
Proceedings of the 28th Conference on Computational Natural Language Learning, pages 178–197
November 15-16, 2024 ©2024 Association for Computational Linguistics

SPAWNing Structural Priming Predictions from a Cognitively Motivated
Parser

Grusha Prasad
Colgate University

gprasad@colgate.edu

Tal Linzen
New York University
linzen@nyu.edu

Abstract

Structural priming is a widely used psycholin-
guistic paradigm to study human sentence
representations. In this work we introduce
SPAWN, a cognitively motivated parser that
can generate quantitative priming predictions
from contemporary theories in syntax which
assume a lexicalized grammar. By generating
and testing priming predictions from compet-
ing theoretical accounts, we can infer which
assumptions from syntactic theory are useful
for characterizing the representations humans
build when processing sentences. As a case
study, we use SPAWN to generate priming
predictions from two theories (Whiz-Deletion
and Participial-Phase) which make different as-
sumptions about the structure of English rel-
ative clauses. By modulating the reanalysis
mechanism that the parser uses and strength
of the parser’s prior knowledge, we generated
nine sets of predictions from each of the two
theories. Then, we tested these predictions
using a novel web-based comprehension-to-
production priming paradigm. We found that
while the some of the predictions from the
Participial-Phase theory aligned with human
behavior, none of the predictions from the the
Whiz-Deletion theory did, thus suggesting that
the Participial-Phase theory might better char-
acterize human relative clause representations.

1 Introduction

Structural priming (Branigan and Pickering, 2017)
is a widely used paradigm in psycholinguistics to
study the structural representations that people con-
struct when processing sentences. In this paradigm,
researchers measure the extent to which the produc-
tion or processing of target sentences is facilitated
(or primed) by preceding prime sentences, and then
use the pattern of priming behavior to draw infer-
ences about the representations people construct.
For example, consider a target sentence like (1).

(1) The boy threw the ball to the dog.

Prior work (Branigan et al., 1995) found that tar-
gets like (1) were produced more often, and were
processed more rapidly, when they were preceded
by primes like (2), that have the same structure,
than when they were preceded by primes like (3),
which, while describing the same transfer event as
(2), have a different structure.

(2) The lawyer sent the letter to the client.
(3) The lawyer sent the client the letter.

From this result, Branigan et al. inferred that partic-
ipants’ mental representation of (1) is more similar
to that of (2) than of (3).

Branigan and Pickering (2017) propose that by
carefully studying which sentences prime each
other we can build a theory of human structural
representations. Building such a theory requires us
to generate hypotheses about the particular prime-
target pairs that would be most informative to com-
pare. Insights from theoretical syntax, a field that
has spent decades studying the structure of sen-
tences, can help constrain this hypothesis space
(Gaston et al., 2017): if two theories generate dif-
ferent priming predictions, the theory whose pre-
diction better aligns with human behavior better
characterizes the representations humans build. In
this work we introduce a new parser, the Serial
Parser in ACT-R With Null elements (SPAWN),
that can generate quantitative priming predictions
from theories in syntax.

SPAWN is a cognitively motivated parser in
which the parsing decisions are driven by the com-
putational principles proposed by a general pur-
pose cognitive architecture, Adaptive Control of
Thought-Rational (ACT-R; Anderson et al., 2004).
Thus, SPAWN not only describes the computations
underlying human parsing, but also specifies the
cognitive processes involved. This level of spec-
ification makes it possible to explain why, given
a grammar, some sentence A is primed more by
sentence B compared to C, which in turn is use-

178

ful for generating quantitative behavioral priming
predictions from syntactic theories.

Existing algorithmic models of parsing with this
level of specification (Lewis and Vasishth, 2005)
are limited in their ability to model assumptions
from theories that use more contemporary frame-
works like Minimalism for two reasons: First, they
assume a disconnect between lexical and gram-
matical knowledge, which is inconsistent with the
lexicalized grammar formalisms these frameworks
adopt; Second, the models do not specify mech-
anisms to handle null (or covert) lexical items,
which are essential components of several contem-
porary syntactic theories. SPAWN bridges this gap
by adopting a lexicalized grammar formalism and
specifying an explicit mechanism for null items.

As a case study, we use SPAWN to study the
mental representations of sentences with relative
clauses (RCs) such as (4) and (5).

(4) The cat examined by the doctor was skittish.
(5) The cat which was examined by the doctor was

skittish.

We generate priming predictions from two compet-
ing syntactic theories: Whiz-Deletion (Chomsky,
1965), which assumes that the structure of (4) is
identical to the structure of (5), but that the words
“which” and “was” are covert; and Participial-Phase
(Harwood, 2018) which assumes that (4) and (5)
have different structures. We describe these theo-
ries in more detail in § 4. We generate nine sets of
predictions from the two theories by modulating
two factors: First, the strength of prior knowledge
(model exposed to 0, 100 or 1000 sentences before
the experiment); Second, the reanalysis mechanism
(model goes back to the beginning of the sentence,
or model uses one of two entropy-based measures
to select a word to go back to). Then, we compare
the predictions from these two theories to empirical
human data we collected using a novel web-based
comprehension-to-production priming paradigm.

We found that the predictions from the Whiz-
Deletion never aligned with the qualitative pattern
of human priming behavior, whereas under some
assumptions about the underlying reanalysis mech-
anism and strength of prior knowledge, predictions
from the Participial-Phase theory did align with
the qualitative empirical pattern. These results sug-
gest that the Participial-Phase account better char-
acterizes human sentence representations. More
broadly, this case study highlights how SPAWN
can be used to adjudicate between competing the-

Does the model specify
algorithms underlying
sentence processing or

production?

Processing difficulty during parsing
(Hale 2001, Joshi 1990, De Santo 2021)

Priming (Chang et al 2006, Snider 2008,
Malhotra 2009, Prasad et al 2019)

Is the model designed to
account for psycholinguistic

phenomena?

Symbolic and neural
network parsers

Can the model account for
sentence processing?

ACT-R model of priming in
production (Reitter et al 2011)

Can the model handle a
range of linguistic

phenomena and theoretical
assumptions?

ACT-R left corner parsing
with unlexicalized grammars
(Lewis and Vasishth 2005)

SPAWN

Yes No

Yes No

Yes No

NoYes

Figure 1: How is SPAWN different from other models?

oretical assumptions: the quantitative behavioral
predictions SPAWN generates can clarify how dif-
ferences in assumptions about sentence structure or
parsing mechanisms might translate into testable
behavioral differences (if at all).

2 Background

2.1 The ACT-R framework

ACT-R is a cognitive architecture designed to ex-
plain cognition through a small set of general com-
putational principles and mechanisms that are rel-
evant to a wide range of tasks and domains. One
such mechanism which is particularly relevant in
SPAWN is the retrieval of information from mem-
ory. The specific computational principles and al-
gorithms that guide retrieval in ACT-R are outlined
in § 3.2.1. Crucially, since ACT-R is intended to
be a general purpose cognitive mechanism, most of
the hyperparameters involved in this algorithm are
already fixed based on data from a wide range of
experimental paradigms and cognitive phenomena.
This restricts the degrees of freedom and constrains
the space of predictions that can be generated from
any given theory.

2.2 Prior models of parsing

In most existing symbolic and neural-network
based parsers, parsing decisions are not driven by
specific cognitive principles such as the ones pro-
posed by ACT-R. Therefore, generating predictions
about observable human behavior (e.g., reading
times) from these parsers requires making some ad-
ditional linking hypotheses. Most prior hypotheses
that link parsing decisions to human behavior have

179

focused on notions of processing effort, such as
the number of parse states explored (Hale, 2011),
the maximum number of items on the stack at any
given point (Joshi, 1990), or the maximum amount
of time a node stays in memory (De Santo, 2021).
These hypotheses cannot be used to generate prim-
ing predictions because they do not specify a mech-
anism by which a prime sentence might facilitate
the processing of a target sentence.

