 nouns
(ranging in concreteness) and their top 5 associa-
tive responses. All cue-response pairs were coded
by two trained coders for broad (Level 1) and fine-
grained (Level 2) distinctions. For this study, we
only used the Taxonomic, Entity, Situational and
Introspective Level 1 properties (see Table 1 for
a list of included Level 2 properties). We did not
include form position-based properties since these
could also be estimated from word co-occurrence
data directly and overlap significantly with seman-
tic properties and also omitted meta codes (e.g.,
erroneous responses) similar to the approach for
the Vivas-2022 dataset. The inter-rater agreement,
measured as Cohen’s κ, was high, .81, for both
Level 1 and Level 2 relations.

2.1.4. Liu-2022

The Word Association Explanation database (WAX)
(Liu et al., 2022) includes word associations for a
total of 15K different English cue-response pairs.
A subset of 520 pairs was annotated with semantic
relations. Human coders were recruited through
Amazon Mechanical Turk. The ontology represents
a simplification of the WB ontology, focusing on the
main types across all of the four major Level 1
distinctions. The Level 2 properties also included
a few additional relations from ConceptNet (Speer
et al., 2017) for event-related associations (e.g.,
Has-Prequisite, Result-In). The pairwise annotator
agreement was moderate, Cohen’s κ = 0.42.

Like Chen-2024, we did not include linguistic and
form-based responses (e.g., Sound Similarity, Com-
mon Phrases). An unspecified category (None-of-
the-above) was also removed. Finally, note that
Emotion-Evaluation were originally grouped under
Concept/entity properties. For reasons of compa-
rability, we decided to move this property to a sep-
arate Level 1 Introspective properties section con-
sistent with the other datasets.

1The Bolognesi-2017 dataset consisted mainly of sin-
gle words, and so this procedure was not applied.

2.2. SOTA LLM Model
We used GPT-4 (Achiam et al., 2023) through the
OpenAI API and specified model version gpt-4-
0613. Across all studies, the temperature was set
to 0, and no optional system prompts were provided.
Cue-response pairs were randomized and split into
batches of 100 items before being concatenated to
the instruction prompt.

2.2.1. Prompting

All prompts followed the same structure at the start
and end but differed in terms of the definitions and
examples, which were taken from the original arti-
cles. All materials and prompts are available in the
original articles and online repository.2 The default
prompt was as follows:

You will be presented with a list of word pairs
consisting of an associated cue and an associated
target word separated by ’ – ’.

You are asked to choose a code with square
brackets [] that best describes the semantic relation
between the cue and the target word. Each code
refers to a specific semantic relation that refers to
Taxonomic properties, Concept properties, Situa-
tion properties, or Introspective properties.

We will now provide you with a definition and
examples for each of these, which you will carefully
consider when choosing one of the codes.

{Relation taxonomy with definitions and exam-
ples.}

Remember to only choose from the above codes
between square brackets. Do not further elaborate
on your response. Format your response as follows
cue — target: code.

List:
{List of 100 cue association pairs: }

For the Bolognesi-2017, Vivas-2022 Features
and Vivas-2022 Association, the first sentence was
replaced by “You will be presented with a list of
word pairs consisting of a cue and a semantic fea-
ture separated by ‘–’. ”. Finally, consistent with the
instructions in (Vivas et al., 2021), we added “In
these examples, the relation signified by the seman-
tic feature is higlighted by using capitalized letters.”
after the third sentence ("Each code refers...").

3. Results

3.1. Response preprocessing
All responses were provided in the cue — target:
code format consistent with the instructions, which

2Materials, instruction prompts with definitions and
examples as well as the analysis scripts are available at
https://github.com/SimonDeDeyne/lrec2024

https://github.com/SimonDeDeyne/lrec2024
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means no further manual extraction was required.
On a very small number of occasions, erroneous
codes (i.e., codes not in the instructions were re-
turned). These were subsequently removed.

3.2. Classification
For each of the datasets, we calculated accuracy,
precision, recall, macro-F scores, and Kappa inter-
rater reliability at both Level 1 (broad) and Level
2 (detailed). Results are presented for a cue-
response type-based classification and a token-
based classification, where the latter is weighted
by the number of times participants generated a
particular response. This provides information that
is more useful for real-world settings where only a
subset of cue-response pairs might be inspected,
which means that accurate relation labels are es-
pecially important for the most frequent responses.

Since the response classes (i.e., relation la-
bels) are unbalanced, classification metrics were
weighted by prevalence (between 0 and 1) be-
fore averaging over classes. With these balanced
scores, the role of relatively infrequent classes,
such as Introspective properties, which were rare,
was proportionate when averaging all four Level 1
classes.

