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Introduction

Welcome to the Proceedings of the first iteration of the Workshop on Data Contamination (CONDA).
The workshop is hosted at ACL 2024, in Thailand, on August 16, 2024.

Data contamination in NLP where evaluation data is inadvertently included in pre-training corpora, has
become a concern in recent times. The growing scale of both models and data, coupled with unsupervi-
sed web crawling, has led to the inclusion of segments from evaluation benchmarks in the pre-training
datasets of large language models (LLMs). The noisy nature of internet data makes it difficult to prevent
this contamination from happening, or even detect when it has happened. Crucially, when evaluation
data becomes part of pre-training data, it introduces biases and can artificially inflate the performance of
LLMs on specific tasks or benchmarks. This poses a challenge for fair and unbiased evaluation of NLP
models, as their performance may not accurately reflect their generalization capabilities.

We received 16 submissions, of which we accepted 13 for presentation at the workshop.

We extend heartfelt thanks to our program committee, our participants, and all authors who submit-
ted papers for consideration—your engagement has been critical to the success of the workshop. We also
thank Amazon, Google, and Hugging Face for generous sponsorship. Finally, we thank the ACL 2024
organizers for their hard work and support.

The CONDA Workshop Organizers,

Oscar Sainz, Iker García Ferrero, Eneko Agirre, Jon Ander Campos, Alon Jacovi, Yanai Elazar, Yoav
Goldberg
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Keynote Talk
On the value of carefully measuring data

Margaret Mitchell
HuggingFace

2024-08-16 09:00:00 – Room: TBA

Abstract: Just as we evaluate models, we should measure data. Measuring data involves quantifying dif-
ferent aspects of its composition, such as counts of the top-represented domains, or correlations between
sensitive identity terms and other concepts. In this talk, I will define the problem of measuring data and
unpack how it can be applied to automatically curating distinct training and evaluation datasets for ML
models.

Bio: Margaret Mitchell is a researcher focused on the ins and outs of machine learning and ethics-
informed AI development in tech. She has published around 100 papers on natural language generation,
assistive technology, computer vision, and AI ethics, and holds multiple patents in the areas of conver-
sation generation and sentiment classification. She has recently received recognition as one of Time’s
Most Influential People of 2023. She currently works at Hugging Face as Chief Ethics Scientist, driving
forward work in the ML development ecosystem, ML data governance, AI evaluation, and AI ethics. She
previously worked at Google AI as a Staff Research Scientist, where she founded and co-led Google’s
Ethical AI group, focused on foundational AI ethics research and operationalizing AI ethics Google-
internally. Before joining Google, she was a researcher at Microsoft Research, focused on computer
vision-to-language generation; and was a postdoc at Johns Hopkins, focused on Bayesian modeling and
information extraction. She holds a PhD in Computer Science from the University of Aberdeen and a
Master’s in computational linguistics from the University of Washington. While earning her degrees, she
also worked from 2005-2012 on machine learning, neurological disorders, and assistive technology at
Oregon Health and Science University. She has spearheaded a number of workshops and initiatives at
the intersections of diversity, inclusion, computer science, and ethics. Her work has received awards from
Secretary of Defense Ash Carter and the American Foundation for the Blind, and has been implemented
by multiple technology companies. She likes gardening, dogs, and cats.
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Keynote Talk
Evaluation data contamination: how much is there, and how

much does it actually matter?
Dieuwke Hupkes

Meta
2024-08-16 09:45:00 – Room: TBA

Abstract: With many of the current “SOTA” LLMs being closed sourced and their training data inac-
cessible, more and more questions arise that relate to potential contamination of the evaluation datasets
used to claim their results. Various claims can be found online that range from suspicions of outright
training on evaluation data to inflate results to suggestions that the definitions of contamination used
may be inadequate and underestimate its impact. However, even with access to the training corpus, con-
tamination and its impact is far from trivial to assess. In this talk, I discuss common ways of measuring
contamination and provide empirical data into how much they impact results for a range of LLMs.

Bio: Dieuwke Hupkes is a research scientist at Meta. Among other things, she works on better under-
standing how (large) language models generalise, what they (don’t) understand and what that even means,
and more generally on how they can reasonably be evaluated. She is excited about the new opportunities
such models bring us and the new scientific challenges that go hand in hand with that.
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Keynote Talk
Contamination in Web-Scale Datasets and its Impact on

Large Model Evaluations
Jesse Dodge

Allen Institute for AI
2024-08-16 11:00:00 – Room: TBA

Abstract: We are at a pivotal moment in the history of AI. The AI research community has driven pro-
gress for decades, but over the past couple years industry has started to make significant advances in
model capabilities while purposely being closed about how. In this talk I’ll start by discussing different
types of contamination and how they appear in the wild. I’ll then discuss some of our work on building
massive datasets by scraping the web, including Dolma and C4. I’ll discuss What’s In My Big Data, a
toolkit for documenting the contents of web-scale datasets, and some of our results on measuring con-
tamination in different ways across a variety of popular pretraining corpora. I’ll conclude by discussing
evaluation of large models, and how current evaluations have low construct validity and how we don’t
have strong evaluations for the actual use cases that users care about.

Bio: Jesse Dodge is a Senior Research Scientist at the Allen Institute for AI, on the AllenNLP team,
working on natural language processing and machine learning. He is interested in the science of AI
and AI for science, and he works on reproducibility and efficiency in AI research. He is involved in
many parts of OLMo, a project to create fully open large language models, including creation of Dolma
(a web-scale training dataset), Palmoa (an evaluation benchmark for language models), and incorpora-
ting ethical principles at every stage of the machine learning pipeline. His research has highlighted the
growing computational cost of AI systems, including the environmental impact of AI and inequality in
the research community. He has worked extensively on improving transparency in AI research, including
open sourcing and documenting datasets, data governance, and measuring bias in data. He has also wor-
ked on developing efficient methods, including model compression and improving efficiency of training
large language models. His PhD is from the Language Technologies Institute in the School of Computer
Science at Carnegie Mellon University. He created the NLP Reproducibility Checklist, which has been
used by five main NLP conferences, including EMNLP, NAACL, and ACL, totaling more than 10,000
submissions, he helped create the Responsible NLP Checklist which is used for submissions to ARR
(replacing the Reproducibility Checklist), and was an organizer for the ML Reproducibility Challenge
2020-2022. His research has won awards including a Best Student Paper at NAACL 2015 and a ten-year
Test of Time award at ACL 2022, and is regularly covered by the press, including by outlets like The New
York Times, Nature, MIT Tech Review, Wired, and others.
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Keynote Talk
A Sanity Check on Emergent Properties

Anna Rogers
IT University of Copenhagen

2024-08-16 17:00:00 – Room: TBA

Abstract: One of the frequent points in the mainstream narrative about large language models is that
they have “emergent properties”, but there is a lot of disagreement about what that even means. If they
are understood as a kind of generalization beyond training data - as something that a model does without
being explicitly trained for it - I argue that we have not in fact established the existence of any such pro-
perties, and at the moment we do not even have the methodology for doing so.

Bio: Anna Rogers is tenured associate professor at the Computer Science department at IT University of
Copenhagen. She holds a PhD in computational linguistics from the University of Tokyo, followed by
postdocs in machine learning for NLP (University of Massachusetts) and social data science (University
of Copenhagen). Her research focuses on interpretability, robustness, and sociotechnical aspects of large
language models.
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Evaluating Chinese Large Language Models on Discipline Knowledge
Acquisition via Assessing Memorization and Robustness

Chuang Liu1, Renren Jin1, Mark Steedman2, Deyi Xiong1‡
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2 School of Informatics, University of Edinburgh
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Abstract

Chinese large language models (LLMs) demon-
strate impressive performance on NLP tasks,
particularly on discipline knowledge bench-
marks, where certain Chinese LLMs are very
competitive to GPT-4. Previous research
has viewed these advancements as potential
outcomes of data contamination or leakage,
prompting efforts to create new detection meth-
ods and address evaluation issues in LLM
benchmarks. However, there has been a lack
of comprehensive assessment of the evolution
of Chinese LLMs. To bridge this gap, this
paper offers a thorough investigation of Chi-
nese LLMs on discipline knowledge evalua-
tion, delving into the advancements of various
LLMs, including a group of related models and
others. Specifically, we have conducted six
assessments ranging from knowledge memo-
rization to comprehension for robustness, en-
compassing tasks like predicting incomplete
questions and options, identifying behaviors by
the contaminational fine-tuning, and answering
rephrased questions. Experimental findings in-
dicate a positive correlation between the release
time of LLMs and their memorization capabili-
ties, but they struggle with variations in original
question-options pairs. Additionally, our find-
ings suggest that question descriptions have a
more significant impact on the performance of
LLMs.

1 Introduction

Large language models (Zhao et al., 2023) have
demonstrated remarkable capabilities through
alignment technologies (Shen et al., 2023a) such as
supervised fine-tuning (SFT) (Zhang et al., 2024)
and reinforcement learning from human feedback
(RLHF) (Kaufmann et al., 2024). While the pri-
mary language domain of LLMs is English, the
emergence of Chinese LLMs (Du et al., 2022;
Zeng et al., 2023a; Bai et al., 2023; Team, 2023;

‡Corresponding author.

Yang et al., 2023a) is creating another large com-
munity. A key question arises on how to effec-
tively evaluate these advanced Chinese LLMs. Al-
though there are various datasets for benchmarking
Chinese LLMs, covering areas such as instruction-
following (Jing et al., 2023), bias detection (Huang
and Xiong, 2024), and code generation (Fu et al.,
2023), the widely accepted approach involves gath-
ering multiple-choice questions from human ex-
ams to serve as a benchmark for assessing Chinese
LLMs across a range of subjects, thereby establish-
ing a standardized testing framework for Chinese
LLMs.

Several Chinese LLMs have made significant
progress on discipline knowledge benchmarks
(Huang et al., 2023; Liu et al., 2023a; Li et al.,
2023; Gu et al., 2024). Current results obtained in
these benchmarks indicate that the performance of
certain Chinese LLMs is approaching that of GPT-
4 (OpenAI, 2023). However, these benchmarks
currently rely solely on accuracy as the primary
evaluation metric, offering limited insights into as-
sessment results. Moreover, discipline knowledge
benchmarks usually collect questions from publicly
available online sources, which could potentially
overlap with LLM pre-training data. Additionally,
once benchmarks are released, developers might
unconsciously use them as training data for their
LLMs. This introduces challenges related to data
contamination and leakage, leading to misleading
progress assessments.

Existing efforts aim to detect data contamina-
tion through various methods (Shi et al., 2024b;
Oren et al., 2023; Yang et al., 2023b). For instance,
Shi et al. (2024b) introduce a technique for iden-
tifying data contamination without relying on ref-
erences. However, it has been observed by Yang
et al. (2023b) that existing methods struggle to de-
tect altered questions, prompting them to utilize
LLMs for question rewriting to enhance detection
capabilities. Despite these advancements, a com-
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prehensive analysis for Chinese LLMs on this issue
is still lacking.

In this paper, we conduct a thorough investiga-
tion into the advancements of Chinese LLMs in the
field of discipline knowledge based on the M3KE
benchmark (Liu et al., 2023a). Our analysis spans
two key dimensions: memorization and robustness.
These dimensions offer a multi-faceted approach to
evaluating Chinese LLMs beyond mere accuracy.

For the memorization dimension, we have em-
ployed three sub-dimensions to assess the models.
Initially, we evaluate the ability of Chinese LLMs
to memorize questions and options from the M3KE
dataset under various conditions like zero-shot and
few-shot scenarios. Subsequently, we fine-tune an
LLM on M3KE using different proportions to com-
pare genuine contamination with instances where
contamination is unclear. Lastly, we evaluate six
LLMs by removing the questions and considering
only the options as input based on a hypothesis that
LLMs are likely to predict correct option without
the question if they have memorized those test data.

In the robustness dimension, we also have uti-
lized three sub-methods, including shuffling op-
tion orders, question rewriting by GPT-4 (OpenAI,
2023), and a combination of rewritten questions
and shuffled options. This approach allows for a
comprehensive comparison among Chinese LLMs
whether those LLMs response to changes in sample
description from the benchmark.

Our study involves two sets of Chinese LLMs
for a more thorough investigation. The first group
comprises ChatGLM models, such as ChatGLM1-
6B,1 ChatGLM2-6B,2 and ChatGLM3-6B,3 which
are based on the same pre-trained LLM (Du et al.,
2022; Zeng et al., 2023a) of identical size but vary-
ing versions. The second group consists of LLMs
(Yang et al., 2023a; Team, 2023; Bai et al., 2023)
of similar sizes but differing pre-trained models.
By selecting these distinct groups, we aim to con-
duct a precise analysis across different versions and
pre-trained models.

Various experiments indicate that LLMs possess
a wealth of disciplinary knowledge and can handle
questions, yet they remain sensitive to variations
like different option orders and altered question
descriptions, particularly the latter.

1https://github.com/THUDM/ChatGLM-6B
2https://github.com/thudm/chatglm2-6b
3https://github.com/THUDM/ChatGLM3

Our main contributions in the paper are as fol-
lows:

• We reassess the progress of Chinese LLMs in
disciplinary knowledge and carry out a wide
range of experiments to assess LLMs across
various subject domains and educational lev-
els.

• We devise six tasks, spanning from memoriza-
tion detection to robustness, to explore the
effects on each LLM. We have evaluated six
advanced LLMs for two test groups based on
their pre-training and timeline, leading to a
comprehensive inquiry.

• Extensive experiments reveal that current
LLMs have been exposed to a broad array
of disciplinary questions and knowledge, yet
they still lack a thorough grasp of such knowl-
edge.

2 Related Work

Chinese LLM Benchmarks. Previous bench-
marks (Guo et al., 2023; Liu et al., 2024b) for Chi-
nese LLMs can be divided into four categories: dis-
cipline knowledge, general capabilities, safety, and
special fields. Benchmarks for discipline knowl-
edge (Huang et al., 2023; Liu et al., 2023a; Li
et al., 2023; Gu et al., 2024; Liu et al., 2024a)
are typically considered standardized measures for
LLMs, as they often encompass various discipline-
related questions gathered from human exams.
In terms of general capabilities (Xu et al., 2023;
Zeng et al., 2023b), current efforts focus on tasks
like instruction-following (Jing et al., 2023), role-
playing (Shen et al., 2023b), reasoning (He et al.,
2021; Ge et al., 2021, 2022; Shi et al., 2024a; Liu
et al., 2024c; Yu et al., 2024), and tool-learning
(Ruan et al., 2023). In terms of safety, researchers
pay attention to two dimensions: red-teaming (Sun
et al., 2023; Liu et al., 2023b; Zhang et al., 2023b)
and AI safety. Specifically, red-teaming involves
researchers collecting prompts that could poten-
tially lead LLMs to produce undesirable content,
while the AI safety benchmark (Perez et al., 2023;
Shi and Xiong, 2024) aims to identify LLMs’ be-
haviors such as power-seeking (Hadshar, 2023).
Benchmarks in special fields evaluate LLMs in var-
ious professional contexts, such as health (Wang
et al., 2023), coding (Fu et al., 2023), law (Fei et al.,
2023; Dai et al., 2024), and finance (Zhang et al.,
2023a).

2



Task Input Output
1 Question A:text, B:text, C:text, D:text
2 Question + A: text, B:text, C:text, D:text
3 Question + A:text + B:text C:text, D:text
4 Demonstrations + Question A:text, B:text, C:text, D:text

Table 1: Different compositions of input and output in
the memorization accessing task. Demonstrations are a
sample of question and four options. In this paper, the
number of demonstration is set to two.

In this paper, we focus on benchmarks with disci-
plinary knowledge for two primary reasons. Firstly,
these benchmarks cover a variety of subjects, lead-
ing to a thorough assessment. Secondly, bench-
marks of this nature are commonly used as the
standard evaluation in LLM publications. There-
fore, we have chosen M3KE (Liu et al., 2023a) as
our testbed due to its wide coverage of questions
and subjects.

Data Contamination. Despite the abundance
of benchmarks assessing various capabilities of
LLMs, a concerning trend is the ease with which
public benchmarks are utilized to train subsequent
LLMs. Ongoing efforts are aimed at addressing
this issue (Sainz et al., 2023).

In terms of accessing contamination, a method
proposed by researchers aims to determine whether
content has been trained during the pre-training
stage. Another method introduced by a different
group Oren et al. (2023) involves constructing a
statistical test for assessing testset contamination.
One study focuses on an LLM-based decontamina-
tion method that can identify leaked texts even after
being rewritten and translated (Yang et al., 2023b).
Another investigation (Deng et al., 2023) delves
into data contamination by measuring the overlap
between target benchmarks and pre-training cor-
pora, as well as masking incorrect options that
may lead LLMs to make inaccurate predictions.
Furthermore, researchers have developed detec-
tion pipelines to enhance benchmark transparency
through search engines (Li et al., 2024) and met-
rics (Xu et al., 2024), proposing a new metric for
evaluating memorization in LLMs (Schwarzschild
et al., 2024).

Additional efforts are dedicated to exploring
challenges within current benchmarks (Zhou et al.,
2023; Carlini et al., 2023). One study (Zheng
et al., 2023) examines the evolutionary trajectory
of GPT, investigating whether the inclusion of code
data enhances LLMs’ reasoning abilities. Another
research (Li and Flanigan, 2024) demonstrates a

correlation between the performance of LLMs on
benchmarks and their release dates. Moreover,
other works explore the sensitivity of LLMs leader-
boards (Alzahrani et al., 2024) and evaluate large
vision-language models (Chen et al., 2024).