One notable exception is the ACT-R based left-
corner repair parser proposed by Lewis and Va-
sishth (2005), in which parsing decisions are made
based on the activation of different chunks in the
memory (such as words or grammar rules). The ac-
tivation of chunks in this model can capture notions
of both processing difficulty and priming. However,
this model assumes a strong dissociation between
the grammar and the lexicon and therefore cannot
be adopted directly to generate predictions from
lexicalized grammar formalisms such as Minimal-
ist Grammar (Stabler, 1996), Combinatorial gram-
mar (Steedman, 1988), Lexical-Functional Gram-
mar (Kaplan and Bresnan, 1981) or Head-Driven
Phrase Structure Grammar (Pollard and Sag, 1994).
SPAWN is an ACT-R parser that models the link
between the grammar and the lexicon can therefore
generate predictions from lexicalized grammars.

2.3 Prior models of priming

While several models of priming have been pro-
posed, as we illustrate in Figure 1, none of them
can be used to adjudicate between contemporary
syntactic theories. Many models of priming that
model sentence processing either do not explic-
itly model syntactic structure (Chang et al., 2006;
Malhotra, 2009; Prasad et al., 2019; Sinclair et al.,
2022) or do not explicitly implement the mecha-
nisms that result in priming (Snider, 2008). Reit-
ter et al. (2011) proposed an ACT-R based model
of priming that does explicitly implement prim-
ing mechanisms and, unlike Lewis and Vasishth’s
ACT-R model, also assumes a strong link between
lexical and grammatical knowledge, and is thus
consistent with contemporary lexicalized grammar
formalisms. However, this model can only generate
sentences given a semantic description, and there-
fore can only be used to model sentence production
and not sentence processing. We bridge this gap
with SPAWN.

3 Model description

SPAWN uses the three components of ACT-R that
are relevant for parsing: declarative memory,
which contains information about lexical and syn-
tactic categories (cf. Reitter et al., 2011); proce-
dural memory, which contains the algorithm for
retrieving syntactic categories from memory and
combining them together; and buffers, which store
the words the parser has encountered so far, the
syntactic categories retrieved for those words and
the current parse state.1 We describe the two mem-
ory components below (§ 3.1, § 3.2), as well as the
mechanisms for learning and priming (§ 3.3, § 3.4).

3.1 Declarative memory (the grammar)

Declarative memory in SPAWN consists of two
types of chunks (sets of attribute-value pairs): syn-
tax chunks and lexical chunks (see § A.3 for the
entire list of syntax and lexical chunks we use in
this work).

Lexical chunks Each lexical chunk stores a word
in the vocabulary along with the set of syntactic cat-
egories that the word could be associated with. For
example, the lexical chunk for “examined” encodes
that it can be either be associated with the transitive
verb category or the past participle category.

Syntax chunks Each syntax chunk stores the con-
straints on the contexts in which a category can
occur. For example, the transitive verb category
encodes that it needs to have a determiner phrase
category on its left and right. We use the Combina-
torial Categorial Grammar (CCG; Steedman, 1988)
formalism to express such constraints.2

3.2 Procedural memory (the parser)

SPAWN parses sentences incrementally, one word
at a time. As schematized in Figure 2, processing
each word involves four steps: retrieval, reanalysis,
integration and null-prediction.

3.2.1 Retrieval
When processing a word wi in a sentence s, the
parser retrieves the category with the highest ac-
tivation from the set Ci of all possible categories
that wi can be associated with. The activation Aijs

1https://github.com/grushaprasad/spawn
2The CCG notation to encode the “transitive verb” category

is (TP\DP)/DP; the forward slash indicates the words needs
to combine with a DP on the right and the forward slash that it
needs to combine with DP on the left. TP is the category that
results from this combination.

180

https://github.com/grushaprasad/spawn

Figure 2: Steps involved in processing each word. Pro-
cess is repeated till all words are assigned a category.

for any category cij ∈ Ci is given by Equation 1,
where Bij is the base-level activation, Lij is the
activation wi spreads to cij , Iijs is the inhibition
from the buffer to the cij when processing sentence
s, and ϵ is noise sampled from Normal(0, σ).

Aijs = Bij + Lij − Iijs + ϵ (1)

Base-level activation This activation for a cate-
gory is high if the category has been retrieved re-
cently and/or frequently. It is given by Equation 2,
where k is the total number of times the model has
encountered cij , Tijk is the time taken to process
all the words since the model’s k-th encounter of
cij , and d is a decay parameter.

Bij = log
K∑

k=1

T−d
ijk (2)

The time to process a word wl is given by Equa-
tion 3, where N is the number of chunks retrieved
when processing wl, Aln the activation of the n-th
chunk the model retrieved when processing wl

(computed using Equation 1), F a latency factor
and f a latency exponent.

tl =
N∑

n=1

Fe−(fAln) (3)

Thus, Tijk in Equation 2 is tk + tk+1 + . . . ti.

Lexical activation The context independent acti-
vation a word wi spreads to a category cij is given
in Equation 4, where M is the maximum activation
that any word can spread.

Lij = M × P (cij | wi) (4)
Inhibition The inhibition for cij takes into ac-
count how often cij was retrieved for wi but was
later discarded during reanalysis when processing

a sentence s. It increases if cij was discarded often
and/or recently, and is given by Equation 5 where
Z indicates the total number of times cij was dis-
carded when processing wi in the current sentence,
Tijsz indicates the time since the z-th time cij was
discarded in sentence s, and d is the decay factor.

Iijs = log
Z∑

z=1

T−d
ijsz

(5)

The hyperparameters used in the equations
above — d, F , f , M — are set based on prior
ACT-R models (§ 5.3; § D).

3.2.2 Integration
Integrating a retrieved syntactic category cij in-
volves combining cij with the current parse state
P ; this combination is determined by the CCG
composition process (Steedman 1996; § B.1). If
no successful combination is possible, then the
retrieved category cannot be integrated into the
current parse state; the parser then needs to either
retrieve another category for the word, or, if no
unexplored categories remain, trigger a reanalysis.

3.2.3 Reanalysis
When a reanalysis gets triggered at wi, the parser
selects an index z to regress to, where z < i. The
method used to select z is a hyperparameter with
two settings: first-word regression (go back to
the first word every time) and entropy-weighted
regression (sample z from 1 . . . i weighted by the
parser’s uncertainty at each index). Once the parser
selects z, it discards all of the categories retrieved
for wz . . . , wi−1, wi, and resets the parse state to
what it was at wz . The parser keeps track of the
categories that were discarded when processing
each word in a sentence s, and uses this to compute
the inhibition for each category using Equation 5.

Calculating uncertainty To calculate uncer-
tainty at index x in entropy-weighted regression,
we computed the activation of each category cjx
associated with wx by adding together Bxj and
Lxj (§ 3.2.1). Then, we converted these activation
values into probabilities with the softmax function
(temperature 1 or 10), and finally computed the
entropy from these probabilities.

“Give-up” mechanism Despite inhibiting previ-
ously discarded categories, the parser could still
get stuck in a loop retrieving the same (incorrect)
category cij every time it is processing wi if cij has
a very high base-level or lexical activation. To pre-
vent an infinite loop, we implemented a “give-up”

181

mechanism, where after x iterations, the model ig-
nores the base-level and lexical activation and uses
only inhibition and noise to compute activation of
cij . Setting x to 100 or 1000 resulted in nearly
identical results (§ D).

