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Abstract

We study attribute control in language models
through the method of Causal Average Treat-
ment Effect (Causal ATE). Existing methods
for the attribute control task in Language Mod-
els (LMs) check for the co-occurrence of words
in a sentence with the attribute of interest, and
control for them. However, spurious correla-
tion of the words with the attribute in the train-
ing dataset, can cause models to hallucinate
the presence of the attribute when presented
with the spurious correlate during inference.
We show that the simple perturbation-based
method of Causal ATE removes this unintended
effect. Specifically, we ground it in the prob-
lem of toxicity mitigation, where a significant
challenge lies in the inadvertent bias that often
emerges towards protected groups post detox-
ification. We show that this unintended bias
can be solved by the use of the Causal ATE
metric. We provide experimental validations
for our claims and release our code (anony-
mously) here: github.com/causalate-mitigates-
bias/causal-ate-mitigates-bias.

1 Introduction

Controllable text generation methods are often used
to guide the text generated by language models
(LMs) towards certain desirable attributes (Hu and
Li, 2021; Dathathri et al., 2019; Liu et al., 2021).
The goal herein is to generate sentences whose
attributes can be controlled (Prabhumoye et al.,
2020). Language models, which are pre-trained
only for next word prediction, cannot directly con-
trol for attributes in their outputs. On the other
hand, one may wish to alter words in the auto-
regressively produced sentences, either accentuat-
ing or mitigating the desired attributes. Attributes
such as sentiment, writing style, language preci-
sion, tone, and toxicity are key concerns for control
in language models, with particular emphasis on
toxicity mitigation due to its relevance in sensitive
contexts (Perez et al., 2020).

Figure 1: We plot the ATE score vs a regression based
classifier for toxicity across two datasets. ATE Scores
show a lower toxicity for protected groups.

Regularizers in the reward models are often
employed during training to alter the output sen-
tences towards certain desirable attributes (Hu et al.,
2017). Such regularization penalities (or rewards)
often rely on models trained on real-world datasets.
Such datasets contain spurious correlates – words
that correlate with certain attributes without nec-
essarily causing them (Nam et al., 2020; Udom-
charoenchaikit et al., 2022).

In the context of toxicity mitigation, prior works
show that detoxification methods inadvertently im-
pact language model outputs concerning marginal-
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ized groups (Welbl et al., 2021). Words such as
‘gay’ or ‘female’ are identified as being toxic, as
they co-occur with toxic text, and hence the LM
stops speaking about them (Xu et al., 2021).

This is called the unintended bias problem. In
this paper we provide experimental and theoretical
justifications for the use of causal ATE to mitigate
the unintended bias problem in text classification.
We prove theoretically that for spurious correlates,
the causal ATE score is upper-bounded. We also
show through extensive experiments on two popu-
lar toxicity classification datasets (Zampieri et al.,
2019a; Gao and Huang, 2017) that our method
shows experimental promise (See Figure 1).

We provide a full list of related works in Related
Works section 6.

1.1 Our Contributions:

1. We show theoretically that the Causal ATE score
of spurious correlates is less than 0.25 under mild
assumptions in Sections 2 and 3.

2. We provide a theoretical basis for the study
of the perturbation based Causal ATE method. We
show that it can be used alongside any classifier
towards improving it for false positive rates.

3. We provide experimental validation for our
claims by showing that causal ATE scores indeed
decrease the toxicity for spurious correlates to toxic
sentences in Section 4.

2 Notations and Methodology

Consider a sentence s, made up of tokens (words)
from some universe of words W . Let the list of all
sentences s in our dataset be denoted S. Let each
sentence s ∈ S be labelled with the presence or
absence of an attribute A. So the dataset, which
we can call D, consists of tuples (s,A(s)) for all
s ∈ S. Let the cardinality of the labelled dataset
be |D| = |S| = n.

From such a dataset, it is possible to construct
an attribute model that gives us an estimate of the
probability of attribute A, given a sentence s. i.e.
It is possible to construct a model Â(·) such that
Â(s) = P̂{A | s} for any given sentence s. Now
such a model may rely on the words in s. Let
s = {w1, . . . , wn}. We now define an attribute
model â(·) given a word as follows:

Definition 1 (Attribute model â(wi) for any word
wi ∈ W ).