Drawing inspiration from these studies, our re-
search focuses on the development of Chinese
LLMs on discipline knowledge. This entails not
only enhancing the retention of knowledge in
LLMs based on the same pre-trained model, lead-
ing to a clear depiction of their evolution, but also
evaluating the robustness of LLMs in terms of com-
prehension and mastery of knowledge.

3 Methodology

Concerning memorization, there are three further
sub-dimensions. Initially, we employ a pre-training
task to investigate the memorization capabilities of
Chinese LLMs. Subsequently, we compare directly
fine-tuning the earliest version of LLM released be-
fore M3KE, utilized in this paper, with other LLMs.
Finally, we eliminate each question from the input,
providing only four options to the LLMs, to assess
whether they can offer correct answers without the
question. For robustness, we randomize the order
of options and rewrite questions separately, yield-
ing a different perspective.

3.1 Assessing Memorization

In this section, we aim to investigate whether the
development of Chinese LLMs is influenced by
memorizing more data, such as QA pairs. To do
this, we selected the ChatGLM-6B family as our
experimental group, which includes ChatGLM1-
6B, ChatGLM2-6B, and ChatGLM3-6B, released
in chronological order. ChatGLM1-6B was re-
leased before M3KE, while ChatGLM2-6B and
ChatGLM3-6B were released after it. We em-
ployed three methods to detect memorization:
question-options completion, contaminational fine-
tuning, and removal questions.

In the question-options completion, each ques-
tion and its options are considered as sequential
text, split into two parts: the input and the refer-
ence. LLMs are expected to provide predictions
based on the input and the prompt, which are then
compared against the reference. For instance, a
question serves as the input, while the concatena-
tion of its four options forms the reference. By
crafting inputs, as illustrated in Table 1, we prompt
the LLM to generate four new options based on

3
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Figure 1: Results of question-options completion under different task settings.

the input. Evaluating the prediction against the
reference, a higher F1 match rate indicates more
memorization within the LLM. However, at times,
the LLM may answer the question directly instead
of following the instruction. To address this, we
conducted this set of experiments under various
settings, encompassing five tasks.

For the contaminational fine-tuning, we aim to
investigate the impact of fine-tuning on the bench-
mark used to evaluate the LLM. Specifically, we
fine-tune ChatGLM1-6B, the earliest released LLM
in the ChatGLM-6B series on M3KE, with varying
percentages (20%, 40%, 60%, 80%, and 100%) for
comparison with ChatGLM2-6B and ChatGLM3-
6B. Although there is no conclusive evidence of
shared training data among the different LLM ver-
sions, it raises questions about potential contami-
nation.

In removal questions scenario, we present four
options to the LLM without any accompanying
questions. Based on the hypothesis that if the LLM
truly memorizes information, it should consistently
select the correct option even without a specific
question, as it would have retained various bench-
mark features, including the relationship between
the correct option and the others.

3.2 Assessing Robustness

There are three sub-methods to explore the robust-
ness of LLMs: shuffling the order of options, rewrit-
ing questions, and a combination of both.

In the task of shuffling options order, we shuffled
the original order of four options, and each LLM
is re-evaluated. Results in a new benchmark com-
prising original questions and options presented in
a different order.

For rewriting questions, GPT-4 is tasked with

rephrasing each question, providing a new descrip-
tion for the original question. Consequently, this
benchmark includes new questions and options
while maintaining the original order.

In the last task, the benchmark involves rewriting
questions and rearranging options.

4 Experiments

We conducted extensive experiments to re-evaluate
Chinese LLMs from the perspectives of memoriza-
tion and robustness.

4.1 Settings
In our experiments, assessed these two aspects
though the evolution of a LLM family including
ChatGLM1-6B, ChatGLM2-6B and ChatGLM3-
6B, resulting in a more precise description with
data leakge. Besides, we added three Chinese
LLMs, such as Baichuan2-7B-Chat, InternLM-7B-
Chat and Qwen-7B-Chat, to identify current pro-
gresses in robustness. All of LLMs are trained by
SFT/RLHF, which is able to follow instruction as
well under the zero-shot setting.

For the test data, we used M3KE (Liu et al.,
2023a) as our testbed due to its question consisting
of multi-subjects and major Chinese education lev-
els. This benchmark comprises 20,477 questions
from 71 tasks gathered from authentic Chinese ex-
ams, aligning with the objectives of our study.

In addition, F1 was used as the main metric for
the task of question-options completion and accu-
racy was adopted as the main evaluation metric for
other tasks.

4.2 Results of Memorization
We accessed three LLMs from ChatGLM-6B series
on the question-options completion task and con-
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Cluster Types ChatGLM1-6B ChatGLM2-6B ChatGLM3-6B InternLM-7B Baichuan2-7B Qwen-7B

A & H
Original 0.308 0.478 0.49 0.568 0.524 0.546

Without Q 0.269 0.283 0.272 0.273 0.264 0.288
Gaps 0.039 0.195 0.218 0.295 0.26 0.258

SS
Original 0.365 0.532 0.572 0.586 0.599 0.612

Without Q 0.279 0.289 0.284 0.294 0.278 0.305
Gaps 0.086 0.243 0.288 0.292 0.321 0.307

NS
Original 0.255 0.452 0.443 0.45 0.427 0.457

Without Q 0.277 0.271 0.255 0.276 0.241 0.27
Gaps -0.022 0.181 0.188 0.174 0.186 0.187

OS
Original 0.343 0.468 0.518 0.543 0.54 0.543

Without Q 0.269 0.259 0.271 0.258 0.238 0.26
Gaps 0.074 0.209 0.247 0.285 0.302 0.283

PS
Original 0.26 0.407 0.454 0.528 0.407 0.465

Without Q 0.235 0.311 0.297 0.269 0.287 0.244
Gaps 0.025 0.096 0.157 0.259 0.12 0.221

MS
Original 0.323 0.639 0.587 0.604 0.497 0.563

Without Q 0.264 0.276 0.263 0.305 0.267 0.297
Gaps 0.059 0.363 0.324 0.299 0.23 0.266

HS
Original 0.256 0.437 0.473 0.555 0.434 0.485

Without Q 0.286 0.277 0.265 0.299 0.264 0.305
Gaps -0.03 0.16 0.208 0.256 0.17 0.18

C
Original 0.309 0.475 0.489 0.497 0.522 0.529

Without Q 0.282 0.28 0.268 0.275 0.254 0.283
Gaps 0.027 0.195 0.221 0.222 0.268 0.246

OE
Original 0.322 0.441 0.481 0.516 0.518 0.529

Without Q 0.258 0.262 0.267 0.263 0.241 0.26
Gaps 0.064 0.179 0.214 0.253 0.277 0.269

Table 2: Results of question removal. A & H: Arts & Humanities. SC: Social Sciences. NS: Natural Sciences. OS:
Other Subjects. PS: Primary School. JHS: Junior High School. HS: High School. C: College. OE: Other Education.
InternLM-7B: InternLM-7B-Chat. Baichuan2-7B: Baichuan2-7B-Chat. Qwen-7B: Qwen-7B-Chat.

taminational fine-tuning task, which could provide
evidences across the development of a LLM group.
For question removal task, we added three LLMs
from other model family to compare performance
between original and revised results.

4.2.1 Task of Question-Options Completion
In this task, we divided each question and its four
options into two parts using the next-token predic-
tion method. We then presented the first part and
task LLMs with predicting the remaining part. In
the zero-shot scenario, there is a noticeable trend
of increasing F1 scores across the ChatGLM group.
However, we have identified some biases in the
zero-shot setup. For instance, in task3, the input
is the question, and the instruction is to ask the
LLM to provide four options based on the question.
Yet, at times, the LLMs answer the question but
do not adhere to the instruction. To address this,
we have introduced alternative formats, as detailed
in Table 1 for task3 and task4. Furthermore, in
the few-shot setting, we added two demonstrations
before the input to improve instruction adherence.
The results, as depicted in Fig. 1, clearly demon-
strate that the new version of ChatGLM retains
more information than the previous version across
various settings.

4.2.2 Task of Contaminational Fine-tuning

Additionally, we aim to simulate direct contami-
nation for ChatGLM by fine-tuning the LLM on
M3KE. Specifically, we selected ChatGLM1 as
our contaminated LLM, fine-tuned with varying
percentages of 20%, 40%, 60%, 80%, and 100%,
resulting in a noticeable data leakage. Fig. 2 il-
lustrates the performance of the fine-tuned Chat-
GLM1 compared to the original ChatGLM1, Chat-
GLM2, and ChatGLM3. The general trend shows
an improvement in performance as more data from
M3KE is included, although there are occasional
local fluctuations during this process. Initially, we
observe a decrease in the performance of Chat-
GLM1 when fine-tuned with 20% of the test data,
followed by a continuous improvement until reach-
ing 60%. Subsequently, ChatGLM1 fine-tuned
with 80% of the data experiences a decline, which
is then followed by an increase when using 100%
of the data. However, even with the optimal results
achieved by fine-tuning M3KE, ChatGLM1 still
lags behind ChatGLM2 and ChatGLM3, although
they are closely aligned and perform better than
ChatGLM2 in certain educational contexts. This
suggests the possibility of training and fine-tuning
similar data in the next generation of LLMs, in-
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Cluster Types ChatGLM1-6B ChatGLM2-6B ChatGLM3-6B InternLM-7B Baichuan2-7B Qwen-7B

A & H
Original 0.308 0.478 0.49 0.568 0.524 0.546
revised 0.302 0.458 0.473 0.532 0.446 0.504
Gaps 0.006 0.02 0.017 0.036 0.078 0.042

SS
Original 0.365 0.532 0.572 0.586 0.599 0.612
revised 0.298 0.534 0.559 0.546 0.541 0.569
Gaps 0.067 -0.002 0.013 0.04 0.058 0.043

NS
Original 0.255 0.452 0.443 0.45 0.427 0.457
revised 0.283 0.451 0.427 0.439 0.393 0.441
Gaps -0.028 0.001 0.016 0.011 0.034 0.016

OS
Original 0.343 0.468 0.518 0.543 0.54 0.543
revised 0.294 0.473 0.484 0.51 0.471 0.498
Gaps 0.049 -0.005 0.034 0.033 0.069 0.045

PS
Original 0.26 0.407 0.454 0.528 0.407 0.465
revised 0.324 0.409 0.389 0.474 0.314 0.451
Gaps -0.064 -0.002 0.065 0.054 0.093 0.014

MS
Original 0.323 0.639 0.587 0.604 0.497 0.563
revised 0.309 0.596 0.572 0.629 0.466 0.579
Gaps 0.014 0.043 0.015 -0.025 0.031 -0.016

HS
Original 0.256 0.437 0.473 0.555 0.434 0.485
revised 0.278 0.476 0.458 0.503 0.4 0.463
Gaps -0.022 -0.039 0.015 0.052 0.034 0.022

C
Original 0.309 0.475 0.489 0.497 0.522 0.529
revised 0.287 0.471 0.479 0.47 0.468 0.492
Gaps 0.022 0.004 0.01 0.027 0.054 0.037

OE
Original 0.322 0.441 0.481 0.516 0.518 0.529
revised 0.302 0.442 0.444 0.479 0.451 0.48
Gaps 0.02 -0.001 0.037 0.037 0.067 0.049

Table 3: Results of shuffling the order of options. A & H: Arts & Humanities. SC: Social Sciences. NS: Natural
Sciences. OS: Other Subjects. PS: Primary School. JHS: Junior High School. HS: High School. C: College. OE:
Other Education. InternLM-7B: InternLM-7B-Chat. Baichuan2-7B: Baichuan2-7B-Chat. Qwen-7B: Qwen-7B-
Chat.

Cluster Types ChatGLM1-6B ChatGLM2-6B ChatGLM3-6B InternLM-7B Baichuan2-7B Qwen-7B

A & H
Original 0.308 0.478 0.49 0.568 0.524 0.546
revised 0.298 0.359 0.364 0.439 0.293 0.392
Gaps 0.01 0.119 0.126 0.129 0.231 0.154

SS
Original 0.365 0.532 0.572 0.586 0.599 0.612
revised 0.331 0.414 0.397 0.439 0.335 0.424
Gaps 0.034 0.118 0.175 0.147 0.264 0.188

NS
Original 0.255 0.452 0.443 0.45 0.427 0.457
revised 0.313 0.381 0.323 0.373 0.286 0.374
Gaps -0.058 0.071 0.12 0.077 0.141 0.083

OS
Original 0.343 0.468 0.518 0.543 0.54 0.543
revised 0.315 0.354 0.367 0.384 0.286 0.373
Gaps 0.028 0.114 0.151 0.159 0.254 0.17

PS
Original 0.26 0.407 0.454 0.528 0.407 0.465
revised 0.259 0.334 0.349 0.398 0.266 0.309
Gaps 0.001 0.073 0.105 0.13 0.141 0.156

MS
Original 0.323 0.639 0.587 0.604 0.497 0.563
revised 0.326 0.455 0.387 0.494 0.325 0.443
Gaps -0.003 0.184 0.2 0.11 0.172 0.12

HS
Original 0.256 0.437 0.473 0.555 0.434 0.485
revised 0.316 0.376 0.349 0.424 0.3 0.387
Gaps -0.06 0.061 0.124 0.131 0.134 0.098

C
Original 0.309 0.475 0.489 0.497 0.522 0.529
revised 0.319 0.388 0.355 0.389 0.307 0.392
Gaps -0.01 0.087 0.134 0.108 0.215 0.137

OE
Original 0.322 0.441 0.481 0.516 0.518 0.529
revised 0.308 0.335 0.344 0.387 0.272 0.372
Gaps 0.014 0.106 0.137 0.129 0.246 0.157

Table 4: Results of rewriting questions. A & H: Arts & Humanities. SC: Social Sciences. NS: Natural Sciences.
OS: Other Subjects. PS: Primary School. JHS: Junior High School. HS: High School. C: College. OE: Other
Education. InternLM-7B: InternLM-7B-Chat. Baichuan2-7B: Baichuan2-7B-Chat. Qwen-7B: Qwen-7B-Chat.
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Figure 2: The results of contaminational fine-tuning. A & H: Arts & Humanities. SC: Social Sciences. NS: Natural
Sciences. O: Other.

dicating that the development of training LLMs
should incorporate more knowledge than previous
versions, including insights from human evolution.

4.2.3 Task of Removal Questions
This task is designed to test whether the LLM can
provide the correct answer without the question
if it has been trained on question-answering pairs.
We assessed six Chinese LLMs in M3KE, and the
results are presented in Table 2. Most LLMs were
impacted by this task, but ChatGLM1 appears to
perform well, with even higher accuracy in two
clusters than before. This suggests that ChatGLM1
might have been trained on multiple-choice ques-
tions related to those clusters in M3KE, specifi-
cally focusing on Nature Science at the subject
level and High School at the education level. As
ChatGLM versions progress, the impact on Chat-
GLM2 and ChatGLM3 becomes more pronounced,
leading to a significant decrease in performance.
This indicates that the training data for the later
versions of ChatGLM may not contain the same
questions as those in M3KE. Similarly, other LLMs
like InternLM-7B-Chat, Baichuan2-7B-Chat, and
Qwen-7B-Chat show a similar trend to ChatGLM2
and ChatGLM3. While it appears that newer LLMs
may be predicting answers based on the questions
rather than relying solely on memorization, it does
not necessarily mean that the training data for these
newer models lacks such knowledge.

The following question is whether LLMs effec-
tively handle this knowledge? In other words, if
LLMs truly master this knowledge, they should
be able to address these questions across various
scenarios. Consequently, we applied M3KE to dif-

ferent versions to assess the robustness of LLMs in
the subsequent section.

4.3 Results of Robustness

In this section, we seek to assess the robustness of
LLMs by modifying M3KE. This includes altering
the sequence of options and rephrasing the origi-
nal question. The core hypothesis here is that if
an LLM comprehends the information, it should
deliver comparable results with the unaltered test
data. Hence, we adjusted M3KE using three ap-
proaches: rearranging option sequences, rephras-
ing questions, and combining shuffled options with
rewritten questions. Furthermore, we introduce
three LLMs from different companies in this seg-
ment - specifically InternLM-7B-Chat, Baichuan2-
7B-Chat, and Qwen-7B-Chat - all of which exhibit
impressive performance on M3KE.

