
Proceedings of the 28th Conference on Computational Natural Language Learning, pages 1–9
November 15-16, 2024 ©2024 Association for Computational Linguistics

Words That Stick: Using Keyword Cohesion to Improve Text Segmentation
Amit Maraj

Ontario Tech University
2000 Simcoe St N., Oshawa, ON
amit.maraj@ontariotechu.net

Miguel Vargas Martin
Ontario Tech University

2000 Simcoe St N., Oshawa, ON
miguel.martin@ontariotechu.ca

Masoud Makrehchi
Ontario Tech University

2000 Simcoe St N., Oshawa, ON
masoud.makrehchi@ontariotechu.ca

Abstract

Text Segmentation (TS) is the task of segment-
ing bodies of text into coherent blocks, mostly
defined by the topics each segment contains.
Historically, techniques in this area have been
unsupervised, with more success recently com-
ing from supervised methods instead. Although
these approaches see better performance, they
require training data and upfront training time.
We propose a new method called Coherence,
where we use sentence embeddings to pull rep-
resentational keywords as the main constructor
of sentences when comparing them to one an-
other. Additionally, we include a storage of pre-
viously found keywords for the purposes of cre-
ating a more accurate segment representation
instead of just the immediate sentence in ques-
tion. We show improved results over current
state-of-the-art unsupervised techniques when
analyzed using Pk and WindowDiff scores. Co-
herence also requires no fine-tuning.

1 Introduction

We present Coherence, a method that utilizes re-
lated words and their contextual meanings within
sentences for effective Text Segmentation (TS).
In the past decade, advancements in the field of
TS have been primarily dominated by supervised
techniques (Badjatiya et al. (2018), Koshorek et al.
(2018), Somasundaran et al. (2020), Barrow et al.
(2020), Lo et al. (2021), and Inan et al. (2022)),
which require training data and are computed on
a sentence-wise basis (i.e., each sentence is com-
pared with adjacent sentences for evaluation). In
contrast, Coherence uses contextual keyword em-
beddings for comparison, reducing potential noise
and unnecessary sentence-level information that
may not be helpful to the TS task.

Coherence uses a sliding window technique, tra-
ditionally used in supervised TS, to predict segment
breaks (e.g., P (Sn−1, Sn, Sn+1) = 1). However,
Coherence enhances this method by incorporating

contextual information (through contextual key-
word embeddings).

Coherence demonstrates performance improve-
ments, particularly in Pk scores, and does not re-
quire fine-tuning. By leveraging pre-trained sen-
tence encoders like BERT, LaBSE, and S-BERT,
Coherence leverages extracted keywords to form
an end-to-end flow. The core of Coherence lies in
collecting and utilizing important keywords dur-
ing the segmentation process. These keywords are
represented as contextual embeddings, capturing
essential information about their usage within sen-
tences (for example, differentiating “bridge” in the
context of crossing a river from “bridge” in the con-
text of a human’s nose). This process is inspired
by the multi-headed attention mechanism in the
Transformer architecture, providing a nuanced un-
derstanding of sentence relationships without the
need for extensive training and data.

1. A novel approach to unsupervised TS that
achieves state-of-the-art (SOTA) results on
a variety of diverse and widely accepted TS
datasets in the research community.

• Coherence does not require fine-tuning
and is shown to perform competitively
and even outperform current SOTA unsu-
pervised systems in some benchmarks.

• Using pre-trained sentence embeddings,
Coherence leans on both similar and di-
verse keywords to create more orthogo-
nality in representations of sentences.

2. A keyword collection mechanism called Key-
word Map, which creates segment representa-
tions through its most important keywords.

• The Keyword Map stores important
sentence-based representations through
contextual keywords for later reference
during comparison.

1



3. An approach to unsupervised TS that has ex-
plainability in the prediction process, through
the extraction of important keywords.