â(wi) :=
|{sentences s ∈ D containing wi s.t. A(s) = 1}|

|{sentences s ∈ D containing wi}|
(1)

=
n(A(s) = 1 | wi ∈ s)

n(s | wi ∈ s)
(2)

where n(·) denotes the cardinality of the set satis-
fying the properties.

Note that such a model is purely correlation
based, and can be seen as the proportion of sen-
tences containing an attribute amongst those con-
taining a particular word. i.e. it is an estimate of
the co-occurrence of attribute with the word. Based
on attribute model â(·) we can define an attribute
model Â(·) for any sentence s = {w1, . . . , wk} as
follows:
Definition 2 (Attribute model Â(s) for a sentence
s ∈ W k).

Â(s = {w1, . . . , wk}) := max
wi∈s

â(wi) (3)

= max{â(w1), . . . , â(wk)} (4)

Note that such a model is conservative and labels a
sentence as having an attribute when any word in
the sentence has the attribute. For the purpose of
attributes such as toxicity, such an attribute model
is quite suitable.

2.1 Computation of ATE Score of a word with
respect to an attribute

Given a model representing the estimate of the
attribute A in a sentence s, denoted as P̂{A(s) =
1}, we can now define the ATE score. Note that the
Causal ATE score does not depend on the particular
model for the estimate P̂{A(s) = 1} – i.e. we can
use any estimator model.

If we denote fA(s) as the estimate of P{A(s) =
1} obtained from some model. We can then define
Causal ATE with respect to this estimate. If a sen-
tence s is made up of words {w1, . . . , wi, . . . , wk}.
For brevity, given a word wi, from a sentence s,
we may refer to the rest of the words in the sen-
tence as context ci. Consider a counter-factual
sentence s′ where (only) the ith word is changed:
{w1, . . . , , w

′
i, . . . , wk}. Such a word w′

i may be
the most probable token to replace wi, given the
rest of the sentence.

We now define a certain value that may be called
the Treatment Effect (TE), which computes the ef-
fect of replacement of wi with w′

i in sentence s, on
the attribute probability.
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Definition 3 (Treatment Effect (TE) of a word in
a sentence given replacement word). Let word wi

be replaced by word w′
i in a sentence s. Then:

TE(s, wi, w
′
i) = fA(s)− fA(s

′)

= fA({w1, . . . , wi, . . . , wk})
− fA({w1, . . . , w

′
i, . . . , wk}) (5)

The expectation now can be taken over the re-
placement words, given the context, and over all
contexts where the words appear.

Definition 4 (ATE of word wi given dataset D and
an attribute classifier f(·)).

ATE(wi) = E
s∈D|wi∈s

[
f(s)− E

w′
i∈W

[f(s′)]
]

(6)

where s′ is the sentence s where word wi is re-
placed by w′

i

This ATE score precisely indicates the interven-
tion effect of wi on the attribute probability of a sen-
tence. Notice that this score roughly corresponds to
the expected difference in attribute on replacement
of word.

Now say we compute the ATE scores for every
token w in our universe W in the manner given by
Equation 6. We can store all these scores in a large
lookup-table. Now, we are in a position to compute
an attribute score given a sentence.

2.2 Computation of Attribute Score for a
sentence

The causal ATE approach suggests that we can
build towards the ATE of a sentence given the ATE
scores of each of the words in the sentence recur-
sively. We illustrate this approach in Figure 2. First,
note that each word wt is stochastically generated
based on words w1, . . . , wt−1 in an auto-regressive
manner. If we denote {w1, . . . , wt−1} as st−1, then
we can say the distribution for wt, is generated from
st−1 and the structure of the language. To sample
from the probabilistic distribution, we may use an
exogenous variable such as Ut.

The attribute A(st−1) of a sentence up to t− 1
tokens, depends only on {w1, . . . , wt−1} ≡ st−1.
We now describe a model for computing attribute
A(st) from A(st−1) and ATE(wt). The larger En-
glish causal graph moderates influence of wt on
A(st) through the ATE score of the words. We con-
sider A(st) = max(A(st−1), ATE(wt)). This is
equivalent to

A∞(s = {w1, . . . , wn}) = max
i∈[n]

ATE(wi) (7)

More generally, we propose an attribute score
A(s) for this sentence given by A(s) =
∥{ATE(w1), . . . , ATE(wn)}∥p where ∥·∥p indicates
the Lp-norm of a vector. We can call these attribute
scores A(s) as the ATE scores of a sentence.

