
Proceedings of the 28th Conference on Computational Natural Language Learning, pages 259–268
November 15-16, 2024 ©2024 Association for Computational Linguistics

A Novel Instruction Tuning Method for Vietnamese Mathematical
Reasoning using Trainable Open-Source Large Language Models

Quang-Vinh Nguyen1†, Thanh-Do Nguyen1†, Van-Vinh Nguyen2, Khac-Hoai Nam Bui1∗
1Viettel AI, Viettel Group, Vietnam

2Vietnam National University of Hanoi, Hanoi, Vietnam
{vinhnq29, dont15}@viettel.com.vn , vinhvn@vnu.edu.vn, nambkh@viettel.com.vn

Abstract

This study introduces Simple Reasoning with
Code (SiRC), a novel instruction fine-tuning
method for solving mathematical reason-
ing problems, particularly designed for Viet-
namese, which is considered a low-resource
language. Specifically, solving mathematical
problems requires strategic and logical reason-
ing, which remains challenging in this research
area. This paper presents a simple yet effective
instruction fine-tuning method for mathemat-
ical reasoning. Unlike previous approaches,
our proposed method effectively combines
chain-of-thought reasoning with code gener-
ation without requiring a sophisticated infer-
ence procedure. Furthermore, we focus on ex-
ploiting small open-source large language mod-
els (LLMs) for the Vietnamese language. In
this regard, we first introduce a trainable Viet-
namese mathematical reasoning dataset, which
is named ViMath-InstructCode. The pro-
posed dataset is then used for fine-tuning open-
source LLMs (e.g., less than 10 billion param-
eters). Experiments conducted on our custom
ViMath-Bench dataset, the largest benchmark-
ing dataset focusing on Vietnamese mathemat-
ical problems, indicate the promising results
of our proposed method. Our source code and
dataset are available for further exploitation1.

1 Introduction

Large language models (LLMs), including closed
sources (e.g., GPT series (OpenAI, 2023)) and
open sources (e.g., Llama series (Touvron et al.,
2023)) have become fundamental in advancing
natural language processing (NLP). These mod-
els achieve remarkable language comprehension

1https://github.com/quangvinh2110/vietnamese-math-
reasoning

† Equal contribution
∗ Corresponding author

and generation abilities, which advances many ap-
plications in text generation, code assistance, and
mathematical reasoning. Notably, leading propri-

Question Reasoning
steps Final choiceLLM

Question Python Code Final choiceLLM

Question LLM

Probability
computing

Python
Interpreter

CoT
method

PoT
method

SiRC
(Ours)

Question Reasoning
steps

LLM

LLM
ToRA

method

Python CodeOutput

LLM

Final choice LLM

Python
Code Output

Final choice

LLM

Python
Interpreter

Python
Interpreter

Reasoning
Steps

Figure 1: Comparative analysis of previous works with
our approach for mathematical reasoning task using
LLM with finetune instruction: Traditional method us-
ing reasoning step (CoT method); PoT uses Codex
to generate text to programming language statements;
ToRA employing multiple LLM calls within an LLM
agent setting; Our proposed method uses LLM to gen-
erate both reasoning step and code generation within a
single call LLM.

etary LLMs like GPT-4 and Claude excel in math-
ematical tasks, as evidenced by their top rankings
on benchmarks such as GSM8K and MATH. How-
ever, smaller open-source models (fewer than 10
billion parameters) significantly lag in performance.
It is challenging for open source to achieve simi-
lar capabilities due to the nature of mathematical
problem-solving, which requires precise multiple
reasoning steps, symbolic manipulation, and com-
plex computation (Ahn et al., 2024).

Technically, a potential solution is to special-

259

ize general-purpose LLMs in mathematics via su-
pervised fine-tuning by distilling the knowledge
from larger teacher models into smaller student
models (Fu et al., 2023; Liang et al., 2023). An
early approach uses chain-of-thought (CoT) expla-
nations of existing data or extra CoT-style data gen-
erated by the larger models to train the smaller stu-
dent model (Liu et al., 2023). Sequentially, (Chen
et al., 2022a) proposes Program of Thoughts (PoT),
which uses Codex (Chen et al., 2021) to generate
text-to-programming language statements to find
the answer. A recent approach uses the emerging
LLM agent concept (Xi et al., 2023) to combine
the two aforementioned approaches to improve the
performance of mathematical reasoning (Gou et al.,
2023a).