Unlike other datasets, the Chen-2024 included
the codes for two individual annotators, A and B.
Unless stated otherwise, we also provide the results
for the LLM and individual coder agreement.

The results are shown in Table 2 and Table 3.
The last three columns show the baseline perfor-
mance using the majority class (MC), a score where
only the majority relation class was considered and
which is contrasted with accuracy (see Table 2 and
3). In all cases, the accuracy rate significantly dif-
fered from the MC baseline.

3.2.1. Type-based results

The results in Table 2 show high values across all
metrics for the feature datasets (Bolognesi et al.,
2017; Vivas et al., 2021) at Level 1 and moderate
results at Level 2 of the ontology. The results of
deriving pseudo-associations after censoring se-
mantic relations from features for the Vivas-2022
Asso dataset had a negligible effect at Level 1 and
only a minor drop in performance at Level 2. The
results for the two word associations sets (Chen
et al., 2024; Liu et al., 2022), were somewhat lower,
with good results at Level 1 and moderate to low re-
sults at Level 2. The agreement between the LLM
predictions and individual coders for Chen-2024
was highly consistent for A and B, with slightly bet-
ter results for annotator A. However, comparing the
scores with those obtained by directly comparing
annotators A and B (see Chen AB in Tables2) sug-
gests some room for further improvement when

benchmarked against trained human annotators,
and this is notably the case for the Level 2 Ontology
annotations.

3.2.2. Token-based results

To calculate performance that considers how fre-
quently the responses are generated, weighted re-
sults were calculated on the raw data before tabula-
tion. Doing so provides an estimate of classification
performance that is more relevant for applications
and also allows us to determine whether infrequent
responses are inherently more difficult to classify.
Consistent with this, Table 3 shows results that
are largely consistent with Table 2, albeit slightly
higher. The only exception to this pattern was the
Liu-2022 dataset, where the difference was less
pronounced, which is likely to reflect the relatively
small range of frequency given the limited num-
ber of cue presentations in this dataset. Similar to
the type-based results, LLM prediction performed
comparably across annotators in the Chen-2024
dataset but was still lower compared to the results
when comparing two trained human annotators.
For simplicity, we will only consider the results for
Coder A and the remaining analysis.

3.3. Error analysis
Token-based confusion matrices for the Level 1 dis-
tinctions are plotted in Figure 1. Each cell encodes
the proportion of cross-classifications and supple-
ments Table 3. The main focus is on the entries on
off-diagonal elements, which indicate systematic
differences between human coders and the model
classification. Note that the values do not have
to be symmetric. For example, in the Bolognesi
dataset, 2% of the responses humans consider in-
trospective were coded taxonomic. Vice versa, only
1% of the responses humans code as taxonomic
are labeled as introspective.

Consistent confusion was present in the Bolog-
nesi data for Introspective properties across most
other L1 relations. Closer inspection showed that
many of the pairs were coded as “Contingencies
and complex cognitive operations”. Relative large
proportions of these confusions were also found
for Taxonomic vs Entity properties (0.06 for Chen-
2024). In addition, Taxonomic and Entity proper-
ties were also frequently confused in the Liu-2022
dataset (0.09). Insightful examples include genius –
brilliant, which human annotators code as an entity
property, but GPT-4 considers a synonym. This
highlights the fact that the model does not capture
a human noun-bias, which is typical in association
data where words are ambiguous in terms of part
of speech. Another example is lonely – depressed,
which was also considered a synonym but coded
as a “Result-In” feature by the annotators. More



73

Level 1 Ontology Level 2 Ontology
MC acc. κ prec. F1 MC acc. κ prec. F1

Bolognesi 0.388 0.717 0.609 0.765 0.730 0.116 0.542 0.510 0.647 0.564
Vivas Feat 0.438 0.846 0.768 0.867 0.851 0.207 0.614 0.584 0.720 0.618
Vivas Asso 0.401 0.846 0.769 0.852 0.847 0.129 0.599 0.571 0.623 0.577
Chen A 0.419 0.763 0.653 0.769 0.764 0.194 0.523 0.487 0.615 0.536
Chen B 0.419 0.713 0.584 0.738 0.716 0.194 0.492 0.454 0.607 0.499
Liu 0.420 0.718 0.562 0.758 0.727 0.282 0.464 0.399 0.535 0.471
IAA (Chen AB) 0.357 0.880 0.825 0.888 0.879 0.127 0.808 0.794 0.822 0.809

a All accuracy vs MC comparisons were significant, p < .001.
b Recall is identical to accuracy after prevalence weighting.

