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Abstract

Extracting adverse reactions to medications or
treatments is a crucial activity in the biomedi-
cal domain. The task involves identifying men-
tions of drugs and their adverse effects/events
in raw text, which is challenging due to the un-
structured nature of clinical narratives. In this
paper, we propose TpT-ADE, a novel joint two-
phase transformer model combined with natu-
ral language processing (NLP) techniques, to
identify adverse events (AEs) caused by drugs.
In the first phase of TpT-ADE, entities are ex-
tracted and are grounded with their standard
terms using the Unified Medical Language Sys-
tem (UMLS) knowledge base. In the second
phase, entity and relation classification is per-
formed to determine the presence of a relation-
ship between the drug and AE pairs. TpT-ADE
also identifies the intensity of AE entities by
constructing a parts-of-speech (POS) embed-
ding model. Unlike previous approaches that
use complex classifiers, TpT-ADE employs a
shallow neural network and yet outperforms the
state-of-the-art methods on the standard ADE
corpus.

1 Introduction

Adverse Drug Event (ADE) is a negative or harmful
patient outcome that seems to be associated with a
medication or drug. Analyzing the adverse events
(AEs) helps a practitioner to identify susceptible
patients who may be at risk due to a particular drug.
ADE extraction has several uses: pharmaceutical
companies can identify the sections of the popula-
tion that were adversely impacted by the drug. For
governments and regulatory authorities, ADE infor-
mation is the key to monitoring the performance of
drugs already in the market and identifying any ad-
verse effects that have not appeared during clinical
trials.

Generally, ADEs are reported in an unstruc-
tured manner and are to be extracted from various
sources like clinical narratives, medical journals,

formal systems that report ADEs, etc. In some
cases, the patients may report adverse events in
social media posts, like “I got rashes on my back
today after taking two tablets of amoxicillin yester-
day”. In this post, “rashes” is the adverse effect
(AE) that could be caused by the drug “amoxi-
cillin”. Identifying the drugs and adverse events
and finding relations between them from such un-
structured text is quite challenging due to the com-
plex nature of the text containing multiple drugs
and adverse events. We illustrate with an example
below to understand the complexity of such texts.
The text in red color is the AE and the text in blue
is the drug name.

Example — “Atypical ventricular tachycardiaAE
torsade pointesAE induced by amiodaroneDrug: ar-
rhythmiaAE previously induced by quinidineDrug
and disopyramideDrug.”

Following are the drug, AE relations that could
be extracted from the above example:
disopyramideDrug,quinidineDrug → arrhythmiaAE

amiodaroneDrug → Atypical ventricular tachycar-
diaAE, torsade de pointesAE

ADE extraction is a two-step process. The first
step is identifying the mentions of the drugs and
the AEs from raw text. This is similar to the task of
named entity recognition. In the second step, each
< drug,AE > pair is examined for ADE relation,
which can be cast as a classification problem.

Some methods (Dandala et al., 2017; Unanue
et al., 2017) train separate models for the two steps
of ADE extraction. In contrast to these works, (El-
Allaly et al., 2022; Ma et al., 2022; Wadden et al.,
2019; Bekoulis et al., 2018b; Zhou et al., 2017)
proposed joint methods for ADE extraction that
perform better in both recognizing the entities and
ADE extraction tasks. A major drawback of the for-
mer approach is that if the first step of identification
of drugs and AEs entities is incorrect, then the ADE
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extraction will also be incorrect, thereby resulting
in poor performance due to the error propagation.
Also, the joint models have been proven to be effec-
tive in performing many related tasks such as part-
of-speech tagging and parsing (Zhang and Clark,
2008), keyword extraction using joint modeling of
local and global context (Liang et al., 2021), en-
tity extraction and classification (Eberts and Ulges,
2019), entity and coreference extraction (Hajishirzi
et al., 2013; Durrett and Klein, 2014), and many
more.

In this paper, we introduce TpT-ADE, a joint
two-phase model for ADE extraction from clinical
texts by fine-tuning BERT (Devlin et al., 2018). In
the first phase, TpT-ADE identifies and standard-
izes mentions of entities such as drugs and adverse
effects against the Unified Medical Language Sys-
tem (UMLS)1. This ensures uniformity in naming
across different mentions. The second phase uses
this processed text to jointly extract entities and
classify relations.