Figure 2: An Illustration of the Causal Graph used to
compute the attribute score of a sentence recursively.

3 Theory and Background

Now that we have laid the groundwork, we can
make proceed to make the central claims of this
work.

Lemma 1. Consider sentence s = {w1, . . . , wk}.
We will make two simple claims:

1. If ∄wi ∈ s such that ATE(wi) ≥ c, then,
A(s) < c.

2. If ∃wi ∈ s such that ATE(wi) ≥ c, then,
A(s) ≥ c.

This lemma is straightforward to prove from Defi-
nition 7.

We will now make a claim regarding the ATE
score of the given words themselves. Recall that
ci is the context for the word wi from a sentence
s. Given ci, wi is replaced by w′

i by a perturbation
model (through Masked Language Modelling).
Towards our proof, we will make two assumptions:
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Table 1: Description of Classifiers Used in Experiments

Sl. No. Model Description
1 Logistic Regression (LR) A linear classifier that predicts toxicity using logistic regression.
2 SVM Support Vector Machine with a linear kernel for text classification.
3 Gradient Boosting (GB) An ensemble model that combines weak learners for enhanced toxicity prediction.
4 Naive Bayes (NB) Multinomial Naive Bayes, a probabilistic model for text classification.
5 NN1Layer5 Neural network with 1 hidden layer of 5 neurons.
6 NN2Layer105 Neural network with 2 hidden layers (10 neurons and 5 neurons, respectively).
7 NN3Layer20105 Neural network with 3 hidden layers (20, 10, and 5 neurons, respectively).

Assumption 1. We make a mild assumption on this
replacement process: â(w′

i) < Â(ci). Grounding
this in the attribute of toxicity, we can say that the
replacement word is less toxic than the context.
This is probable if the replacement model has been
trained on a large enough corpus. See (Madhavan
et al., 2023) for empirical results showing this claim
to be true in practice.
Assumption 2. We make an assumption on the
dataset. A spurious correlate has a word with a
higher attribute score in the rest of the sentence for
sentences labelled as having the attribute. For ex-
ample, in the case of toxicity, a spurious correlate
like Muslim, has a more toxic word in the rest of
the sentence, when the sentence is labelled as toxic.
Given these assumptions, we have the following
theorem:

Theorem 1. Given Assumptions 1 and 2 for
a spurious correlate wi, ATE(wi) ≤ 0.25.

Proof. If we consider three numbers
{Â(ci), â(wi), â(w

′
i)}, there are six possible

orderings of this set. We can subsume these
orderings into two cases:

1. Â(ci) < â(w′
i).

2. Â(ci) ≥ â(w′
i).

Within these cases, we study the variation of
ATE(wi) with â(wi). We plot these in the Fig-
ure 3. Using a case-by-case analysis over these
possibilities, we prove the statement.

The full proof of the Theorem is provided in
Appendix A.

Based on Theorem A and Lemma 1, A(s) ≤ 0.25 if
each wi ∈ s is a spurious correlate, i.e. non-causal,
for attribute A.
In the following section we provide experimental
justification for our work through experimental re-
sults.

Figure 3: Graph of ATE score of a given word wi with
â(wi) given two cases

4 Experiments

In this section, we present experimental evidence
demonstrating the efficacy of the Causal Average
Treatment Effect (Causal ATE) method for mitigat-
ing unintended bias in text classification tasks. Our
experiments focus on toxicity detection, utilizing
two widely recognized datasets. The results pro-
vide both theoretical and practical support for the
utility of Causal ATE in addressing bias associated
with protected groups.

4.1 Datasets and Preprocessing

We conducted experiments using two well-known
datasets: the SemEval dataset (Zampieri et al.,
2019a) and the dataset from Gao et al. (Gao and
Huang, 2017). The SemEval dataset consists of
tweets annotated for offensive language, while the
Gao et al. dataset comprises user comments from
Yahoo! News articles labeled for hate speech and
harassment. These datasets were chosen for their
diverse and challenging nature, providing an ideal
testbed for evaluating bias mitigation in toxicity
classification tasks.