Despite various attempts to narrow the gap be-
tween closed-source and open-source models, the
most cost-effective method for solving mathemati-
cal problems remains unresolved. Naively apply-
ing strategies like using chain-of-thought (CoT)
or code generation to solve problems has not pro-
duced optimal results. Furthermore, employing
multiple LLM calls within an agent setting (Gou
et al., 2023a) incurs higher costs. Additionally,
research on solving mathematical problems in Viet-
namese, a low-resource language, is still nascent
due to a lack of studies in this area.

In this regard, this study proposes SiRC, a sim-
ple effective instruction finetuning approach by
combining chain-of-thought reasoning with code
generation. Conceptual comparisons among SiRC
and other previous approaches in this research field
are illustrated in Figure 1. Generally, our main
contributions in this study are threefold as follows:

• We propose SiRC framework, a simple and
novel approach for solving elementary-level
mathematical problems using a mixture of
chain-of-thought reasoning and code genera-
tion (Figure 1). Empirical studies have demon-
strated that this approach is effective for Viet-
namese mathematical problems at this level
and outperforms the naive implementation of
CoT and code transferring.

• We present the first large-scale Vietnamese
elementary mathematical dataset of 8k sam-
ples collected from various trusted sources,
which we called ViMath-Bench. Further-
more, we augment this dataset using strong

teacher models (Llama3-70B-Instruct2

and Qwen2-72B-Instruct3), resulting in
ViMath-InstructCode dataset consisting
of 14k training samples. We also explored
other synthetic data construction approaches.
To the best of our knowledge, this is the
first comprehensive study of Vietnamese
mathematical reasoning.

• We release a series of models finetuned with
ViMath-InstructCode dataset, which yield
superior performance on ViMath-Bench test
set. We hope that these models will establish
a solid baseline for future research in mathe-
matical reasoning in Vietnamese.

2 Literature Review

Human-annotated Math Datasets: Solving math
word problems using Large Language Models
(LLMs) has attracted extensive research efforts to
create diverse datasets that enhance the model’s
mathematical reasoning capabilities, particularly
in the English language. While early large-scale
datasets like Dolphin18K (Huang et al., 2016)
provided a foundation, they lacked detailed infor-
mation on deriving the final answer, limiting their
usefulness in teaching mathematical reasoning
to models. Similarly, the AQuA-RAT dataset
(Ling et al., 2017) has quality issues, including
over-templatization and incorrect solutions. More
recent math datasets have been designed with a
focus on including detailed explanations and a
diverse range of natural language expressions to
provide more useful signals during model training.
Notable examples are MathQA (Amini et al.,
2019), GSM8K (Cobbe et al., 2021), and MATH
(Hendrycks et al., 2021), which have improved the
quality of the data by including questions requiring
multiple solving steps as well as providing correct
solutions. However, the language barrier presents
a challenge, as these datasets are primarily in
English, making them less directly beneficial for
low-resource language research. Especially in
Vietnamese, as far as we know, there has not been
any large-scale dataset dedicated to math word
problems.
Synthetic Data Construction: Some LLMs
exhibit advanced mathematical reasoning and

2https://huggingface.co/meta-llama/
Meta-Llama-3-70B-Instruct

3https://huggingface.co/Qwen/
Qwen2-72B-Instruct

260

https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/Qwen/Qwen2-72B-Instruct
https://huggingface.co/Qwen/Qwen2-72B-Instruct

tool use abilities, making the idea of distilling
knowledge from these models to student model
highly attractive. nvidia/OpenMathInstruct-14

extracts problems from GSM8K and MATH train-
ing subsets and synthetically generate solutions
by using Mixtral 8x7b5 model to use a mix
of text reasoning and code blocks executed by
Python interpreter. Tiger-Lab/MathInstruct6

compiles a list of high-quality and diverse math
instruction-tuning datasets augmented by GPT-4.
Several other approaches use capable LLMs to
augment existing math datasets, such as evolving
the difficulties of the questions (Luo et al., 2023) or
deriving detailed solution trajectories interleaving
rationales and code (Gou et al., 2023b).

