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Abstract

We investigate the knowledge of object af-
fordances in pre-trained language models
(LMs) and pre-trained Vision-Language mod-
els (VLMs). A growing body of literature
shows that PTLMs fail inconsistently and non-
intuitively, demonstrating a lack of reasoning
and grounding. To take a first step toward quan-
tifying the effect of grounding (or lack thereof),
we curate a novel and comprehensive dataset of
object affordances – TEXT2AFFORD, charac-
terized by 15 affordance classes. Unlike affor-
dance datasets collected in vision and language
domains, we annotate in-the-wild sentences
with objects and affordances. Experimental
results reveal that PTLMs exhibit limited rea-
soning abilities when it comes to uncommon
object affordances. We also observe that pre-
trained VLMs do not necessarily capture ob-
ject affordances effectively. Through few-shot
fine-tuning, we demonstrate improvement in
affordance knowledge in PTLMs and VLMs.
Our research contributes a novel dataset for lan-
guage grounding tasks, and presents insights
into LM capabilities, advancing the understand-
ing of object affordances. 1

1 Introduction

Object affordance refers to the properties of an
object that determine what actions a human can
perform on them (Gibson, 1979). Gaining the
knowledge of object affordances while learning
textual representation from large corpora maybe
hard; as in NLP, we lack corresponding images (or
videos) which provides necessary visual cues such
as shape, color, and texture to predict affordances.
This lack of mapping or rather grounding ability
has been noted by many researchers in the context
of large pretrained language models (PTLMs). Au-
thors in Bender and Koller (2020) have pointed the
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1Code and Data are available at https://github.com/

sayantan11995/Text2Afford

Figure 1: Overview of TEXT2AFFORD with its derived tasks.

lack of symbol grounding to be a fundamental fac-
tor behind PTLMs failing to grasp meaning from
form (surface form text). The authors argue that
language models which are exposed to only text
(surface form) may never truly understand mean-
ing, as PTLMs are unaware of possible groundings
of the surface text. Most current NLP datasets and
tasks are not designed to evaluate grounding, as it
is hard to evaluate grounding without any visual
context. Here, we aim to quantify the ability of
pretrained models to learn affordances – which in
turn requires the ability to ground symbols in text
to real-world objects. In other words, grounding
ability from text can enable understanding and rea-
soning about the physical properties of an object,
which may help predict affordances.

As another example, for the sentence “an apple
in the tree”, we should infer that the “apple” can
be eaten, and is rollable. However we cannot roll
an “apple logo”. In computer vision and robotics
efforts, an accompanying image (or video) often
provides necessary information about shape and
physical properties of the entity, which can be used
to predict affordances (Zhu et al., 2014). However
such information is absent in NLP tasks. To cap-
ture this nuance, we annotate crowdsourced text
intended for other tasks (such as NLI) with the
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Dataset Train
size

Dev
size Test size Reasoning type Source Image-

dependent
Targeted

affordance
Publicly
available

PaCo (Qasemi et al., 2022a) 5,580 1,860 4,960 Preconditioned commonsense Crowd-sourced ✗ ✗ ✔

WINOVENTI (Do and Pavlick, 2021) - - 4,352 Commonsense with exceptions Crowd-sourced ✗ ✗ ✔

PVLIR (Qasemi et al., 2023) 34,000 Preconditioned visual commonsense Other dataset ✔ ✗ ✗

Normlense (Han et al., 2023) - - 10,000 Defeasible visual commonsense Crowd-sourced ✔ ✗ ✔

WinoViz (Jin et al., 2024) - - 1,380 Reasoning object’s visual property Crowd-sourced ✗ ✗ ✗

PROST (Aroca-Ouellette et al., 2021) - - 18,736 Reasoning object’s physical property Other dataset ✗ ✗ ✔

NEWTON (Wang et al., 2023) - - 2,800 Reasoning object’s physical property Crowd-sourced ✗ ✗ ✔

Persiani and Hellström (2019) 734,002 - 314,572 Object affordance without context Synthetic ✗ ✔ ✗

TEXT2AFFORD (Ours) - - 35,520
(2368 * 15) Contextual object affordance Crowd-sourced ✗ ✔ ✔

Table 1: Comparison of TEXT2AFFORD with other reasoning datasets. A larger version is in Appendix A.3 Table 9.