4.3.1 Results of Shuffling the Order of
Options

Table 3 shows the difference between the original
and revised results on M3KE. The most significant
decrease is observed at the primary school level
for ChatGLM3, InternLM-7B-Chat, Baichuan2-
7B-Chat, and Qwen-7B-Chat. Additionally, these
language models, except for Baichuan2-7B-Chat,
demonstrate relatively consistent performance in
social science and natural science at the subject
level, as well as in middle school, high school, and
college at the education level. The largest deviation
of 0.052 is seen in high school by InternLM-7B-
Chat. Notably, ChatGLM2 remains consistent in
this task, with only four cluster results decreasing.
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Cluster Types ChatGLM1-6B ChatGLM2-6B ChatGLM3-6B InternLM-7B Baichuan2-7B Qwen-7B

A & H
Original 0.308 0.478 0.49 0.568 0.524 0.546
revised 0.303 0.353 0.364 0.426 0.298 0.366
Gaps 0.005 0.125 0.126 0.142 0.226 0.18

SS
Original 0.365 0.532 0.572 0.586 0.599 0.612
revised 0.315 0.386 0.384 0.421 0.319 0.409
Gaps 0.05 0.146 0.188 0.165 0.28 0.203

NS
Original 0.255 0.452 0.443 0.45 0.427 0.457
revised 0.288 0.353 0.32 0.356 0.286 0.355
Gaps -0.033 0.099 0.123 0.094 0.141 0.102

OS
Original 0.343 0.468 0.518 0.543 0.54 0.543
revised 0.295 0.355 0.337 0.389 0.277 0.361
Gaps 0.048 0.113 0.181 0.154 0.263 0.182

PS
Original 0.26 0.407 0.454 0.528 0.407 0.465
revised 0.306 0.298 0.293 0.389 0.231 0.349
Gaps -0.046 0.109 0.161 0.139 0.176 0.116

MS
Original 0.323 0.639 0.587 0.604 0.497 0.563
revised 0.307 0.433 0.392 0.492 0.313 0.404
Gaps 0.016 0.206 0.195 0.112 0.184 0.159

HS
Original 0.256 0.437 0.473 0.555 0.434 0.485
revised 0.282 0.382 0.336 0.392 0.292 0.36
Gaps -0.026 0.055 0.137 0.163 0.142 0.125

C
Original 0.309 0.475 0.489 0.497 0.522 0.529
revised 0.3 0.352 0.348 0.374 0.304 0.376
Gaps 0.009 0.123 0.141 0.123 0.218 0.153

OE
Original 0.322 0.441 0.481 0.516 0.518 0.529
revised 0.298 0.352 0.336 0.378 0.277 0.355
Gaps 0.024 0.089 0.145 0.138 0.241 0.174

Table 5: Results of combining rewritten questions and shuffled options. A & H: Arts & Humanities. SC: Social
Sciences. NS: Natural Sciences. OS: Other Subjects. PS: Primary School. JHS: Junior High School. HS: High
School. C: College. OE: Other Education. InternLM-7B: InternLM-7B-Chat. Baichuan2-7B: Baichuan2-7B-Chat.
Qwen-7B: Qwen-7B-Chat.

4.3.2 Results of Rewriting Questions

Table 4 shows the performance impact of rewriting
each question through prompting GPT-4. Com-
pared to the previous method, we observe signifi-
cant effects on most language models, particularly
those excelling in original questions and released
post M3KE. Within the ChatGLM category, the
decline corresponds with the ChatGLM version,
with ChatGLM3-6B, the latest model, experienc-
ing the most reduction. ChatGLM1-6B, publicly
available before M3KE, demonstrates similar per-
formance. Notably, Baichuan2-7B-Chat appears
to struggle with the modified questions, with the
largest decrease of 0.264 in the social science clus-
ter. InternLM-7B-Chat and Qwen-7B-Chat exhibit
the most substantial reductions in other subject clus-
ters and social science, with reductions of 0.159
and 0.188, respectively. Regarding educational lev-
els, the most significant decreases are seen in other
subjects for Baichuan2-7B-Chat and Qwen-7B-
Chat, and in high school for InternLM-7B-Chat.

4.3.3 Results of Rewriting Questions with
Shuffled Options

We merged the two tasks above, creating a bench-
mark with rewritten questions and reorganized op-
tion orders. This approach aligns with the task of
question rewriting, as indicated in Table 5. It im-
plies that existing Chinese LLMs are more attuned
to the question descriptions than to the rearranged
options, leading to observations that stronger LLMs
might be trained with more structured questions,
yet they may not grasp such knowledge types ef-
fectively. This indicates a need to reconsider the
current advancements of Chinese LLMs focused on
disciplinary knowledge benchmarks and prioritize
robustness over ultimate performance.

5 Conclusion

In this paper, we have conducted a series of ex-
periments to explore current progresses of Chinese
LLMs on the discipline knowledge benchmark. We
evaluated six Chinese SFT/RLHF LLMs belong
to different groups to whether the new generation
LLM memories more knowledge than the previ-
ous one, and the LLM taking more knowledge is
able to handle those questions with different de-
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scriptions. Experiment results suggest although
the newer LLM memorizes more knowledge, it
still struggles with variations on the question, espe-
cially the description of question has more impact
on LLMs.

Given that data contamination may pervade
across different dimensions of LLM evaluation, we
are keen to encourage the community further inves-
tigate current performance on public benchmarks.
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Abstract
Test contamination is a serious problem for the
evaluation of large language models (LLMs) be-
cause it leads to the overestimation of their per-
formance and a quick saturation of benchmarks,
even before the actual capability is achieved.
One strategy to address this issue is the (adver-
sarial) generation of variations, by including
different exemplars and different rephrasings
of the questions. However, these two interven-
tions can lead to instances that can be more
difficult (accumulating on the expected loss of
performance by partly removing the contam-
ination) but also to instances that can be less
difficult (cancelling the expected loss of per-
formance), which would make contamination
undetectable. Understanding these two phe-
nomena in terms of instance difficulty is critical
to determine and measure contamination. In
this paper we conduct a comprehensive anal-
ysis of these two interventions on an addition
task with fine-tuned LLAMA-2 models.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020) have transformed Natural Language process-
ing, but face evaluation challenges, especially with
publicly available benchmarks. A key issue is data
contamination (Ravaut et al., 2024), where train-
ing data contains test instances. A model trained
on this data has seen part of the test set, which
can have important effects in the evaluation of the
model, leading to inflated performance measures
(Yang et al., 2023; Sainz et al., 2023).

Recently, it has been seen that the actual issue
of data contamination could be more predominant,
as it is not only present by exact copies of the test
instances in the training data. Studies such as the
one by Yang et al. (2023) show that even rephrased
or translated test instances in training data can im-
prove performance, indicating potential contamina-
tion. However, the effect of the difficulty of these

∗Corresponding author. Email: bmehrba@upv.es .

Template

1
Can you please add [term1] and [term2] to-
gether?

2 Find the sum of [term1] and [term2].
3 Add up two numbers: [term1] and [term2].
4 Please work out the total of [term1] and [term2].

5
Please determine the numeric sum of [term1] and
[term2].

6
Proceed to identify the aggregated total of the
numbers [term1] and [term2].

7
Perform an addition operation on the numerical
values [term1] and [term2].

Table 1: Various templates created by GPT-4 for the
addition task. By instantiating them with different ex-
emplars, we can get different instances, such as ‘Find
the sum of 56 and 723’ and ‘Perform an addition opera-
tion on the numerical values 35 and 85’. Are these two
instances equally difficult?

rephrased items has not been yet investigated. For
instance, rephrasing can involve more convoluted
or unusual expressions, which make the item more
difficult for language models. Table 1 shows a
series of templates that can be used to rephrase
the expression behind the task of adding two num-
bers. The actual exemplar (the pair of [term1]
and [term2]) can also be replaced by a different
pair to avoid contamination. These two interven-
tions (different rephrasing or exemplar) can have
mixed effects: some variations may inadvertently
increase the difficulty of the instances, leading to
an expected drop in performance, masking contam-
ination, while others may make the instance easier
and leading to an overestimation of performance,
leading to false positives.

Understanding these phenomena in terms of in-
stance difficulty is a novel approach for accurately
identifying and measuring contamination. In this
study, we conduct a thorough analysis of rephrased
templates and replaced exemplars using fine-tuned
LLAMA-2 (Touvron et al., 2023) models for an
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addition task. We generate templates of varying
difficulty using GPT-4 (Achiam et al., 2023), fine-
tune the models, and assess how these variations
affect performance on exemplars of varying num-
ber of digits (and hence difficulty).

The main contributions are:

• We investigate how different rephrased and re-
placed test instances impact the performance
of fine-tuned LLAMA-2 models on an addi-
tion task, revealing critical insights into the
effects of data contamination.

• We study the impact of template difficulty on
model performance, highlighting that varia-
tions in test instance phrasing can significantly
affect evaluation outcomes.

• We evaluate the effects of fine-tuning with
easy versus hard templates, showing how tem-
plate diversity and intrinsic difficulty influ-
ence model performance and contamination
detection.

The following sections detail our experimental de-
sign, methodology, and results.

2 Background

Several methods have been used to address data
contamination. Prior to big tech companies close
sourced their models and the training data, a com-
mon approach was trying to look for evaluation
instances in the training data. String matching
and embedding similarity are two techniques that
have been commonly used for this purpose. Ope-
nAI used 8-gram matching of test instances and
training dataset for GPT-2 model (Radford et al.,
2019). For GPT-3 (Brown et al., 2020) the same
approach has been taken and all data points from
the evaluation sets that had a 13-gram collision in
the pre-training Common Crawl (C4) dataset were
removed to tackle contamination.

As contamination can involve minor variations
of the examples, calculating cosine similarity be-
tween embeddings of test and training items can
also be used for finding cases in which the test
item has been rephrased or expressed in a different
language (Gunasekar et al., 2023) (Riddell et al.,
2024).

But string matching and even embedding match-
ing are not able detect rephrased test items effec-
tively in general (Yang et al., 2023). More sophisti-
cated and effective techniques employ embedding

similarity search to identify the top-k samples sim-
ilar to a given test sample and then prompting a
powerful LLM such as GPT-4 to determine if any
of the k samples are too similar to the test case.

For closed source models where no informa-
tion regarding the training set is provided, none
of the above mentioned methods are applicable.
Introducing new contamination-free benchmarks
such as LastEval (Li, 2023), WIKIMIA (Shi et al.,
2023), KIEval (Yu et al., 2024), LiveCodeBench
(Jain et al., 2024), Termite (Ranaldi et al., 2024)
might seem a reliable solution for the problem, but
as (Balloccu et al., 2024) mentioned, these new
benchmarks can get contaminated as soon as they
are publicly available or even just when used for
evaluating closed source models by the creators of
the benchmark themselves for the first time. In ad-
dition, building a high quality benchmark is a time
consuming process and can not be done overnight.

Consequently, the idea of continuously generat-
ing new variation has taken ground. Clean-Eval
(Zhu et al., 2023) intends to ‘purify’ current bench-
marks by rephrasing the test items. While a drop
in the performance of LLMs on the rephrased data
points is considered as a sign of decontamination,
the role of difficulty has been neglected in their
analysis.

3 Methodology

Data contamination occurs when instances from the
test set are found in the train set of AI models. For
example, if a model is tested on the question "What
is 123 + 456?" but has seen the same question
(and answer) during training, it might simply recall
the answer rather than ‘compute’ it again. Even if
rephrased forms of test items like "Calculate the
sum of 123 and 456" or "What do you get when
you add 456 to 123?" exist in the training data, the
evaluation is still compromised. These rephrased
forms can inadvertently aid the model, causing an
overestimation of its true capabilities.

On the other hand, testing on the rephrased form
of original test items is suggested by the researchers
to mitigate the contamination problem. Yet to the
best of our knowledge, the role of difficulty of
original test items and their variants has not been
studied. Also, what matters more, the change in
the exemplar or rephrasing the template? For in-
stance, solving "Find the result of 9876 + 54321"
might naturally be harder than "Compute 12 + 34,"
regardless of rephrasing.
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Figure 1: Performance of Llama2 7B chat model on the constructed dataset of addition.

Dataset Construction To explore these consider-
ations, we designed a dataset of addition problems
varying in complexity. Specifically, we generated
1,000 addition pairs (each different pair is an ex-
emplar) for numbers ranging from five to fourteen
digits. Each exemplar’s intrinsic difficulty was de-
termined by the sum of the number of digits of the
addends. For example, the intrinsic difficulty of
"829 + 4531" is 7.

Instance templates To produce varied instances,
we asked GPT-4 to rephrase each addition problem
in ten different ways. After excluding three am-
biguous rephrasings, we used the remaining seven
clear templates (see table 1). By applying seven
templates to one thousand addition pairs, we gener-
ated seven thousand instances.

Model Evaluation and Fine-Tuning We used
the Llama-2 7B chat model to check how different
templates and exemplar affect model performance.
First, we tested the model on the 7,000 instances
(1,000 different exemplars per template) to get a
baseline performance, as shown in Figure 1. We
see some noticeable effect of the template (#2, or-
ange, being much better than #7, pink), and a very
significant influence of the #digits.

We performed three main fine-tuning experi-
ments to explore how template variations affect

model performance. In the first experiment, we
used 70% of the exemplars (700), each with a dif-
ferent template, keeping a balanced representation
of templates in the training data (equal number of
exemplars, 100, for each template). The remaining
30% of the exemplars (300) was left for a non-
contaminated validation set. Figure 2 shows the
data construction process for our fist fine-tuning
experiment.

The second experiment focused on the impact
of template difficulty. We fine-tuned the model
with either the easiest template (template 2) or the
hardest template (template 7), based on initial per-
formance evaluation (Figure 1). We then tested the
fine-tuned models on all templates to see how this
affected performance (Figure 5).

In the last experiment, we study the role of di-
versity of contaminating items. We compare the
performance of the fine-tuned models when trained
on four templates (#1, #2, #3 and #4) with the case
only one of these templates is included in training,
but repeated four times. (Figure 7)

In all cases we fine-tune Llama2 7B Chat model.
Our fine-tuning process used the QLoRA method
(Dettmers et al., 2024), implemented through the
Huggingface pipeline. The choice of QLoRA al-
lowed us to fit the entire Llama2 7B chat model
within the memory constraints of a single NVIDIA

15
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Figure 2: Data split for the first fine-tuning experiment. For each of the 10 digit lengths, 100 addition pairs
(exemplars) are randomly generated. 70% are used for contaminating the training data. By applying 7 templates
that are demonstrated with different colour in this figure, 490 instances can be created, one in seven (70) appearing
in the train (shown in black) and the rest in the test. The 30 % of the original exemplars for this digit length are kept
as non-contaminated validation set (below the dashed line) also with seven variations each in the test set (210).

GeForce RTX 3090 GPU with 24 gigabytes of
RAM, making fine-tuning feasible for accessible
hardware. The learning rate has been set to 1e-3
and batch size of 8 has been used. Through careful
calibration, we found that this configuration pro-
vides an optimal balance, maximizing model per-
formance while avoiding memory constraint issues.
For the first and second experiments we fine-tuned
the model for 5 epochs. For the third experiments
1 epoch is as the data is duplicated 4 times.

3.1 Research Questions

To guide our analysis, we formulated the following
research questions, based on the first intervention
(rephrasing):

1. RQ1: How does the difficulty of rephrased
templates affect the performance of Llama-2
in the presence of potential data contamina-
tion?

2. RQ2: Does the performance of Llama-2 on
contaminated data differ when fine-tuned to
templates of different difficulty?

3. RQ3: What is the effect of varying the diffi-
culty of the templates used for fine-tuning on

the level of data contamination and the subse-
quent performance evaluation of Llama-2?

All these questions are analysed in the context of
the exemplar difficulty as well (# digits), as this is
the second intervention that can affect performance,
and one intervention can mask the other:

4 Results

As shown in previous studies, LLMs are sensitive to
prompts, i.e., the way that the request is formulated.
Figure 1 shows that even for a simple task such as
addition, rephrasing the question influences model
performance. We can observe that template 2 in
average is the easiest and template 7 is the most
difficult version of rephrasing addition among our
7 templates. Consequently, as rephrasing a test
item can change its difficulty level, this should be
considered when this approach –rephrasing test
items– is taken to address contamination. A lower
performance of models on the rephrased test items
might be simply due to the higher difficulty level
of them and may not be a sign of their purity.

Figure 3 demonstrate this effect more clearly.
As it can be seen, there are cases that the perfor-
mance of the model for one or more templates
when tested on the non-contaminated validation
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Figure 3: Performance of Llama2 7B chat model fine-tuned on the data described on Figure 2. The dashed lines
show the performance of fine-tuned model on the contaminated test set. The test set is contaminated because it
contains the exemplar (addition pairs) appeared in the training with the original template and the other 6 templates.
The solid lines show the performance of the fine-tune model on the validation set where no exemplar (addition pair)
from it exists in the training set.
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Figure 4: Llama2 7B model average performance comparison when tested on the non-contaminated validation-set,
the contaminated test-set, train-set, and test-set excluding training instances

set is higher than some templates when tested on
the contaminated test-set. This phenomenon can
be seen for 5-digit, 6-digit, 7-digit, and 11-digit
additions (Figure 3 clearly demonstrates this when
the solid lines cross the dashed lines).

4.1 Difficulty of the Contaminating Template

Rephrased items that can potentially be found in
the training data might have a different difficulty
level compared to the test data points and can influ-
ence the contaminating level in different ways. To
analyze this, we fine-tuned Llama2 7B chat model
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Figure 5: Performance of Llama2 7B chat model when fine-tuned. Left: fine-tuned on the most difficult template #7
(based on the model performance before fine-tuning). Right: fine-tuned on the easiest template #2.
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Figure 6: Average performance of Llama2 7B models before and after fine-tuning on templates #2 and #7.

on the most difficult and on the easiest template
and measure their performance of the fine-tuned
models on all templates variations. As can be seen
in Figure 1, for the Llama2 7B chat model, tem-
plate 2 is the easiest, as on average the performance
for this template is higher than those of the others.
Template 7 on the other hand, is the most difficult
for this model (before fine-tuning).