We show that without the need for expensive
fine-tuning and highly-dimensional sentence em-
beddings as training data, we can achieve perfor-
mance improvements in a space that has been more
recently dominated by advancements in supervised
learning. Using orthogonal keywords in addition
to similar keywords provides more breadth in key-
word representation to further bolster results. All
our code can be found on the Human-Machine Lab
GitHub Repository 1.

2 Related Works

Initially, Hearst (1997) introduced TextTiling,
an unsupervised algorithm that identifies seg-
ment boundaries through lexical overlaps. Sim-
ilarly, Choi (2000) demonstrated the efficacy of
unsupervised methods by analyzing sentence sim-
ilarities, categorizing their work within linear TS
methodologies. These initial contributions set a
new standard in the field.

The landscape of TS shifted with the advent of
advanced word and sentence embeddings, paving
the way for supervised techniques. Koshorek et al.
(2018) explored the potential of processing large
TS datasets through a Bi-LSTM, analyzing three
sentences at a time to understand their interrela-
tions. Building on this, Badjatiya et al. (2018)
proposed a sentence-wise model utilizing attention
mechanisms to enhance performance further. Re-
cent supervised approaches have increasingly incor-
porated LSTMs and Transformers as foundational
components, as seen in works by Somasundaran
et al. (2020), Barrow et al. (2020), Lo et al. (2021),
and Inan et al. (2022). These studies have show-
cased the effectiveness of adding topic information
and emphasizing sentence contextuality in achiev-
ing top-tier results.

Despite the dominance of supervised models,
unsupervised TS techniques continue to show
promise. Misra et al. (2009) revisited the clas-
sic TextTiling approach, refining it with LDA to
identify more precise keywords. Riedl and Bie-
mann (2012) combined LDA and TextTiling for
another innovative unsupervised solution. Further-
more, Glavaš et al. (2016) introduced a novel unsu-
pervised graph-based method, analyzing sentences

1https://github.com/HumanMachineLab/Coherence

as nodes within a graph to predict segment bound-
aries. These unsupervised models underscore the
ongoing exploration and diversity in TS methodolo-
gies. While unsupervised approaches in the field
continue to be important due to their flexibility
and lack of need for domain-specific training data,
more research has recently focused on supervised
approaches. Fragkou et al. (2004)’s approach to
TS relied upon within-segment word similarity and
prior information about segment length, but does
not incorporate inter-sentence comparisons. In con-
trast, Brants et al. (2002) approaches unsupervised
TS by using Probabilistic Latent Semantic Anal-
ysis (PLSA) to identify similar words an in inter-
sentence level. They then apply a TextTiling based
approach for identifying changes in frequency be-
tween sentences.

Another technique by Solbiati et al. (2021) takes
a unique approach to unsupervised TS by group-
ing a series of sentences together, stacking them
on top of each other, and performing max pool-
ing. The resulting matrix is a mixture of sentences,
which can then be used to compare to other matri-
ces. They perform their analysis on meeting data,
which shows improvements upon other techniques.
More recently, John et al. (John et al., 2017) utilize
an LDA-based TextTiling approach that produces
strong results. The boundary adjustment technique
proposed in this work is a retroactive solution to
TopicTiling (Riedl and Biemann, 2012) that helps
improve results.

3 Methodology

The core of Coherence is its ability to pull out key-
words from provided sentences. To accomplish
this, we use a library called KeyBERT 2. This li-
brary goes through each word in a sentence, creates
an embedding for the word and compares it with
the embedding of the sentence at hand. Keywords
are identified as the ones with a higher similarity
to the sentence embedding. Because of this, there
is no need to globally scan the document before-
hand, which other techniques like TF-IDF and LDA
require. Utilizing BERT allows the KeyBERT li-
brary to effectively look into the attention being
paid at every word and phrase to identify important
words. KeyBERT has been shown to outperform
other topic modelling and keyword extraction tech-
niques like LDA and YAKE (Campos et al., 2020).