Our model employs a robust span-based extrac-
tion method, which can extract entities consisting
of multiple successive tokens. That is, TpT-ADE
is able to extract overlapping entities. Our ap-
proach can also detect the intensity of an adverse
event, distinguishing between terms like "fever",
"severe fever", and "mild fever". Unlike previous
works that rely on complex relational classifiers,
TpT-ADE uses a shallow neural network and yet
achieves higher F1-score on the standard ADE cor-
pus (Gurulingappa et al., 2012).

2 Related Work

In this section, we discuss the related works in
ADE extraction. We first discuss the pipeline based
approaches that extract ADEs by training separate
models for entity extraction and relation extraction
tasks. Then, we discuss the joint methods that fol-
low an end-to-end approach to extract ADEs. Un-
der the joint models, we discuss the related works
that are BiLSTMs based, Graph Convolutional Net-
works based and Span-based models.

The pipeline based approaches (Dai et al., 2020;
Wei et al., 2020; Dandala et al., 2017) are designed
to complete one subtask and then go ahead with the
next subtask. In the case of ADE extraction, the
output from the entity extraction model is passed as
the input for the relation extraction task. Both the
models are trained separately with different loss

1https://www.nlm.nih.gov/research/umls/index.html

functions. (Wei et al., 2020; Xu et al., 2017; Dan-
dala et al., 2017) use BiLSTM based models for
ADE extraction. (Wei et al., 2020) employs the
same BiLSTM based classifiers for both entity and
relation extraction. Other works train two different
classifiers for the two tasks. (Alfattni et al., 2021;
Dai et al., 2020) employ a hybrid approach by com-
bining feature based machine learning classifiers
and neural networks.

Identifying negative entities is a crucial step for
extracting ADEs. Negative entities are those that
are not drugs or adverse effects. Towards this,
(Wei et al., 2020) proposed an Attention based
Bi-LSTM model that reduced the number of nega-
tive instances, helping to overcome the imbalance
class problem. Their method could also handle the
discontinous entitiess. More recently, (He et al.,
2022) proposed an LSTM based adaptive knowl-
edge distillation model. The authors used BERT
to adaptively distill the knowledge to the LSTM
model. Other recent works proposed in this regard
are (Wang et al., 2022; He et al., 2023; Liu et al.,
2023).

Joint entity and relation extraction methods (Bek-
oulis et al., 2018a,b; Ma et al., 2022; Eberts and
Ulges, 2019; Wadden et al., 2019) have been re-
cently proposed to capture the dependency between
the two tasks in ADE extraction. (Bekoulis et al.,
2018a,b) utilize character and Word2Vec embed-
dings to represent their input. Then, they use BiL-
STM model combined with conditional random
field (CRF) model to jointly extract entities and
their relations.

(Wang and Lu, 2020; Wang et al., 2021; Yan
et al., 2021; Ma et al., 2022) cast the ADE ex-
traction problem as a table-filling problem. These
methods construct a table that jointly represents
the entities and relations and each element in the
table depicts the presence of a relation between en-
tities. Then, the relation triples are extracted from
the filled table. (Yan et al., 2021) constructed a
partition filter network to learn the feature represen-
tations that can classify entities and the relations.
Then, the relation triples extracted by following a
table-filling approach. Similarly, (Ma et al., 2022)
proposed a table-filling method that learns con-
textualized representations to compute entity men-
tions and capture long-range dependencies. For
relation extraction, a tensor dot product is used to
predict the relation labels. However, these table-
filling methods are computationally expensive due
to building and deconding these tables for relation
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triples (Chen et al., 2024).
Span-based methods (Luan et al., 2019; Wadden

et al., 2019; Eberts and Ulges, 2019; Wan et al.,
2023) have shown remarkable performance in ob-
taining contextualized representations. In contrast
to works that follow the BIO (beginning, inside,
outside)/BILOU (beginning, inside, last, outside,
unit)/BIES(Begin, Inside, End, Single) (Zheng
et al., 2017; Zhou et al., 2017), span-based ap-
proach can identify the overlapping entities. In
our work, we follow a span-based approach and
combine BERT (Devlin et al., 2018) with POS em-
bedding model. In contrast to the previous works,
we follow a two phase joint modelling approach
that standardizes the entity mentions in the input
text with their representative terms. In addition,
unlike the above works that use complex classfiers,
we use a shallow neural network for ADE extrac-
tion.