Figure 5 shows the performance of the fine-tuned
models. It is noticeable that performance of the
fine-tuned model on templates that have not been
used in fine-tuning is affected differently when fine-
tuned on templates 2 or 7. Humans are not highly
sensitive to the way a question is formulated and
in those cases that they are, it is expected that if
they learn the hardest rephrased form of a task, they
can easily cover the easier variations too. Figure

6 shows that this does not hold for LLMs. Fine-
tuning on the easiest template shows better perfor-
mance on 3 other templates (templates 1, 3, 4 and
5) however, for the case which we fine-tuning on
the hardest template the resulting model performs
better only on one other template (number 6).

4.2 Diversity of the Contaminating Template
A training set that contains one rephrased item from
the test set that is repeated k times has been con-
taminated in a different way compared to a training
set that has k variations of a test item. In the latter
case, the diversity of the contaminating template
is higher. But does higher diversity cause higher
contamination effect in term of performance boost?
In order to find out the response to this question,
we fine-tuned Llama2 7B model in two different
scenarios. In the first scenario, we fine-tune the
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Figure 7: On the left the performance of Llama2 7B chat when fine-tuned one epoch on templates 1, 2, 3 and 4. On
the right, performance of the model when fine tuned on a random template between 1, 2, 3 or 4 for four epochs.

model on all instances of templates 1, 2, 3 and 4
and then tested on the remaining templates (5, 6
and 7). The result can be seen in Figure 7 left. In
the second scenario, while we use the same test
set, the training set contains one random template
between 1, 2, 3 and 4 that is repeated 4 times (Fig-
ure 7 right). A close look at these figures reveals
that if we fix the number of times a rephrased form
of a test instance is found in the training set, less
diversity has a higher contaminating effect. In our
experiments the average performance of the model
fine.tuned on diverse templates is 61.4 while we get
71.0 for the less diverse counterpart. This could be
due to the fact that in the diverse cases, the model’s
weights are updated to learn the template and the
task which in our case id the addition, but in a less
diverse scenario, the model can concentrate on the
task as the template wrapping the main task is not
changing.

5 Conclusions

Our study explored the effects of data contamina-
tion and instance variation on the performance of
large language models (LLMs), specifically using
fine-tuned LLAMA-2 models on an addition task.
Key findings from this investigation answered our
research questions and highlighted important in-
sights.

Regarding template difficulty (RQ1), we show
that the performance of LLMs is significantly in-
fluenced by the template or rephrasing of test
items. Easier templates, such as Template 2, con-
sistently yielded higher performance, while more
complex templates, like Template 7, posed greater

challenges. When analysing the impact of fine-
tuning on contaminated data (RQ2), we observed
that performance on non-contaminated templates
varies after fine-tuning. Contrary to expectations,
some templates showed higher performance on non-
contaminated validation sets compared to contam-
inated test sets, indicating that contamination and
difficulty levels are deeply intertwined. Finally,
focusing on template diversity and contamination
(RQ3), we saw that fine-tuning on an easier tem-
plates improved performance on other templates
more consistently than fine-tuning on harder tem-
plates. This challenges the assumption that learn-
ing from more difficult examples would generalize
better to simpler variations. Additionally, lower
template diversity in the training set amplified the
contamination effect, suggesting that less diverse
contamination scenarios have a stronger influence
on model performance.

These findings highlight the relevance of consid-
ering both the difficulty and diversity of rephrased
instances when evaluating LLM performance. In
particular, the change of rephrasing and exemplars
can have confounding effects masking contamina-
tion or suggesting contamination where there is not.
Our results suggest that addressing data contami-
nation effectively requires more nuanced strategies
that accommodate these factors. For future work,
we are investigating the effects of contamination
and instance variation across more complex and
diverse NLP tasks.
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Abstract

Large language models pretrained on extensive
web corpora demonstrate remarkable perfor-
mance across a wide range of downstream tasks.
However, a growing concern is data contami-
nation, where evaluation datasets may be con-
tained in the pretraining corpus, inflating model
performance. Decontamination, the process of
detecting and removing such data, is a potential
solution; yet these contaminants may originate
from altered versions of the test set, evading de-
tection during decontamination. How different
types of contamination impact the performance
of language models on downstream tasks is not
fully understood. We present a taxonomy that
categorizes the various types of contamination
encountered by LLMs during the pretraining
phase and identify which types pose the highest
risk. We analyze the impact of contamination
on two key NLP tasks—summarization and
question answering—revealing how different
types of contamination influence task perfor-
mance during evaluation.

1 Introduction

Advancements in machine learning have tradition-
ally relied on benchmark datasets to evaluate and
compare model performance (Raji et al., 2021; Gu-
ruraja et al., 2023). With the surge of large lan-
guage models (LLMs) in recent years, these bench-
marks are now leveraged to showcase remarkable
abilities across diverse tasks.

However, the shelf life of benchmarks is incred-
ibly low, with Roberts et al. (2023) demonstrat-
ing that newer models with updated training cutoff
dates are iteratively rendering existing benchmarks
stale. The presence of internet-sourced data in both
pretraining and evaluation datasets increases the
risk of data contamination (Brown et al., 2020; Ma-
gar and Schwartz, 2022) and challenges the notion
of fair evaluation for models pretrained on massive
corpora. Both GPT-3 and C4 training corpora were
found to contain test data for several benchmarks

(Dodge et al., 2021; Raffel et al., 2020; Brown et al.,
2020), raising serious concerns about the validity
of evaluation scores for many pretrained models
(Lee et al., 2022; Chang et al., 2023b).

The research community lacks consensus on
best practices for data contamination, and differ-
ent works define contamination in subtly differ-
ent ways. Without standardization of terminol-
ogy, it is difficult to develop best practices for
contamination– or even to characterize the problem
at all. To address this gap, we suggest a formal def-
inition of contamination and taxonomize subtypes
of contamination (§ 2). We map prior work on both
the detection and impact of contamination into this
taxonomy, revealing several understudied forms of
contamination (§ 2.3). We also measure the impact
of different types of contamination on downstream
summarization (§ 4) and QA (§ 5) performance
through continued pretraining experiments assess-
ing indirect/approximate test set contamination ef-
fects.

Our findings reveal that for GPT-2 Large mod-
els, it is often the case that having in-domain data
present during training is as beneficial as having
the test data present during training. Moreover, we
observe that certain contamination types exhibit
task-dependent effects on evaluation performance,
further complicating decontamination best prac-
tices. Our findings enable recommendations for
identifying and mitigating problematic contamina-
tion during LLM development to ensure reliable
evaluations (§ 7).

2 Taxonomy

Consider a model M : X → Y which, given an in-
put of some type x ∈ X , outputs text ŷ ∈ Y . While
x can be of any format, we will restrict ourselves
to cases where ŷ is in the space of the natural lan-
guage (Y ⊆ Σ∗ for some alphabet in Σ). Let D be
the test set, consisting of |D| examples ⟨xi, ŷi⟩.
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Figure 1: Taxonomy of Contamination, with some representative works in the literature that address each category.

2.1 Contamination

We define contamination as any leakage of infor-
mation that provides a signal for the correct label
for at least one example in the test set D. When con-
tamination occurs, some subset of the pretraining
data can be characterized as the result of a function
f(D), which may be a composition of multiple con-
tamination functions f = f (1) ◦ f (2) ◦ · · · ◦ f (n).
We characterize types of contamination by their
dataset-level (§ 2.1.1) and example-level (§ 2.1.2)
properties. Figure 1 provides an overview of our
taxonomy.

2.1.1 Dataset-level Properties
For dataset-level contamination, consider a func-
tion g that leaves the individual examples ⟨xi, ŷi⟩
intact. In the simplest case, g is the identity func-
tion; this is the leakage of a full test set, e.g. from
scraping a file containing the test set instances and
labels. The following are types of functions g(D)
can take on.

• Selection: A function that selects some group
of examples D′ ⊂ D, such that only a subset
of the test set is leaked. This is likely when the
test data is drawn from several sources, only
some of which appear in the pretraining data;
when some of the test data is more recent than
other data and the pretraining data contains an
older snapshot of the contamination source;
or when the data is contained in several docu-
ments and the cleaning of the pretraining data
only removes some of these documents. Ver-

batim contamination refers to when g is the
identity function.

• Distribution: A function which combines the
contaminated data D with some additional,
non-contaminating documents, such that the
examples from D are not all sequential in the
pretraining data. This can occur during data
shuffling, or if the contamination comes from
multiple documents. Practically, this means
that the contaminated region of the pretraining
data g(D) spans more tokens.

2.1.2 Instance-level Properties
In instance-level contamination, the function f ap-
plies some function h to each individual leaked
example f(D) = {h(⟨xi, ŷi⟩)}|D|

i=1.1 A few rep-
resentative examples in this class are enumerated
below:

• Masking: A function that removes some or
all of the input (can be done in combination
with the output), e.g. h(⟨xi, ŷi⟩) = ŷi or re-
moving all incorrect answer choices in a mul-
tiple choice question. This primarily qualifies
as contamination for generation tasks; for a
classification task, leaking the label-space in
advance may not be a concern if the labels
don’t have inherent contextual value without
the input, such as binary labels like 0s and 1s
or positives and negatives. However, if the

1Note that this is a strict subset of all functions applied to
the leaked dataset, f(D); however, we distinguish this set of
functions that operate on individual examples.

23



labels carry meaningful information on their
own, their premature disclosure would indeed
constitute contamination. Note that masking
all of the output, leaving only the inputs from
the test set, is generally considered to be a type
of transductive learning, not contamination;
see § 2.2.3 for more discussion.

• Noising: A function that modifies the surface
form of the example, e.g. by paraphrasing
the inputs or outputs, by presenting the out-
put before the input, or by using silver rather
than gold labels for each example. Note that
this can also take the form of alternate cor-
rect answers being present in the pretraining
data: for instance, in book summarization, a
different summary of the book being present
in the pretraining data is still contamination.

• Augmenting: A function that adds additional
context, which may or may not be relevant to
the example. For instance, for a task where
the model must answer an open-ended ques-
tion at test time, an augmented contaminated
example in pretraining would be a multiple-
choice test with the same questions. While
this provides the correct answer, it also intro-
duces new (distractor) information that is not
present at test time. Another example would
be including additional context paragraphs for
QA in addition to the necessary context and
answer. Note the difference between example-
level augmenting and dataset-level distribu-
tion.

2.2 Phenomena that aren’t Contamination
For clarity, we describe several phenomena
that lead to improved performance on test sets
downstream but are not considered contamination
under our taxonomy.

2.2.1 Language Understanding
Pretraining enables models to produce (generally)
fluent text and encodes some representation
of meaning for words commonly used in task
definitions; for instance, the model has some
representation of meaning for the labels “positive”
and “negative” in sentiment analysis. While this
representation is likely helpful for performing
downstream tasks (Min et al., 2022), this is not
inherently contamination.

2.2.2 Prior Task Understanding

We define prior task understanding as an ability
to perform a task learned from non-contamination
sources, and such prior knowledge has been demon-
strated to boost model performance when evaluated
on unseen instances of said task (Li and Flanigan,
2023). For instance, fine-tuning a model on a train-
ing dataset for the task is clearly not contamina-
tion of the test set, although it generally improves
performance on that test set; likewise, pretraining
on other related datasets is not contamination for
a given test set. For closed-book QA and tasks
requiring world knowledge, prior task understand-
ing from training data is essential. Closed-book
QA demands answering without external resources,
relying solely on the model’s training on similar
question-answer pairs or related datasets.

In general, scrutinizing the training data’s
sources and nature is crucial to maintain model
integrity and generalizability. Prior task under-
standing may violate the assumption of “zero-shot”
performance: that the model has not seen training
data for that task.

2.2.3 Transductive Learning

Transductive learning (Vapnik, 1998) incorporates
an unlabeled test set into training. During training,
the raw text inputs of the test set can be used, but
the labels are not seen. The model, once trained,
is then evaluated on the same test set during the
test phase. Transductive LM fine-tuning has shown
to consistently improve neural models in both in-
domain and out-of-domain settings (Ouchi et al.,
2019), although concerns have been raised about
blurring the line between training and evaluation
(Jiang et al., 2024).

We generally do not consider pretraining on the
inputs of the test set to be contamination,2 although
we note that this will likely improve performance,
in the same manner than pretraining on training
set text improves downstream performance by pro-
viding some domain adaptation to the testing do-
main (Gururangan et al., 2020; Krishna et al., 2023).
Some prior work refers to the presence of inputs-
only in the pretraining data as contamination for
classification tasks (Jiang et al., 2024; Ouchi et al.,
2019); however, under our taxonomy, we consider
this a type of transductive learning.

2A key exception is tasks where the input/output distinction
does not apply, such as perplexity evaluation on a dataset
D = {x1, . . . , x|D|} of sentences xi.
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2.3 Mapping prior work exploring
contamination into this taxonomy

The effects of selection have been explored by ex-
periments that compare LLM performance over
time (Li and Flanigan, 2023; Cao et al., 2024),
prompting the model to generate samples from spe-
cific dataset splits (Sainz et al., 2023b), and train-
ing LLMs that select some subset of an evaluation
dataset (Zhang et al., 2023; Jiang et al., 2024).

Jiang et al. (2024) also explores the effects of
the frequency in which contaminated data appears
distributed throughout the pretraining data.

Through zero-shot experimentation on the
Codex model (Chen et al., 2021), Karmakar et al.
(2022) investigates the effects of prompts mask-
ing out input specifications and prompts with aug-
mented objectives. Additionally, Yang et al. (2023)
showcases memorization of evaluation samples by
prompting LLMs with noisy samples.

A prior position paper (Sainz et al., 2023a) de-
fined three categories of data contamination: their
guideline contamination falls under our definition
of prior task understanding; their raw text contami-
nation is tranductive learning; and their annotation
contamination equates to our definition of data con-
tamination in § 2.1. Our work further categorizes
and explores types of annotation contamination.

2.4 Detecting Data Contamination

Methods with access to pretraining data Early
research on LLM data contamination primarily em-
ployed methods akin to high-order n-gram over-
lap detection between pretraining and evaluation
data (Radford et al., 2019a; Brown et al., 2020;
Wei et al., 2021; Touvron et al., 2023). Tools for
qualitative analysis on large-scale corpora (such
as Data Portraits (Marone and Durme, 2023) and
the ROOTS Search Tool (Piktus et al., 2023)) have
further increased the practicality of this type of con-
tamination detection. However, these approaches
have several limitations: they remain fairly compu-
tationally expensive, assume access to pretraining
data, and generally can only detect contamination
when a cluster of several test set examples co-occur
(as most methods leverage data sketching (Broder,
1997) tools that are only effective for sequences
above a certain length).

Yang et al. (2023) proposes an LLM-based de-
contamination method, which leverages embedding
similarity search followed by evaluation with a
strong language model (e.g. GPT-4), to identify

and mitigate contamination. This is computation-
ally costly but can identify noisy contamination

Methods without access to pretraining data
Some approaches are capable of detecting contam-
ination without direct access to pretraining data,
but assume that the test data has not been mod-
ified or distributed across the pretraining corpus.
These methods leverage metadata from the dataset
to detect contamination, e.g. by leveraging dataset
ordering (Sainz et al., 2023b) or the assignment of
examples to specific data splits (Golchin and Sur-
deanu, 2023). Golchin and Surdeanu (2024) intro-
duce the Data Contamination Quiz, a streamlined
method that efficiently detects and estimates ver-
batim contamination in LLMs by crafting multiple
choice questions that prompt a model to correctly
dataset-specific content among similar but noisy
alternatives.

Chang et al. (2023a) detect contamination of
books (which serve as inputs for many long-context
evaluation datasets) using domain specific features–
a name cloze test and a publication-year evaluation.
This is powerful for detecting the presence of the
exact text of the book, but its efficacy on detecting
related artifacts (e.g. summaries of the book, which
may serve as test set outputs) is unknown.

Shi et al. (2023) introduces a new detection
method MIN-K% PROB, which is capable of de-
tecting whether a piece of text was in the pretrain-
ing corpora by leveraging the variability of the
tokens’ probabilities according to the model. This
has the potential to detect distributed or masked
contamination, but is not robust to noising opera-
tions, which change the token sequence.

Most contemporary data-contamination detec-
tion techniques are designed to identify contamina-
tion of full, non-distributed test datasets, resulting
in a significant gap in detecting noisy or partial
contamination. The methods most well-adapted
to detect noisy contamination, while powerful, re-
quire access to pretraining data and expensive oper-
ations; more work is necessary to lower the barrier
to detection.

3 Methodology

In all our experiments, we employ GPT-2 Large
(Radford et al., 2019b).3 This will be referred to as
the initial model. Since the pretraining corpus for
GPT-2 is not publicly accessible, there is a chance

3Our implementation uses nanoGPT (Karpathy, 2023) ini-
tialized with OpenAI’s gpt2-large weights.
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that these learned weights of GPT-2 might be con-
taminated. Consequently, the outcomes of our ex-
periments serve as a conservative estimate or lower
bound on the effects of data contamination.

For each of our datasets, we create
train/in-domain/test splits of equal size,
aiming to establish a fair and comparable evalu-
ation environment. To disentangle the effects of
exposure to test data during pretraining from
those of prior task understanding, we constructed
an in-domain data split, allowing us to train
models on task-relevant but uncontaminated data
for comparison against the various contaminated
settings. To partially mitigate the potential recency
bias from continued pretraining, we incorporate
an additional 10,000 samples of Open AI’s
WebText (Radford et al., 2019b) into the continued
pretraining data.

During continued pretraining, we use a blocksize
of 1024 tokens with a batchsize of 1. For finetun-
ing, the training data is seen sample by sample.
To obtain deterministic results during our experi-
ments, we set the temperature to zero and capped
the maximum completion length at 200 tokens.