The data was preprocessed to clean the text
by removing special characters, URLs, and stop
words. We used the CountVectorizer from the
scikit-learn library to convert the textual data
into a Bag-of-Words representation, ensuring a
structured and uniform input for the classifiers.
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Table 2: ATE Scores vs Classifier Predictions for different models by Protected Category for the Gao et al. Dataset

Group → African Black Female Gay

Model ↓ Pred ATE Diff Pred ATE Diff Pred ATE Diff Pred ATE Diff

LR 0.201 0.099 0.102 0.300 0.108 0.192 0.270 0.167 0.103 0.470 0.167 0.303
SVM 0.282 0.062 0.220 0.282 0.052 0.230 0.301 0.082 0.219 0.371 0.154 0.217
GB 0.225 0.052 0.173 0.335 0.071 0.264 0.225 0.000 0.225 0.653 0.204 0.449
NB 0.460 0.002 0.458 0.510 0.047 0.463 0.444 0.004 0.440 0.657 0.107 0.550
NN1Layer5 0.000 0.003 -0.003 0.000 0.059 -0.059 0.000 0.024 -0.024 1.000 0.197 0.803
NN2Layer105 0.000 0.000 0.000 0.000 0.096 -0.096 0.002 0.000 0.002 1.000 0.217 0.783
NN3Layer20105 0.000 0.160 -0.160 0.000 0.097 -0.097 0.000 0.000 0.000 0.993 0.165 0.828

Table 3: ATE Scores vs Classifier Predictions for different models by Protected Category for the Zampieri et al.
Dataset

Group → African Black Female Gay

Model ↓ Pred ATE Diff Pred ATE Diff Pred ATE Diff Pred ATE Diff

LR 0.174 0.020 0.154 0.236 0.049 0.187 0.297 0.075 0.223 0.260 0.098 0.162
SVM 0.248 0.030 0.218 0.267 0.036 0.232 0.337 0.068 0.269 0.265 0.033 0.232
GB 0.269 0.020 0.249 0.269 0.013 0.256 0.269 0.008 0.261 0.269 0.003 0.266
NB 0.349 0.009 0.341 0.453 0.055 0.398 0.343 0.183 0.160 0.539 0.070 0.469
NN1Layer5 0.000 0.000 -0.000 0.000 0.052 -0.052 0.000 0.000 -0.000 0.000 0.114 -0.114
NN2Layer105 0.000 0.000 0.000 0.000 0.090 -0.090 0.000 0.170 -0.170 0.000 0.104 -0.104
NN3Layer20105 0.000 0.200 -0.200 0.000 0.126 -0.126 0.000 0.075 -0.075 0.000 0.046 -0.046

This vectorized representation was then used as
input for the various models described in the next
section.

4.2 Classifiers

We trained several classifiers to predict toxicity
in sentences. These classifiers span traditional ma-
chine learning models and modern neural networks,
allowing us to evaluate bias mitigation across a
range of approaches. Table 1 provides a summary
of the classifiers used in our experiments.

These models were implemented using the
scikit-learn library. For the neural networks,
we used the MLPClassifier with the lbfgs solver
and a maximum of 10,000 iterations to ensure con-
vergence during training.

4.3 Computation of ATE Scores

For each classifier, we computed the Causal ATE
scores for a set of bias-inducing words related
to protected groups, including "female", "black",
"gay", "hispanic", and "african". These scores were
calculated using a perturbation-based approach,
where we replaced specific words in a sentence
with alternatives generated by a masked language
model (roberta-base). The ATE score measures
the expected change in toxicity prediction when a
particular word is replaced, providing insight into
the causal effect of each word on the classifier’s

output.
This process enabled us to quantify the impact

of potentially bias-inducing terms, allowing for a
more nuanced understanding of how certain words
contribute to biased predictions. By analyzing
these ATE scores, we could identify instances
where the classifier was overly reliant on spuri-
ous correlations, thus flagging cases of unintended
bias.

4.4 Implementation and Runtime
Considerations

The implementation of the experiments was car-
ried out using scikit-learn for classifier training
and the transformers library for masked token
replacements using roberta-base. To ensure re-
producibility, all experiments were conducted with
a fixed random seed. The runtime for the entire
experiment, when the preprocessed data files were
available, was approximately 40 minutes on a sin-
gle CPU thread. The most computationally ex-
pensive tasks included training the classifiers and
generating the masked replacements for the ATE
computations.