Mathematical Reasoning and Tool Integra-
tion: The chain-of-thought (Wei et al., 2022)
prompting technique, which instructs a model to
divide a problem into smaller, manageable sub-
problems, enhances reasoning tasks significantly
(referenced in CoT and least-to-most papers). This
method has its merits in mathematical reasoning as
well (as seen in wizard math studies), but its effec-
tiveness diminishes when tasks require symbolic
manipulation and computations. An alternative
strategy involves training models to create code that
solves problems, then utilizing computational tools
like a Python interpreter to execute the code (Chen
et al., 2022b). However, relying solely on code
generation is not effective for theoretical questions
or in scenarios with complex natural language, as
it may lack sufficient rationale. (Gou et al., 2023b)
combines chain-of-thought with code generation
to improve performance, though it requires multi-
ple interactions with large language models (LLM).
All mentioned approaches are actively explored
with English datasets in focus, however there has
been no study on this subject in Vietnamese.

3 ViMath-Bench Dataset

In this section, we present the construction pro-
cedure of the Vietnamese mathematical reasoning
dataset, ViMath-Bench. To the best of our knowl-
edge, this is the first dataset created for Vietnamese
mathematical reasoning. The pipeline of the data

4https://huggingface.co/datasets/nvidia/
OpenMathInstruct-1

5https://huggingface.co/mistralai/
Mixtral-8x7B-v0.1

6https://huggingface.co/datasets/TIGER-Lab/
MathInstruct

construction is illustrated in the Figure 2, which
are sequentially described as follows:

3.1 Data Sources
Our dataset is derived from three prominent Viet-
namese online educational platforms: Tailieumoi7,
Hamchoi8, and Vietjack9. These websites serve
as comprehensive resources for general education
in Vietnam, catering to a diverse audience includ-
ing students, teachers, and parents. They provide
solutions to textbook and workbook problems, ref-
erence materials for grades 1 to 12 across various
subjects, and lesson plans for teachers. Notably,
all content on these websites is freely accessible.
For our study, we specifically targeted multiple-
choice questions (MCQs) from grades 3 to 5, col-
lecting approximately 20,000 questions. The Vi-
etjack website provided fields such as question,
choices, full answer, and right choice. How-
ever, Tailieumoi and Hamchoi did not offer the
right choice field, necessitating additional steps
to complete the dataset.

3.2 Preprocessing
To ensure the quality of the data, we implemented a
multi-step preprocessing pipeline. First, we normal-
ize the data to follow a consistent and standardized
representation:

• Text Normalization: All text data was nor-
malized to the NFC standard to ensure con-
sistent character encoding. Vietnamese tones
were also standardized to maintain uniformity
across the dataset.

• Format Conversion: We converted HTML
formats to Markdown using the Pandoc10 li-
brary. This conversion not only saved tokens
during the model training and inference pro-
cess but also facilitated easier processing and
analysis.

Subsequently, we implemented a rigorous filter-
ing process to ensure the data was of the highest
quality:

• Exclusion of Non-Relevant Samples: We
filtered out samples containing tables and im-
ages, as our current focus does not include
multimodal data.

7https://tailieumoi.vn/
8https://hamchoi.vn/
9https://www.vietjack.com/

10https://pandoc.org/

261

https://huggingface.co/datasets/nvidia/OpenMathInstruct-1
https://huggingface.co/datasets/nvidia/OpenMathInstruct-1
https://huggingface.co/mistralai/Mixtral-8x7B-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-v0.1
https://huggingface.co/datasets/TIGER-Lab/MathInstruct
https://huggingface.co/datasets/TIGER-Lab/MathInstruct
https://tailieumoi.vn/
https://hamchoi.vn/
https://www.vietjack.com/
https://pandoc.org/

question

choices

full answer

right choice

Processing

Text Normalization

Format Conversion

Exclusion of Non-
Relevant Samples

Duplicate Removal

Missing Fields
Extraction

question

choices

full answer

right choice

raw data ViMath-Benchpublic edu websites

Figure 2: ViMath-Bench Dataset.

• Duplicate Removal: We employed an edit
distance metric to identify and remove dupli-
cate questions. Specifically, if two samples
had an edit distance of greater than 90, one
sample was discarded. Preference was given
to retaining samples due to the completeness
of its data fields.

• Missing Fields Extraction: For the remain-
ing data from the available resources, we em-
ployed a set of rules to extract the correct
choice field for full answer. This method
allowed us to successfully retrieve the correct
answers for approximately 70% of the sam-
ples. The remaining 30% of the data, which
lacked this critical field, were subsequently
removed.