We also consider the use of an LDA based ap-

2https://github.com/MaartenGr/KeyBERT

2

https://github.com/HumanMachineLab/Coherence
https://github.com/MaartenGr/KeyBERT


overcast, precipitation, cloudy

astigarraga, ametzagaña, paleolithic

oiasso, varduli, irun

San Sebastián features an oceanic climate (Köppen Cfb) with warm summers and cool winters. 

Like many cities with this climate, San Sebastián typically experiences cloudy or overcast conditions 

for the majority of the year, typically with some precipitation.

The first evidence of human stationary presence in the current city is the settlement of Ametzagaña,

between South Intxaurrondo and Astigarraga. The unearthed remains, such as carved stone

used as knives to cut animal skin, date from 24,000 to 22,000 BC.

San Sebastián is thought to have been in the territory of the Varduli in Roman times.

East of the current city lay the Basque Roman town of Oiasso (Irun)

Figure 1: Topics gathered throughout the keyword extraction phase within the “wiki” dataset. Due to the natural pruning of the
Keyword Map, only the most pertinent topics are retained. Additionally, importance of the keyword to its original
sentence is also maintained. Results shown here are extracted from the “wiki” dataset starting at sample 643.

proach, such as BERTopic 3 as the keyword extrac-
tor, but elect to stick with KeyBERT due to the
following advantages:

• Pulling keywords using KeyBERT does not
require upfront training, whereas BERTopic
does.

• Because BERTopic uses LDA to pull topics,
the requirement to be aware of the entire doc-
ument’s worth of text beforehand increases
processing time and reduces flexibility.

• Inherently, LDA does not use word embed-
dings to pull important topics, which means
that extracted words are in the form of text.
Since our technique compares words in vector
space, constructing embeddings for extracted
words will not retain sentence contextuality.

Coherence is broken down into two major phases.
We use sentences to denote the important keywords
derived from said sentences - sentences are not
compared verbatim, rather the keywords that make
up the sentence are compared. At every step, the
current sentence is compared against prior sen-
tences, as long as they exist in the Keyword Map
(we elaborate on conditions where a sentence’s key-
words would not end up in the Keyword Map later
in this section).

3.1 Keyword Extraction Phase
In this phase, we use KeyBERT to extract important
keywords from sentences at each iteration. Key-
BERT uses BERT or any BERT-based model (e.g.,

3https://github.com/MaartenGr/BERTopic

RoBERTa, DistilBERT, ALBERT, etc.) to create
a representation of each sentence. It then takes
the sentence embedding and each respective word
embedding (as provided by BERT as well). The
higher the similarity between the word and the sen-
tence, the more likely it is considered a keyword.
After extraction, keywords are sorted in descending
order based on its importance to its parent sentence.
This importance is calculated based on how strong
the keyword is in similarity to its parent sentence.

3.2 Prediction Phase

In this phase, we use information from previous
sentences in the segment to compare with the key-
word representation of the current sentence.

Keyword Map. We first create a representation
of the current segment through storage of keywords
gathered throughout the iteration process. We de-
termine the top n keywords that should be stored
per sentence and save them in a map. We then use
this map to compare against the current sentence
during iteration. For example, when we store 3
keywords in the map per sentence and we are on
the fifth sentence in the segment, we will compare
the current sentence to 12 keywords in the map (3
keywords times 4 previous sentences).

When storing keywords in the map, we compare
the current sentence’s keywords to the pre-existing
keywords in the map. We take the most similar
(with respect to the pre-existing keywords in the
map) keywords in the current sentence and store it
in the map. This allows us to build a Keyword Map
that is representative of the overall topics within the
segment. After k (average length of segment size
in the dataset) sentences, we prune the Keyword

3

https://github.com/MaartenGr/BERTopic


Map at every step by removing the oldest set of
keywords, adopting a queue-based FIFO structure.