3 Methodology

In this section, we detail the two phases of TpT-
ADE model and training it. In the first phase Phase
I, we extract the entities and represent them with
their standard medical terms. In Section 4, we
show the effectiveness of this step. The second
phase, Phase II utilizes this processed text for ADE
extraction.

3.1 Phase I: Entity Extraction

In this phase, we perform entity mention extrac-
tion or recognition and find the most representative
term for each entity mention in the raw clinical text
corpus. The architecture for entity recognition is
shown in Figure 1. Towards this, we propose a span
based BERT model. BERT learns word represen-
tations from input text by considering both the left
and right contexts. We first tokenize the input sen-
tences into a sequence of tokens T using a subword
tokenization algorithm called Byte-Pair Encoding
(BPE) (Sennrich et al., 2015). BPE tokenizes the
input sentences in such a way that the most com-
mon words are represented in the vocabulary as
a single token. The infrequent words are divided
into commonly occurring subwords. For example,
the infrequent word townhall can be divided into
frequently occurring town and hall. Thus, BPE
can be used by BERT to map out of vocabulary
words and limit the vocabulary size. BPE tokens
extracted from each input sentence are passed to
the BERT model to obtain an embedding sequence

as follows:

(c, e1, e2, ...en) = BERT (T ) (1)

The first token c in BERT is the classifier token
(cls), shown in Figure 1, that captures the overall
input sentence context. We then construct spans
considering all the token subsequences. For in-
stance, the token sequence carbamazepine toxicity
symptoms can result into token subsequences or
spans like carbamazepine, carbamazepine toxicity,
etc. The span based approach ensures we search all
the possible combinations, is more robust, and is
expected to extract the entity that may be composed
of multiple successive tokens.

We treat the entity mention extraction problem as
a classification problem where each span is classi-
fied into one of three categories, namely, Drug, AE
or None by the Entity Classifier in Figure 1. None
means the span is neither Drug or AE and these are
filtered out. Initially, a pre-trained BERT model is
utilized and adjusted to the clinical domain to ex-
plore the information in the clinical text documents.
The model is then fine-tuned for classifying the
spans into the aforementioned three categories. We
fine-tune the pre-trained BERT model by adding
a task-specific layer on top of it and training the
whole model end-to-end with a suitable loss func-
tion. This is detailed in Section 3.3.

Let si = (e1, e2, ..., ek) be a span consisting of
k token subsequences. The BERT embeddings of
the token subsequences are combined using max-
pooling and the span embedding of span si is rep-
resented as follows:

ssi = max-pooling(e1, e2, ..., ek)⊕ c (2)

where ⊕ denotes concatenation. We note that
any span longer than ten tokens are filtered out to
limit the cost of entity classification.

The raw clinical text is collected from varied
sources and hence the same drug or AE entities
could be mentioned with different names. For
instance, consider the following two texts from our
dataset:

Example 1 — After gastric-outlet obstruction
was recognized in several infants who received
prostaglandin E1, we studied the association
between the drug and this complication
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Figure 1: Entity and Relation Extraction

Example 2 — The clinical symptoms of gastric mu-
cosa foveolar hyperplasia due to long-term PGE1
therapy simulate hypertrophic pyloric stenosis

In the above two examples, the drug references
“prosta- glandin E1” and “PGE1” refer to the same
drug, whose standard UMLS name is given by
Metamap5 as “alprostadil”. As the next step in this
phase, we replace the entities with their most repre-
sentative terms. We will observe in Section 4.3 that
standardising the entity mentions with their repre-
sentative terms improves the overall performance
of TpT-ADE.