After these preprocessing steps, the dataset con-
tains 8.4K samples, which we name ViMath-
Bench. Each sample of the dataset contains four
fields: question, choices, correct_choice, and
full_answer, which are beneficial for both train-
ing and evaluation. This dataset is then divided
into 7.1K training samples and 1.3K test samples
to facilitate the evaluation of our models.

4 Methodology

We introduce Simple Reasoning with Code
(SiRC) framework, which is a simplified approach
to solving elementary mathematical problems using
both CoT reasoning and code generation. We lever-
age a teacher-student framework to distill knowl-
edge from larger open-source LLMs to smaller,
more resource-efficient models, tailored specifi-
cally for Vietnamese mathematical reasoning tasks.

4.1 SiRC Inference Procedure

We propose a novel, efficient approach to address
the arithmetic and calculation challenges faced by
large language models (LLMs), described in Algo-

rithm 1. Our method integrates Python code gener-
ation into the problem-solving process in a unique
way. Unlike previous studies that either generated
only code all at once or used iterative reasoning
and code generation (which can be cost-inefficient
because of multiple LLM calls), our approach sim-
plifies the process by combining reasoning and
coding in a single, structured LLM response:

• Step-by-Step Reasoning: The LLM first out-
lines all necessary steps to solve the math
problem without performing any calculations.

• Python Code: Immediately following the rea-
soning, the LLM generates Python code to
execute the required calculations.

This seemingly two-step process is completed
in a single LLM call, which not only simplifies
the reasoning-code generation in a chained multi-
agent setup but also enhances the effectiveness of
the solution. By separating the logical problem-
solving steps from the actual computation, our
method provides a clear, executable pathway to
solve complex mathematical problems. After fin-
ishing the reasoning-code generation and code exe-
cution, SiRC makes the last LLM call to generate
the final answer to the question.

4.2 Teacher-Student Framework
To implement our SiRC approach effectively,
we develop ViMath-InstructCode, a synthetic
dataset designed to enable trainable open-source
LLMs to adopt our proposed method. We employ
a knowledge distillation approach (Semnani et al.,
2023), utilizing larger models as teachers to trans-
fer knowledge to smaller, more resource-efficient
student models. In the most general case, this
framework allows multiple strong larger models
to act as teachers, enabling the available smaller
models to learn from all of them and obtain com-
bined capabilities. This process allows us to create

262

Solution Augmentation

Teacher Models Code Interpreter Student Model

ViMath-InstructCode

Reasoning-Code
Generation

CoT Reasoning

Python Code

Filtering Module

Input

Reasoning

Code

Answer

ViMath-Bech

Input

Solution

Answer

Figure 3: Overview of ViMath-Instruct-Code dataset construction

Algorithm 1 SiRC Inference Procedure
Require: Multiple-choice question of problem P
Ensure: Solution to P

1: Reasoning-Code Generation (LLM call):
Generate all necessary steps to solve P as tex-
tual guidance only + Python code to execute
the required calculations based on the outlined
steps.

2: Execution (Python interpreter): Extract the
generated Python code and execute to obtain
the solution to P .

3: Answer Generation (LLM call): Generate
final choice for P based on the output of previ-
ous steps.

more compact versions of the LLMs that are tai-
lored for Vietnamese mathematical reasoning tasks
while maintaining the ability to perform both step-
by-step reasoning and code generation as outlined
in our SiRC framework.

4.3 Construction of ViMath-InstructCode
Dataset

Following the Teacher-Student framework, we
specifically use Llama-3-70B and Qwen-2-72B as
the teacher models, with publicly available small
models serving as the distilled versions. We
selected these two models because they usually
demonstrate different reasoning responses to the
same math problem, making it advantageous to
learn from both. However, due to resource limita-
tions, we could not extend our experiments to other
large models or closed-source LLM APIs. Specifi-
cally, ViMath-InstructCode is constructed based

on the ViMath-Bench training set, which is sequen-
tially illustrated as follows (Figure 3)):

• Input Data: The input data consists of math
problems collected and preprocessed as de-
tailed in section 3. This dataset, referred to
as ViMath-Bench, serves as the foundation
for generating step-by-step solutions. Specifi-
cally, we extracted the training split and aug-
mented it in subsequent steps to ensure it can
be efficiently trained by language models.