Comparison. The current sentence’s keywords
are compared to the previous sentence’s keywords
and every keyword in the Keyword Map. All
the comparisons are summed and then averaged
to get an overall similarity score. This similarity
score, which is calculated as shown in Formula 2,
ends up being a representation of how cohesive
the current sentence is with all the sentences pre-
vious to it. Words in earlier sentences of the seg-
ment are also de-emphasized so they do not hold
as much weight in the comparison as words that
are closer to the current sentence. A value of
1/distance(curr_sent, prev_sent) is applied to
all words in the previous sentence. For example, a
word embedding belonging to a sentence that oc-
curred 2 sentences prior will have a weight of 1/2
applied to it.

The output from the prediction phase is a logit
that is the average of all the comparisons between
the current sentences and every sentence in the
Keyword Map, which can be seen in Figure 3.

As shown in Figure 3, the Keyword Map is built
throughout the inference process. This map acts
as a representation of the segment currently being
scanned. Because important segment-based infor-
mation can exist in more places than the current
sentence, the Keyword Map builds a representation
of keywords found earlier in the segment.

During the prediction process, the contents of
the Keyword Map along with the current sentence’s
keywords in the sliding window are compared
using cosine similarity and an average. If the
contents of the Keyword Map and current sen-
tence are dissimilar enough (based on a parameter–
prediction_threshold), the system predicts a one,
indicating that the second sentence is the start of a
new segment. Upon a positive prediction, the Key-
word Map gets emptied so it can begin collecting
new keywords. If the Keyword Map and current
sentence are similar, the system predicts a zero and
continues to build the Keyword Map. To avoid the
Keyword Map becoming too large over time, es-
pecially with longer segments, it is pruned after n
size (e.g., if the Keyword Map has five sentences
worth of keywords and we add another sentence
worth of keywords, we remove the oldest sentence).
For example, we prune the map after it grows to
26 sentences (the average segment size) for the
Clinical dataset (Malioutov, 2006).

Values for the prediction_threshold are tested

between zero and one at every tenth interval and
notice that the lowest Pk and WindowDiff scores
consistently show up when 0.5 is used.

4 Metrics

Two popular metrics that exist solely to benchmark
TS systems are Pk and WindowDiff (WD), which
have become commonplace for work in the TS
field. Pk is the probability that a pair of chosen
sentences with a distance of k are incorrectly clas-
sified. Both the WD and Pk metrics use a sliding
window of fixed size w over the document and
compare the predicted segments with the reference
ones. k is determined as half of the average true
segment size of the document. Since Pk and WD
are both penalty metrics, lower values indicate bet-
ter performance. While Pk is the most widely and
still is the most accepted metric in the TS space,
WD was originally proposed as an update to the Pk

metric. Pk can be thought of as the probability that
two segments drawn from a document are incor-
rectly identified as belonging to the same segment.
WD operates almost identically, but uses a sliding
window to penalize systems that tend to overpre-
dict, resulting in false positives - something that
Pk does not acknowledge as an errant prediction.
Both Pk and WD thus lie between zero and one and
an algorithm that assigns all boundaries correctly
receives a score of zero. WD is considered a bet-
ter measure than Pk as the Pk metric suffers from
issues such as a lack of false positive prediction
penalization (Pevzner and Hearst, 2002).

5 Data

Unsupervised TS methods are often evaluated us-
ing constructed datasets, which amalgamate seg-
ments from varied sources into composite docu-
ments, as evidenced by studies from Choi (Choi,
2000) and Galley et al (Galley et al., 2003).