3.2.4 Null or covert element prediction

Null or covert elements in sentences add additional
uncertainty to the parsing process. To illustrate this,
let us consider an example that is unrelated to our
experimental setup, but illustrates the uncertainty
in a theory-independent way. Given a prefix “The
cat examined the doctor and the doctor ...” con-
sider the following continuations; * indicates the
continuation is ungrammatical.

(6) ... examined the cat.

(7) ... NULLexamined the cat.

(8) * ... NULLexamined examined the cat.

The covert NULLexamined can only occur if its overt
counterpart is absent. Therefore, after parsing the
prefix, a serial parser has to predict whether the
upcoming word in the sentence is covert or overt.
If it expects the next word to be overt “examined”,
the parser should not retrieve any null elements.
On the other hand, if it expects the next word to
be covert NULLexamined, it needs to retrieve this
category and integrate it with the current parse state
before processing the remainder of the sentence.

We model this decision in SPAWN in the same
way that we model other uncertainty: pick the op-
tion Niks with the highest activation, where i is
the current word, and k ∈ {x1, x2 . . . xp, not-null},
where x1, ..., xp are the types of null elements that
can come after the current parse state. The activa-
tion for Niks is given by Equation 6:

Niks = Lik − Iiks + ϵ (6)

Lik and Iiks are the same as in Equations 4
and 5. As in Equation 1, ϵ is noise sampled from
Normal(0, σ). We do not include base-level activa-
tion for the null categories in this computation, be-
cause the base-level activation for the not-null cate-
gory would be extremely high (most sentences in
the corpus do not have null elements) and would re-
sult in the null categories never being retrieved. We
also assume that only certain parse states can be fol-
lowed by null elements (§ B.2): if the parser tried
to insert null elements after every word, it would re-
sult in an exponential increase in the search space.

3.3 Updating activations (“learning”)

Learning in SPAWN occurs by updating the counts
of syntactic categories, which in turn are used to
compute base-level and lexical activations (Equa-
tions 2, 4). These counts are updated at the end of
processing each sentence based on the final set of
categories and null-elements that were retrieved.

3.4 Emergence of priming in SPAWN

Priming in SPAWN emerges as a consequence of
parsing and learning. There are two factors that
can result in priming: an increase in the activa-
tion of relevant categories and an increase in the
probability of reanalysis.

Increased activation When a word in the target
sentence is ambiguous between two categories X
and Y , if the parser retrieved X in a preceding
prime sentence, that increases its base and lexi-
cal activation relative to Y , which makes X more
likely to be retrieved in the target as well.

Increased reanalysis When a word in the target
sentence is ambiguous between two categories X
and Y , and Y has higher base and lexical activa-
tion, then the parser is more likely to retrieve Y
initially. If a sequence of parsing decisions causes
the parser to reanalyze the word, then the probabil-
ity of the parser eventually retrieving X increases:
the inhibition to Y during reanalysis decreases the
difference in activation between X and Y .

4 A case study: Evaluating competing
theories of reduced relative clauses

We use SPAWN to generate and test priming pre-
dictions for two competing syntactic theories of rel-
ative clauses that differ in their assumptions about
how the structure of sentences like (9) is related to
the structure of sentences like (10) and (11).

(9) The cat examined by the doctor was skittish.
(Reduced passive RC; RRC)

(10)The cat who was examined by the doctor was
skittish. (Full passive RC; FRC)

(11)The cat being examined by the doctor was skit-
tish. (Reduced progressive RC; ProgRRC)

Under the Whiz-Deletion account of RCs (Chom-
sky, 1965), the sub-tree corresponding to any RC,
whether reduced or not, is headed by the same
node: a complementizer phrase (CP). In full RCs,
the lexical content in this phrase (the wh-word and

182

auxiliary “was”) is overt, whereas in reduced RCs
this lexical content is covert. By contrast, under
the Participial-Phase account (Harwood, 2018),
while full RCs are headed by CPs, reduced pas-
sive and progressive RCs, are headed by Voice
Phrase (VoiceP) and Progressive Phrase (ProgP)
respectively. Consequently, the Participial-Phrase
account, unlike the Whiz-Deletion account, does
not assume the presence of a covert wh-word and
auxiliary in reduced passive and progressive RCs.
See § A.1 for trees that illustrate these differences.

Implementing the two theories We implement
two versions of SPAWN, a Whiz-Deletion version
and a Participial-Phase version. The procedural
memory (parsing mechanism) is identical across
both versions. There are two main differences in
the declarative memory (grammar) across the ver-
sions. First, they differ in the categories that nouns
can be associated with: in the Whiz-Deletion ver-
sion, all nouns modified by RCs have the category
NP/CP (i.e., a noun looking to combine with a
CP on its right), whereas in the Participial-Phase
version, nouns modified by FRCs, RRCs and Pro-
gRRCs are associated with different categories
(NP/CP, NP/VoiceP and NP/ProgP respectively).
Second, the versions have different null lexical
items: the Whiz-Deletion version has lexical items
for a null subject Wh-word, a null finite auxiliary
and a null progressive auxiliary, all of which are
absent in the Participial-Phase version (see § A.2).

5 Methods

5.1 Experimental paradigm
We used a comprehension-to-production priming
paradigm to evaluate the two theories. In each
experimental trial, human participants or SPAWN
models were presented with three primes with the
same structure, followed by an ambiguous partial
prompt such as (15) that could be completed ei-
ther with or without a reduced RC. We used four
prime types: three prime types with RCs (one each
for RRC, FRC and ProgRRC), as well as control
primes without RCs, such as (12)–(14).

(12) The dog chased the boy and ran away.
(13) The monkey chased the hatter and stole a hat.
(14) The dentist chased her son and panted.
(15) The thief chased ___

Estimating priming effects We estimated prim-
ing effects by measuring the proportion of RRC tar-
get parses in the different priming conditions (see

§ 5.2 and § 5.3 for details on how these parses were
measured in humans and models). Concretely, we
estimated P (RRC parse | target, primes) by fitting
Bayesian mixed-effects logistic regression model
with the following three predictors (specified us-
ing Helmert contrasts) as fixed effects: All RCs vs.
AMV, ProgRRC and FRC vs. RRC, and ProgRRC
vs. FRC. We used a weakly informative prior and
a maximal random effects structure (see § E for
further details).

Materials When creating our stimuli, we picked
24 target verbs that can give rise to a temporary
ambiguity as in (15) which can either be resolved
with either a main verb or reduced RC continuation.
We created four items per verb and four versions
of each item. The four versions of one of the items
for the verb “chased” are illustrated below.

(16) The dog chased by the boy ran away.
(17) The dog who was chased by the boy ran away.
(18) The dog being chased by the boy ran away.
(19) The dog chased the boy and ran away.

From these materials we created counterbalanced
lists: in each list, three items occurred as primes;
the fourth was cut at the verb to generate the target.

5.2 Experiment with human participants
Participants We recruited 769 US-based par-
ticipants from Prolific, of whom 765 were self-
reported native speakers of English. We compen-
sated them with 8.35 USD.

Design We developed a web-based version of the
comprehension-to-production priming paradigm
used by Pickering and Branigan (1998). In the
original paradigm, participants were given incom-
plete sentences in a booklet and asked to complete
them. Since participants can be less attentive on
web-based platforms than in the lab, we modified
the paradigm to ensure that participants had to fully
read the prime sentences. On the prime trials, par-
ticipants were presented with a sentence, and asked
to re-type that sentence from memory on the next
screen. They could not progress until they typed
in the sentence perfectly, and could not copy-paste
the sentence, but could go back to re-read the sen-
tence as often as they liked. On the target trials,
participants were presented with the partial prompt
on the screen, and asked to re-type the prompt and
complete it on the next screen. They could not
progress until they typed in the prompt perfectly
and entered at least one more word. We did not

183

automatically verify participants’ productions, but
in practice almost all participants generated gram-
matical completions with real words.