• Solution Augmentation: Upon reviewing the
full answer fields of the crawled data, we ob-
served that the solutions often have an unde-
sirable format where the conclusion precedes
the explanation. This format may be unin-
tuitive for the model to learn from, as learn-
ing from data of this format would teach the
model to predict the answer before reasoning
about the question. Additionally, the solutions
lack depth, as they do not provide step-by-step
explanations, thereby failing to offer a rich sig-
nal in reasoning for the model to learn. To ad-
dress these issues, we decided to augment the
crawled solutions using the teacher models.
These models enhance the solutions in two
ways: firstly, by adding a detailed explanation
that outlines every step and computation in-
volved in solving the problem; and secondly,
by formatting the augmented solution so that
the explanation precedes the final answer. At
the end of this step, we obtain a dataset of
pure Chain-of-Thought fashion.

• Reasoning-Code Generation: In this step,

263

we further augment the detailed step-by-step
solutions from the previous step to obtain data
with the desired structure. This structure con-
tains reasoning followed by code, which are
central to our SiRC framework. Specifically,
we prompted the teacher models to first refor-
mat the solutions from the previous step by
eliminating all computations and preserving
only the reasoning steps. After completing
the reformatting, the models then continue to
generate Python code to solve problems that
require calculations. The input of this process
is a detailed solution (with chain-of-thought
fashion which details on both reasoning and
computation), and the output is textual guid-
ance (without computation) and Python code
(that executes necessary computations).

• Data Filtering: The generated data from the
previous step are passed through a filtering
module. This module extracts and executes
the Python code, then compares the extracted
answer from the code’s output with the pro-
vided correct answer to verify its correctness.
Samples with incorrect output are discarded.
Additionally, edit distance is used to dedupli-
cate the generated solutions and code snippets.

5 Experimental Setup

5.1 Evaluation Metrics
The primary metric for evaluating the performance
of the models was accuracy. This metric measures
the percentage of questions q where the model
gives the correct final answer. The accuracy is
calculated as follows:

Accuracy(Q) =
1

|Q|

|Q|∑

i=1

{SiRC(qi, Ci) == ai}

where qi is the i-th question in a set of ques-
tions Q, Ci is the set of corresponding choices for
question qi. SiRC(qi, Ci) is the final answer con-
cluded by running the SiRC inference procedure
on qi, which is compared with the correct choice
ai of qi. Accuracy provides a straightforward and
intuitive measure of the model’s effectiveness in
solving mathematical reasoning tasks.

5.2 Training datasets
We conducted extensive experiments using mul-
tiple training datasets, each representing a differ-
ent approach to solving math problems with large

language models (LLMs). These approaches in-
clude fine-tuning with an unprocessed crawled
dataset as a baseline, Chain-of-Thought (CoT)
reasoning, Programming-of-Thought (PoT), and
our proposed SiRC framework. This diverse
collection of training datasets allows for a com-
prehensive comparison, showcasing the effec-
tiveness of our SiRC framework across various
methodologies. Table 1 provides detailed infor-

Dataset Description #Num.

ViMath-Bench
Crawled dataset,
described in section 3

7K

ViMath-
Reasoning

Detailed Step-by-step
reasoning with textual
computation, generated
by teacher models

14K

ViMath-Code

Only using code to
solve the problem,
generated by using
teacher models

14K

ViMath-
InstructCode

Structured reasoning
followed by code,
described in section 4.3

14K

Table 1: Details of Training Datasets for Different Ap-
proaches

mation on the construction of each dataset, their
characteristics, and the number of samples in-
cluded. Notably, while the ViMath-Bench dataset
contains only 7k training samples, its deriva-
tives—ViMath-Reasoning, ViMath-Code, and
most importantly, ViMath-InstructCode—each
contains 14k training samples. This increase is due
to the use of two teacher models, Llama-3-70B and
Qwen2-72B, in generating these datasets.