5.1 Choi Dataset:

Introduced by Choi (2000) in 2000, this dataset
has become a staple for TS research, refer-
enced in works by Misra et al. (2009), Brants
et al. (2002), Fragkou et al. (2004), Glavaš et al.
(2016), Sun et al. (2008), and Galley et al. (2003).
It is crafted from the Brown corpus, containing 700
documents that simulate real text structure. The
compilation includes 400 documents with segments
varying from 3-11 sentences, alongside 100 docu-
ments for each segment length category: 3-5, 6-8,

4



Coherence(Sn−1, Sn) =
1
x

∑x
j=1

1
x

∑x
i=1 cos(uj(Sn−1), wi(Sn))

Formula 2: The similarity calculation between two sentences, where each keyword in the respective sentence is compared
with every other keyword in the comparing set of keywords (e.g., the set of w keywords are gathered from Sn and the set of u
keywords are gathered from Sn−1), where w and u are keywords. Each line indicates a cosine similarity calculation and once all
the calculations are done from a keyword on the left to all keywords on the right, they are summed and averaged. This process
continues for all the keywords and the total average is taken. Additionally, each keyword (w of Sn) has a weighting applied to it,
indicating its importance to the sentence it was derived from originally.

Sentence
Collation

S1 - S10 

k2(S1)

Keyword
Extraction

k1(S1)

k2(S10)k1(S10)

Keyword Extraction
Phase

k2(S1)k1(S1)

k2(S2)k1(S2)

k2(S2)k1(S2)

k2(S3)k1(S3)

k2(S9)k1(S9)

k2(S10)k1(S10)

0.67

0.34

0.58

Prediction Phase

k2(S1)

k1(S1)

Keyword
Map

Keyword
Map

k2(S1)

k1(S1)

Keyword
Map

k2(S2)

k1(S2)

+

+

+

Figure 3: Architecture for Coherence. Keywords extracted from in the extraction phase are passed toward the prediction phase
and stored in the Keyword Map. The current sentence’s keywords are derived from current and previous sentences and
are denoted with h, i, j, k, and l. The output from the prediction phase is a logit that is representative of the cohesion
between the current sentence’s keywords and the keywords compared to from the Keyword Map.

and 9-11 sentences.

5.2 Manifesto Dataset:

To complement the synthetic Choi dataset, Coher-
ence’s effectiveness is also tested on real political
texts from the Manifesto Project dataset. This col-
lection of documents has been meticulously seg-
mented into seven topics, such as economy and
welfare, and foreign affairs, by field experts. The
curation of this dataset is attributed to Glavaš et al.
(2016).

5.3 Clinical Dataset:

We also use the Clinical dataset put together
by Malioutov (2006) to showcase our results. This
dataset consists of a set of 227 chapters from a med-
ical textbook. Each chapter is marked into sections
indicated by the author which forms the segmenta-
tion boundaries. It contains a total of 1136 sections.

5.4 Fiction Dataset:

To include even more diversity in our results, we
also showcase our results on the Fiction dataset put
together by Kazantseva and Szpakowicz (2011),
which is a collection of 85 fiction books down-
loaded from Project Gutenberg. Segmentation
boundaries are the chapter breaks in each of the
books.

5.5 Wiki Dataset:

Finally, we test Coherence’s performance on a cu-
rated Wikipedia dataset, introduced by Badjatiya
et al. (2018), is also presented. This dataset consists
of randomly selected set of 300 documents having
an average segment size of 26. The documents
widely fall under the narrative category.

5



6 Results

Coherence shows and improvement over SOTA
unsupervised results in the space. Results are
reported on the Choi, Manifesto, Clinical, Fic-
tion, and Wiki Datasets (Choi (2000), Glavaš et al.
(2016), Malioutov (2006), Kazantseva and Sz-
pakowicz (2011), Badjatiya et al. (2018)). Our
performance on these datasets shows the versatil-
ity of Coherence. This gives us hope that with
the use of pre-trained models, unsupervised ap-
proaches can prove to be viable in the TS space.
Results on the Choi and Manifesto datasets are re-
ported against pre-existing SOTA unsupervised TS
approaches. Results for the Clinical, Wiki, and Fic-
tion datasets are compared against Badjatiya et al.
(2018)’s work.