3.1 Training Settings

We consider several settings for incorporating data:

• ZERO-SHOT (not contamination): prompt the
initial model with the test sample and a simple
instruction for the task.

• BASELINE (not contamination): finetune ini-
tial model with train split

• CHEATING (contamination at fine-tuning time,
rather than pre-training): finetune initial
model with test split

• Contamination Setting(s) (standard contam-
ination during pretraining): continued pre-
training with f (test split) and finetune with
train split; the details of each contamination
setting are specific to the task (§ 4 and § 5)

• In-Domain Setting(s) (not contamination):
continued pretraining with f (in-domain
split) and finetune with train split—for each
contamination setting in § 4 and § 5, there is
an associated in-domain model.

For each setting+dataset, we average results over
models trained on 3 random shuffles of the data.
Standard deviations are computed over these 3 runs
and error bars indicate ± one standard deviation.

4 Case Study: Summarization

For this case study, we use the following summa-
rization datasets: XSum (Narayan et al., 2018),
SAMSum (Gliwa et al., 2019), and CNN/Daily
Mail (Nallapati et al., 2016). We explore 5 contam-
ination settings:

1. VERBATIM (dataset level, selection): f =
identity function on test split

2. DISTRIBUTION (dataset level, distribution):
f = shuffle test data with WebText

3. MASKED (instance level, masking): h = mask
out input documents in test split

4. NOISED (instance level, noising): h = swap in
GPT-3.54 generated summaries on test split

5. REFORMATTED (instance level, noising): h =
swap format from document-summary to
summary-document for test data

Table 5 provides examples of each setting.

4.1 Results
In this section, we consider the overall performance
of each contamination method across summariza-
tion datasets. Figure 2 shows an example of the
results from one task and one metric (SAMSum,
ROUGE-L). See Appendix A for full results on all
tasks and metrics, specifically Figures 4, 5, 6 or
Table 3.

Consistently, the CHEATING setting outperforms
all others; this is expected, given that deliberately
finetuning on the test data is an extreme form of
contamination.

Overall, continued pretraining with the approx-
imate contamination methods improves perfor-
mance above the BASELINE setting, often substan-
tially. This suggests that exposure to these forms
of contamination during pretraining can impact the
reliability of evaluations on this data downstream.

While VERBATIM setting performs slightly bet-
ter than the other contamination settings, this im-
provement isn’t significant for most settings. Note
that most contaminated settings outperform the
baseline, and exist within a standard deviation of
each other. This suggests that the performance
boost may simply be attributed to the increase
in in-domain data seen during the training stage
rather than encountering the test split during con-
tinued pretraining.

Note that for the most part, the VERBATIM and
INDOMAIN-VERBATIM settings perform on par

4gpt-3.5-turbo-0125 with temperature=0.5
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Figure 2: Bar Chart of all SAMSum models compared for Rouge-L.

with each other. This trend seems to hold true
for the other contamination and in-domain model
pairs. The comparable performance further sug-
gests that exposure to contaminated data may not
be the primary factor boosting model performance
in the contamination settings studied.

Dataset R-1 R-2 R-L R-Lsum

CNN 38.70 14.14 24.90 32.11
SAMSum 37.92 13.78 28.73 28.75

XSum 24.21 4.89 16.60 16.60

Table 1: Rouge scores (R-) for summaries generated by
GPT-3.5. These summaries are used as silver labels for
our NOISED contamination setting.

While the majority of these settings have metrics
that fall within one standard deviation of each other,
there are exceptions. For instance, in the case of the
XSum dataset, the NOISED setting fails to surpass
the BASELINE. This discrepancy can be attributed
to the idiosyncrasies of the XSum dataset, where
ground truth summaries may deviate significantly
from typical summaries, thus posing a challenge
for the model in generating accurate outputs. Table
1 shows that the summaries generated by GPT-3.5
(Brown et al., 2020) for the XSum dataset have
lower rouge scores than the other two datasets.

Additionally, underperformance of the MASKED

contamination setting compared to the BASELINE

across all datasets is noteworthy, suggesting that
exposure only to summaries during pretraining may
fail to achieve the benefits of seeing in-domain
data.

5 Case Study: Question Answering

For this case study, we consider open-ended QA
with SQuAD (Rajpurkar et al., 2016) and multiple-

choice QA with the Children’s Book Test (CBT)
(Hill et al., 2016). We explore 6 contamination
settings:

1. VERBATIM (dataset level, selection): f =
identity function on test split

2. DISTRIBUTION (dataset level, distribution):
f = shuffle test data with WebText

3. MASKED (instance level, masking): h = mask
out context passage in test split

4. NOISED (instance level, noising): h = en-
counter GPT-3.5 generated answers to test
split questions

5. REFORMATTED (instance level, augmenting/-
masking)5: hSQuAD = introduce 3 distractor
multiple choice answer options; hCBT = mask
out incorrect answer options

6. AUGMENTED (instance level, augmenting):
h = prompt GPT-3.5 to add additional content
to the context passages in the test split

Table 6 provides examples of each setting.

5.1 Results

In this section, we consider the overall performance
of each contamination method across Question An-
swering datasets. Figure 3 shows an example of
the results from one task and one metric (SQuAD,
Exact Match). See Appendix B for full evaluation
results on all tasks and metrics, specifically Figures
7, 8 or Table 4.

Once again, the CHEATING setting outperforms
all others by a noticeable margin. With the ex-
ception of the MASKED setting for the SQuAD

5For SQuAD, this is a form of augmented contamination,
as additional (distractor) information is introduced. For CBT,
this is a form of masked contamination, as information is
removed.
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Figure 3: Bar Chart of all SQuAD models compared for Exact Match.

dataset, all contaminated settings exhibit better per-
formance compared to the BASELINE setting by
a considerable margin. This indicates that the in-
creased data diversity experienced by both the in-
domain and contaminated models during training
improved their performance during evaluation.

Dataset Exact Match F1 Score

SQuAD 74.56 88.15
CBT 77.21 79.78

Table 2: Exact match and F1 scores for answers gener-
ated by GPT-3.5.

Note that the NOISED setting performs almost
as well as the VERBATIM contamination setting.
We attribute this to the fairly high quality of silver
labels generated by GPT-3.5 (see Table 2).

Exposure to in-domain data during pretraining
appears to improve model performance. However,
our results show that contaminated settings such as
NOISED, VERBATIM, and DISTRIBUTION tend to
outperform the corresponding in-domain settings
during evaluation. This suggests that seeing data
from the test set positively impacts model per-
formance for question answering tasks. Note that
for these three model setups, the format of context,
question, and answer is almost consistent with the
format and content seen during evaluation time.

Reformatting (augmenting) free-form questions
from SQuAD into multiple-choice answers dur-
ing pretraining appears to have a negative effect
on model performance, though it still outperforms
the BASELINE setting. Conversely, converting
multiple-choice questions from CBT into free-form
questions (masking) during pretraining yields pos-
itive results, with the REFORMATTED setting out-
performing most other contaminated settings.

Furthermore, we observe variations in the per-
formance of AUGMENTED setting across the two
datasets. While this setting perform well for
SQuAD, its performance is not as impressive for
CBT. This discrepancy may be attributed to the
nature of data augmentation, where the additional
information provided for SQuAD is more relevant
and beneficial to the wikipedia paragraphs com-
pared to the irrelevant introductions, such as ‘once
upon a time’ style introductions generated by GPT-
3.5 for these book excerpts, added to CBT stories.
It is important to note that since this information
doesn’t significantly contribute to the task, this
form of augmentation falls in a blurry space be-
tween distribution and augmentation branches of
the taxonomy. It could also be viewed as unrelated
information being added between samples during
pretraining, complicating its categorization.

6 Analysis

Unsurprisingly, the CHEATING and VERBATIM con-
tamination settings consistently outperform the
BASELINE across both tasks. The in-domain set-
tings’ consistent outperformance of the BASELINE

underscores the advantages of exposure to related
samples during pretraining (Krishna et al., 2023).

Far more concerning is that several approximate
contamination settings outperform both the BASE-
LINE and their respective in-domain settings, sug-
gesting that the model in these settings benefits not
only from seeing in-domain text but from unfairly
leveraging prior knowledge of the test examples. In
particular, the NOISED setting, which is generally
not detectable with existing decontamination meth-
ods, produces scores inflated over BASELINE in all
datasets, and scores more than one standard devia-
tion above its corresponding in-domain setting in
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several datasets.
The MASKED setting generally performs around

or worse than the BASELINE, possibly due to the
more extreme formatting mismatch between this
data and the test data. We expect that the MASKED

setting may be encountered in the wild if a file of
outputs for the dataset is in the pretraining data;
the limited impact of this contamination on down-
stream performance is thus good news, though
more investigation would be necessary to conclu-
sively say MASKED contamination is not a concern.

For many of the contaminated settings and their
corresponding in-domain settings, the effect of ap-
proximate contamination is not greater than affect
of in-domain data seen during pretaining. How-
ever, research has shown that memorization in
LLMs significantly grows as the size of the model
increases (Carlini et al., 2023). The number of
times a sample has been duplicated in the pre-
training corpora has also been shown to increase a
model’s memorization capabilities (Carlini et al.,
2023; Golchin and Surdeanu, 2023).

Some behavior is task- or dataset-specific, em-
phasizing that there is no one-size-fits-all approach
to data curation: the importance of removing each
type of contamination from the pretraining corpus
is at least partially linked to the specific task’s for-
matting. However, some types of approximate con-
tamination do lead to inflated scores, emphasizing
that considering a more broad definition of contam-
ination when de-contaminating pretraining corpora
is a worthwhile endeavor.

7 Conclusion

Our analysis highlights the importance of data for-
mat, with models performing better when pretrain-
ing data matches the evaluation format. We also
observe task-specific effects, with certain contam-
ination methods benefiting particular tasks more
than others. Additionally, we find that some late-
stage pretraining contamination can actually be un-
helpful to downstream performance, if it occurs in a
substantially different format from the downstream
task. Our findings underscore gaps in current de-
contamination practices, which primarily focus on
full-dataset-level contamination and are often un-
able to detect approximate or noisy contamination.

We demonstrate that different types of contam-
ination can have variable effects on model perfor-
mance, highlighting the need for careful consid-
eration during training and evaluation. With the

creation of our taxonomy, we hope to promote stan-
dardization regarding the definition and categories
of contamination within the research community,
facilitating clear communication and collaboration,
while also enabling precise detection and mitiga-
tion of contamination in pretraining data. We rec-
ommend researchers decontaminating pretraining
corpora for LLMs prioritize developing techniques
that address noisy evaluation data, while also en-
suring rigorous scrutiny to prevent any shuffled
or interleaved evaluation data from inadvertently
persisting in the pretraining data. It is not enough
to merely remove instances of the full test dataset
in the pretraining corpus; fragments or noised ver-
sions of the test set can also inflate performance.
We hope our work inspires future work on detecting
and mitigating specific types of contamination.

8 Limitations

Due to resource constraints, we only investigate
the impact of encountering contaminated data to-
wards the end of pretraining (i.e. with continued
pretraining), rather than randomly throughout pre-
training. This may introduce recency bias, influ-
encing our findings. Additionally, our focus on a
single language model limits the generalizability of
our results. GPT-2 pretraining data is not publicly
accessible so our results may only offer an approx-
imation of contamination effects. Different model
architectures, training procedures, and datasets may
yield varying impacts of contamination. Conduct-
ing experiments on larger LLMs could potentially
reveal more pronounced effects of contamination,
as larger models have been shown to exhibit greater
tendencies of memorization (Carlini et al., 2023).
Further research involving multiple models and
comprehensive evaluations is needed to establish
more robust conclusions across diverse settings.
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A Full results for Summarization Case Study

We present the full results of the summarization case study. For each setting and dataset, we have included
a table of the Rouge metrics along with their standard deviations. The data is also presented through a
series of bar charts for easier interpretability of the results for the reader. Standard deviations are measured
over the results of the 3 models trained on random shuffles of the data.

Dataset Model
Contaminated Contaminated

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-LSUMPretraining Fine-tuning
Data Data

CNN

ZERO-SHOT - - 21.98 ± 0.26 5.076 ± 0.01 13.63 ± 0.10 18.51 ± 0.10
BASELINE - × 27.22 ± 0.53 7.436 ± 0.13 18.15 ± 0.43 24.90 ± 0.36
CHEATING - ✓ 33.60 ± 0.58 10.198 ± 0.16 20.52 ± 0.33 29.61 ± 0.32
VERBATIM ✓ × 29.84 ± 0.48 9.488 ± 0.14 19.50 ± 0.38 26.98 ± 0.40

DISTRIBUTION ✓ × 29.73 ± 0.33 9.557 ± 0.13 19.50 ± 0.22 27.12 ± 0.26
MASKED ✓ × 28.34 ± 0.22 8.326 ± 0.13 18.01 ± 0.29 25.96 ± 0.20
NOISED ✓ × 31.31 ± 0.52 8.821 ± 0.15 19.19 ± 0.32 28.85 ± 0.30

REFORMATTED ✓ × 29.21 ± 0.28 8.887 ± 0.13 18.88 ± 0.29 26.27 ± 0.30
INDOMAIN-VERBATIM × × 29.81 ± 0.48 9.277 ± 0.13 18.93 ± 0.25 26.88 ± 0.31

INDOMAIN-DIST. × × 28.86 ± 0.30 8.910 ± 0.13 18.41 ± 0.27 26.10 ± 0.30
INDOMAIN-MASK × × 28.87 ± 0.39 8.493 ± 0.15 18.24 ± 0.30 26.40 ± 0.29
INDOMAIN-NOISE × × 31.16 ± 0.42 8.596 ± 0.10 18.85 ± 0.26 26.53 ± 0.35

INDOMAIN-REFORM. × × 28.80 ± 0.31 8.681 ± 0.12 18.75 ± 0.24 26.07 ± 0.32

SAMSum

ZERO-SHOT - - 11.73 ± 0.14 1.357 ± 0.01 8.377 ± 0.19 9.331 ± 0.16
BASELINE - × 32.95 ± 0.57 10.22 ± 0.15 25.83 ± 0.32 25.59 ± 0.29
CHEATING - ✓ 36.36 ± 0.53 12.31 ± 0.14 28.41 ± 0.33 28.48 ± 0.33
VERBATIM ✓ × 34.34 ± 0.45 10.76 ± 0.16 26.98 ± 0.40 27.04 ± 0.38

DISTRIBUTION ✓ × 33.73 ± 0.51 10.32 ± 0.15 26.48 ± 0.31 26.56 ± 0.33
MASKED ✓ × 33.05 ± 0.46 10.46 ± 0.15 25.77 ± 0.30 25.81 ± 0.28
NOISED ✓ × 33.62 ± 0.43 10.27 ± 0.16 26.50 ± 0.37 26.49 ± 0.38

REFORMATTED ✓ × 33.63 ± 0.39 10.25 ± 0.15 26.37 ± 0.31 26.46 ± 0.34
INDOMAIN-VERBATIM × × 33.61 ± 0.46 10.27 ± 0.14 26.39 ± 0.30 26.46 ± 0.35

INDOMAIN-DIST. × × 33.55 ± 0.42 10.26 ± 0.11 26.32 ± 0.33 26.44 ± 0.35
INDOMAIN-MASK × × 32.87 ± 0.41 10.47 ± 0.12 25.74 ± 0.35 25.74 ± 0.31
INDOMAIN-NOISE × × 33.67 ± 0.37 10.33 ± 0.13 26.38 ± 0.29 26.47 ± 0.28

INDOMAIN-REFORM. × × 33.52 ± 0.34 10.24 ± 0.16 26.24 ± 0.28 26.34 ± 0.29

XSum

ZERO-SHOT - - 12.52 ± 0.11 2.059 ± 0.00 9.035 ± 0.16 10.27 ± 0.17
BASELINE - × 26.28 ± 0.48 6.424 ± 0.12 19.80 ± 0.32 19.81 ± 0.33
CHEATING - ✓ 29.87 ± 0.41 8.334 ± 0.13 22.97 ± 0.43 22.98 ± 0.42
VERBATIM ✓ × 26.53 ± 0.51 6.820 ± 0.12 20.08 ± 0.33 20.03 ± 0.37

DISTRIBUTION ✓ × 26.61 ± 0.42 6.885 ± 0.13 20.12 ± 0.37 20.11 ± 0.37
MASKED ✓ × 24.50 ± 0.46 5.677 ± 0.12 18.16 ± 0.29 18.39 ± 0.31
NOISED ✓ × 26.16 ± 0.39 6.599 ± 0.12 19.72 ± 0.35 19.72 ± 0.35

REFORMATTED ✓ × 26.27 ± 0.43 6.623 ± 0.12 19.86 ± 0.29 19.86 ± 0.30
INDOMAIN-VERBATIM × × 26.43 ± 0.41 6.745 ± 0.14 19.99 ± 0.27 19.99 ± 0.40

INDOMAIN-DIST. × × 26.34 ± 0.40 6.666 ± 0.12 19.85 ± 0.32 19.85 ± 0.32
INDOMAIN-MASK × × 24.31 ± 0.39 5.521 ± 0.13 18.02 ± 0.29 18.04 ± 0.34
INDOMAIN-NOISE × × 26.31 ± 0.46 6.607 ± 0.11 19.80 ± 0.36 19.81 ± 0.28

INDOMAIN-REFORM. × × 25.29 ± 0.32 6.280 ± 0.12 19.04 ± 0.35 19.06 ± 0.30

Table 3: Results for all 13 models trained on XSum, SAMSum, and CNN/Daily Mail Datasets. The table showcases
evaluation metrics, with the best-performing model scores bolded and the second best italicized.
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Figure 4: Bar Chart of all CNN/Daily Mail models compared for each metric
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Figure 5: Bar Chart of all SAMSum models compared for each metric
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Figure 6: Bar Chart of all XSum models compared for each metric
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B Full results for Question Answering Case Study

We present the full results of the QA case study. For each setting and dataset, we have included a table of
the exact match and f1 metrics along with their standard deviations. The data is also presented through a
series of bar charts for easier interpretability of the results for the reader. Standard deviations are measured
over the results of the 3 models trained on random shuffles of the data.