In this phase of TpT-ADE, we also identify the
intensity of the AEs caused by drugs as discussed
in Section 1. Specific modifiers which precede the
identified entity may need to be added to the entity
itself. For example, entity fever is distinguished
from the entity severe fever as both are different
AEs. The same holds true for many modifiers like
“Severe”, “Reversible”, “Paradoxical”, “Unusual”,

5https://lhncbc.nlm.nih.gov/ii/tools/MetaMap.html

“Chronic”, etc. Towards this we identify the adjec-
tives of the entities using spaCy6. SpaCy is NLP
library used for generating POS tags of tokens in a
given input sentence. We used ScispaCy (Neumann
et al., 2019) trained with en_core_sci_sm that pro-
cesses clinical or biomedical text. The POS embed-
ding matrix is trained to obtain the representation
of POS tags. Adjectives specifying the entities are
then concatenated with the BERT embeddings. In
Section 4.3, we demonstrate that the performance
of the model improves when POS tag embeddings
are included. Finally, the POS tag embeddings and
the BERT embeddings are concatenated to obtain
the following entity representation.

xsi = ssi ⊕ psi (3)

where psi is POS tag embeddings that specify the
intensity of span si.

Next, the softmax classifier given below is used
to obtain a posterior for each entity category, i.e.,

6https://spacy.io/
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drug, AE and none. The output of this phase of our
model is the processed clinical text.

Y si = softmax(W si · xsi + bsi) (4)

3.2 Phase II: ADE Extraction

In this phase, we jointly extract entities and per-
form relation classification using the processed text
from Phase I as shown in Figure 1. The text is
tokenized using BPE tokenizer and the fused span
embeddings are constructed using BERT model for
entity classification. Max-pooling fusion function
is used as it performed the best. The spans hav-
ing a length of more than ten tokens are filtered
as too longer spans are highly unlikely to repre-
sent entities. The entities classified into none class
are filtered out. Let E be the set of entity spans
classified as either Drug or AE.

The next step of this phase is relationship clas-
sification. The relationship classifier takes each
pair of fused BERT span embedding from entity
spans in E × E and checks the presence of a re-
lation between them. Let fsi be the fused BERT
embedding of the entity span si = (e1, e2, ..., ek),
which is calculated as follows:

fsi = max-pooling(e1, e2, ..., ek) (5)

To understand the presence of a relation, it is impor-
tant to understand the context. One way to obtain
the context is the classifier token c from the embed-
ding span representation, as discussed above. How-
ever, the context c would not be precise and could
represent multiple relations for longer sentences.
Thus, we derive the relationship context between
entity spans localized to their direct surrounding en-
tities. Let si and sj be two entity spans considered
to check the presence of a relation. The relation
context crel(si, sj) is derived from the fused BERT
embedding of the span ranging from the end of si
entity to the beginning of the sj entity. For obtain-
ing crel(si, sj), we found the max-pooling function
performing the best. In case the entities are next to
each other or overlapping, we set crel(si, sj) = 0.

Another consideration for relationship classifica-
tion between two entities could be asymmetrical.
That is, si could indicate drug and sj could be AE,
or vice versa. Therefore, we need to consider both
(si, sj) and (sj , si) for relationship classification.
Hence, we have the following two representations
as input to the relation classifier.

Rel(xsi,→sj ) = fsi ⊕ crel(si, sj)⊕ fsj

Rel(xsj ,→si) = fsj ⊕ crel(sj , si)⊕ fsi
(6)

These two inputs are passed to a shallow sin-
gle layer relationship classifier with a threshold α.
A high response in the sigmoid layer indicates the
presence of relationship between si and sj . We con-
sider that the relationship exists based on threshold
value α; any relation with score ≥ α is considered
as related and assumed no relationship otherwise.

3.3 Training TpT-ADE Model

In this section, we detail the process to learn the pa-
rameters W si , bsi ,W r, and br, thereby fine-tuning
our BERT model in this process. Our model
consists of two phases, and these parameters are
learned in a supervised manner. That is, the entities
and relations are labeled in our dataset. For both
phases, training is done in batches. We draw pos-
itive and negative samples for each batch for the
classifiers in both phases. We detail the positive
and negative sample selection and loss functions
for both phases below.