Table 2: Type-based classification results (acc. = accuracy, MC = Majority Class, κ, prec. = precision,
F1) for the Level 1 (left) and 2 (right) ontologies across semantic feature (Bolognesi-2017, Vivas-2022
Feat) and word association (Vivas-2022 Asso, Chen-2024, Liu-2022) datasets. We list agreement with
GPT-4 for individual annotators (Chen A and B), alongside inter-annotator scores for annotators A and B
of Chen-2024 (IAA ChenAB).

Level 1 Ontology Level 2 Ontology
MC acc. κ prec. F1 MC acc. κ prec. F1

Bolognesi 0.389 0.733 0.630 0.778 0.746 0.126 0.566 0.535 0.664 0.586
Vivas Feat 0.413 0.865 0.797 0.882 0.869 0.225 0.622 0.591 0.726 0.623
Vivas Asso 0.409 0.860 0.791 0.865 0.861 0.138 0.594 0.565 0.606 0.565
Chen A 0.422 0.780 0.676 0.787 0.781 0.194 0.540 0.502 0.624 0.549
Chen B 0.422 0.730 0.606 0.755 0.732 0.194 0.507 0.468 0.614 0.509
Liu 0.407 0.723 0.574 0.762 0.729 0.272 0.489 0.425 0.544 0.491
IAA (Chen AB) 0.344 0.884 0.830 0.893 0.884 0.139 0.816 0.801 0.830 0.817

a All accuracy vs MC comparisons were significant, p < .001.
b Recall is identical to accuracy after prevalence weighting.

Table 3: Token-based classification results (acc. = accuracy, MC = Majority Class, κ, prec. = precision,
F1) for the Level 1 (left) and 2 (right) ontologies across semantic feature (Bolognesi-2017, Vivas-2022
Feat) and word association (Vivas-2022 Asso, Chen-2024, Liu-2022) datasets. We list agreement with
GPT-4 for individual annotators (Chen A and B), alongside inter-annotator scores for annotators A and B
of Chen-2024 (IAA ChenAB).

.

generally, GPT-4 tends to be biased towards tax-
onomic responding, which is not always incorrect,
but highlights the fact that relation types are not
mutually exclusive.

The remainder of the error analysis at the de-
tailed Level 2 will primarily focus on the word asso-
ciation datasets (Chen-2024 and Liu-2022). The
micro-level confusion matrix for the Chen-2024
dataset shown in Figure 2 indicates a combination
of confusion within and between macro-categories.
As shown in the upper left corner, the LLM strug-
gles to distinguish between different types within
the Level 1 Taxonomy group, favoring Synonymy
over Coordinate, Superordinate and Subordinate
relations. The LLM also confuses Synonyms with
Entity properties and Entity components. Exam-
ples of Entity properties include confusion where
Large Wholes are confused with Situated-objects

and Entity components. Among Situation prop-
erties, functions and actions are also frequently
confused.

As can be seen from the large proportion of high-
lighted off-diagonal elements in Figure 3, confusion
is spread across all four major semantic relation
categories. It is seemingly lower for Taxonomic
categories, although it should be noted that the
Liu-2022 ontology does not distinguish between
Subordinates and Superordinate relations, which
might skew the comparison with Chen-2024. Be-
yond Level 1 confusion in Figure 1, Figure 3 shows
that different types of Situation properties are not
clearly distinguished.

To illustrate, Figure 3 shows that situational ac-
tions (S-act) and thematic relations (S-them) are
easily confused. This is also an interesting case.
The former is defined in the instructions as "An
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Figure 1: Confusion matrices for macro-level distinctions across five datasets (Properties: T = Taxonomic,
E = Entity/Concept, S = Situation, I = Introspective).

Figure 2: Confusion matrix for the Chen-2024
dataset showing a cross-tabulation of proportions
for GPT-4 on the x-axis and human (coder A) refer-
ence classification on the y-axis.

action that a participant (could be the cue, associ-
ation or others) performs in a situation., whereas
thematic relations are defined as “Cue and asso-
ciation participate in a common event or scenario.
None of the other situational properties applies.”.
Examples of misclassified actions include dollar
– earn and running – race. Still, other pairs like
tactful – conversation that were labelled S-act by
humans but S-them by the LLM illustrate the pres-
ence of false negatives (and potential limitations of
the original ontology) as well.