objects and affordances. We use 15 affordance
classes from Zhu et al. (2014). Through extensive
pilot studies, we train a set of annotators using the
toloka.ai platform. We choose 25 highly-skilled
annotators who annotated a total of 2368 sentence-
object pairs with 15 affordance classes, on a 0-3
Likert-like scale. For each sentence-object pair
and each affordance class we ensure annotations
from three annotators to enable majority votings.
We name this novel dataset TEXT2AFFORD. We
use the dataset for zero-shot evaluations of small
LMs, open-source LLMs and also some VLMs by
forming different task setups. Figure 1 presents
an example from TEXT2AFFORD and the derived
tasks (detailed in Section 4). We evaluate the effect
of few-shot fine-tuning on few PTLMs and VLM.
Our contributions can be summarized as follows.
• We curate a novel large scale crowdsourced
text to affordance dataset – TEXT2AFFORD, con-
sisting of 35,520 test data points (2368 sentence-
object pairs with 15 unique affordance classes per
pair). We ensure at least three annotations for each
sentence-object pair for each class.
• Using TEXT2AFFORD, we perform zero-shot
evaluation of several state-of-the-art PTLMs along
with a few VLMs in different settings to identify
the extent to which they gain the knowledge of af-
fordance during pretraining. We further ensemble
the VLM and the PTLM predictions to examine
whether pre-training with images can enrich affor-
dance prediction from text. Overall, we observe
that the SOTA LLMs face difficulties predicting
contextual object affordances solely from text (ac-
curacy < 55%) and the performance gets slightly
enhanced when using powerful VLMs in presence
of synthetic images.
• We also fine-tune few PTLMs on a small sub-
set of our data as well as on some commonsense
reasoning tasks to understand how quickly the af-
fordance knowledge get scaled up and how far the
affordances are related to commonsense knowl-

edge. In addition, we examine the in-context learn-
ing (ICL) ability of few of the SOTA generative
LLMs and VLMs in affordance prediction task.
We find that the pre-trained encoder based models
gain some knowledge about object affordance dur-
ing fine-tuning using the commonsense reasoning
dataset.
• Additionally through finetuning on our dataset,
we show that knowledge of affordance can improve
model’s physical reasoning capability.

2 Related work

Reasoning about object affordances. Object af-
fordances has been extensively studied in Com-
puter Vision and Robotics (Sun et al. (2014); Zhu
et al. (2014)). Recent methods employ deep learn-
ing approaches to detect object affordance. Nguyen
et al. (2017) applies an object detector, CNN and
dense conditional random fields to detect object
affordance from RGB images. Persiani and Hell-
ström (2019) extracts object-action pairs from web
corpora using semantic role labelling. In contrast,
we propose a crowd-sourced text only affordance
dataset to audit the strength of SOTA LLMs and
VLMs to reason about contextualized object affor-
dance.
Probing methods. Talmor et al. (2020) utilizes
probing and employs Multi-choice MLM (Masked
Language Modelling) and Multi-choice QA (Ques-
tion Answering) setup to capture reasoning capa-
bilities of pre-trained Language Models. Yang
et al. (2022) examines zero-shot prediction perfor-
mances on different tasks by LLM through novel
visual imagination. Aroca-Ouellette et al. (2021)
highlights the shortcomings of state-of-the-art pre-
trained models in physical reasoning, with a further
performance decline observed when incorporating
option shuffling and superlatives in reasoning ques-
tions. Liu et al. (2022) proposes a novel spatial
commonsense probing framework to investigate
object scales and positional relationship knowledge
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in text-based pre-trained models and models with
visual signals. Joshi et al. (2020) uses probing
methods to investigate a more fine-grained logical
reasoning capabilities of pre-trained models.