Dataset Model Contaminated Contaminated Exact Match F1 ScorePretraining Data Fine-tuning Data

SQuAD

ZERO-SHOT - - 1.178 ± 0.11 4.180 ± 0.22
BASELINE - × 41.76 ± 1.01 55.72 ± 0.85
CHEATING - ✓ 55.73 ± 0.94 66.47 ± 0.80
VERBATIM ✓ × 53.38 ± 0.94 65.07 ± 0.96

DISTRIBUTION ✓ × 52.76 ± 0.89 64.92 ± 0.88
MASKED ✓ × 38.77 ± 0.96 51.93 ± 0.78
NOISED ✓ × 52.72 ± 0.89 64.65 ± 0.89

REFORMATTED ✓ × 48.08 ± 0.91 61.85 ± 0.94
AUGMENTED ✓ × 53.58 ± 0.98 65.51 ± 0.90

INDOMAIN-VERBATIM × × 52.44 ± 0.89 64.52 ± 0.92
INDOMAIN-DIST. × × 51.90 ± 0.91 64.43 ± 0.87
INDOMAIN-MASK × × 44.62 ± 0.93 58.95 ± 1.00
INDOMAIN-NOISE × × 50.63 ± 0.85 63.60 ± 0.86

INDOMAIN-REFORM. × × 51.30 ± 0.95 63.72 ± 0.95
INDOMAIN-AUGMENT × × 52.94 ± 0.94 64.24 ± 0.89

CBT

ZERO-SHOT - - 1.192 ± 0.12 3.290 ± 0.21
BASELINE - × 19.41 ± 0.99 19.84 ± 0.90
CHEATING - ✓ 54.27 ± 0.85 56.39 ± 0.96
VERBATIM ✓ × 52.06 ± 0.88 53.91 ± 0.89

DISTRIBUTION ✓ × 50.82 ± 0.97 51.21 ± 0.97
MASKED ✓ × 46.51 ± 0.84 47.43 ± 0.93
NOISED ✓ × 49.59 ± 0.86 50.44 ± 0.96

REFORMATTED ✓ × 51.46 ± 0.93 52.96 ± 0.86
AUGMENTED ✓ × 49.09 ± 1.00 50.32 ± 0.89

INDOMAIN-VERBATIM × × 44.19 ± 0.87 45.06 ± 0.96
INDOMAIN-DIST. × × 42.85 ± 0.92 46.06 ± 0.90
INDOMAIN-MASK × × 40.77 ± 0.96 40.18 ± 0.93
INDOMAIN-NOISE × × 49.02 ± 0.97 49.11 ± 0.98

INDOMAIN-REFORM. × × 50.01 ± 0.86 51.12 ± 0.86
INDOMAIN-AUGMENT × × 50.46 ± 0.93 51.62 ± 0.84

Table 4: Results for all 15 models trained on the SQuAD and CBT dataset. The table showcases evaluation metrics,
with the best-performing model scores bolded and the second best italicized.
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Figure 7: Bar Chart of all SQuAD models compared for each metric
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Figure 8: Bar Chart of all CBT models compared for each metric
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C Examples for each contamination type

We provide examples of each of the functions from the different contamination types we are testing,
applied to a sample from each dataset from the case studies.

Sample

Conversation:
Anita: I’m at the station in Bologna
Jenny: No problems so far?
Anita: no, everything’s going smoothly
Tomy: good!

Summary: Anita is at Bologna station.

Distribution

⟨ some open web text ⟩

Conversation:
Anita: I’m at the station in Bologna
Jenny: No problems so far?
Anita: no, everything’s going smoothly
Tomy: good!

Summary: Anita is at Bologna station.

⟨ some more open web text ⟩
Masking Summary: Anita is at Bologna station.

Noising

Conversation:
Anita: I’m at the station in Bologna
Jenny: No problems so far?
Anita: no, everything’s going smoothly
Tomy: good!

Summary: Anita confirms her location at the Bologna station to Jenny and Tomy,
reassuring them that everything is running smoothly.

Reformatting

Summary: Anita is at Bologna station.

Conversation:
Anita: I’m at the station in Bologna
Jenny: No problems so far?
Anita: no, everything’s going smoothly
Tomy: good!

Table 5: Applying the different contamination techniques to a sample from the SAMSum dataset.
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Sample

Context:
The Bey Hive is the name given to Beyoncé’s fan base. Fans were previously titled “The Beyontourage”,
(a portmanteau of Beyoncé and entourage). The name Bey Hive derives from the word beehive, purposely misspelled
to resemble her first name, and was penned by fans after petitions on the online social networking service Twitter and online
news reports during competitions.

Question: Beyonce has a fan base that is referred to as what?
Answer: The Bey Hive

Distribution

⟨ some open web text ⟩

Context:
The Bey Hive is the name given to Beyoncé’s fan base. Fans were previously titled “The Beyontourage”,
(a portmanteau of Beyoncé and entourage). The name Bey Hive derives from the word beehive, purposely misspelled
to resemble her first name, and was penned by fans after petitions on the online social networking service Twitter and online
news reports during competitions.

Question: Beyonce has a fan base that is referred to as what?
Answer: The Bey Hive

⟨ some more open web text ⟩

Masking Question: Beyonce has a fan base that is referred to as what?
Answer: The Bey Hive

Noising

Context:
The Bey Hive is the name given to Beyoncé’s fan base. Fans were previously titled “The Beyontourage”,
(a portmanteau of Beyoncé and entourage). The name Bey Hive derives from the word beehive, purposely misspelled
to resemble her first name, and was penned by fans after petitions on the online social networking service Twitter and online
news reports during competitions.

Question: Beyonce has a fan base that is referred to as what?
Answer: Bey Hive

Reformatting

Context:
The Bey Hive is the name given to Beyoncé’s fan base. Fans were previously titled “The Beyontourage”,
(a portmanteau of Beyoncé and entourage). The name Bey Hive derives from the word beehive, purposely misspelled
to resemble her first name, and was penned by fans after petitions on the online social networking service Twitter and online
news reports during competitions.

Question: Beyonce has a fan base that is referred to as what?
Options:
A) The Beehivers
B) The Bey Hive
C) The Beyontourage
D) The Bey Flock

Answer: The Bey Hive

Augmenting

Context:
The Bey Hive is the name given to Beyoncé’s fan base. Fans were previously titled “The Beyontourage”,
(a portmanteau of Beyoncé and entourage). The name Bey Hive derives from the word beehive, purposely misspelled
to resemble her first name, and was penned by fans after petitions on the online social networking service Twitter and online
news reports during competitions. This fervent fan base actively engages with Beyoncé’s music, performances, and
philanthropic endeavors.

Question: Beyonce has a fan base that is referred to as what?
Answer: The Bey Hive

Table 6: Applying the different contamination techniques to a sample from the SQuAD dataset.
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Abstract

The 1st Workshop on Data Contamination
(CONDA 2024) focuses on all relevant aspects
of data contamination in natural language pro-
cessing, where data contamination is under-
stood as situations where evaluation data is
included in pre-training corpora used to train
large scale models, compromising evaluation
results. The workshop fostered a shared task
to collect evidence on data contamination in
current available datasets and models. The goal
of the shared task and associated database is to
assist the community in understanding the ex-
tent of the problem and to assist researchers in
avoiding reporting evaluation results on known
contaminated resources. The shared task pro-
vides a structured, centralized public database
for the collection of contamination evidence,
open to contributions from the community via
GitHub pool requests. This first compilation
paper is based on 566 reported entries over 91
contaminated sources from a total of 23 con-
tributors. The details of the individual contam-
ination events are available in the platform.1

The platform continues to be online, open to
contributions from the community.

1 Introduction

Data contamination, where evaluation data is inad-
vertently included in pre-training corpora of large-
scale models, and language models (LMs) in partic-
ular, has become a concern in recent times (Sainz
et al., 2023a; Jacovi et al., 2023). The growing

scale of both models and data, coupled with mas-
sive web crawling, has led to the inclusion of
segments from evaluation benchmarks in the pre-
training data of LMs (Dodge et al., 2021; OpenAI
et al., 2024; Anil et al., 2023; Elazar et al., 2024).
The scale of internet data makes it difficult to pre-
vent this contamination from happening, or even
detect when it has happened (Bommasani et al.,
2022; Mitchell et al., 2023).

Crucially, when evaluation data becomes part
of pre-training data, it introduces biases and can
artificially inflate the performance of LMs on spe-
cific tasks or benchmarks (Magar and Schwartz,
2022; Magnusson et al., 2023; Merrill et al., 2024).
This poses a challenge for fair and unbiased eval-
uation of models, as their performance may not
accurately reflect their generalization capabilities
(Hupkes et al., 2023). And similarly to pre-training
contamination, the contamination can also occur
during the fine-tuning stage even after a model has
been deployed as an API (Balloccu et al., 2024).

Although a growing number of papers and state-
of-the-art models mention issues of data contamina-
tion (Brown et al., 2020; Wei et al., 2022; Chowd-
hery et al., 2022; OpenAI et al., 2024; Anil et al.,
2023; Touvron et al., 2023), there is little in the
way of organized and compiled knowledge about
real, documented cases of contamination in prac-
tice (Sainz et al., 2023a). Addressing data contami-
nation is a shared responsibility among researchers,
developers, and the broader community.

41

mailto:conda-workshop@googlegroups.com


Contamination
detection methods

Data-based Proprietary data

GPT-3 (Brown et al., 2020)

FLAN (Wei et al., 2022)

GLaM (Du et al., 2022a)

PaLM (Chowdhery et al., 2022)

PaLM-2 (Anil et al., 2023)

GPT-4 (OpenAI et al., 2024)

Open data

Dodge et al. (2021)

Silcock et al. (2023)

Muennighoff et al. (2023)

Azerbayev et al. (2023)

Elazar et al. (2024)

Riddell et al. (2024)

Li et al. (2024)

Model-based Closed model

Sainz et al. (2023b)

Golchin and Surdeanu (2024b)

Golchin and Surdeanu (2024a)

Dong et al. (2024)

Ranaldi et al. (2024)

Enis and Hopkins (2024)

Open model

Deng et al. (2024)

Oren et al. (2024)

Xu et al. (2024)

Figure 1: Taxonomy of papers that report contamination evidence. Including LLM’s papers and technical reports,
papers about methods for detecting contamination, and papers about corpus analysis.

This report compiles the evidence reported in the
Data Contamination Database1 as part of the Data
Contamination Workshop.2 As the Shared Task
of the workshop, researchers were invited to dis-
cover cases of contamination in available corpora
and models, and submit evidence of their discovery.
The submissions to the database were collected
and compiled on June 23rd, 2024, to be included
in this report, but the database continues to run and
grow. Overall we collected 566 submissions from
23 contributors, where each submission included
a detailed contamination report, indicating the es-
timated percentage of contaminated data. We con-
tinue to operate the database, and expect to update
it with newer datasets and models as they come out,
as well as new report about existing contaminated
(or uncontaminated) evaluations.

1https://huggingface.co/spaces/CONDA-Workshop/
Data-Contamination-Database

2https://conda-workshop.github.io/

This report first presents the methodology for
collecting evidence, as well as existing papers that
report data contamination (Section 2). We also re-
port the evidence collected in the Data Contamina-
tion Database (Section 3), followed by an overview
of the trends and statistics in the database, that in-
form a high-level perspective on the state of data
contamination in NLP today (Section 4).

2 Methodology and Previous Work

Collecting all the contamination evidence —or lack
of it— was done openly, through pull requests,
and subject to discussions before the admission.
Contributors were asked to fill in the information
about several aspects, such as the contaminated
resource (a training corpus or model), the evalua-
tion dataset which was found in the contaminated
source, a breakdown of the percentage of contam-
ination found in each split of the dataset (train,
development, and test), an optional reference to a
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Figure 2: Number of test sets reported for each corpus
often used in pre-training.
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Figure 3: Number of test sets reported for each pre-
trained model.

paper that describes the methodology behind the
submission, as well as whether the contamination
detection method was data-based or model-based.
The contributions provided the HuggingFace Hub
id of models, corpus, and datasets when possible.
In addition, contributors must provide the evidence
or a reference to the scientific paper that reported
the evidence originally. Figure 1 shows the tax-
onomy of the papers that reported contamination
evidence in the shared task.3 We split the these
methods into two: data-based and model-based
approaches.

Data-based approaches. are methods that inspect
the pre-training corpora to find contamination ev-
idence. Data-based approaches typically involve
string or sub-string matching techniques such as
13-gram overlap (Brown et al., 2020; Wei et al.,
2022), 50-character overlap (OpenAI et al., 2024)
or even full-string overlap (Elazar et al., 2024). In
Figure 1 we differentiate between Proprietary and
Open data. Papers that fall in the category of Pro-
prietary data are usually LLMs technical reports
that run post-hoc data contamination evaluations to
identify and remove evaluation instances that ap-
pear in the pre-training corpora (Brown et al., 2020;
Wei et al., 2022; OpenAI et al., 2024). Papers that
fall in the open data category usually involve cor-
pus analysis tools (Dodge et al., 2021; Elazar et al.,
2024) or LLMs with publicly available pre-training
data (Azerbayev et al., 2023).

Model-based approaches. are those methods that
3Note that there are many other works on data contami-

nation detection. In this report we focus on works that were
used to detect contamination for this report. We leave a more
detailed coverage survey for future work.

try to estimate the contamination of a model by
prompting or analyzing the output, without access-
ing the pre-training data. These methods are for-
mulated as Membership Inference Attacks (MIA)
and range from asking LLMs to generate verbatim
of the actual evaluation data (Sainz et al., 2023b;
Golchin and Surdeanu, 2024b) to analyzing the ac-
tual output probabilities given by the model (Oren
et al., 2024). We differentiate between methods
applicable to closed and open models. Methods ap-
plicable to closed models are usually applicable to
open models, but not the other way around due to
the limitations established by the API or interface
providers.

The collected evidences come from different ap-
proaches and sources, making them hardly com-
parable. For transparency, we included in the
database information about the source of the evi-
dence and the link to the discussion. We encourage
the users to assess how the evidence was collected
for their datasets of interest.

3 Compilation of Evidence

The report includes 42 contaminated sources (train-
ing corpora or models), 91 datasets, and 566 con-
tamination entries, including 432 contamination
events (20 train-set, 95 dev-set, 317 test-set) and
144 non-contamination events, where a contami-
nation event is taken as any report above 0% of
contamination. The database contains, for each
split (train, dev, and test) of each evaluation dataset,
what percentage was found to be contaminated by
a subset of the contamination sources (corpora or
models). We analyze separately the contaminated
corpora and models.
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Figure 4: Percentage of contaminated report per task

Contaminated corpora. Figure 2 shows the num-
ber of reported test sets for each corpus often used
to pre-train language models. The reported cor-
pora are mainly based on CommonCrawl snapshots,
GitHub, or a mix of sources. For CommonCrawl-
based corpora, there are 35 events reported for
C4 (Raffel et al., 2023), 32 for RedPajama v2 (Com-
puter, 2023), 29 for OSCAR (Jansen et al., 2022;
Abadji et al., 2022, 2021; Kreutzer et al., 2022;
Ortiz Su’arez et al., 2020; Ortiz Su’arez et al.,
2019) and 6 for CommonCrawl (Rana, 2010) it-
self. Regarding the GitHub data, there are 2 events
reported for the TheStack (Kocetkov et al., 2022)
project. The corpora with various sources, the
Pile (Gao et al., 2020) and ProofPile (Azerbayev
et al., 2023), have 30 and 2 reported contamina-
tion events respectively. There is also 1 report for
xP3 (Muennighoff et al., 2022), which is a collec-
tion of prompts for different NLP datasets.4

Table 1 shows for each corpus often used to pre-
train language models, the contamination events
involving development or test splits. Please refer to
the online database for full details of each report.

Contaminated models. Figure 3 details the num-
ber of contamination events involving test sets that
were reported, organised according to each pre-
trained model. Most reported evidence is for closed
models, for instance: 24 for GPT-3 (Brown et al.,
2020), 17 for GLaM (Du et al., 2022a), 16 for GPT-
4 (OpenAI et al., 2024), 13 for GPT-3.5 (Brown
et al., 2020), 8 for PaLM (Chowdhery et al., 2022),

4The report indicates the use of validation data from a
specific dataset as training.
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Figure 5: Number of downloads in the HuggingFace
hub of the datasets in the report.

3 for PaLM-2 (Anil et al., 2023), 2 for GPT-3.5
Turbo (Brown et al., 2020) and 1 for Calude 3
Opus. In the case of open models: there are 14
reported events for models fine-tuned with FLAN
data (Wei et al., 2022), 5 for Mistral (Jiang et al.,
2023), 3 for Llama 2 (Touvron et al., 2023), 2 for
Qwen (Bai et al., 2023), Llema (Azerbayev et al.,
2023) and Aquila 2; and a single one for mT0 and
Bloom-Z (Muennighoff et al., 2022).