Measuring the proportion of RRC parses We
used regular expressions (§ F) to classify all target
completions into two categories (RRC vs. non-
RRC) and specified RRC completions as “success”
in our Bayesian logistic regression model.

5.3 Experiment with SPAWN models
We generated predictions from 18 types of mod-
els which varied along 3 dimensions: the gram-
mar (Whiz-Deletion vs. Participial-Phase; § 4,
A.2), the reanalysis implementation (First-word
regression and Entropy-Weighted reanalysis with
temperature 1 or 10; § 3.2.3), and the number
of training sentences (0, 100 or 1000 sentences).
For each model type, we created 1280 model in-
stances, which, as we describe below, share some
hyperparameters and differ in others.

Model hyperparameters The following hyper-
parameters are fixed across all model instances:
decay (d in Equations 2, 5), latency exponent (f
in Equation 3), and maximum activation (M in
Equation 4). The following hyperparameters dif-
fer for each model instance: latency factor (F in
Equation 3), and the noise parameter (σ in § 3.2.1).

The values for d, f , and M as well as
the sampling distributions for F and σ were
were taken from Vasishth and Engelmann (2021)
(see § D for more details). We sampled σ
from Normal(0.35, 1), because when sigma
was sampled from Vasishth and Engelmann’s
Uniform(0.2, 0.5), some models never retrieved
syntactic categories with low base-level activation.
However, there were no qualitative differences in
results between the two distributions (see § D)

Training data To set initial base-level and lexical
activations of the models prior to the experiment,
we trained the models on 0, 100, or 1000 sentences
and updated the activations at the end of each sen-
tence as described in § 3.3. These small numbers
are consistent with prior work which assumes that
participants start experiments with very weak pri-
ors (Delaney-Busch et al., 2019; Fine et al., 2010).

We used templates3 to generate a dataset of
10000 sentences in which the relative frequency
of different types of RC sentences mirrored corpus

3https://github.com/grushaprasad/
spawn/blob/main/create_training_dat.py

statistics from Roland et al. (2007); for example,
only 1% of the training sentences contained an
RRC (see § C for details about the distribution of
sentence types). For each model instance, we sam-
pled the training sentences from this dataset. Given
the low probability of RRCs, many model instances
never encountered these in their training data, and
as such started with a base-level activation of 0 for
RRCs.

Design We presented each model instance with
the stimuli from the human experiment. On a prime
trial, the model parsed the sentence and updated the
base-level and lexical activations based on the final
set of retrieved categories. On a target trial, the
model parsed the partial prompt and we recorded
the resulting parse state; the model was constrained
to end with only one of two partial states: DP/PP
(RRC parse) or TP/DP (active parse).

Measuring the proportion of RRC parses We
specified the DP/PP state as “success” in our
Bayesian logistic regression model; unlike with
humans, we do not need target completions to infer
the parse the model assigned to the target.

6 Results

Participant/model exclusion Most participants
(77%) never generated a single RRC target com-
pletion. Similarly most models (median of 67%
across the 18 model types) never generated a single
RRC parse state. Since the goal of this work is to
find differences in the proportion of RRC parses be-
tween the primes, we only included in our analyses
and plots the participants or models that generated
at least one RRC completion or parse state.

Human priming behavior In the human exper-
iment, we observed that the proportion of target
RRC parses was highest when the target was pre-
ceded by RRC primes with the same structure, and
lowest when preceded by AMV primes which did
not have any relative clauses. The proportion of
target RRC parses in other two priming conditions,
ProgRRC and FRC, were equivalent relative to
each other, lower than with RRC primes, and higher
than with AMV primes. (Figure 4). See § E.3 for
statistical analyses.

Whiz-Deletion vs. Humans In the Whiz-
Deletion models, processing ProgRRC sentences
involves the retrieval of the same null complemen-
tizer as in RRC sentences, whereas processing FRC

184

https://github.com/grushaprasad/spawn/blob/main/create_training_dat.py
https://github.com/grushaprasad/spawn/blob/main/create_training_dat.py

Entropy−weighted
regression (temp=1)

Entropy−weighted
regression (temp=10) First−word regression

P
articipial−

P
hase

W
hiz−

D
eletion

0 100 1000 0 100 1000 0 100 1000

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Training sentences

M
ea

n
P

(R
R

C
 |

pr
im

e,
 ta

rg
et

 p
re

fix
)

Prime RRC ProgRRC FRC AMV

Figure 3: Predicted probability of RRC parse from the posterior distribution of the Bayesian logistic regression
model. Error bars reflect 95% credible intervals.

0.0

0.1

0.2

0.3

RRC ProgRRC FRC AMV
Prime

M
ea

n
P

(R
R

C
 |

pr
im

e,
 ta

rg
et

 p
re

fix
)

Figure 4: Empirical probability of RRC parse from the
posterior distribution of the Bayesian logistic regression
model. Error bars reflect 95% credible intervals.

sentences does not (§ B.3). Consequently, these
models predicted that the proportion of target RRC
parses was greater with ProgRRC primes than with
FRC primes (Figure 3), a pattern that does not
align with the qualitative priming pattern observed
in humans. Additionally, the magnitude of priming
effects in the RRC condition were also generally
smaller than what was observed in humans (Fig-
ure 3, bottom panel). These results together suggest
that the Whiz-Deletion account of RRCs, at least
the way we operationalized it, is not consistent with
the representations humans build.

Participial-Phase vs. Humans In the Participial-
Phase models, unlike in their Whiz-Deletion coun-
terparts, processing ProgRRC, FRC, or AMV
primes does not involve retrieving any categories
that are shared with RRC sentences. However, the

categories retrieved for ProgRRC and FRC but not
AMV primes, increase the probability of reanalysis
when processing the ambiguous target sentences
(§ B.3). This reanalysis, as discussed in § 3.4, in
turn increases the probability of the model eventu-
ally assigning an RRC parse to the target, especially
if the models’ prior preference for AMV parses
is relatively weak. Consequently, these models,
particularly when they were trained on 0 and 100
sentences, predicted a graded effect which aligned
with the qualitative priming pattern observed in
humans: the proportion of target RRC parses was
highest with RRC primes, followed by ProgRRC
and FRC primes, and lowest with AMV primes.
The models trained on 1000 sentences could not
capture this qualitative pattern because they gener-
ated very few RRC sentences across the board. This
suggests, in line with prior work (Delaney-Busch
et al., 2019; Fine et al., 2010), that when modeling
the production or processing of extremely infre-
quent structures (like RRCs), assuming weak prior
knowledge might be necessary.

Of the models that captured the qualitative pat-
terns, the models with first-word regression better
captured the magnitude of the empirical priming
effects (Figure 3). Taken together, these results
suggest that, depending on the assumptions we
make about reanalysis and strength of prior belief,
the Participial-Phase account of RRCs, unlike the
Whiz-Deletion account, can be consistent with the
representations humans build.

185

7 Discussion

In this work we introduced a cognitively motivated
parser, SPAWN, which can be used to generate
quantitative behavioral predictions from contem-
porary syntactic theories that are based on lexi-
calized grammar formalisms. SPAWN makes it
possible to evaluate what theoretical differences
(if any) result in differing sentence processing pre-
dictions. As a case study, we used SPAWN to
generate predictions from two competing theories
of reduced relative clauses (Whiz-Deletion and
Participial-Phase) while modulating the reanaly-
sis mechanism and the number of training exam-
ples. We compared the predictions from these dif-
ferent versions of the SPAWN model to human
behavior from a large-scale (N=769) web-based
comprehension-to-production priming experiment.