The code for our experiments, including data
preprocessing, model training, and ATE computa-
tions, is available in our anonymous GitHub repos-
itory: github.com/causalate-mitigates-bias/causal-
ate-mitigates-bias.
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4.5 Discussion
From the results, we observe the following:
1. Reduction in Predicted Toxicity: The ATE
scores are consistently lower than the original pre-
dicted probabilities for most classifiers and pro-
tected categories. This indicates that the Causal
ATE method effectively reduces the unintended
bias towards these groups.
2. Classifier Performance Variance: Naive Bayes
(NB) shows the highest predicted probabilities and
substantial differences (Diff) across all categories,
suggesting a strong sensitivity to spurious correla-
tions. In contrast, Neural Network models often
exhibit lower predicted probabilities but sometimes
result in negative Diff values, indicating overcor-
rection or model underfitting.
3. Impact on Protected Categories: Categories
like “Gay” and “Black” show significant reduc-
tions in toxicity scores after applying the Causal
ATE method. This aligns with our objective of mit-
igating bias towards marginalized groups.
4. Consistency Across Datasets: Similar trends
are observed in both datasets, reinforcing the ro-
bustness of the Causal ATE approach in different
contexts.

4.6 Conclusion of Experiments
The experimental results validate our theoretical
claims that the Causal ATE method is an effective
approach to mitigate unintended bias in toxicity
classification tasks. By focusing on the causal im-
pact of words rather than their spurious correlations,
the method significantly reduces bias toward pro-
tected groups. Our experiments demonstrate that
this approach is robust across different classifiers
and datasets, offering a promising solution to bias
mitigation in language models.

5 Discussion

5.1 Causal ATE is Generalizable
While we our experimental results have pertained
to the use of Causal ATE as a metric for mitigating
bias in toxicity classification, our theoretical results
extend to any language attributes.

Figure 4 showcases different style attributes to
which such an analysis can be applied. We hope
that such causal approaches can be utilized for gen-
eral use cases such as style control using LLMs.

While the main sections in the paper consider the
attribute class of toxicity, we illustrate here that this
method can equally be used for various attribute

Figure 4: Illustration of word perturbation for identify-
ing important words with respect to an attribute.

classes thereby easily scalable and generalizable.
For instance, in the case of a style like formality,
changing ‘boss’ to ‘manager’ has changes the sen-
tence attribute to being more formal. Similarly, a
change from the word ‘terrific’ or ‘great’ to ‘ter-
rible’ in the context of a movie review, changes
the entire meaning of a sentence, and effectively
conveys a more negative sentiment.

Similarly, simple word changes can lead to the lan-
guage being more technical or polite. Figure 4
illustrates that causal ATE can be used across vari-
ous attributes for bias mitigation. The underlying
idea is that we can perturb particular words in their
context to check the change that they cause on the
desired attribute.

5.2 Importance of using a Causal Graph

Given estimates of the probability P{ai | s} for
attributes in text generated by a Language Model
(LM), the potential for fine-tuning the LM towards
specific attributes becomes apparent. However, nu-
merous challenges persist.
Firstly, attribute classifiers are prone to spurious
correlations. For instance, if a protected token like
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‘Muslim’ frequently appears in toxic sentences, the
attribute classifier detecting toxicity might penalize
the generation of the word ‘Muslim’. This brings
out in light that there is a trade-off between detox-
ification of LM and LM quality for text genera-
tion clearly detailed out in (Welbl et al., 2021).
LM avoids to generate sentences containing pro-
tected tokens leading to higher perplexity for texts
with these protected attrbiutes. Additionally, these
classifier models providing P ai | s estimates them-
selves may be LMs, resulting in slow training and
requiring substantial computational resources.
Utilizing a causal graph directly addresses these
challenges. It offer computational efficiency dur-
ing training and are immune to spurious corre-
lations, detecting interventional attribute distribu-
tions rather than conditional distributions through
counterfactual interventions. Moreover, we get
both flexibility and transparency regarding their ex-
act form, features unavailable with LM classifiers.

6 Related Works

In this section we will look at five related lines of
work: (a) Controlled generation (b) Unintended
Bias problem (c) Toxicity Mitigation (d) Toxicity
Detection (e) Causal Methods for Text