For entity classification, all the labeled entities in
the ground truth dataset are taken as positive sam-
ples. Let this set be Eg. We take a fixed number
of negative samples Ene in each batch. We illus-
trate the selection of positive and negative samples
for entity classification with an example. In the
given sentence: “Nine azotemicAE patients who
developed a blood coagulation disordersAE asso-
ciated with the use of either cephalosporinsDrug
or moxalactamDrug antibiotics are reported.” the
ones marked as Drug or AE constitute the positive
samples. Negative samples such as associatedDrug
and reportedAE are randomly selected.

For training the relationship classifier, we use
all ground truth relationships as positive samples.
Instead of randomly selecting negative samples, we
devise a method to select only the strong negative
samples Enr drawn from the entity pairs Eg × Eg

that were not labeled as any relation. For exam-
ple, the positive samples in the above example
are (cephalosporins, blood coagulation disorders)
and (moxalactam, blood coagulation disorders),
then the unlabelled relations like (cephalosporins,
azotemic), (moxalactam, azotemic) are taken as
negative samples. Such strong negative samples
instead of random pairs of entities help to improve
the performance of the model.
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In the first phase, the model learns parameters
W si , bsi used for entity recognition. Using the
training set with annotated entities, the loss func-
tion for the first phase, L1, is defined as the entity
classifier’s cross-entropy loss over entity classes
Drug, AE, none. The joint loss function for entity
classification and relation classification in the sec-
ond phase is defined by combining the losses from
both the classifiers as follows:

L2 = Le + Lr (7)

where Le is the entity classifier cross-entropy loss
over all the three entity classes and Lr is the binary
entropy loss averaged over batches’ samples.

4 Evaluation

In this section, we present the evaluation of TpT-
ADE and compare it with the state-of-the-art
(SOTA) methods. We first start by describing our
dataset. Next, we present the evaluation results of
our model against the SOTA methods. Lastly, we
perform ablation studies with various variants of
our model and show the effectiveness of various
components of our model.

4.1 Experimental Setup

We use the ADE corpus dataset (Gurulingappa
et al., 2012) to train and evaluate our model. It
contains 5,063 drugs, 5,776 adverse effects and
6,821 relations between them, extracted from 4,272
unique samples.

Table 1: Dataset Statistics

Statistics Train Val Test
Drugs 3646 922 495
AEs 4151 1062 563
Relations 4877 1285 659
Documents 3076 769 427

To evaluate our model, we divided the dataset
into training, validation and test sets, as shown in
Table 1. Our model TpT-ADE is trained on the
training set. We conduct 10-fold cross-validation
on the validation set, and the evaluation is per-
formed on the test set.

We used BERTBASE
7 transformer with 768 di-

mensional embeddings and 110M parameters, pre-
trained with 3 billion plus English words. In our
experiments, we use Adam Optimizer with learning

7https://huggingface.co/bert-base-cased

rate of 0.00005, weight decay of 0.01, lr warmup
of 0.1, batch size of 2. The number of negative
samples in both entity and relation classification,
Ene and Enr are set to 80 per document. We run
the model for 30 epochs with the relation classifier
threshold set to 0.04. We obtained the best results
with these parameter values. The BERT model
weights are updated during the training process.

We evaluate our model for both entity extraction
and relationship classification. If the predicted span
of an entity and its type, that is, either Drug or AE
are found exactly matching with the ground truth
data, then the entity is considered to be correctly
predicted. For relationships, both entities of the
relationship must be correctly predicted as given in
the ground truth. As in previous works (Bekoulis
et al., 2018b; Eberts and Ulges, 2019), we use pre-
cision, recall and F1 scores averaged over folds as
performance metrics to evaluate our model.

4.2 Baseline Methods

To evaluate the effectiveness of our TpT-ADE
model in both entity and relationship classification,
we compare its performance with the state-of-the-
art methods listed below.

1. Joint CNN Model (Li et al., 2016): This
method uses transition-based feed-forward
CNN to perform greedy transition-based de-
coding and jointly performs ADE extraction.

2. Joint BiLSTM-RNN Model (Li et al., 2017):
This method uses a BiLSTM-RNN model to
learn the representations of entities and their
contexts from the input text. Then, another
BiLSTM-RNN model is built to learn the rela-
tions between the entities based on the shortest
dependency path between them.