We found that the predictions of the Whiz-
Deletion SPAWN models did not capture the quali-
tative human priming behavior for any of the model
types. In contrast, many of the Participial-Phase
SPAWN models captured the qualitative patterns,
with the models that best captured the magnitude
of the empirical effects being ones with weak prior
knowledge, that reprocesses the sentence from the
beginning whenever reanalysis is triggered. Taken
together, these results suggest that the Participial-
Phase account of reduced relative clauses captures
the structural representations people construct bet-
ter than the Whiz-Deletion account.

Future work This work tentatively suggests that
first-word regression might better model human
processing than entropy-weighted regression. This
observation needs to be more robustly validated
with other empirical phenomena (e.g., priming in
PO/DO sentences). Additionally, some of the pars-
ing mechanisms SPAWN implements, such as for
reanalysis or predicting null elements, are likely
too simplistic to account for human sentence pro-
cessing more generally (see § G). Future work can
tweak these mechanisms and evaluate the modi-
fied models against processing benchmarks like
the SAP Benchmark (Huang et al., 2024) which
have more fine-grained measurements (e.g., read-
ing time per word) across a range of psycholin-
guistic phenomena. Since the time taken for any
of the parsing steps is measured in milliseconds
by default in ACT-R, SPAWN can already gener-
ate quantitative predictions about the time taken
to read or reprocess specific words in sentences,

and therefore can be used with self-paced reading
and eye-tracking datasets. Finally, future work can
also use this paradigm to evaluate other competing
syntactic theories.

Conclusion We proposed a cognitively plausible
parser that can be used to generate quantitative be-
havioral predictions from syntactic theories. Using
English reduced relative clauses as a case study,
we demonstrated how this model can be used to
adjudicate between competing syntactic theories
and parsing mechanisms.

Acknowledgements

We would like to thank the anonymous reviewers,
HSP 2023 and 2024 audience as well as Aniello De
Santo, Shravan Vasishth, Will Merrill, Matt Wagers,
Suhas Arehalli, Brian Dillon, Vijay Ramachandran
and Joel Sommers for their valuable feedback.

This work was partly supported by an American
Psychological Association Dissertation Research
Award. The work was conducted using compu-
tational resources from the Maryland Advanced
Research Computing Center (MARCC) and the
Colgate Supercomputer (Partially funded by NSF
Award #2346664).

References
John R Anderson, Daniel Bothell, Michael D Byrne,

Scott Douglass, Christian Lebiere, and Yulin Qin.
2004. An integrated theory of the mind. Psychologi-
cal Review, 111(4):1036.

Holly P Branigan and Martin J Pickering. 2017. An
experimental approach to linguistic representation.
Behavioral and Brain Sciences, 40.

Holly P Branigan, Martin J Pickering, Simon P Liv-
ersedge, Andrew J Stewart, and Thomas P Urbach.
1995. Syntactic priming: Investigating the mental
representation of language. Journal of Psycholinguis-
tic Research, 24(6):489–506.

Franklin Chang, Gary S Dell, and Kathryn Bock.
2006. Becoming syntactic. Psychological review,
113(2):234.

Noam Chomsky. 1965. Aspects of the theory ofsyntax.
Cambridge, MA: MITPress, (1977):71–132.

Aniello De Santo. 2021. A minimalist approach to fa-
cilitatory effects in stacked relative clauses. Proceed-
ings of the Society for Computation in Linguistics,
4(1):1–17.

Nathaniel Delaney-Busch, Emily Morgan, Ellen Lau,
and Gina R Kuperberg. 2019. Neural evidence for

186

bayesian trial-by-trial adaptation on the n400 during
semantic priming. Cognition, 187:10–20.

Alex Fine, Ting Qian, T Florian Jaeger, and Robert
Jacobs. 2010. Syntactic adaptation in language com-
prehension. In Proceedings of the 2010 workshop
on cognitive modeling and computational linguistics,
pages 18–26.

Phoebe Gaston, Nick Huang, and Colin Phillips. 2017.
The logic of syntactic priming and acceptability judg-
ments. Behavioral and Brain Sciences, 40.

John T Hale. 2011. What a rational parser would do.
Cognitive Science, 35(3):399–443.

William Harwood. 2018. Reduced relatives and ex-
tended phases: A phase-based analysis of the inflec-
tional restrictions on english reduced relative clauses.
Studia Linguistica, 72(2):428–471.

Kuan-Jung Huang, Suhas Arehalli, Mari Kugemoto,
Christian Muxica, Grusha Prasad, Brian Dillon, and
Tal Linzen. 2024. Large-scale benchmark yields no
evidence that language model surprisal explains syn-
tactic disambiguation difficulty. Journal of Memory
and Language, 137:104510.

Harold Jeffreys. 1998. The theory of probability. OuP
Oxford.

Aravind K Joshi. 1990. Processing crossed and nested
dependencies: An automation perspective on the psy-
cholinguistic results. Language and cognitive pro-
cesses, 5(1):1–27.

Ronald M Kaplan and Joan Bresnan. 1981. Lexical-
functional grammar: A formal system for grammati-
cal representation. Massachusetts Institute Of Tech-
nology, Center For Cognitive Science.

Richard L Lewis and Shravan Vasishth. 2005. An
activation-based model of sentence processing as
skilled memory retrieval. Cognitive science, pages
375–419.

Kyle Mahowald, Ariel James, Richard Futrell, and Ed-
ward Gibson. 2016. A meta-analysis of syntactic
priming in language production. Journal of Memory
and Language, 91:5–27.

Dominique Makowski, Mattan S. Ben-Shachar, and
Daniel Lüdecke. 2019. bayestestr: Describing ef-
fects and their uncertainty, existence and significance
within the bayesian framework. Journal of Open
Source Software, 4(40):1541.

Gaurav Malhotra. 2009. Dynamics of structural prim-
ing. Ph.D. thesis, University of Edinburgh.

Martin J Pickering and Holly P Branigan. 1998. The rep-
resentation of verbs: Evidence from syntactic prim-
ing in language production. Journal of Memory and
language, 39(4):633–651.

Carl Pollard and Ivan A Sag. 1994. Head-driven phrase
structure grammar. University of Chicago Press.

Grusha Prasad, Marten van Schijndel, and Tal Linzen.
2019. Using priming to uncover the organization of
syntactic representations in neural language models.
In Proceedings of the 23rd Conference on Computa-
tional Natural Language Learning (CoNLL), pages
66–76, Hong Kong, China. Association for Computa-
tional Linguistics.

David Reitter, Frank Keller, and Johanna D Moore.
2011. A computational cognitive model of syntactic
priming. Cognitive science, 35(4):587–637.

Douglas Roland, Frederic Dick, and Jeffrey L Elman.
2007. Frequency of basic english grammatical struc-
tures: A corpus analysis. Journal of memory and
language, 57(3):348–379.

Arabella Sinclair, Jaap Jumelet, Willem Zuidema, and
Raquel Fernández. 2022. Structural persistence in
language models: Priming as a window into abstract
language representations. Transactions of the Associ-
ation for Computational Linguistics, 10:1031–1050.

Neal Snider. 2008. Similarity and structural priming.
Ph.D. thesis, Stanford University.

Edward Stabler. 1996. Derivational minimalism. In
International conference on logical aspects of com-
putational linguistics, pages 68–95. Springer.

Mark Steedman. 1988. Combinators and grammars. In
Categorial grammars and natural language struc-
tures, pages 417–442. Springer.

Mark Steedman. 1996. Surface Structure and Interpre-
tation. MIT Press.

Shravan Vasishth and Felix Engelmann. 2021. Sentence
comprehension as a cognitive process: A computa-
tional approach. Cambridge University Press.

