@inproceedings{maraj-etal-2024-words,
title = "Words That Stick: Using Keyword Cohesion to Improve Text Segmentation",
author = "Maraj, Amit and
Vargas Martin, Miguel and
Makrehchi, Masoud",
editor = "Barak, Libby and
Alikhani, Malihe",
booktitle = "Proceedings of the 28th Conference on Computational Natural Language Learning",
month = nov,
year = "2024",
address = "Miami, FL, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.conll-1.1",
pages = "1--9",
abstract = "Text Segmentation (TS) is the idea of segmenting bodies of text into coherent blocks, mostly defined by the topics each segment contains. Historically, techniques in this area have been unsupervised, with more success recently coming from supervised methods instead. Although these approaches see better performance, they require training data and upfront training time. We propose a new method called Coherence, where we use strong sentence embeddings to pull representational keywords as the main constructor of sentences when comparing them to one another. Additionally, we include a storage of previously found keywords for the purposes of creating a more accurate segment representation instead of just the immediate sentence in question. With our system, we show improved results over current state-of-the-art unsupervised techniques when analyzed using Pk and WindowDiff scores. Because its unsupervised, Coherence requires no fine-tuning.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="maraj-etal-2024-words">
<titleInfo>
<title>Words That Stick: Using Keyword Cohesion to Improve Text Segmentation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amit</namePart>
<namePart type="family">Maraj</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Miguel</namePart>
<namePart type="family">Vargas Martin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masoud</namePart>
<namePart type="family">Makrehchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th Conference on Computational Natural Language Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Libby</namePart>
<namePart type="family">Barak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malihe</namePart>
<namePart type="family">Alikhani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, FL, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Text Segmentation (TS) is the idea of segmenting bodies of text into coherent blocks, mostly defined by the topics each segment contains. Historically, techniques in this area have been unsupervised, with more success recently coming from supervised methods instead. Although these approaches see better performance, they require training data and upfront training time. We propose a new method called Coherence, where we use strong sentence embeddings to pull representational keywords as the main constructor of sentences when comparing them to one another. Additionally, we include a storage of previously found keywords for the purposes of creating a more accurate segment representation instead of just the immediate sentence in question. With our system, we show improved results over current state-of-the-art unsupervised techniques when analyzed using Pk and WindowDiff scores. Because its unsupervised, Coherence requires no fine-tuning.</abstract>
<identifier type="citekey">maraj-etal-2024-words</identifier>
<location>
<url>https://aclanthology.org/2024.conll-1.1</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>1</start>
<end>9</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Words That Stick: Using Keyword Cohesion to Improve Text Segmentation
%A Maraj, Amit
%A Vargas Martin, Miguel
%A Makrehchi, Masoud
%Y Barak, Libby
%Y Alikhani, Malihe
%S Proceedings of the 28th Conference on Computational Natural Language Learning
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, FL, USA
%F maraj-etal-2024-words
%X Text Segmentation (TS) is the idea of segmenting bodies of text into coherent blocks, mostly defined by the topics each segment contains. Historically, techniques in this area have been unsupervised, with more success recently coming from supervised methods instead. Although these approaches see better performance, they require training data and upfront training time. We propose a new method called Coherence, where we use strong sentence embeddings to pull representational keywords as the main constructor of sentences when comparing them to one another. Additionally, we include a storage of previously found keywords for the purposes of creating a more accurate segment representation instead of just the immediate sentence in question. With our system, we show improved results over current state-of-the-art unsupervised techniques when analyzed using Pk and WindowDiff scores. Because its unsupervised, Coherence requires no fine-tuning.
%U https://aclanthology.org/2024.conll-1.1
%P 1-9
Markdown (Informal)
[Words That Stick: Using Keyword Cohesion to Improve Text Segmentation](https://aclanthology.org/2024.conll-1.1) (Maraj et al., CoNLL 2024)
ACL