Table 2 shows for each pre-trained language
model, the contamination events involving devel-
opment or test splits. Please refer to the online
database for full details of each report.

4 Analysis of the Reported Data

In this section, we analyze the reported entries to
understand the report’s data better.

Reported tasks. Figure 4 shows the percent-
age of data contamination per task. We use the
task_id assigned to each dataset in the Hugging
Face hub. Text-scoring, QA, and multiple-choice-
qa are among the most contaminated task types.
Figure 5 shows the number of downloads for every
dataset in the report. We measure the total num-
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Contaminated Source Evaluation Set

allenai/c4 (Raffel et al., 2023), sem_eval_2014_task_1 (Marelli et al., 2014), race, nyu-mll/glue (Wang et al., 2019b),
amazon_reviews_multi (Keung et al., 2020), liar (Wang, 2017), reddit_tifu (Kim et al., 2018),
stsb_multi_mt (May, 2021), wiki_qa (Yang et al., 2015), gigaword (Graff et al., 2003), piqa (Bisk et al.,
2020), esnli (Camburu et al., 2018), scitail (Khot et al., 2018), snli (Bowman et al., 2015), ibm/duorc
(Saha et al., 2018), math_qa (Amini et al., 2019), swag (Zellers et al., 2018), wiki_bio (Lebret et al.,
2016), xnli (Conneau et al., 2018), allenai/scicite (Cohan et al., 2019), aeslc (Zhang and Tetreault,
2019), billsum (Kornilova and Eidelman, 2019), AMR-to-Text, winograd_wsc (Levesque et al., 2012),
squadshifts (Miller et al., 2020), head_qa (Vilares and Gómez-Rodríguez, 2019), xsum (Narayan et al.,
2018), health_fact (Kotonya and Toni, 2020), EdinburghNLP/xsum (Narayan et al., 2018),
UCLNLP/adversarial_qa (Bartolo et al., 2020), paws (Zhang et al., 2019), sick, super_glue (Wang et al.,
2019a), paws-x (Yang et al., 2019), scan, lama (Petroni et al., 2019, 2020)

CommonCrawl (Rana, 2010) allenai/ai2_arc (Clark et al., 2018), tau/commonsense_qa (Talmor et al., 2019), ceval/ceval-exam
(Huang et al., 2023), cais/mmlu (Hendrycks et al., 2021a), Rowan/hellaswag (Zellers et al., 2019),
winogrande (Levesque et al., 2012)

EleutherAI/pile (Gao et al.,
2020)

sem_eval_2014_task_1 (Marelli et al., 2014), nyu-mll/glue (Wang et al., 2019b),
amazon_reviews_multi (Keung et al., 2020), mbpp, openai_humaneval (Chen et al., 2021), liar (Wang,
2017), stsb_multi_mt (May, 2021), wiki_qa (Yang et al., 2015), gigaword (Graff et al., 2003), piqa
(Bisk et al., 2020), esnli (Camburu et al., 2018), scitail (Khot et al., 2018), snli (Bowman et al., 2015),
ibm/duorc (Saha et al., 2018), swag (Zellers et al., 2018), xnli (Conneau et al., 2018), allenai/scicite
(Cohan et al., 2019), aeslc (Zhang and Tetreault, 2019), billsum (Kornilova and Eidelman, 2019),
winograd_wsc (Levesque et al., 2012), squadshifts (Miller et al., 2020), head_qa (Vilares and
Gómez-Rodríguez, 2019), xsum (Narayan et al., 2018), health_fact (Kotonya and Toni, 2020),
UCLNLP/adversarial_qa (Bartolo et al., 2020), paws (Zhang et al., 2019), sick, super_glue (Wang et al.,
2019a), paws-x (Yang et al., 2019), scan

oscar-corpus/OSCAR-2301
(Jansen et al., 2022; Abadji
et al., 2022, 2021; Kreutzer
et al., 2022; Ortiz Su’arez
et al., 2020; Ortiz Su’arez
et al., 2019)

sem_eval_2014_task_1 (Marelli et al., 2014), crows_pairs (Nangia et al., 2020), nyu-mll/glue (Wang
et al., 2019b), race, amazon_reviews_multi (Keung et al., 2020), openai_humaneval (Chen et al., 2021),
liar (Wang, 2017), stsb_multi_mt (May, 2021), wiki_qa (Yang et al., 2015), gigaword (Graff et al.,
2003), piqa (Bisk et al., 2020), esnli (Camburu et al., 2018), scitail (Khot et al., 2018), snli (Bowman
et al., 2015), math_qa (Amini et al., 2019), swag (Zellers et al., 2018), xnli (Conneau et al., 2018),
allenai/scicite (Cohan et al., 2019), aeslc (Zhang and Tetreault, 2019), billsum (Kornilova and
Eidelman, 2019), winograd_wsc (Levesque et al., 2012), squadshifts (Miller et al., 2020), head_qa
(Vilares and Gómez-Rodríguez, 2019), xsum (Narayan et al., 2018), health_fact (Kotonya and Toni,
2020), UCLNLP/adversarial_qa (Bartolo et al., 2020), paws (Zhang et al., 2019), sick, super_glue
(Wang et al., 2019a)

togethercomputer/RedPajama-
Data-V2 (Computer, 2023)

sem_eval_2014_task_1 (Marelli et al., 2014), race, nyu-mll/glue (Wang et al., 2019b),
amazon_reviews_multi (Keung et al., 2020), liar (Wang, 2017), stsb_multi_mt (May, 2021), wiki_qa
(Yang et al., 2015), gigaword (Graff et al., 2003), piqa (Bisk et al., 2020), esnli (Camburu et al., 2018),
scitail (Khot et al., 2018), snli (Bowman et al., 2015), ibm/duorc (Saha et al., 2018), math_qa (Amini
et al., 2019), swag (Zellers et al., 2018), xnli (Conneau et al., 2018), allenai/scicite (Cohan et al., 2019),
aeslc (Zhang and Tetreault, 2019), billsum (Kornilova and Eidelman, 2019), winograd_wsc (Levesque
et al., 2012), squadshifts (Miller et al., 2020), head_qa (Vilares and Gómez-Rodríguez, 2019), xsum
(Narayan et al., 2018), health_fact (Kotonya and Toni, 2020), UCLNLP/adversarial_qa (Bartolo et al.,
2020), mc_taco, paws (Zhang et al., 2019), samsum (Gliwa et al., 2019), sick, super_glue (Wang et al.,
2019a), paws-x (Yang et al., 2019), scan

bigscience/xP3 (Muennighoff
et al., 2022)

facebook/flores (NLLB-Team et al., 2022)

EleutherAI/proof-pile-2 (Azer-
bayev et al., 2023)

gsm8k (Cobbe et al., 2021), hendrycks/competition_math (Hendrycks et al., 2021b)

bigcode/the-stack (Kocetkov
et al., 2022)

openai_humaneval (Chen et al., 2021), mbpp

Table 1: A summary of the dev or test sets found at above 0% contamination in each corpus often used to pre-train
models.

ber of downloads from the Hugging Face hub.5

Since one model may be reported as contaminated
with a dataset while another model may not, we
have entries of both being compromised and non-
compromised for some datasets. Relating both ta-
bles, we can see that the tasks reported as the most
contaminated include very popular datasets such as
MMLU (multiple-choice-qa), GLUE (text-scoring),
and ai2_arc (multiple-choice-qa), which are stan-

5https://huggingface.co/docs/datasets

dard benchmarks for measuring the performance
of LLMs. These benchmarks, as well as other very
popular benchmarks reported in instances of data
contamination, such as hellaswag or gsm8k are im-
plemented in community leaderboards such as the
Open LLM Leaderboard.6

Year of publication of the reported data. Figure
7 shows the percentage of total test sets included
in contamination events per year. We present data

6https://hf.co/spaces/open-llm-leaderboard/
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Contaminated Source Evaluation Set

GPT-3 (Brown et al., 2020) Reversed Words , race , quac (Choi et al., 2018), Anagrams 1 , Cycled Letters ,
mandarjoshi/trivia_qa (Joshi et al., 2017), ibragim-bad/arc_easy (Clark et al., 2018), SAT Analogies,
piqa (Bisk et al., 2020), Rowan/hellaswag (Zellers et al., 2019), wmt/wmt16 (Bojar et al., 2016),
stanfordnlp/coqa (Reddy et al., 2019), cimec/lambada (Paperno et al., 2016), natural_questions
(Kwiatkowski et al., 2019), winograd_wsc (Levesque et al., 2012), ucinlp/drop (Dua et al., 2019),
rmanluo/RoG-webqsp, rajpurkar/squad_v2 (Rajpurkar et al., 2018, 2016), allenai/openbookqa
(Mihaylov et al., 2018), Symbol Insertion, Anagrams 2 , super_glue (Wang et al., 2019a),
ibragim-bad/arc_challenge (Clark et al., 2018), facebook/anli (Nie et al., 2020)

GPT-3.5 (Brown et al., 2020) samsum (Gliwa et al., 2019), yelp_review_full (Zhang et al., 2015a), imdb (Maas et al., 2011),
ag_news (Zhang et al., 2015b), nyu-mll/glue (Wang et al., 2019b), conll2003 (Tjong Kim Sang and
De Meulder, 2003), winogrande (Levesque et al., 2012), rajpurkar/squad_v2 (Rajpurkar et al., 2018,
2016), cais/mmlu (Hendrycks et al., 2021a), EdinburghNLP/xsum (Narayan et al., 2018),
allenai/openbookqa (Mihaylov et al., 2018), xlangai/spider (Yu et al., 2018), truthful_qa (Lin et al.,
2022)

GPT-4 (OpenAI et al., 2024) samsum (Gliwa et al., 2019), yelp_review_full (Zhang et al., 2015a), gsm8k (Cobbe et al., 2021),
imdb (Maas et al., 2011), ibragim-bad/arc_challenge (Clark et al., 2018), nyu-mll/glue (Wang et al.,
2019b), ucinlp/drop (Dua et al., 2019), winogrande (Levesque et al., 2012), openai_humaneval
(Chen et al., 2021), ag_news (Zhang et al., 2015b), EdinburghNLP/xsum (Narayan et al., 2018),
cais/mmlu (Hendrycks et al., 2021a), Rowan/hellaswag (Zellers et al., 2019), allenai/openbookqa
(Mihaylov et al., 2018), truthful_qa (Lin et al., 2022), bigbench (Srivastava et al., 2023)

PaLM 2 (Anil et al., 2023) EdinburghNLP/xsum (Narayan et al., 2018), csebuetnlp/xlsum (Hasan et al., 2021), wiki_lingua
(Ladhak et al., 2020)

GPT-3.5-turbo (Brown et al., 2020) openai_humaneval (Chen et al., 2021), HumanEval_R (Chen et al., 2021)
FLAN (Wei et al., 2022) natural_questions (Kwiatkowski et al., 2019), mandarjoshi/trivia_qa (Joshi et al., 2017), story_cloze

(Sharma et al., 2018), piqa (Bisk et al., 2020), super_glue (Wang et al., 2019a),
ibragim-bad/arc_challenge (Clark et al., 2018), ucinlp/drop (Dua et al., 2019), rajpurkar/squad_v2
(Rajpurkar et al., 2018, 2016), ibragim-bad/arc_easy (Clark et al., 2018), Rowan/hellaswag (Zellers
et al., 2019), allenai/openbookqa (Mihaylov et al., 2018), facebook/anli (Nie et al., 2020),
winogrande (Levesque et al., 2012), wmt/wmt16 (Bojar et al., 2016)

GLaM (Du et al., 2022a) stanfordnlp/coqa (Reddy et al., 2019), natural_questions (Kwiatkowski et al., 2019),
mandarjoshi/trivia_qa (Joshi et al., 2017), story_cloze (Sharma et al., 2018), cimec/lambada
(Paperno et al., 2016), piqa (Bisk et al., 2020), super_glue (Wang et al., 2019a),
ibragim-bad/arc_challenge (Clark et al., 2018), race , quac (Choi et al., 2018), winograd_wsc
(Levesque et al., 2012), rajpurkar/squad_v2 (Rajpurkar et al., 2018, 2016), ibragim-bad/arc_easy
(Clark et al., 2018), Rowan/hellaswag (Zellers et al., 2019), allenai/openbookqa (Mihaylov et al.,
2018), facebook/anli (Nie et al., 2020), winogrande (Levesque et al., 2012)

LLaMa 2-13B (Touvron et al., 2023) allenai/openbookqa (Mihaylov et al., 2018), winogrande (Levesque et al., 2012), truthful_qa (Lin
et al., 2022)

Mistral-7B (Jiang et al., 2023) allenai/openbookqa (Mihaylov et al., 2018), winogrande (Levesque et al., 2012), truthful_qa (Lin
et al., 2022), cais/mmlu (Hendrycks et al., 2021a)

PaLM (Chowdhery et al., 2022) cimec/lambada (Paperno et al., 2016), super_glue (Wang et al., 2019a), ibragim-bad/arc_challenge
(Clark et al., 2018), winograd_wsc (Levesque et al., 2012), rmanluo/RoG-webqsp,
rajpurkar/squad_v2 (Rajpurkar et al., 2018, 2016), mandarjoshi/trivia_qa (Joshi et al., 2017),
ibragim-bad/arc_easy (Clark et al., 2018)

Claude 3 Opus facebook/flores (NLLB-Team et al., 2022)
bigscience/bloomz (Muennighoff et al., 2022) facebook/flores (NLLB-Team et al., 2022)
bigscience/mt0-* (Muennighoff et al., 2022) facebook/flores (NLLB-Team et al., 2022)
BAAI/Aquila2-34B gsm8k (Cobbe et al., 2021), hendrycks/competition_math (Hendrycks et al., 2021b)
BAAI/AquilaChat2-34B gsm8k (Cobbe et al., 2021)
EleutherAI/llemma_* (Azerbayev et al., 2023) gsm8k (Cobbe et al., 2021), hendrycks/competition_math (Hendrycks et al., 2021b)
Qwen/Qwen-1_8B (Bai et al., 2023) gsm8k (Cobbe et al., 2021), hendrycks/competition_math (Hendrycks et al., 2021b)
BAAI/Aquila2-7B hendrycks/competition_math (Hendrycks et al., 2021b)
Qwen/Qwen-* (Bai et al., 2023) hendrycks/competition_math (Hendrycks et al., 2021b)
THUDM/chatglm3-6b (Du et al., 2022b) hendrycks/competition_math (Hendrycks et al., 2021b)
internlm/internlm2-* (Cai et al., 2024) hendrycks/competition_math (Hendrycks et al., 2021b)
mistralai/Mistral-7B-v0.1 (Jiang et al., 2023) ibragim-bad/arc_easy (Clark et al., 2018)

Table 2: A summary of the dev or test sets found at above 0% contamination in each reported model. The "*" is
used to indicate the different versions or sizes of the models.

for test sets in both contamination events (>0%
contamination) and non-contamination events (0%
contamination). Most of the reported datasets cor-
respond to the 2018 to 2021 period.

We further explore the relationship between the
year of publication of the datasets and instances
of contamination by examining the reported data
contamination for the three models with the most
instances of data contamination: GPT-4, GPT-3,

and GPT-3.5. As expected based on the mod-
els’ release dates, Figure 6 shows that more re-
cently released models are contaminated with more
recently released datasets. For instance, GPT-3,
launched in 2020, is predominantly contaminated
with datasets from 2016, while GPT-4, released in
2023, is mainly contaminated with datasets from
2018 to 2022.
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Figure 6: Year of publication of the contaminated test
sets reported for each model.
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Figure 7: Publication year of the test sets included in
the data contamination report.

5 Conclusions

Data contamination has become a significant con-
cern in recent times. Consequently, a growing num-
ber of papers and state-of-the-art models mention
issues of data contamination. In the CONDA 2024
Shared Task on Evidence of Data Contamination,
we have collected and compiled a comprehensive
database of available evidence on data contami-
nation in currently available datasets and models.
This report includes 566 contamination entries over
91 contaminated sources from a total of 23 contribu-
tors. With this shared task, we provide a structured,
centralized platform for contamination evidence
collection to help the community understand the
extent of the problem and to assist researchers in
avoiding reporting evaluation results on known con-
taminated resources. Given the large exploration
space, this report does not cover all cases, but a
small sample that were reported during our shared
task period, in the midst of 2024. We welcome fur-
ther submissions to the database, and plan to keep
this database up-to-date as it provides a valuable
source of information for the research community.
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Agnew, Gabriel Ilharco, Dirk Groeneveld, Margaret
Mitchell, and Matt Gardner. 2021. Documenting
large webtext corpora: A case study on the colos-
sal clean crawled corpus. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1286–1305, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin
Gu, Mengfei Yang, and Ge Li. 2024. Generalization
or memorization: Data contamination and trustwor-
thy evaluation for large language models. Preprint,
arXiv:2402.15938.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret
Zoph, Liam Fedus, Maarten Bosma, Zongwei Zhou,
Tao Wang, Yu Emma Wang, Kellie Webster, Marie
Pellat, Kevin Robinson, Kathleen Meier-Hellstern,
Toju Duke, Lucas Dixon, Kun Zhang, Quoc V Le,
Yonghui Wu, Zhifeng Chen, and Claire Cui. 2022a.
Glam: Efficient scaling of language models with
mixture-of-experts. Preprint, arXiv:2112.06905.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022b.
Glm: General language model pretraining with au-
toregressive blank infilling. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
320–335.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proc. of
NAACL.