3. Joint Multi-head Selection Model (Bekoulis
et al., 2018b): This method uses character and
Word2Vec embeddings to represent the input
text. Then BiLSTM-CRF model is trained to
extract entities and ADEs.

4. SpERT (Eberts and Ulges, 2019): This
method uses span based BERT models for
extracting entities and adverse relations.

5. TablERT-CNN (Ma et al., 2022): This BERT
based method extracts ADEs by casting ADE
extraction as a table-labelling problem. Two-
dimensional CNN is used to encode the local
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dependencies between the cells and predict
the their labels.

6. SMAN (Wan et al., 2023): This span based
approach constructs a multi-model attention
network to capture the interactions between
the spans and model information such as to-
kens and labels. The context and span position
information is extracted simultaneously.

4.2.1 Results
Table 2 shows the performance on both entity and
relation extraction tasks on the test set. The ta-
ble shows some missing values as these numbers
weren’t reported by the corresponding SOTA meth-
ods. For entity extraction task (NER), our model
achieved an F1-score of 91.17%, which is 1.47%
higher than the TablERT-CNN and 0.22% over
SMAN. In addition, our model shows a significant
improvement of 4.58% over the popular state-of-
the-art model SpERT and 1.57% over the SMAN
method in the case of ADE extraction (RE). Un-
like all these baseline methods, our model finds
the most representative clinical term of each en-
tity mention. This step makes the training process
of our model’s first phase more robust, thereby
improving the performance of the ADE relation ex-
traction in the second phase. Thus, on the unseen
test data, even if the input text entity is called by any
other alias phrase name, it can still be detected and
mapped to its most representative name. We per-
formed error analysis on our model and observed
that it gives the least number of false-negatives
in both NER and RE tasks. One reason for this
could be that TpT-ADE can identify complex and
ambiguous entities.

Qualitative analysis shows that TpT-ADE is able
to correctly identify Ventricular tachycardiaAE
and ArrhythmiaAE referring to the same AE. Also,
the abbreviation V-tach or VT is correctly recog-
nized as ventricular tachycardia. In addition, the in-
teractions between the AE torsade pointesAE and
drugs amiodaroneDrug, quinidineDrug and disopy-
ramideDrug were extracted by our model, unlike the
previous models that were able to extract only the
interaction between torsade pointesAE and amio-
darone.

Compared to (Eberts and Ulges, 2019) (SpERT)
and (Wan et al., 2023), which also uses a span
based model, our model shows improved perfor-
mance on both the NER and RE tasks. Span based
approach to extract entities thus is more effective

than to use BILOU/BIS labels as in (Bekoulis et al.,
2018b; Li et al., 2017) (Joint Multi-head Selection,
Joint BiLSTM-RNN Model). We also note that the
input text also contains the intensity of the AEs that
can be identified by our model in contrast to the
baseline methods. Specifically, the ADE dataset
contains 148 of such instances. In addition, un-
like most of the baseline methods, our span based
model detects the entity phrases that might contain
overlapping entities. Specifically, the ADE dataset
contains 120 of such overlapping instances.

4.3 Ablation Studies
In this section, we perform experiments on vari-
ants of our model and hyperparameters settings to
demonstrate their impact on our model.
Effectiveness of Entity Standardization — In
this study, we analyze the effectiveness of finding
the representative term for each entity mention in
the raw input text. We illustrate with an example
from our dataset. The entities common skin rashes,
rashes, skin eruptions, cutaneous eruptions, all re-
fer to the same adverse effect. The representative
term for all of them is Exanthema. Our model was
trained using the training set that contains rashes,
skin eruptions. The test set contains cutaneous
eruptions that was correctly mapped to its repre-
sentative term Exanthema. From Table 3, it can
be observed that the F1-score of W/O Entity Stan-
dardization (removing entity standardization from
TpT-ADE) drops a little by 0.87% in the case of
NER task and significantly decreases (3.02%) in
the case of RE task when compared to our TpT-
ADE model.