Results on the Clinical and Fiction datasets are
competitive with Badjatiya et al. (2018)’s pre-
existing supervised approach. Coherence does not
do as well on the Wiki dataset however. We be-
lieve this is due to the subjectivity in TS datasets
at the labelling level. The Wiki dataset has an av-
erage segment length of 26 sentences for example.
On Choi’s dataset, Coherence performs extremely
well, outperforming all previous SOTA unsuper-
vised TS techniques. Coherence also performs
competitively, with stronger results in the WD met-
ric on the Manifesto dataset. This performance
improvement on WD versus Pk indicates that Co-
herence makes less false positive predictions than
pre-existing techniques.

We show that, in comparison to previous SOTA
unsupervised techniques, Coherence outperforms
in a variety of datasets using both the Pk and WD
metrics as benchmarks. This comes without the
need for fine-tuning or domain adaptation. Since
the keyword extraction phase of Coherence is mod-
ular, we believe that as sentence and word embed-
ding technology continues to improve, so will the
results of Coherence.

The lack of need for fine-tuning a model is ad-
vantageous and as of such, each round of infer-
ence takes roughly 25ms - 125ms on a cloud-based
A100 GPU. Additionally, Coherence provides util-
ity without the need for training or domain adap-
tation. The lightweight lift of Coherence allows
it to be used against various datasets, due to the
strength of the sentence encoder. The applicability
of Coherence to new and unseen test datasets can
prove to be useful in production settings.

7 Limitations

Coherence shows improvements over pre-existing
SOTA unsupervised systems such as TopicTil-
ing (Riedl and Biemann, 2012) and Graph-
Seg (Glavaš et al., 2016).

The authors for the works found in Table 2 do not
present their findings using the same metrics, nor
do they provide their codebase, and due to resource
limitations, we are not able to replicate their works
to evaluate and report on WD. We acknowledge
that this is a limitation of our work, but we also
illustrate the strengths and improvements of our
system using a wide array of available datasets.

Some reliance for Coherence comes from the
pre-trained sentence encoder (KeyBERT) in the
keyword extraction phase. Although this seems
like a limitation, it can be a strength in the flexibil-
ity of the system. Future iterations of pre-trained
sentence encoders can be used to replace KeyBERT
and enhance Coherence’s output. We show the flex-
ibility of our system by achieving superior results
on a wide array of available datasets without the
need for tedious fine-tuning. This implies that as
keyword extraction techniques become stronger, so
shall our system.

Most of the processing time comes from the key-
word extraction phase, due to the keyword extrac-
tion library. Roughly 90% of this time comes from
the keyword extraction phase, whereby KeyBERT
needs to compare every keyword with its parent
sentence embedding. The majority of the RAM
utilization also comes from this phase, as the em-
bedding model (LaBSE in our case) is loaded into
memory for inference. In our experiments, Co-
herence required less than 3GB RAM throughout
testing. With techniques like quantization, smaller
models can perform this keyword extraction step
more efficiently. This limitation is due to the se-
lected keyword extraction library; KeyBERT in
our case. The majority of processing time in the
KeyBERT library comes from creating contextual
embeddings for each sentence before comparing
each word in the sentence it was pulled from with
the sentence itself.

8 Conclusion

In this work, we present Coherence, which is a
novel approach to unsupervised TS that leverages
contextual keywords from sentences to represent
text segments. We show that the emphasis on
contextual keywords can build representations of

6



Clinical Wiki Fiction

Pk ↓ WD ↓ Pk ↓ WD ↓ Pk ↓ WD ↓

Badjatiya et al. (2018) 33.0 31.0 34.0 32.0 38.0 31.0
Coherence 37.1 38.9 50.2 53.4 35.7 61.6

Table 1: Results on the “clinical”, “wiki”, and “fiction” datasets (Badjatiya et al., 2018; Malioutov, 2006; Kazantseva and
Szpakowicz, 2011). We compare our results to Badjatiya’s fine-tuned neural model and show competitive results,
without the need for fine-tuning.