187

https://doi.org/10.1017/S0140525X17000371
https://doi.org/10.1017/S0140525X17000371
https://doi.org/10.21105/joss.01541
https://doi.org/10.21105/joss.01541
https://doi.org/10.21105/joss.01541
https://doi.org/10.18653/v1/K19-1007
https://doi.org/10.18653/v1/K19-1007

A Details about the two theories of reduced relative clauses and how they are
implemented in the declarative memory

A.1 Syntax trees

DP

NP

ProgP

vP

VoiceP

VP

PP

by the doctor;

VP

V0

examined

Voice0

v0

tBE

Prog0

being

N0

cat

D0

the

(a) Participial-Phase
DP

NP

CP

C′

TP

T′

vPProg

ProgP

vP

VoiceP

VP

PP

by the doctor

VP

tDPV0

examined

Voice0

v0

tBE

Prog0

being

v0prog
tBE

T0

was

tDP

C0

DP

which

N0

cat

D0

the

(b) Whiz-Deletion

Figure 5: Syntax tree for “The cat being examined by the doctor...”. The words in red are unvoiced in the Whiz-
Deletion account. The tree for “The cat examined by the doctor ...” is nearly identical but without the ProgP. In
Participial-Phase VoiceP is the sister of cat; in Whiz-Deletion vP is the sister of was.

188

A.2 Differences in syntactic categories between the two theories

Category Example sentence Whiz-Deletion Participial-Phase

Noun “The cat which was examined by... ” NP/CP NP/CP
(“cat”) “The cat examined by ... ” NP/CP NP/VoiceP

“The cat being examined by ... ” NP/CP NP/ProgP

Null wh subject “The cat NULLwh NULLpass examined by...” CP/(TP\DP) MISSING
Null finite auxiliary (TP\DP)/VoiceP MISSING
Null progressive auxiliary ‘The cat NULLwh NULLprog being examined by...” (TP\DP)/ProgP MISSING

When the noun in the Whiz-Deletion version combines with the null Wh subject and null finite or
progressive auxiliary, it results in the same parse state as the Participial-Phase noun categories for RRC
and ProgRRC: NP/VoiceP and NP/ProgP. We also explored an alternative implementation of the Whiz-
Deletion account where instead of having three NULL categories — NULLWh, NULLpass and NULLprog —
we had only two categories NULLWhpass (CP/VoiceP) and NULLWhprog (CP/ProgP). This implementation
resulted in nearly identical results (§ 6)

Note, both accounts have the same categories for the null wh-word in RCs which modify objects
of clauses like “The cat the doctor examined was skittish”: Null Complementizer (Object RCs) in the
following table.

A.3 Syntactic categories shared by the two theories

Category label Example words CCG rules

Determiner the, a , an, some, his, her, many, a-lot-of DP/NP
Determiner Phrase something, everyone, non-violence, popularity DP
Noun Phrase dragon, media, palace, mission, trance, tax-fraud NP
Preposition on, to, into, by, at, in, down PP/DP
Transitive verb (active) accompanied, admired, betrayed, solved, forged (TP\DP)/DP
Transitive verb (passive) accompanied, admired, betrayed, solved, forged VoiceP/PP
Transitive verb (location object) arrived, staggered, marched, participated (TP\DP)/PP
Intransitive verb sang, cackled, complained, started-trending TP\DP
Complementizer (Subject RC) who CP/(TP\DP)
Complementizer (Object RC) who CP/(((TP\DP)/DP)/DP)
Null Complementizer (Object RC) NULLWh CP/(((TP\DP)/DP)/DP)
Prog being ProgP/VoiceP
Auxiliary (followed by adjective) was, were (TP\DP)/(NP/NP)
Auxiliary (finite) was (TP\DP)/VoiceP
Auxiliary (progressive) was (TP\DP)/ProgP
Adjective unreliable, competent, well-known, signature, radical NP/NP
Adverb rapidly, diligently, in-surprise, sullenly, wistfully TP\TP
Conjunction and (TP/(TP\DP))\TP
EOS . end\TP

Table 1: Categories present in the declarative memory in both Whiz-Deletion and Participial-Phase versions of
SPAWN. In the syntax chunks, the category labels are the keys, and the CCG rules the attributes. In the lexical
chunks, the words are the keys, and the category labels the attributes. The entire vocabulary can be found in the
create_declmem.py file in the Github repository.

189

B SPAWN parsing details

B.1 CCG combination and type-raising rules

Rule name Parser state form Tag form Composed form

Forward composition DP/NP NP DP
Backward composition DP TP\DP TP
Forward harmonic composition DP/VoiceP VoiceP/PP DP/PP
Backward harmonic composition TP\DP eos\TP eos\DP
Forward crossed composition CP/TP TP\DP CP\DP
Backward crossed composition TP/VoiceP eos\TP eos/VoiceP

Table 2: Examples of all the six possible CCG composition rules being applied when parsing sentences in the
training set.

We have just one type-raising rule: DP can get type-raised to TP/(TP\DP). This lets the subject DP in a
sentence combine with a transitive verb — (TP\DP)/DP — before the transitive verb combines with the
object DP.

The parser starts by sequentially trying to apply each of the six composition rules, stopping once
a successful combination is found. If no successful combination is found, then the parser tries to the
type-raising rule and then sequentially apply all six composition rules.

B.2 Categories that can be followed by null elements
In the Whiz-Deletion grammar the NP/CP category, and the CP/(TP\DP) can be followed by null elements,
whereas in the Participial-Phase grammar, only the the NP/CP category can be followed by a null element
(to account for object reduced RCs like “The cat the doctor examined was skittish”).

B.3 Analysis of example sentences with our grammar

Old Parse state Word Correct category Rule New parse state

NULL the DP/NP Initialize DP/NP
DP/NP cat NP/VoiceP Forward Harmonic Composition DP/VoiceP
DP/VoiceP examined VoiceP/PP Forward Harmonic Composition DP/PP
DP/PP by PP/DP Forward Harmonic Composition DP/DP
DP/DP the DP/NP Forward Harmonic Composition DP/NP
DP/NP doctor NP Forward Composition DP
DP liked (TP\DP)/DP Type raise DP
TP/(TP\DP) Forward Harmonic composition TP/DP
TP/DP the DP/NP Forward Harmonic composition TP/NP
TP/NP girl NP Forward Harmonic composition TP
TP EOS end\TP Backward composition end

Table 3: CCG analysis for a reduced RC sentence under the Participial-Phase grammar. The rows in gray are the
same across all RC types.

190

Old Parse state Word Correct category Rule New parse state

NULL the DP/NP Initialize DP/NP
DP/NP cat NP/CP Forward Harmonic Composition DP/CP
DP/CP NULLwh CP/(TP\DP) Forward Harmonic Composition DP/(TP\DP)
DP/(TP\DP) NULLpass (TP\DP)/VoiceP Forward Harmonic Composition DP/VoiceP
DP/VoiceP examined VoiceP/PP Forward Harmonic Composition DP/PP
DP/PP by PP/DP Forward Harmonic Composition DP/DP
DP/DP the DP/NP Forward Harmonic Composition DP/NP
DP/NP doctor NP Forward Composition DP
DP liked (TP\DP)/DP Type raise DP
TP/(TP\DP) Forward Harmonic composition TP/DP
TP/DP the DP/NP Forward Harmonic composition TP/NP
TP/NP girl NP Forward Harmonic composition TP
TP EOS end\TP Backward composition end

Table 4: CCG analysis for a reduced RC sentence under the Whiz-Deletion grammar. The rows in gray are the same
across all RC types. We experimented with an alternative version where NULLWh and NULLpass were combined
into one category. This resulted in qualitatively similar results.