Controlled Generation can be broadly catego-
rized into fine-tuning methods (Krause et al., 2020),
data-based (Keskar et al., 2019; Gururangan et al.,
2020), decoding-time approaches using attribute
classifiers (Dathathri et al., 2019; Krause et al.,
2020) and causality based approaches (Madhavan
et al., 2023). Majority of these techniques were
tested on toxicity mitigation and sentiment con-
trol. The dependence of attribute regularizers on
probabilistic classifiers make them prone to such
spurious correlations (Kaddour et al., 2022; Feder
et al., 2022).
In the Unintended Bias problem LMs which are
detoxified inherit a tendency to be biased against
protected groups. LM quality is compromised due
to a detoxification side-effect (Welbl et al., 2021;
Xu et al., 2021). Some works address LM control
through improving datasets (Sap et al., 2019b). Un-
fortunately, this makes annotation and data curation
more expensive. As an alternative, there is growing
interest in training accurate models in presence of
biased data (Oren et al., 2019). Our work fits into
this framework.
In the context of Toxicity Mitigation, (Welbl et al.,
2021) highlight that detoxification methods have
unintended effects on marginalized groups. They

showcased that detoxification makes LMs more
brittle to distribution shift, affecting its robustness
in certain parts of language that contain mentions
of minority groups. Concretely, words such as “fe-
male” are identified as being toxic, as they co-occur
with toxic text, and hence the LM stops speaking
about them (Xu et al., 2021). This is called the unin-
tended bias problem. This unintended bias problem
can manifest as differences in performance of the
LM for different demographic groups.
Toxicity Detection Toxicity is a well studied prob-
lem in context of responsible and safe AI effort.
Hence, we foucs our experiments on toxicty miti-
gation in this study. Several works have also stud-
ied the angle from toxic text detection. Numer-
ous studies have explored toxic text detection, in-
cluding HATEBERT (Caselli et al., 2020), HATE-
CHECK (Röttger et al., 2020), and PERSPECTIVE

API (Lees et al., 2022). We employ the HATE-
BERT model for assessing local hatefulness and
utilize PERSPECTIVE API for third-party evalua-
tion, where we report the corresponding metrics.

Causal Methods for Text Spurious correlations
between protected groups and toxic text can be
identified is by understanding the causal structure.
(Feder et al., 2022) emphasizes on the connect be-
tween causality and NLP. Towards mitigation of
the bias problem (Madhavan et al., 2023) proposed
the use of Causal ATE as a regularization technique
and showed experimentally that it does indeed per-
form as intended.

In this paper, we probe the Causal ATE metric
theoretically, and prove that the Causal ATE metric
is less susceptible to false positives. An attribute
control method based on this metric would mitigate
unintended bias. We provide a theoretical basis
from which to understand the Causal ATE metric
and showcase that this causal technique provides
robustness across contexts for attribute control in
language models.

7 Conclusion

In conclusion, our work provides a theoretical jus-
tification for using the causality-based concepts
of counterfactuals, and ATE scores for controlled
text generation. We provide experimental results
that validate these claims. We show that the sim-
ple perturbation-based method of Causal ATE re-
moves the unintended bias effect through reduc-
tion of false positives, additionally making systems
more robust to biased data.
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8 Limitations

The limitations of our proposed framework are de-
scribed in detail in this section.
1. Owing to Pre-trained models: Third-party
hatespeech detectors such as HATEBERT tend to
overestimate the prevalence of toxicity in texts hav-
ing mentions of minority or protected groups due
to sampling bias, or just spurious correlations (Paz
et al., 2020; Waseem, 2016; Dhamala et al., 2021).
ATE computation though following causal mech-
anisms rely on these detectors for initial attribute
probability scores. Additionally, these models suf-
fer from low annotator agreement during dataset
annotation because of absence of concrete defining
hatespeech taxonomy (Sap et al., 2019a). Causal
nature of our approach tends to mitigates bias but
not completely eliminated the problem.
2. Owing to language and training corpus: We
showcase empirically the utility of our theoretical
claims in this study and conducted monolingual
experiments on English language which could be
further extended to other languages. Additionally,
training corpora used for training HATEBERT and
MLM model are known to contain curated data
from internet, where reliability and factual accuracy
is a known issue (Gehman et al., 2020). Hence,
we are limited by the distributions of our training
corpora in terms of what the model can learn and
infer.
3. Owing to distribution shift between datasets:
There are limitations that get introduced due to
change in vocabulary from training to test sets.
Sometimes, words which occur in test set are not in
ATE training set, we ignore such words but could
impact downstream perfomance of LLM if word
was important. In case of such a distribution shift
between the datasets, our model may not work as
expected.