3 – 5 6 – 8 9 – 11 3 – 11

Pk ↓ WD ↓ Pk ↓ WD ↓ Pk ↓ WD ↓ Pk ↓ WD ↓

Choi (2000) 12.0 – 9.0 – 9.0 – 12.0 –
Brants et al. (2002) 7.4 – 8.0 – 6.8 – 10.7 –
Fragkou et al. (2004) 5.5 – 3.0 – 1.3 – 7.0 –
Misra et al. (2009) 23.0 – 15.8 – 14.4 – 16.1 –
Glavaš et al. (2016) 5.6 8.7 7.2 9.4 6.6 9.6 7.2 9.0
Coherence 4.4 6.2 3.1 3.3 2.5 2.6 4.0 4.4

Table 2: Results on the synthetic Choi (Choi, 2000) dataset.

Pk ↓ WD ↓

Riedl and Biemann (2012) 33.39 38.31
Glavaš et al. (2016) 28.09 34.04
Coherence 31.71 33.42

Table 3: Results on the Manifesto (Glavaš et al., 2016) Dataset. We show the versatility of Coherence providing competitive
results in a different domain.

segments, which can be used for TS. Coherence
demonstrates improvements over SOTA unsuper-
vised TS techniques, particularly in the metrics of
Pk and WindowDiff. The main contributions of
Coherence include the diverse extraction of key-
words and an efficient keyword collection mecha-
nism which we termed Keyword Map.

Our results on the Choi, Manifesto, Clinical,
Wiki, and Fiction datasets show that Coherence
can perform well in a variety of domains. While
we also include our results on the newer WikiSec-
tion dataset, other supervised TS approaches show
superior results.

Future work will focus on enhancing Coherence
to consider the contextual relationship between ex-
tracted keywords, while exploring the method’s
applicability across various domains and datasets.
Coherence offers a solution that can be adapted to
various domains without the need for fine-tuning.

Acknowledgments

The first and second authors acknowledge the sup-
port of an NSERC Discovery Development Grant
(DDG-2024-00031).

References
Pinkesh Badjatiya, Litton J Kurisinkel, Manish Gupta,

and Vasudeva Varma. 2018. Attention-based neu-
ral text segmentation. In European Conference on
Information Retrieval, pages 180–193. Springer.

Joe Barrow, Rajiv Jain, Vlad Morariu, Varun Manju-
natha, Douglas W Oard, and Philip Resnik. 2020. A
joint model for document segmentation and segment
labeling. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 313–322.

Thorsten Brants, Francine Chen, and Ioannis Tsochan-
taridis. 2002. Topic-based document segmentation
with probabilistic latent semantic analysis. In Pro-
ceedings of the eleventh international conference on
information and knowledge management, pages 211–
218.

Ricardo Campos, Vítor Mangaravite, Arian Pasquali,
Alípio Jorge, Célia Nunes, and Adam Jatowt. 2020.
Yake! keyword extraction from single documents
using multiple local features. Information Sciences,
509:257–289.

Freddy YY Choi. 2000. Advances in domain inde-
pendent linear text segmentation. arXiv preprint
cs/0003083.

7



Pavlina Fragkou, Vassilios Petridis, and Ath Kehagias.
2004. A dynamic programming algorithm for linear
text segmentation. Journal of Intelligent Information
Systems, 23(2):179–197.

Michel Galley, Kathleen McKeown, Eric Fosler-Lussier,
and Hongyan Jing. 2003. Discourse segmentation of
multi-party conversation. In Proceedings of the 41st
Annual Meeting of the Association for Computational
Linguistics, pages 562–569.

Goran Glavaš, Federico Nanni, and Simone Paolo
Ponzetto. 2016. Unsupervised text segmentation us-
ing semantic relatedness graphs. In Proceedings of
the Fifth Joint Conference on Lexical and Compu-
tational Semantics, pages 125–130. Association for
Computational Linguistics.

Marti A Hearst. 1997. Text tiling: Segmenting text into
multi-paragraph subtopic passages. Computational
linguistics, 23(1):33–64.