Reasoning tasks and dataset. Reasoning
about object affordance require a sort of com-
monsense reasoning. A series of works (Singh
et al. (2021), et al. (2023), Bisk et al. (2019),
Huang et al. (2019), Talmor et al. (2019), Tal-
mor et al. (2021), Zellers et al. (2018)) study the
text based commonsense knowledge of language
models. Dataset such as δ-NLI (Rudinger et al.,
2020) focuses on defeasible inference of common-
sense knowledge; PaCo (Qasemi et al., 2022a) and
PInKS (Qasemi et al., 2022b) deal with precondi-
tioned commonsense inference of language mod-
els. PVLIR (Qasemi et al., 2023), Normlense (Han
et al., 2023) use images as precoditions to reason
about defeasible commonsense norms. However,
none of these specifically focus on reasoning of
object affordance. Wang et al. (2023) proposes a
benchmark of object-attribute pairs plus a diverse
set of questions to reason object’s physical proper-
ties. Aroca-Ouellette et al. (2021) tackles physical
and affordance reasoning from an object-centric ap-
proach. Persiani and Hellström (2019) attempts to
extract common object-action pairs from web cor-
pora. In Table 1, we demonstrate the comparison of
TEXT2AFFORD with other datasets which perform
different kind of reasoning tasks. We emphasize
that, TEXT2AFFORD is the largest crowdsourced
publicly available text based contextualized affor-
dance dataset with a test size of 35,520 (2368
sentence-object pairs and 15 affordance classes).
Present work. Although a substantial number
of work study the reasoning capabilities of lan-
guage models and propose commonsense reasoning
datasets, however, none of these work concentrate
specifically on evaluating the knowledge of affor-
dance and contextual affordance prediction solely
from text. To bridge this gap, we present a reli-
able crowdsourced test dataset for identifying the
contextualized affordance prediction capability of
LLMs as well as VLMs. Our results show that the
advanced large language models fail to understand
an object’s physical properties aka the affordances
from texts, and there is significant room for im-
provement which may further motivate researchers
to explore models that explicitly learns to ground
objects in text to predict its physical properties and
affordances.

3 TEXT2AFFORD dataset construction

We select 20, 000 sentences from a crowdsourced
English dataset (XNLI English) (Conneau et al.,
2018)2 and extract the noun phrases using the Stan-
ford CoreNLP tool. As we restrict to the affor-
dances that humans can directly perform, we filter
the phrases which do not represent a tangible ob-
ject (using ConceptNet). We manually filter out ob-
jects that cannot be acted upon directly by humans
(such as school, building). After this preprocessing,
we obtain a set of sentence-object pairs (⟨xi, oi⟩),
where the sentence acts as the context for the cor-
responding object. Each sentence on average has
2-3 such objects. We use the 15 predefined affor-
dance classes from Zhu et al. (2014) to label each
sentence-object pair for annotation.
We utilize the Toloka platform3 for conducting the
data annotation. We design an interface on this plat-
form, containing clear instructions and examples
for annotating the data. We conduct two rounds of
pilot studies along with additional AMA (Ask Me
Anything) sessions to analyze the subjective under-
standing of the annotators and, thereby, only select
the high quality, serious annotators. A total of 114
annotators participated in the pilot study, and out of
that we finally engage 25 skilled annotators to an-
notate a total of 2,368 sentence-object pairs each
containing 15 affordance classes. Each datapoint
(i.e., sentence-object pair along with an affordance
class) has been annotated by three different anno-
tators. We provide the details of the pilot studies
& annotator training in Appendix A.1. By eval-
uating the complexity of the task for the annota-
tors from the pilot studies, we intentionally con-
sider a relatively small number of datapoints at a
point for the annotation. This leads us to a total
of 10 phases to complete the final annotation. We
carefully reviewed each annotation and provided
feedback with guidance in case of mistakes. For
instance, annotators initially got confused with the
affordance ‘Watch’ as human can watch any vi-
sual objects. In another instance, some annotators
asked whether ‘Throw’ can be valid affordance for
the object ‘Kittens’ as humans can perform ‘Lift’,
‘Throw’ to the object ‘Kitten’. We discussed these
types of ambiguities with the annotators after each
phase. Throughout each of the data annotation
phases, we put scrupulous attention to quality con-

2We choose XNLI as a source to facilitate multilingual
extensions of our dataset.

3https://toloka.ai/
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Agreement category Affordance classes Objects Object-affordance pair
High agreement
(>0.75) Row, Feed, Ride, Fix the horse, striped white shirts, a brown paper sack, Chinese

lanterns, Adrin’s sword, The movie
breakfast-Feed, a horse-Watch, crops-Fix, sports-Grasp, sports-Lift,
sports-Push, the phone-Feed, football-Ride

Medium agreement
(>0.4 & <0.75)

Throw, PourFrom, WriteWith,
LookThrough, Lift, Grasp, Play, Push

A red flag, An arrow, Art, Automatic weapons, Babies,
Black-and-white TV

computers-WriteWith, cats-Feed, football-Play, book-WriteWith, the
door-Push

Low agreement (<0.4) Watch, SitOn, TypeOn
Brandy from Spain, stone circles, iron, batteries, his fist,
historical artifact, gift, olive oil, outdoor tables, bumper
sticker on a car

weapon-Push, The table-Lift, boat-Fix, paintings-LookThrough,
cats-Throw

Table 2: Agreement based on difficulty in disambiguating different affordance classes, objects and object-affordance pairs.