Effectiveness of Entity Intensity Identification
— We also investigate the effectiveness of enrich-
ing the BERT embeddings of the entities with the
POS tag embeddings that provide the intensity in-
formation. For this purpose, we compare our TpT-
ADE model with W/O Entity Intensity Identifica-
tion model (without the POS embedding matrix) as
shown in Table 3. It can be observed that there is
a decrease in the performance of both the tasks in
W/O Entity Intensity Identification ( 1% for NER
and more than 2% for RE) compared to our Tpt-
ADE model. Therefore, this shows the importance
of linguistic information obtained by training the
POS embedding matrix.

Effectiveness of Relation Context — Here, we
examine the effect of using relation context in the
ADE extraction phase detailed in Section 3.2 in-
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NER RE

Method Precision Recall F1-score Precision Recall F1-score

Joint CNN 79.50 79.60 79.50 64.00 62.90 63.40
Joint BiLSTM-RNN 82.70 86.70 84.60 67.50 75.80 71.40
Joint Multi-head Selection 84.72 88.16 86.40 72.10 77.24 74.58
SpERT 89.26 89.26 89.25 78.09 80.43 79.24
TablERT-CNN - - 89.7 - - 80.5
SMAN - - 90.95 - - 82.25
TpT-ADE 89.24 93.2 91.17 81.91 85.83 83.82

Table 2: Comparison of TpT-ADE with the baseline methods results(%)

NER RE

Method Precision Recall F1-score Precision Recall F1-score

TpT-ADE 89.24 93.2 91.17 81.91 85.83 83.82
w/o Entity Standardization 88.71 91.95 90.30 78.44 83.35 80.82
w/o Entity Intensity Identification 88.74 91.63 90.16 79.86 83.61 81.69
Classifier Token Context - - - 73.5 80.22 76.71
Weak Random Sampling - - - 76.39 81.7 78.96

Table 3: Ablation studies results (%). w/o indicates the specific module is removed from TpT-ADE.

stead of using the classifier context, which uses a
special token to capture the meaning of the entire
sentence. The relation context particularly extracts
the context from the part of the sentence that de-
picts the presence of a relationship between the
entities the most. From Table 3, we can see that the
performance of the TpT-ADE model, which uses
the relation context in ADE extraction phase (RE
task) achieves an F1-score of 83.82%, while the
Classifier Token Context (CTC) model performs
poorly with F1-score of 76.7%. Moreover, the pre-
cision drops by 8.41% as compared to TpT-ADE.
Thus, this shows that training the model with rela-
tion context is better in ADE extraction.

Effectiveness of Negative Sampling — We also
examine the effectiveness of choosing strong nega-
tive samples in the ADE extraction phase against
using random negative samples. Negative samples
are randomly drawn, and the entity pairs do not
match with any ground truth relation pairs. Unlike
choosing strong negative samples from the entity
candidate set E , these weak samples are randomly
drawn. From Table 3, it can be observed that the
performance of the Weak Random Sampling model
drops by almost 5% (F1-score) compared to our
TpT-ADE model. We performed another experi-
ment wherein the weak negative samples are drawn

from the set without filtering the entities that be-
long to none class. In this case, the F1-score fur-
ther dropped by 7.2% compared to our TpT-ADE
model.

Figure 2: Negative Sampling Analysis

In our model, we chose the number of negative
samples in case of both entity extraction and re-
lation extraction (Ene = Enr) as 80 per sentence
in the input sentence. As shown in Figure 2, if
Ene = Enr < 5, the F1-score reaches to 68.2%
and 53.7% for entity extraction and relation ex-
traction, respectively. As the values of Ene and
Enr increases, the model performs better. We ob-
serve that when Ene = Enr > 80, the perfor-
mance of the model stagnates. Hence, we chose

216



Ene = Enr = 80.

5 Conclusion

In this paper, we proposed TpT-ADE, a two-phase
transformer based model to improve the efficiency
of ADE extraction from raw clinical text. Through
various experiments, we have shown that finding
the representative terms for the entities in the input
text and combining the trained BERT embeddings
with the POS tag embeddings of the modifier words
of the entities to identify their intensities yield bet-
ter results. In addition, using a simple shallow neu-
ral network and a strong negative sampling method
in our model, showed considerable improvements
over prior works.
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