5.3 Implementation

Hyperparameter Values
batch size 128
epoch 3
learning rate 2e-4
learning rate scheduler cosine
weight decay 0
cutoff-len 2048
lora-r 64
lora-alpha 128
lora-dropout 0.05
lora-target-modules all linear

Table 2: Hyperparameters for the model fine-tuning

264

Model No finetuning Baseline Finetuning Finetuning w/ SiRC (ours)

w/o
CoT

w/
CoT

ViMath-
Bench

ViMath-
Reasoning

ViMath-
Code

ViMath-
Reasoning

+Code

ViMath-
InstructCode

ViMath-
Reasoning

+InstructCode

WizardMath-7B-V1.1 46.01 53.44 52.25 78.97 - - - -
MetaMath-Mistral-7B 51.46 52.41 52.96 77.00 - - - -
vinallama-7b-chat 40.79 38.97 38.26 57.87 - - - -
Vistral-7B-Chat 44.98 63.56 51.30 74.31 - - - -

Llama-3-8B-Instruct 75.97 67.98 73.60 83.32 85.22 86.01 86.4 87.27
Qwen2-7B-Instruct 83.4 84.82 79.68 88.38 87.98 88.14 90.83 91.15
deepseek-math-7b-rl 89.49 89.57 82.53 88.38 88.93 89.64 89.49 90.59

Llama-3-70B-Instruct 89.80 90.28 - - - - - -
Qwen2-72B-Instruct 92.09 92.09 - - - - - -

Table 3: Performance comparison of models under different finetuning conditions. The two best results in each row
are in bold.

Backbone Model: In our experiments, we
use a diverse selection of open-source language
models as backbones. Firstly, we choose
models specifically trained for mathematical
problem-solving: WizardMath-7B-V1.1 and
MetaMath-Mistral-7B. However, these mod-
els lack native support for Vietnamese. To
address this, we then select models trained
with a sufficient amount of Vietnamese data:
vinallama-7b-chat and vistral-7b-chat,
though these are not specifically designed for
solving math problems. Finally, we include some
of the latest multilingual models which also show
strong coding and mathematical capabilities:
Qwen2-7B-Instruct, Llama-3-8B-Instruct,
and deepseek-math-7b-rl. In total, we utilize
seven models as our backbones.
Hyperparameters: For fine-tuning the backbones,
we employed the Low-Rank Adaptation (LoRA)
technique across all models. To ensure a fair com-
parison, we kept the hyperparameters consistent
for every model. Detailed information regarding
these hyperparameters is provided in Table 2.

6 Results

Table 3 presents a detailed performance compari-
son of various models under different conditions.
The effectiveness of the proposed SiRC frame-
work is highlighted, demonstrating its impact on
enhancing model accuracy in mathematical reason-
ing tasks.

6.1 Baselines

No Fine-Tuning Among the models evaluated
without any fine-tuning, deepseek-math-7b-rl
and Qwen2-7B-Instruct exhibited the highest ac-
curacies without CoT prompting, achieving 89.49%

and 83.4%, respectively. This underscores these
models’ robust baseline capabilities in mathemati-
cal reasoning when used out of the box.

CoT prompting had varied effects on model
performance. For some models, such as
vistral-7b-chat and WizardMath-7B-V1.1, it
significantly boosted accuracy by nearly 19% and
7%, respectively. However, for other models, CoT
prompting had little to no effect or even decreased
performance. This indicates that the benefits of
CoT prompting are not consistent across all models
and may depend on specific model architectures or
underlying training data.
Baseline Fine-Tuning When models were fine-
tuned with the baseline ViMath datasets (as detailed
in Table 1), there were notable improvements in
performance compared with no finetuning setting.
Augmented datasets, namely ViMath-Reasoning
and ViMath-Code consistently outperform raw
dataset ViMath-Bench, showing the clear advan-
tage of using teacher models to generate synthetic
training data. Notably, for all models, we exper-
imented with finetuning by combining these two
augmented datasets yielded the highest accuracies
across all baseline configurations. However, we did
not conduct training experiments with code-related
data on the first four models, because they were not
sufficiently trained with code data.