Old Parse state Word Correct category Rule New parse state

NULL the DP/NP Initialize DP/NP
DP/NP cat NP/ProgP Forward Harmonic Composition DP/ProgP
DP/ProgP being ProgP/VoiceP Forward Harmonic Composition DP/VoiceP
DP/VoiceP examined VoiceP/PP Forward Harmonic Composition DP/PP
DP/PP by PP/DP Forward Harmonic Composition DP/DP
DP/DP the DP/NP Forward Harmonic Composition DP/NP
DP/NP doctor NP Forward Composition DP
DP liked (TP\DP)/DP Type raise DP
TP/(TP\DP) Forward Harmonic composition TP/DP
TP/DP the DP/NP Forward Harmonic composition TP/NP
TP/NP girl NP Forward Harmonic composition TP
TP EOS end\TP Backward composition end

Table 5: CCG analysis for a reduced progressive RC sentence under the Participial-Phase grammar. The rows in
gray are the same across all RC types.

Old Parse state Word Correct category Rule New parse state

NULL the DP/NP Initialize DP/NP
DP/NP cat NP/CP Forward Harmonic Composition DP/CP
DP/CP NULLwh CP/(TP\DP) Forward Harmonic Composition DP/(TP\DP)
DP/(TP\DP) NULLprog (TP\DP)/ProgP Forward Harmonic Composition DP/VoiceP
DP/ProgP being ProgP/VoiceP Forward Harmonic Composition DP/VoiceP
DP/VoiceP examined VoiceP/PP Forward Harmonic Composition DP/PP
DP/PP by PP/DP Forward Harmonic Composition DP/DP
DP/DP the DP/NP Forward Harmonic Composition DP/NP
DP/NP doctor NP Forward Composition DP
DP liked (TP\DP)/DP Type raise DP
TP/(TP\DP) Forward Harmonic composition TP/DP
TP/DP the DP/NP Forward Harmonic composition TP/NP
TP/NP girl NP Forward Harmonic composition TP
TP EOS end\TP Backward composition end

Table 6: CCG analysis for a reduced RC sentence under the Whiz-Deletion grammar. The rows in gray are the same
across all RC types. We experimented with an alternative version where NULLWh and NULLpass were combined
into one category. This resulted in qualitatively similar results.

191

Old Parse state Word Correct category Rule New parse state

NULL the DP/NP Initialize DP/NP
DP/NP cat NP/CP Forward Harmonic Composition DP/CP
DP/CP which CP/(TP\DP) Forward Harmonic Composition DP/(TP\DP)
DP/(TP\DP) was (TP\DP)/VoiceP Forward Harmonic Composition DP/VoiceP
DP/VoiceP examined VoiceP/PP Forward Harmonic Composition DP/PP
DP/PP by PP/DP Forward Harmonic Composition DP/DP
DP/DP the DP/NP Forward Harmonic Composition DP/NP
DP/NP doctor NP Forward Composition DP
DP liked (TP\DP)/DP Type raise DP
TP/(TP\DP) Forward Harmonic composition TP/DP
TP/DP the DP/NP Forward Harmonic composition TP/NP
TP/NP girl NP Forward Harmonic composition TP
TP EOS end\TP Backward composition end

Table 7: CCG analysis for a full passive RC sentence under the Whiz-Deletion and Participial-Phase grammar.The
rows in gray are the same across all RC types.

Old Parse state Word Correct category Rule New parse state

NULL the DP/NP Initialize DP/NP
DP/NP cat NP Forward Composition DP
DP examined (TP\DP)/DP Type raise DP
TP/(TP\DP) Forward Harmonic Composition TP/DP
TP/DP the DP/NP Forward Harmonic Composition TP/NP
TP/NP doctor NP Forward Composition TP
TP and (TP/(TP\DP))\TP) Backward composition TP/(TP\DP)
(TP/(TP\DP))\TP) liked (TP\DP)/DP Forward Harmonic composition TP/DP
TP/DP the DP/NP Forward Harmonic composition TP/NP
TP/NP girl NP Forward Harmonic composition TP
TP EOS end\TP Backward composition end

Table 8: CCG analysis for an active main verb sentence with verb coordination under the Whiz-Deletion and
Participial-Phase grammar.

C Details about the training dataset

192

Structure Prob Example

Subject RC 0.016 The defendant who examined the lawyer ...
Full object RC 0.002 The defendant who the lawyer examined ...
Reduced object RC 0.005 The defendant the lawyer examined ...
Full passive RC 0.002 The defendant who was examined by the lawyer ...
Reduced passive RC 0.011 The defendant examined by the lawyer ...
Full progressive RC 0.0002 The defendant who was being examined by the lawyer ...
Reduced progressive RC 0.005 The defendant being examined by the lawyer ...

Transitive NP object 0.321 The examined the lawyer.
Transitive PP object 0.080 The defendant went to the store.
Intransitive 0.240 The defendant sang (joyfully).
Copular 0.240 The defendant was happy.

Coordination 0.080 The defendant examined the lawyer and went to the store.
The defendant was happy and sang joyfully.
The defendant went to the store and sang and was happy and examined the lawyer.

Table 9: The relative frequencies for all RCs, except the Progressive RCs, was taken from (Roland et al., 2007).
Since progressive RCs were absent from this corpus study, we approximated their probabilities informally using
google n-grams: for a range of different verbs, full RCs with almost never showed up in google n-gram viewer, but
progressive RCs occasionally did. So we set the probability of progressive RCs to be twice that of full RCs. Since
reduced RCs were much more frequent than their full counterparts, we assigned 95% of the probability mass of
progressive RCs to the reduced version, and the remaining five to the full version. Since the exact frequencies of
non-RC sentences is unlikely to be relevant for our experimental set up, we just included a few types of non-RC
sentences without trying to match their frequencies with corpus statistics.

D Exploring model hyperpameters

Hyperparameter Equation or Section Value(s) Reason

Decay (d) Eqn 2, Eqn 5 0.5 Vasishth and Engelmann (2021)
Latency exponent (f) Eqn 3 1 Vasishth and Engelmann (2021)
Maximum actiation (M) 1.5 Eqn 4 Vasishth and Engelmann (2021)

Latency factor (F) Eqn 3 Beta(2, 6) Vasishth and Engelmann (2021)
SD of noise distribution (σ) § 3.2.1 Uniform(0.2, 0.5) Vasishth and Engelmann (2021)

Normal(0.35, 1) Add more noise to retrieve passive.

Training sentences § 5.3 0, 100, 1000 >1000 resulted in almost no passive retrieval.
Give up § 3.2.3 100, 1000 >1000 too much time; 100,1000 same behavior.
Reanalysis index (z) § 3.2.3 1 Always go back to first word.

Entropy weighted sample; SM temp: 1 Emphasize differences in activation.
Entropy weighted sample; SM temp: 10 Make differences in activation more uniform.

Random seed (s) Between 1 to 1280 Affects training order, random sampling.

Table 10: Hyperparameters above the double line are ACT-R parameters. Hyperparameters below the double line
are SPAWN specific hyperparameters. Only F , σ and s differ across the 1280 model instances.