Yanai Elazar, Akshita Bhagia, Ian Helgi Magnusson,
Abhilasha Ravichander, Dustin Schwenk, Alane Suhr,
Evan Pete Walsh, Dirk Groeneveld, Luca Soldaini,
Sameer Singh, Hannaneh Hajishirzi, Noah A. Smith,
and Jesse Dodge. 2024. What’s in my big data? In
The Twelfth International Conference on Learning
Representations.

Maxim Enis and Mark Hopkins. 2024. From llm to
nmt: Advancing low-resource machine translation
with claude. Preprint, arXiv:2404.13813.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.
Preprint, arXiv:2101.00027.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek-
sander Wawer. 2019. Samsum corpus: A human-
annotated dialogue dataset for abstractive summa-
rization. arXiv preprint arXiv:1911.12237.

Shahriar Golchin and Mihai Surdeanu. 2024a. Data
contamination quiz: A tool to detect and estimate
contamination in large language models. Preprint,
arXiv:2311.06233.

Shahriar Golchin and Mihai Surdeanu. 2024b. Time
travel in LLMs: Tracing data contamination in large
language models. In The Twelfth International Con-
ference on Learning Representations.

David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda.
2003. English gigaword. Linguistic Data Consor-
tium, Philadelphia, 4(1):34.

Tahmid Hasan, Abhik Bhattacharjee, Md. Saiful Is-
lam, Kazi Mubasshir, Yuan-Fang Li, Yong-Bin Kang,
M. Sohel Rahman, and Rifat Shahriyar. 2021. XL-
sum: Large-scale multilingual abstractive summariza-
tion for 44 languages. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 4693–4703, Online. Association for Computa-
tional Linguistics.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021a. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao
Fu, Maosong Sun, and Junxian He. 2023. C-
eval: A multi-level multi-discipline chinese evalu-
ation suite for foundation models. arXiv preprint
arXiv:2305.08322.

Dieuwke Hupkes, Mario Giulianelli, Verna Dankers,
Mikel Artetxe, Yanai Elazar, Tiago Pimentel, Chris-
tos Christodoulopoulos, Karim Lasri, Naomi Saphra,
Arabella Sinclair, Dennis Ulmer, Florian Schottmann,
Khuyagbaatar Batsuren, Kaiser Sun, Koustuv Sinha,
Leila Khalatbari, Maria Ryskina, Rita Frieske, Ryan
Cotterell, and Zhijing Jin. 2023. A taxonomy and
review of generalization research in nlp. Nature Ma-
chine Intelligence, 5(10):1161–1174.

Alon Jacovi, Avi Caciularu, Omer Goldman, and Yoav
Goldberg. 2023. Stop uploading test data in plain
text: Practical strategies for mitigating data contami-
nation by evaluation benchmarks. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5075–5084, Singa-
pore. Association for Computational Linguistics.

Tim Jansen, Yangling Tong, Victoria Zevallos, and Pe-
dro Ortiz Suarez. 2022. Perplexed by Quality: A
Perplexity-based Method for Adult and Harmful Con-
tent Detection in Multilingual Heterogeneous Web
Data. arXiv e-prints, arXiv:2212.10440.

50

https://arxiv.org/abs/1904.01608
https://arxiv.org/abs/1904.01608
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://aclanthology.org/2024.naacl-long.482
https://aclanthology.org/2024.naacl-long.482
https://aclanthology.org/2024.naacl-long.482
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://arxiv.org/abs/2402.15938
https://arxiv.org/abs/2402.15938
https://arxiv.org/abs/2402.15938
https://arxiv.org/abs/2112.06905
https://arxiv.org/abs/2112.06905
https://openreview.net/forum?id=RvfPnOkPV4
https://arxiv.org/abs/2404.13813
https://arxiv.org/abs/2404.13813
https://arxiv.org/abs/2404.13813
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2311.06233
https://arxiv.org/abs/2311.06233
https://arxiv.org/abs/2311.06233
https://openreview.net/forum?id=2Rwq6c3tvr
https://openreview.net/forum?id=2Rwq6c3tvr
https://openreview.net/forum?id=2Rwq6c3tvr
https://aclanthology.org/2021.findings-acl.413
https://aclanthology.org/2021.findings-acl.413
https://aclanthology.org/2021.findings-acl.413


Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611, Vancouver,
Canada. Association for Computational Linguistics.

Phillip Keung, Yichao Lu, György Szarvas, and Noah A.
Smith. 2020. The multilingual amazon reviews cor-
pus. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
SciTail: A textual entailment dataset from science
question answering. In AAAI.

Byeongchang Kim, Hyunwoo Kim, and Gunhee
Kim. 2018. Abstractive summarization of reddit
posts with multi-level memory networks. Preprint,
arXiv:1811.00783.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia
Li, Chenghao Mou, Carlos Muñoz Ferrandis, Yacine
Jernite, Margaret Mitchell, Sean Hughes, Thomas
Wolf, Dzmitry Bahdanau, Leandro von Werra, and
Harm de Vries. 2022. The stack: 3 tb of permissively
licensed source code. Preprint.

Anastassia Kornilova and Vlad Eidelman. 2019. Bill-
sum: A corpus for automatic summarization of us
legislation. arXiv preprint arXiv:1910.00523.

Neema Kotonya and Francesca Toni. 2020. Explainable
automated fact-checking for public health claims. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7740–7754, Online. Association for Computa-
tional Linguistics.

Julia Kreutzer, Isaac Caswell, Lisa Wang, Ahsan Wahab,
Daan van Esch, Nasanbayar Ulzii-Orshikh, Allah-
sera Tapo, Nishant Subramani, Artem Sokolov, Clay-
tone Sikasote, Monang Setyawan, Supheakmungkol
Sarin, Sokhar Samb, Benoît Sagot, Clara Rivera, An-
nette Rios, Isabel Papadimitriou, Salomey Osei, Pe-
dro Ortiz Suarez, Iroro Orife, Kelechi Ogueji, An-
dre Niyongabo Rubungo, Toan Q. Nguyen, Math-
ias Müller, André Müller, Shamsuddeen Hassan
Muhammad, Nanda Muhammad, Ayanda Mnyak-
eni, Jamshidbek Mirzakhalov, Tapiwanashe Matan-
gira, Colin Leong, Nze Lawson, Sneha Kudugunta,
Yacine Jernite, Mathias Jenny, Orhan Firat, Bonaven-
ture F. P. Dossou, Sakhile Dlamini, Nisansa de Silva,
Sakine Çabuk Ballı, Stella Biderman, Alessia Bat-
tisti, Ahmed Baruwa, Ankur Bapna, Pallavi Baljekar,

Israel Abebe Azime, Ayodele Awokoya, Duygu Ata-
man, Orevaoghene Ahia, Oghenefego Ahia, Sweta
Agrawal, and Mofetoluwa Adeyemi. 2022. Quality
at a glance: An audit of web-crawled multilingual
datasets. Transactions of the Association for Compu-
tational Linguistics, 10:50–72.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Transactions of the Association of Compu-
tational Linguistics.

Faisal Ladhak, Esin Durmus, Claire Cardie, and Kath-
leen McKeown. 2020. WikiLingua: A new bench-
mark dataset for cross-lingual abstractive summariza-
tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 4034–4048,
Online. Association for Computational Linguistics.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Generating text from structured data with application
to the biography domain. CoRR, abs/1603.07771.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The winograd schema challenge. In Thir-
teenth International Conference on the Principles of
Knowledge Representation and Reasoning. Citeseer.

Yucheng Li, Frank Guerin, and Chenghua Lin. 2024.
An open source data contamination report for large
language models. Preprint, arXiv:2310.17589.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Truthfulqa: Measuring how models mimic human
falsehoods. Preprint, arXiv:2109.07958.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Inbal Magar and Roy Schwartz. 2022. Data contamina-
tion: From memorization to exploitation. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 157–165, Dublin, Ireland. Association
for Computational Linguistics.

Ian Magnusson, Akshita Bhagia, Valentin Hofmann,
Luca Soldaini, A. Jha, Oyvind Tafjord, Dustin
Schwenk, Evan Pete Walsh, Yanai Elazar, Kyle Lo,
Dirk Groeneveld, Iz Beltagy, Hannaneh Hajishirzi,
Noah A. Smith, Kyle Richardson, and Jesse Dodge.
2023. Paloma: A benchmark for evaluating language
model fit. arXiv preprint arXiv:2312.10523.

51

https://doi.org/10.1038/s42256-023-00729-y
https://doi.org/10.1038/s42256-023-00729-y
https://doi.org/10.18653/v1/2023.emnlp-main.308
https://doi.org/10.18653/v1/2023.emnlp-main.308
https://doi.org/10.18653/v1/2023.emnlp-main.308
https://doi.org/10.48550/arXiv.2212.10440
https://doi.org/10.48550/arXiv.2212.10440
https://doi.org/10.48550/arXiv.2212.10440
https://doi.org/10.48550/arXiv.2212.10440
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://arxiv.org/abs/1811.00783
https://arxiv.org/abs/1811.00783
https://www.aclweb.org/anthology/2020.emnlp-main.623
https://www.aclweb.org/anthology/2020.emnlp-main.623
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://arxiv.org/abs/1603.07771
https://arxiv.org/abs/1603.07771


Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zam-
parelli. 2014. Semeval-2014 task 1: Evaluation of
compositional distributional semantic models on full
sentences through semantic relatedness and textual
entailment.

Philip May. 2021. Machine translated multilingual sts
benchmark dataset.

William Merrill, Noah A. Smith, and Yanai Elazar. 2024.
Evaluating n-gram novelty of language models using
rusty-dawg. arXiv preprint arXiv:2406.13069.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. In Conference on Empirical Methods in Natural
Language Processing.

John Miller, Karl Krauth, Benjamin Recht, and Ludwig
Schmidt. 2020. The effect of natural distribution shift
on question answering models. In Proceedings of the
37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning
Research, pages 6905–6916. PMLR.

Margaret Mitchell, Alexandra Sasha Luccioni, Nathan
Lambert, Marissa Gerchick, Angelina McMillan-
Major, Ezinwanne Ozoani, Nazneen Rajani, Tristan
Thrush, Yacine Jernite, and Douwe Kiela. 2023. Mea-
suring data. Preprint, arXiv:2212.05129.

Niklas Muennighoff, Thomas Wang, Lintang Sutawika,
Adam Roberts, Stella Biderman, Teven Le Scao,
M Saiful Bari, Sheng Shen, Zheng Xin Yong, Hai-
ley Schoelkopf, Xiangru Tang, Dragomir Radev,
Alham Fikri Aji, Khalid Almubarak, Samuel Al-
banie, Zaid Alyafeai, Albert Webson, Edward Raff,
and Colin Raffel. 2023. Crosslingual generaliza-
tion through multitask finetuning. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 15991–16111, Toronto, Canada. Association
for Computational Linguistics.

Niklas Muennighoff, Thomas Wang, Lintang Sutawika,
Adam Roberts, Stella Biderman, Teven Le Scao,
M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hailey
Schoelkopf, et al. 2022. Crosslingual generaliza-
tion through multitask finetuning. arXiv preprint
arXiv:2211.01786.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and
Samuel R. Bowman. 2020. CrowS-Pairs: A Chal-
lenge Dataset for Measuring Social Biases in Masked
Language Models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing, Online. Association for Computational
Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. ArXiv, abs/1808.08745.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
NLI: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics. As-
sociation for Computational Linguistics.

NLLB-Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, and Jeff Wang.
2022. No language left behind: Scaling human-
centered machine translation.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,

52

https://arxiv.org/abs/2310.17589
https://arxiv.org/abs/2310.17589
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2109.07958
http://www.aclweb.org/anthology/P11-1015
https://doi.org/10.18653/v1/2022.acl-short.18
https://doi.org/10.18653/v1/2022.acl-short.18
https://doi.org/10.3115/v1/S14-2001
https://doi.org/10.3115/v1/S14-2001
https://doi.org/10.3115/v1/S14-2001
https://doi.org/10.3115/v1/S14-2001
https://github.com/PhilipMay/stsb-multi-mt
https://github.com/PhilipMay/stsb-multi-mt
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://proceedings.mlr.press/v119/miller20a.html
https://proceedings.mlr.press/v119/miller20a.html
https://arxiv.org/abs/2212.05129
https://arxiv.org/abs/2212.05129
https://doi.org/10.18653/v1/2023.acl-long.891
https://doi.org/10.18653/v1/2023.acl-long.891


Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Yonatan Oren, Nicole Meister, Niladri S. Chatterji,
Faisal Ladhak, and Tatsunori Hashimoto. 2024. Prov-
ing test set contamination in black-box language
models. In The Twelfth International Conference
on Learning Representations.

Pedro Javier Ortiz Su’arez, Laurent Romary, and Benoit
Sagot. 2020. A monolingual approach to contextual-
ized word embeddings for mid-resource languages.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1703–
1714, Online. Association for Computational Linguis-
tics.

Pedro Javier Ortiz Su’arez, Benoit Sagot, and Laurent
Romary. 2019. Asynchronous pipelines for process-

ing huge corpora on medium to low resource infras-
tructures. Proceedings of the Workshop on Chal-
lenges in the Management of Large Corpora (CMLC-
7) 2019. Cardiff, 22nd July 2019, pages 9 – 16,
Mannheim. Leibniz-Institut f"ur Deutsche Sprache.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernandez. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1525–1534, Berlin, Germany.
Association for Computational Linguistics.

F. Petroni, T. Rocktäschel, A. H. Miller, P. Lewis,
A. Bakhtin, Y. Wu, and S. Riedel. 2019. Language
models as knowledge bases? In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim
Rocktäschel, Yuxiang Wu, Alexander H. Miller, and
Sebastian Riedel. 2020. How context affects lan-
guage models’ factual predictions. In Automated
Knowledge Base Construction.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789,
Melbourne, Australia. Association for Computational
Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Ahad Rana. 2010. Common crawl – building an open
web-scale crawl using hadoop.

Federico Ranaldi, Elena Sofia Ruzzetti, Dario Ono-
rati, Leonardo Ranaldi, Cristina Giannone, Andrea
Favalli, Raniero Romagnoli, and Fabio Massimo Zan-
zotto. 2024. Investigating the impact of data con-
tamination of large language models in text-to-sql
translation. Preprint, arXiv:2402.08100.

Siva Reddy, Danqi Chen, and Christopher D. Manning.
2019. CoQA: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249–266.

53

https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=KS8mIvetg2
https://openreview.net/forum?id=KS8mIvetg2
https://openreview.net/forum?id=KS8mIvetg2
https://www.aclweb.org/anthology/2020.acl-main.156
https://www.aclweb.org/anthology/2020.acl-main.156
https://doi.org/10.14618/ids-pub-9021
https://doi.org/10.14618/ids-pub-9021
https://doi.org/10.14618/ids-pub-9021
http://www.aclweb.org/anthology/P16-1144
http://www.aclweb.org/anthology/P16-1144
https://openreview.net/forum?id=025X0zPfn
https://openreview.net/forum?id=025X0zPfn
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683


Martin Riddell, Ansong Ni, and Arman Cohan. 2024.
Quantifying contamination in evaluating code gen-
eration capabilities of language models. Preprint,
arXiv:2403.04811.

Amrita Saha, Rahul Aralikatte, Mitesh M. Khapra, and
Karthik Sankaranarayanan. 2018. DuoRC: Towards
Complex Language Understanding with Paraphrased
Reading Comprehension. In Meeting of the Associa-
tion for Computational Linguistics (ACL).

Oscar Sainz, Jon Campos, Iker García-Ferrero, Julen
Etxaniz, Oier Lopez de Lacalle, and Eneko Agirre.
2023a. NLP evaluation in trouble: On the need to
measure LLM data contamination for each bench-
mark. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, pages 10776–
10787, Singapore. Association for Computational
Linguistics.

Oscar Sainz, Jon Ander Campos, Iker García-Ferrero,
Julen Etxaniz, and Eneko Agirre. 2023b. Did chatgpt
cheat on your test?

Rishi Sharma, James Allen, Omid Bakhshandeh, and
Nasrin Mostafazadeh. 2018. Tackling the story end-
ing biases in the story cloze test. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 752–757, Melbourne, Australia. Association
for Computational Linguistics.

Emily Silcock, Luca D’Amico-Wong, Jinglin Yang, and
Melissa Dell. 2023. Noise-robust de-duplication at
scale. In The Eleventh International Conference on
Learning Representations.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya
Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
Aitor Lewkowycz, Akshat Agarwal, Alethea Power,
Alex Ray, Alex Warstadt, Alexander W. Kocurek,
Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Par-
rish, Allen Nie, Aman Hussain, Amanda Askell,
Amanda Dsouza, Ambrose Slone, Ameet Rahane,
Anantharaman S. Iyer, Anders Andreassen, Andrea
Madotto, Andrea Santilli, Andreas Stuhlmüller, An-
drew Dai, Andrew La, Andrew Lampinen, Andy
Zou, Angela Jiang, Angelica Chen, Anh Vuong,
Animesh Gupta, Anna Gottardi, Antonio Norelli,
Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabas-
sum, Arul Menezes, Arun Kirubarajan, Asher Mul-
lokandov, Ashish Sabharwal, Austin Herrick, Avia
Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts,
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