4. Discussion

In this study, we investigated to what degree GPT-4
can recover the latent semantic relations in word
association tasks. While the findings pertain to
datasets with different stimuli and different variants
of the WB ontology, the overall pattern of results

Figure 3: Confusion matrix for the Liu-2022 dataset
analogues to Figure 2.

was consistent. First, our results across two word
association datasets using GPT-4 showed good
performance in making broad distinctions regard-
ing Taxonomic, Entity, Situation and Introspective
properties. More fine-grained distinctions were pre-
dicted only partially, despite relatively high levels of
human inter-annotator agreement. This suggests
room for further improvements, although procedu-
ral aspects such as calibration or consensus coding,
which are commonly employed in human annota-
tions, make this comparison less straightforward.

Second, a comparison with human data derived
from the Property Listing Task showed high per-
formance in capturing broad distinctions and good
to moderate performance in making fine-grained
distinctions. Moreover, this performance was not
entirely driven by the fact that the responses in
the property listing task are less ambiguous. Even
when disambiguation information in the form of ex-
plicit indicators was removed, and only a single
word was retained, performance was similar. Fur-
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thermore, the performance for word associations
was on par when compared to the Bolognesi-2017
dataset that covered a more challenging set of cues
by including many abstract concepts and single-
word responses.

4.1. Comparison with previous work
As far as we know, previous work that has used
LLMs to predict semantic relations using the WB
taxonomy is limited. One exception is the work
by Liu et al. (2022), in which a subset of train-
ing relations was used to fine-tune BERT (Devlin
et al., 2019) and BART-Large (Lewis et al., 2020)
to predict performance among a test set of the Liu-
2022 relations. We investigated how BART, the
best-performing model, compared with GPT-4 for
88 unique cue-response pairs shared among both
datasets.

Across all analyses, the results showed that the
GPT-4 outperformed BART. Illustrating this with the
token-based analysis, the results for the L1 level
were GPT-4: accuracy = 0.732, κ = 0.593, preci-
sion: 0.781, F1 = 0.733; and BART: accuracy =
0.653, κ = 0.479, precision: 0.645, F1 = 0.641. At
the more detailed L2 level, we obtained for GPT-4:
accuracy = 0.521, κ = 0.455, precision: 0.621, F1
= 0.535; and BART: accuracy = 0.493, κ = 0.431,
precision: 0.540, F1 = 0.491. Interestingly, when
comparing both types of LLMs, their mutual agree-
ment was higher than that obtained against human
annotators. For the L1 level: accuracy = 0.756, κ
= 0.623, precision: 0.775, F1 = 0.742 and for the
L2 level: accuracy = 0.577, κ = 0.523, precision:
0.616, F1 = 0.562. This suggests that the relations
predicted by different types of language models
might have more in common with human annota-
tors. That said, given the small number of pairs
in this comparison, more work is needed before
strong conclusions can be drawn.

4.2. How ambiguous are word
associations?

One way of determining to what degree word as-
sociations can be annotated is by comparing the
relative performance for agreement among human
annotators and LLM predictions. To do so, we com-
pared the same set of classification metrics for the
responses of two annotators in Chen-2024 against
the LLM prediction. This showed that some rela-
tions are inherently difficult for human annotators
and LLMs (e.g., S-targetstate, S-function). Other
relations, like subordinates, have high agreement
among annotators but low agreement in LLMs (see
Figure 4) To illustrate, a pair like sister – daugh-
ter is coded as a subordinate relation. At least
two factors could potentially explain these find-
ings. First, in most cases, synonyms and antonyms

Figure 4: Comparing Coder A and B F1-scores vs
Model predictions. Node size indicates prevalence.
Observations under the regression line show rela-
tions that have higher F1 for human coders com-
pared to LLM classifications against Coder A (left
panel) or Coder B (right panel).

are also coordinates. As such, this suggests a
shortcoming of the WB ontology, which could be
resolved by adding a third level to the hierarchy
where synonyms/antonyms are nested under co-
ordinates. Second, GPT-4 might struggle with di-
rectional relations such as superordinates and sub-
ordinates, which is supported by the patterns in
Figure 2 and Figure 3, showing difficulties distin-
guishing between synonyms, superordinates and
subordinates. To investigate this possibility in more
detail, we prompted GPT-4 with explicit proposi-
tions such as daughter is a kind/type/instance of
sister, but this did not dramatically improve results.