6.2 Main results

Finetuning with SiRC framework To enable
models to follow the SiRC inference framework,
we trained them on datasets that include our pro-
posed ViMath-InstructCode dataset. Finetun-
ing with only ViMath-InstructCode dataset en-
abled models to consistently surpass performance
when trained with only ViMath-Reasoning or

265

Model Qwen2-7B-Instruct Llama-3-8B-Instruct deepseek-math-7b-rl
w/o Solution Augmentation 89.80 83.64 89.72
w/o Filtering Module 87.83 85.69 89.49
use only Llama3-70B-Instruct 88.46 84.19 87.98
use only Llama3-70B-Instruct (sampled twice) 87.91 84.11 87.91
use only Qwen2-72B-Instruct 89.25 83.79 88.14
use only Qwen2-72B-Instruct (sampled twice) 90.75 84.58 89.17
full pipeline (ours) 90.83 86.40 89.49

Table 4: Ablation study results

ViMath-Code. Additionally, finetuning using the
combined ViMath-{Reasoning+InstructCode}
dataset yielded the highest accuracies observed,
with Qwen2-7B-Instruct achieving an impres-
sive 91.15%, outperforming all other configu-
rations. This highlights the synergistic effect
of integrating reasoning data with our proposed
ViMath-InstructCode data, which collectively
enhances model performance more effectively than
using either dataset in isolation.

Finally, we ran inference on the teacher
models, Llama3-70B-Instruct and
Qwen2-72B-Instruct, achieving the highest
no-finetuning inference accuracy of 92.09%
with Qwen2-72B-Instruct when using CoT
prompting. Although Qwen2-72B-Instruct
outperformed Qwen2-7B-Instruct (finetuned
with our ViMath-InstructCode and follow SiRC
inference procedure), our model closely followed
by only less than 1% accuracy. This again
demonstrates the robustness of the teacher-student
methodology and the effectiveness of our SiRC
framework.

6.3 Ablation Study
To further understand the contribution of each com-
ponent in our proposed SiRC framework and the
ViMath-InstructCode dataset, we conducted an
ablation study. This study helps to isolate and eval-
uate the impact of different components and steps
in our dataset construction pipeline. The configu-
rations tested and their corresponding results are
summarized in Table 4.

The full pipeline, including solution
augmentation, filtering steps, and utiliz-
ing two teachers (Llama3-70B-Instruct
and Qwen2-72B-Instruct, each sampled
once), achieved the highest performance
for both Qwen2-7B-Instruct (90.83%) and
Llama-3-8B-Instruct (86.40%), demonstrating
the effectiveness of the complete process. Ex-
cluding the solution augmentation step, which

provides detailed explanations and formatting by
the teacher models, resulting in a performance
drop across almost all models. Using only
Llama3-70B-Instruct or Qwen2-72B-Instruct
for generating data also led to lower performance,
underscoring the need for diversity provided
by multiple teacher models. Sampling twice
with either teacher model showed negligible
improvement, indicating that the added diversity
from another teacher model is crucial. Ex-
cluding the filtering step resulted in decreased
accuracy for Qwen2-7B-Instruct (87.83%) and
Llama-3-8B-Instruct (85.69%), emphasizing
the role of data quality control in enhancing
model reliability and accuracy. Interestingly,
deepseek-math-7b-rl maintains stable perfor-
mance even without the filtering step, suggesting
that this model may be more resilient to noise
in the training data compared to others. Overall,
these results demonstrate that each component of
our ViMath-InstructCode construction pipeline,
including solution augmentation, the use of
multiple teacher models, and filtering, significantly
contributes to the overall performance of the
models, with the full pipeline consistently yielding
the best results, confirming the robustness and
effectiveness of our approach.

7 Conclusion

This study proposes a novel fine-tuning instruc-
tion approach for mathematical reasoning, which
is specified for the Vietnamese language. Specifi-
cally, we present SiRC, an effective framework,
which significantly enhances the mathematical
reasoning capabilities of language models with
minimal cost. Furthermore, by leveraging the
ViMath-InstructCode dataset and combining it
with reasoning datasets, the proposed framework
achieves superior performance, underscoring the
effectiveness of our approach. Accordingly, the
experimental results indicate that diverse and com-

266

prehensive training data is crucial for improving
model accuracy in complex tasks such as mathe-
matical reasoning.

Limitations

While our study successfully constructs the
ViMath-InstructCode dataset using the SiRC
framework, it is important to acknowledge some
limitations in our approach: i) Firstly, the general-
ization to other languages of SiRC, though promis-
ing, is still unclear. The SiRC framework and
ViMath-InstructCode dataset have been specif-
ically designed for Vietnamese. Adapting this
framework to other languages, particularly those
with even fewer resources, necessitates additional
efforts in constructing datasets as well as run-
ning experiments; ii) Secondly, the proposed
ViMath-InstructCode is still prone to noises.
The construction of this dataset, despite relying
on trusted open sites and undergoing several pre-
processing steps to ensure its quality, is completed
without any human verification. This could result
in a small proportion of faulty samples in our train-
ing dataset.