9 Ethics Statement
Our paper addresses the crucial issue of bias and
toxicity in language models by using causal meth-
ods that involve several ethical concerns, that we
address herein:
1. Monolingual limitation : This work addresses
the problem of mitigation of toxicity in Language
models (LMs) for English language, even though
there more than 7000 languages globally (Joshi
et al., 2020) and future works should address more
generalizable and multilingual solutions so that
safety is promised for diverse set of speakers and
not limited to English speakers (Weidinger et al.,

2022)
2. No one fixed toxicity taxonomy: Literature sur-
vey highlights the fact that toxicity, hate and abuse
and other related concepts are loosely defined and
vary based on demographics and different social
groups (Paz et al., 2020; Yin and Zubiaga, 2021).
Henceforth, affecting the quality of hatespeech de-
tection systems (HATEBERT) used in this work.
These variations differences between cultural def-
initions of toxicity poses an ethical challenge (Ja-
cobs and Wallach, 2021; Welbl et al., 2021).
3. Third party classifiers for toxicity detection:
Reliance on the third party classifiers for toxic-
ity detection can itself beat the purpose of fair-
ness as these systems are reported to be biased
towards certain protected groups and overestimate
the prevelence of toxicity associated with them in
the texts (Davidson et al., 2019; Abid et al., 2021;
Hutchinson et al., 2020; Dixon et al., 2018; Sap
et al., 2019a). For most part, we take care of
these by using causal mechanisms but the ATE
computation still involves using a toxicity classifier
(HATEBERT) model.

10 Potential Risks

Any controlled generation method runs the runs the
risk of being reverse-engineered, and this becomes
even more crucial for detoxification techniques. In
order to amplify their ideologies, extremists or ter-
rorist groups could potentially subvert these models
by prompting them to generate extremist, offen-
sive and hateful content (McGuffie and Newhouse,
2020).
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A Proof of Theorem 1

Theorem. Given Assumptions 1 and 2, for wi which is a spurious correlate, ATE(wi) ≤ 0.25.

Proof. If we consider three numbers {Â(ci), â(wi), â(w
′
i)}, there are six possible orderings of this set.

We can subsume these orderings into two cases:

1. Â(ci) < â(w′
i).

2. Â(ci) ≥ â(w′
i).

Within these cases, we study the variation of ATE(wi) with â(wi). We plot these results in the Figure 5.

Figure 5: Graph of ATE score of a given word wi with â(wi) given two cases

Note that by Assumption 1, we have â(w′
i) ≤ Â(ci). Therefore, Case (2) in Figure 5 is sufficient for proof.

We have:

ATE(wi) = E
s∈D

E
w′

i∈s′

[
Â(s)− Â(s′)

]
(8)

=
n(A(s) = 1 | wi ∈ s)

n(s | wi ∈ s)
E

w′
i∈s′

[
Â(s)− Â(s′)

]

+
n(A(s) = 0 | wi ∈ s)

n(s | wi ∈ s)
E

w′
i∈s′

[Â(s)− Â(s′)] (9)

But by Assumption 2, in toxic sentences, Â(s) = Â(ci) ≥ â(w′
i). Therefore Ew′

i∈s′{Â(s)− Â(s′)} = 0.
Then:

ATE(wi) =
n(A(s) = 0 | wi ∈ s)

n(s | wi ∈ s)
E

w′
i∈s′

[Â(s)− Â(s′)] (10)

But Â(s)− Â(s′) is at most â(wi) as:
(1) if â(wi) ≤ Â(ci), then Â(s)− Â(s′) = 0
(2) otherwise Â(s)− Â(s′) = â(wi)− Â(s′) ≤ â(wi). Then:

ATE(wi) ≤
n(A(s) = 0 | wi ∈ s)

n(s | wi ∈ s)
â(wi) (11)

=
n(A(s) = 0 | wi ∈ s)

n(s | wi ∈ s)

n(A(s) = 1 | wi ∈ s)

n(s | wi ∈ s)

= p · (1− p) (12)

for some p ∈ [0, 1]. But p · (1− p) ≤ 0.25 ∀p ∈ [0, 1].

Based on Theorem A and Lemma 1, A(s) ≤ 0.25 if each wi ∈ s is a spurious correlate, i.e. non-causal,
for attribute A.
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B Experimental Results in Detail for Zampieri et al. and Gao et al. Datasets

In this section we provide the full set of results on our runs across models for the two datasets Gao and
Huang (2017) and Zampieri et al. (2019a). The plot in 6 illustrates the reduction in toxicity classification
by using ATE score on the Zampieri et al. (2019a) dataset for three types of classifiers.
We provide the full tabular results in Tables 4 and 5.