While responses in the WAT are ambiguous with-
out further insight from the participant who gener-
ated them, it is possible that in cases with ambigu-
ity, associations are prone to several biases that
promote certain interpretations over others. Specifi-
cally for concrete words, our results contrasting the
Vivas-2022 features with association responses
that removed relation indicators suggest that for
concrete concepts, association-like features can
be generated without much loss of information.3
However, performance also depends on concrete-
ness. The high performance for the Vivas-2022
association dataset might reflect the fact that most
of the words were very concrete. However, consis-
tent with previous findings by Liu et al. (2022), the
Bolognesi-2017 metrics, which cover both concrete
and abstract concepts, were somewhat lower than
the primarily concrete data from Vivas-2022.

3One caveat is that the PLT is a more restricted form
of the WAT because only a subset of semantic relations
are highlighted in the participant’s instructions (often ac-
companied by examples), whereas word associations
are free.
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4.3. Limitations
The use of a closed-sourced model has several
inherent limitations. While these have been dis-
cussed at length elsewhere (e.g., Frank, 2023), it
should be noted that some limitations are practical
in nature. One of them is that different prompting
regimes cannot be controlled experimentally as the
cost to do so would become prohibitively large. In
all our analyses, the model was asked to gener-
ate responses for 100 item pairs simultaneously,
reflecting such constraints.

Second, there are also limitations to the WB on-
tology. On the one hand, some of the distinctions
used in the original work were specific to research
questions related to groundedness (e.g., in con-
trasting internal and external perceptual features,
as these were implied in mental simulations) (Wu
and Barsalou, 2009). The ontology also needs to
be further adapted to work for word associations.
While this does not present major difficulties, some
details do not translate well (e.g., “Contingencies
and complex cognitive operations”). Furthermore,
distinctions between entity and situations proper-
ties, such as function (currently encoded as a Situ-
ational property) or behavior (currently encoded as
an entity property), tend only to be distinguished
in terms of how typical they are for an entity or a
situation. As a consequence, some of the entity vs
situation properties might be conflated with whether
they apply in most situations or specific ones.

4.4. Future directions
The current work primarily focused on the WB on-
tology. Still, other ontologies have taken inspiration
from modal-specific neuroscientific models to dis-
tinguish different ways in which words could be
related (Garrard et al., 2001; Montefinese et al.,
2013; Vinson and Vigliocco, 2008). It would be
interesting to see how SOTA LLMs would account
for these, especially since this would require ac-
cess to accurate perceptual information (but see
Marjieh et al., 2023, for a convincing demonstration
of GPT-4 in this area).

An alternative approach could infer task-specific
relation ontologies from word associations them-
selves. Liu et al. (2022) collected free-text expla-
nations with word associations and then clustered
explanations into data-driven relation types without
supervision. LLMs may be prompted with a less
constrained framework to allow for the generation
of a label inventory from scratch.

While the current work focuses on labelling a
single relation, the ontologies allow for multiple re-
lation labels for a specific cue-response pair. A
more refined procedure would consider the pos-
sibility that multiple labels might apply but vary in
degree or prototypicality (Jurgens et al., 2012; Liu

et al., 2022). Here one possibility would be to derive
classification probabilities from a fine-tuned LLM
in combination with either a sparsity constraint or
a rule-based approach to ensure the number of
relations that can be inferred remains small. Fur-
thermore, much more work is also needed to deter-
mine the best way to prompt the model, including
which definitions to give and what examples to pro-
vide (see Jurgens et al., 2012, for an interesting
analogy-based approach). Furthermore, it is likely
that different types of LLMs benefit from different
prompt types, and further gains could be achieved
by, for example, implementing a voting mechanism
across multiple LLMs.

More broadly, many questions remain about de-
termining what semantic relations to derive in the
first place. While an answer to this depends on
the intended use of these relations, LLMs could
assist us in iteratively refining existing ontologies
by merging or splitting distinctions or refining defi-
nitions of relations. This could go in tandem with
a data-driven use of LLMs to freely group different
types of cue-response pairs or label the relations
might prove useful (e.g., Liu et al., 2022).

5. Conclusion

Recent Large Language Models hold considerable
promise in annotating semantic relations from hu-
man elicitation tasks such as word associations.
The current results suggest that broad distinctions
are adequately captured by GPT-4, which is consid-
ered state-of-the-art at the moment of writing. GPT-
4 requires very limited requirements editing of re-
sponses, which is important to scale the approach.
However, there is sufficient room for improvement,
especially for more fine-grained distinctions, such
as different types of taxonomic relations. While the
recovery of latent semantic relations in word asso-
ciation data will always be subject to some degree
of ambiguity, the current results also suggest sev-
eral ways in which existing coding schemes can be
improved to facilitate the annotation process, which
ultimately would benefit the automatic labelling of
these relations as well.
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