Ethical considerations

Regarding concerns related to the sources of the
datasets in our research, they are built from publicly
accessible sources, guaranteeing no privacy issues
or violations. We do not gather any personally
identifiable information, and all data is acquired in
compliance with legal and ethical guidelines.

References
Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui

Zhang, and Wenpeng Yin. 2024. Large language
models for mathematical reasoning: Progresses and
challenges. In Proceedings of the 18th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, EACL 2024: Student Research
Workshop, St. Julian’s, Malta, March 21-22, 2024,
pages 225–237. Association for Computational Lin-
guistics.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. Mathqa: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),

pages 2357–2367. Association for Computational
Linguistics.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2022a. Program of thoughts
prompting: Disentangling computation from rea-
soning for numerical reasoning tasks. CoRR,
abs/2211.12588.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2022b. Program of thoughts
prompting: Disentangling computation from rea-
soning for numerical reasoning tasks. CoRR,
abs/2211.12588.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and
Tushar Khot. 2023. Specializing smaller language
models towards multi-step reasoning. In Interna-
tional Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research,
pages 10421–10430. PMLR.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2023a. Tora: A tool-integrated reasoning
agent for mathematical problem solving. CoRR,
abs/2309.17452.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2023b. Tora: A tool-integrated reasoning
agent for mathematical problem solving. CoRR,
abs/2309.17452.

267

https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://doi.org/10.18653/V1/N19-1245
https://doi.org/10.18653/V1/N19-1245
https://doi.org/10.18653/V1/N19-1245
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://proceedings.mlr.press/v202/fu23d.html
https://proceedings.mlr.press/v202/fu23d.html
https://doi.org/10.48550/ARXIV.2309.17452
https://doi.org/10.48550/ARXIV.2309.17452
https://doi.org/10.48550/ARXIV.2309.17452
https://doi.org/10.48550/ARXIV.2309.17452

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the MATH dataset. In Proceedings
of the Neural Information Processing Systems Track
on Datasets and Benchmarks 1, NeurIPS Datasets
and Benchmarks 2021, December 2021, virtual.

Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin,
and Wei-Ying Ma. 2016. How well do computers
solve math word problems? large-scale dataset con-
struction and evaluation. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers. The Association
for Computer Linguistics.

Zhenwen Liang, Wenhao Yu, Tanmay Rajpurohit, Peter
Clark, Xiangliang Zhang, and Ashwin Kalyan. 2023.
Let GPT be a math tutor: Teaching math word prob-
lem solvers with customized exercise generation. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2023, Singapore, December 6-10, 2023, pages 14384–
14396. Association for Computational Linguistics.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4,
Volume 1: Long Papers, pages 158–167. Association
for Computational Linguistics.

Hanmeng Liu, Zhiyang Teng, Leyang Cui, Chaoli
Zhang, Qiji Zhou, and Yue Zhang. 2023. Logicot:
Logical chain-of-thought instruction tuning. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, Singapore, December 6-10, 2023,
pages 2908–2921. Association for Computational
Linguistics.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
CoRR, abs/2308.09583.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Sina J. Semnani, Violet Z. Yao, Heidi C. Zhang, and
Monica S. Lam. 2023. Wikichat: Stopping the hal-
lucination of large language model chatbots by few-
shot grounding on wikipedia. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2023,
Singapore, December 6-10, 2023, pages 2387–2413.
Association for Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard

Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan,
Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran
Wang, Changhao Jiang, Yicheng Zou, Xiangyang
Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng,
Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan
Zheng, Xipeng Qiu, Xuanjing Huang, and Tao Gui.
2023. The rise and potential of large language model
based agents: A survey. CoRR, abs/2309.07864.

268

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.18653/V1/P16-1084
https://doi.org/10.18653/V1/P16-1084
https://doi.org/10.18653/V1/P16-1084
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.889
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.889
https://doi.org/10.18653/V1/P17-1015
https://doi.org/10.18653/V1/P17-1015
https://doi.org/10.18653/V1/P17-1015
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.191
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.191
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.157
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.157
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.157
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2309.07864
https://doi.org/10.48550/ARXIV.2309.07864