Figure 6: For the Zampieri et al. (2019a) dataset, we compute the mitigation of toxicity score using three different
classifiers, and the ATE scores computed using the respective classifiers. These show a reduction on toxicity for
protected groups across different models.

Table 4: Classifier Metrics by Protected Category for the Gao et al. Dataset

Group → African Black Female Gay Hispanic

Model ↓ Pred ATE Diff Pred ATE Diff Pred ATE Diff Pred ATE Diff Pred ATE Diff

LR 0.201 0.099 0.102 0.300 0.108 0.192 0.270 0.167 0.103 0.470 0.167 0.303 0.166 0.011 0.155
SVM 0.282 0.062 0.220 0.282 0.052 0.230 0.301 0.082 0.219 0.371 0.154 0.217 0.246 0.057 0.189
GB 0.225 0.052 0.173 0.335 0.071 0.264 0.225 0.000 0.225 0.653 0.204 0.449 0.225 0.020 0.205
NB 0.460 0.002 0.458 0.510 0.047 0.463 0.444 0.004 0.440 0.657 0.107 0.550 0.615 0.000 0.615
NN1Layer 0.000 0.003 -0.003 0.000 0.059 -0.059 0.000 0.024 -0.024 1.000 0.197 0.803 0.000 0.000 0.000
NN2Layer 0.000 0.000 0.000 0.000 0.096 -0.096 0.002 0.000 0.002 1.000 0.217 0.783 0.000 0.000 0.000
NN3Layer 0.000 0.160 -0.160 0.000 0.097 -0.097 0.000 0.000 0.000 0.993 0.165 0.828 0.000 0.000 0.000

Table 5: Classifier Metrics by Protected Category for the Zampieri et al. Dataset

Group → African Black Female Gay Hispanic

Model ↓ Pred ATE Diff Pred ATE Diff Pred ATE Diff Pred ATE Diff Pred ATE Diff

LR 0.174 0.020 0.154 0.236 0.049 0.187 0.297 0.075 0.223 0.260 0.098 0.162 0.161 0.143 0.018
SVM 0.248 0.030 0.218 0.267 0.036 0.232 0.337 0.068 0.269 0.265 0.033 0.232 0.275 0.119 0.156
GB 0.269 0.020 0.249 0.269 0.013 0.256 0.269 0.008 0.261 0.269 0.003 0.266 0.269 0.033 0.236
NB 0.349 0.009 0.341 0.453 0.055 0.398 0.343 0.183 0.160 0.539 0.070 0.469 0.287 0.000 0.287
NN1Layer5 0.000 0.000 -0.000 0.000 0.052 -0.052 0.000 0.000 -0.000 0.000 0.114 -0.114 0.000 0.000 0.000
NN2Layer105 0.000 0.000 0.000 0.000 0.090 -0.090 0.000 0.170 -0.170 0.000 0.104 -0.104 0.000 0.000 0.000
NN3Layer20105 0.000 0.200 -0.200 0.000 0.126 -0.126 0.000 0.075 -0.075 0.000 0.046 -0.046 0.000 0.000 0.000

Note: We note that the neural classifiers may have overfit on the Zampieri et al. (2019a) dataset due to
which the numbers are either close to 0 or 1.
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C Experimental Setup

C.1 Dataset Details
We conducted experiments on the publically available Zampieri (Zampieri et al., 2019b) and Gao (Gao
and Huang, 2017) datasets.

C.2 Hyper-parameters
Details in our GitHub repository: github.com/causalate-mitigates-bias/causal-ate-mitigates-bias

C.3 Result Statistics
Our run details are provided on the README.md file of our GitHub repository:
https://github.com/causalate-mitigates-bias/causal-ate-mitigates-bias/blob/main/README.md

C.4 Compute Resources
All our experiments were carried out using NVidia 1080 GPU Machines with Intel Core i7-7700K @
4.2GHz. Our experiments utilized approximately 100 CPU-hours and 10 GPU-hours.

C.5 Tools and packages
We list the tools used in our requirements.txt file of our GitHub repository: https://github.com/causalate-
mitigates-bias/causal-ate-mitigates-bias/blob/main/requirements.txt

C.6 Use of AI Assistants
We have used AI Assistants (GPT-4) to help format our charts as well as help create latex tables.
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