# of sentence-object pairs annotated 2368
# of affordance class 15
# of instances annotated 106560 (2368 × 15 × 3)
Avg # of objects / class 333
Most prominent class Lift (851 objects)
Least prominent class WriteWith (3 objects)
Total skilled annotators used 25
Avg agreement (Kripendorff’s α ) 0.68

Table 3: TEXT2AFFORD dataset statistics. # of instances an-
notated: (# of <s-o> pairs) * (# of classes) * (# of annotations
per class).

trol, including iterative annotation refinement, and
manual evaluation. The overall statistics for this
currently constructed dataset – TEXT2AFFORD is
in Table 3. The TEXT2AFFORD dataset consists
of 2368 sentence-object pairs having ∼ 100k an-
notations (2368 × 15 × 3). For further details of
the dataset construction, and our method of han-
dling ambiguous scenarios, we refer the reader to
Appendix A.1.

Figure 2: Classwise distribution of the number of objects and
the annotator agreement.

TEXT2AFFORD data exploration. We observe
that classes such as ‘Grasp’, ‘Lift’, ‘Throw’, ‘Push’,
and ‘Watch’ are the most common affordances
for the objects present in the dataset (see Fig-
ure 2). Most frequent objects and their correspond-
ing agreement scores are shown in Appendix A.10
Fig. 8. We observe, agreement scores are fairly
uniform (0.5-0.6) for frequent objects, with high
agreement for some frequent objects (0.8 for “the
movie”). In Figure 9 (see Appendix A.9), we also
see that ‘Grasp’, ‘Lift’, and ‘Throw’ are highly cor-

related classes. There is similar positive correlation
between the class ‘SitOn’ and ‘Ride’, and some
correlation between ‘Watch’ and ‘LookThrough’.
In Table 2, we list down the affordance classes
based on the annotator agreement score, and divide
it into three categories to understand which of the
affordance classes pose the most and least difficul-
ties for the human annotators. We observe that the
classes - ‘Watch’, ‘SitOn’, and ‘TypeOn’ are the
most difficult to disambiguate. Further, to explore
the difficulty of understanding contextual object
affordance, we employ three naïve annotators to
annotate some samples of the TEXT2AFFORD, and
we observe that on an average in 88% cases the
humans are able to predict affordance correctly,
and in some cases the context introducing inherent
difficulty for predicting affordance. Details of the
study is provided in Appendix A.2.

4 Task description

Our first objective is to audit the strength of Large
Language Models in identifying the pre-defined
affordance classes of objects from text in zero-shot
settings. Given a textual context, and the object,
the task is to predict whether a particular affor-
dance class is applicable to that object conditioned
on the context. We majorly leverage 4 types of
task setup for the experiments. For the encoder
based models (e.g., RoBERTa, BERT) we choose
Masked Language Modelling (MLM) and Natu-
ral Language Inference (NLI) based setup, and for
the generative models we adopt 2 types of probing
setup (text only, text+image) to formalize the task.
Table 4 demonstrates different types of tasks that
we engage for conducting the experiments from the
TEXT2AFFORD dataset.

5 Experiments

We explore various state-of-the-art baselines us-
ing pre-trained language models (RoBERTa-large,
BART-large), instruction-fine-tuned large lan-
guage models (e.g., FLAN-T5, Falcon, ChatGPT,
Llama-3), pre-trained multi-modal vision and lan-
guage architectures (CLIP-ViT, ViLT, InstructBLIP,
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Model architecture Tasks Input instance Output

Encoder based
MLM All the women in India wear bangles [SEP_TOKEN] bangles can be used for

[MASK_TOKEN] by human
Probabilities of each affordance classes as the
[MASK_TOKEN]

NLI
premise: All the women in India wear bangles

Entailment scores for each affordance classeshypothesis: bangles can be used for <Affordance> by human

Generation based

Probing with text Consider the sentence - ’All the women in India wear bangles’. Now, from this information
can a human <Affordance> bangles? Answer YES or NO: YES\NO

Probing with text and
image

Consider the sentence - ’All the women in India wear bangles’.
Now, from this information can a human <Affordance> bangles?
Accompanying this query is an image of the bangles. Answer YES
or NO:

YES\NO

Table 4: Overview of the tasks using TEXT2AFFORD. For detailed prompting see Appendix 10.