Hakan Inan, Rashi Rungta, and Yashar Mehdad. 2022.
Structured summarization: Unified text segmentation
and segment labeling as a generation task. arXiv
preprint arXiv:2209.13759.

Adebayo Kolawole John, Luigi Di Caro, and Guido
Boella. 2017. Text segmentation with topic modeling
and entity coherence. In Proceedings of the 16th In-
ternational Conference on Hybrid Intelligent Systems
(HIS 2016), pages 175–185. Springer.

Anna Kazantseva and Stan Szpakowicz. 2011. Lin-
ear text segmentation using affinity propagation. In
Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, pages 284–
293.

Omri Koshorek, Adir Cohen, Noam Mor, Michael Rot-
man, and Jonathan Berant. 2018. Text segmenta-
tion as a supervised learning task. arXiv preprint
arXiv:1803.09337.

Kelvin Lo, Yuan Jin, Weicong Tan, Ming Liu, Lan
Du, and Wray Buntine. 2021. Transformer over
pre-trained transformer for neural text segmenta-
tion with enhanced topic coherence. arXiv preprint
arXiv:2110.07160.

Igor Igor Mikhailovich Malioutov. 2006. Minimum cut
model for spoken lecture segmentation. Ph.D. thesis,
Massachusetts Institute of Technology.

Hemant Misra, François Yvon, Joemon M Jose, and
Olivier Cappé. 2009. Text segmentation via topic
modeling: an analytical study. In Proceedings of the
18th ACM conference on Information and knowledge
management, pages 1553–1556.

Lev Pevzner and Marti A Hearst. 2002. A critique
and improvement of an evaluation metric for text
segmentation. Computational Linguistics, 28(1):19–
36.

Martin Riedl and Chris Biemann. 2012. Topictiling: a
text segmentation algorithm based on lda. In Pro-
ceedings of ACL 2012 student research workshop,
pages 37–42.

Alessandro Solbiati, Kevin Heffernan, Georgios
Damaskinos, Shivani Poddar, Shubham Modi, and
Jacques Cali. 2021. Unsupervised topic segmentation
of meetings with bert embeddings. arXiv preprint
arXiv:2106.12978.

Swapna Somasundaran et al. 2020. Two-level trans-
former and auxiliary coherence modeling for im-
proved text segmentation. In Proceedings of the
AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 7797–7804.

Qi Sun, Runxin Li, Dingsheng Luo, and Xihong Wu.
2008. Text segmentation with lda-based fisher kernel.
In Proceedings of ACL-08: HLT, Short Papers, pages
269–272.

8



A Appendix

Algorithm 1: Coherence
Result: Extract similar and diverse keywords with globally informed context through sentence

batching.
keywords← keyword_extraction([s0, . . . , s9]) ; /* s0, ..., s9 are sentences. */
keyword_map = [];
similarities = [];
predictions = [];
for i . . . len(keywords) do

curr_kws← keywords[i+ 1];
prev_kws← keyword_map[0 . . . i];
for w ∈ curr_kws do

for k ∈ prev_kws do
similarity ← cosine_similarity(k,w);
similarities.insert(similarity);
if similarity >= coherence_threshold then

gits_map.insert(w) ; /* Add new keyword to map. */
end

end
end
if avg(similarities) >= coherence_threshold then

predictions.insert(0) ; /* The current sentence is similar */
else

predictions.insert(1) ; /* The current sentence is not similar */
end

end
return predictions

Description: coherence_threshold is a hyperparameter set between 0 and 1, which can be used to
enforce the strength keywords need to have between each other for entrance into the Keyword Map.
Through our testing, we notice that this value will vary depending on the sentence encoder used (LaBSE
in our case), since the strength of each keyword and its parent sentence are directly related to the encoder.
To that end, we find the best results (based on Pk and WindowDiff scores) when this value is set to 0.7.

9