193

Entropy−weighted
regression (temp=1)

giveup100

Entropy−weighted
regression (temp=1)

giveup1000

Entropy−weighted
regression (temp=10)

giveup100

Entropy−weighted
regression (temp=10)

giveup1000

First−word regression

giveup100

First−word regression

giveup1000

P
articipial−

P
hase

W
hiz−

D
eletion

(com
bined null

aux and com
p)

W
hiz−

D
eletion

(separate null
aux and com

p)

0 100 1000 0 100 1000 0 100 1000 0 100 1000 0 100 1000 0 100 1000

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Training sentences

R
aw

 M
ea

n
P

(R
R

C
 |

pr
im

e,
 ta

rg
et

 p
re

fix
)

Prime RRC ProgRRC FRC AMV Estimate type Raw proportions Posterior estimates

(a) σ sampled from Normal(0.35, 1)

Entropy−weighted
regression (temp=1)

giveup100

Entropy−weighted
regression (temp=1)

giveup1000

Entropy−weighted
regression (temp=10)

giveup100

Entropy−weighted
regression (temp=10)

giveup1000

First−word regression

giveup100

First−word regression

giveup1000

P
articipial−

P
hase

W
hiz−

D
eletion

(com
bined null

aux and com
p)

W
hiz−

D
eletion

(separate null
aux and com

p)

0 100 1000 0 100 1000 0 100 1000 0 100 1000 0 100 1000 0 100 1000

−0.2

0.0

0.2

0.4

−0.2

0.0

0.2

0.4

−0.2

0.0

0.2

0.4

Training sentences

R
aw

 M
ea

n
P

(R
R

C
 |

pr
im

e,
 ta

rg
et

 p
re

fix
)

Prime RRC ProgRRC FRC AMV

(b) σ sampled from Uniform(0.2, 0.5)

Figure 6: P(RRC | prime, target) averaged across 1280 model instances as estimated with raw proportions (dark) and
from the posterior distribution of Bayesian models (light). Since fitting Bayesian models is very time consuming,
these models were fit only for the subset of results reported in the main text (Figure 3). Error bars represent 95%
standard error (standard deviation of proportions divided by

√
n) for proportions and 95% Credible Intervals for the

Bayesian models. Missing values indicate that no passive responses were generated.

194

E Details about statistical models

E.1 Model specification

To generate quantitative predictions about the predicted proportion of passive responses while taking into
consideration the model-instance wise and item wise variation, we fit Bayesian mixed effects logistic
regression models. We used a Helmert contrast coding scheme with the following predictors, which let us
evaluate if the mean log odds ratio of the ProgRRC and FRC conditions are equal to each other and to the
mean log odds ratio of the RRC condition.

• C1: Compare the mean log odds ratio of the AMV condition with the mean log odds ratio of all the
RC conditions combined.

• C2: Compare the mean log odds ratio of the RRC condition with the mean log odds ratio of all
ProgRRC and FRC conditions combined.

• C3: Compare the mean log odds ratio of the ProgRRC condition to the mean log odds ratio of the
FRC condition.

We fit the maximal model by including all by-participant and by-item random intercepts and slopes. In
the case of the predicted data, participant IDs were replaced by model instance IDs.

Passive ∼ c1 + c2 + c3+

(1 + c1 + c2 + c3 | item)+

(1 + c1 + c2 + c3 | participant or model-instance)

E.2 Priors

We fit the models using the following weakly informative prior.

Intercept ∼ Normal(−4.595, 1.5)

Fixed effects ∼ Normal(0, 2)

SD for random effects ∼ Normal(0, 5)

This prior assumes that the log odds ratio between priming conditions is most likely to be 0 (i.e. no
priming effect) and unlikely to be greater than 4 or less than -4. This assumption is based on a meta-
analysis of priming in production studies (Mahowald et al., 2016) where the log odds ratio between the
prime conditions was not greater than 4 in any of the constructions they considered.

E.3 Statistical inferences for empirical human data

As discussed in the main text, we observed the following qualitative pattern in the proportion of target
RRC parses when preceded by different primes: RRC > ProgRRC = FRC > AMV. To ensure that this
pattern was statistically valid, we computed Bayes Factors for all of our predictors using the bayestestR
package (Makowski et al., 2019). We adopt the Bayes Factor scale from Jeffreys (1998) to draw inferences:
values greater than 3 and 10 provide moderate and strong evidence for the alternative model, whereas
values lower than 0.3 and 0.1 provide moderate and strong evidence for the null model. Therefore, the
following Bayes Factor values for our predictors would support the qualitative pattern:

1. AMV vs. all RCs (C1): > 3

2. RRC vs. [ProgRRC and FRC] (C2): > 3

3. ProgRRC vs. FRC (C3): < 0.3

195

Predictor Estimate 95% CI Bayes Factor

AMV vs. all RCs (C1) -4.18 [-5.72, -3.04] 7.71e+08
RRC vs. [ProgRRC and FRC] (C2) 0.96 [0.62, 1.31] 9.91e+03
ProgRRC vs. FRC (C3) 0.21 [-0.18,0.60] 0.178

Table 11: Bayesian Logistic regression model estimates and Bayes Factors for the human experiment.

E.4 Statistical inferences for predicted data
From the posteriors of the Bayesian models, we computed 95% credible intervals for P(RRC | prime,
target) for each prime condition for the human data, and for each of our model types. If the credible
intervals for predicted priming effect from a model do not overlap with the empirical priming effects,
we infer that the model cannot account for human behavior. Such an inference is valid because credible
intervals, unlike the frequentist confidence intervals, reflect our confidence about the distribution of the
actual effects (so 95% credible interval means that we are 95% sure that the true effect falls within this
interval).

F Regular expressions to detect passive responses in the human experiment

We used a three step process to detect passive responses in the human experiment. First, we started with
the following regular expression:

^(\\w+\\s+){3}by

This expression looks for sentences in which the fourth word of the sentence is “by” — all of our target
prefixes had only three words (Determiner Noun Verb).

Next we used the following regular expression to detect completions where the fourth word is “by”, but
the completion is not passive:

by \\w+(\\s+\\w+){0,1}(\\.)*$

This expression returns TRUE if the word “by” is followed by just one or two words such as “The thief
chased by the dog” or “the thief chased by me”.

Finally, we tagged completions as being passive RRC completion if they matched the first expression
and not the second.

196

G Limitations

Here we discuss some of the simplifying design decisions we made in SPAWN as a starting point, and
their limitations.

Storing discarded categories As discussed in § 3.2.3, when the parser is regressing to some previous
word wz , it discards all of the categories retrieved from wz . . . , wi−1, wi. In the current implementation,
SPAWN stores all instances of the discarded categories and uses this to compute inhibition. While storing
all instances of the discarded categories is convenient, it is not cognitively plausible. Future work can
examine other ways of computing inhibition that relies on summaries of discarded categories, instead of
storing all of the instances, and investigate if using summaries results in different priming behavior.

Constraining partial parse states With our Whiz-Deletion grammar and our current implementation
of null element prediction, the model could parse the partial sentence “The cat examined” and end up
with an ungrammatical partial parse — i.e., a parse that cannot result in a grammatical continuation — as
illustrated below.

Old Parse state Word Retrieved category Rule New parse state

NULL the DP/NP Initialize DP/NP
DP/NP cat NP/CP Forward Harmonic Composition DP/CP
DP/CP NULLwh CP/(TP\DP) Forward Harmonic Composition DP/(TP\DP)
DP/VoiceP examined (TP\DP)/DP Forward Harmonic Composition DP/DP

This is not a problem in full sentences because this parse state is inconsistent with later words in the
sentence, and the model will be forced to re-analyze. However, since our partial target prompts have no
additional words, the model could end up with an ungrammatical parse, which is something we assumed
would not happen with our human participants. Therefore, we constrained the model such that if it
generated a partial state that was not DP/PP or TP/DP, it would be forced to reanalyze. While this is a
convenient method to ensure that the model does not end up with an ungrammatical parse, it is unclear
if this method accurately models how humans process the partial prompt. Future work can state more
explicitly how humans parse the partial sentence such that they are always able to generate grammatical
continuations, and then implement this in SPAWN.

197