IDEFICS, LLaVA). We observe whether these mod-
els gain the knowledge of affordances through their
pre-training, fine-tuning on commonsense tasks
(NLI, PIQA), or few-shot fine-tuning scenarios.

5.1 Zero-shot affordance prediction

5.1.1 Pre-trained language models
We frame the zero-shot prediction task in different
ways.
MLM based approach. Here, we pose the zero-
shot task as masked word prediction problem.
We choose BERT-large-uncased, RoBERTa-large
(Zhuang et al., 2021), and BART-large (Lewis et al.,
2020) models for the experiment. We pass the sen-
tence and prompt separated by a [SEP] token as an
input to the model. We use the prompt “<Object>
can be used for <MASK_TOKEN> by human” and
obtain the probability of each affordance label us-
ing the logit corresponding to the <MASK_TOKEN>.
Predictions from generative LLMs. We pose
the task as ‘YES\NO’ questions-answering format
and apply autoregressive language models such
as FLAN-T5 (Chung et al., 2022) (large, xl, and
xxl), Falcon (Almazrouei et al., 2023) (7b and 40b),
Llama-3 4, ChatGPT to get the predictions. We
provide with a ‘YES\NO’ question-answer based
prompt to the LLMs to predict whether a particular
affordance can be performed on the given object.
Based on rigorous prompt engineering we choose
specific prompts for the different models as shown
in the Appendix Table 10. We map ‘YES\NO’ pre-
dictions to 1\0 labels respectively.

5.1.2 Commonsense reasoning tasks
To understand whether the injection of the com-
mon sense knowledge in the pre-trained models
can enhance the performance of the affordance pre-
diction, we first fine-tune the pre-trained models
on common sense reasoning dataset such as PIQA
(Bisk et al., 2019). Then we run the fine-tuned
models on our dataset using the MLM setup. We

4https://github.com/meta-llama/llama3

use BERT-base, BERT-large, RoBERTa-large, and
BART-large models.
Apart from this, we leverage RoBERTa-large and
BART-large fine-tuned on the Multi-genre NLI
(MNLI) corpus (Williams et al., 2018) to eval-
uate on NLI setup. We utilize the sentence as
premise and use the hypothesis as “<object> can
be used for <affordance> by human” for each
object-affordance pair, and use the entailment score
to rank the affordance classes and report mAP and
accuracy. Details of the experiment can be found
in Appendix B.2.1.

5.1.3 Multimodal models
We explore both unimodal and multi-modal task
setup for pre-trained vision and language models.

Text-only MLM setup
VLMs are pre-trained on large datasets having both
image and text. The main goal of their pre-training
is to capture some visual knowledge correspond-
ing to the text while pre-training on multi-modal
dataset such as image-caption pairs. To examine
this, we first use the vision-language model CLIP,
by providing only text prompt as the input and
predict the affordance in an MLM setup.

Multimodal task setup
Images contain necessary information about shape,
texture, and size of objects that can be utilized to
effectively predict an object affordance (such as
the handle of the bucket can be used to grasp and
lift). Hence, we also convert the problem into a
multi-modal task by synthesizing corresponding
images from the context sentence, and predict the
affordance of an object (mentioned in the sentence)
based on the input.
Synthesizing images. In this setup, we use two dif-
ferent techniques to synthesize semantically close
images to corresponding context sentences using
1) retrieval and 2) generation. We further use top
five images for both, to get an accurate estimation.
Image retrieval: We use the CLIP (Radford et al.,
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2021) based sentence-transformers architecture to
search for top five semantically similar images for
each of the contexts from the Visualgenome (Kr-
ishna et al., 2017) dataset.
Image generation: We adopt the generative Sta-
bleDiffusion (Rombach et al., 2022) model to gen-
erate top five images based on the sentence as
a text prompt. Details can be found in the Ap-
pendix B.4.1.
We use the top five retrieved images by using re-
trieval and generation methods each. We use CLIP
(Radford et al., 2021) and ViLT (Kim et al., 2021)
as our vision-text models. CLIP has a text encoder
fT and a visual encoder fV , which can project
text and image into the shared latent space. We
aggregate the k (=5) corresponding images and
use CLIP to compute the relevance score of (x,
y): ScoreV I(x, y) =

1
k

∑K
i=1 cos (fT (x), fv(I

k
y )),

where Iky is the kth image for the input text y. In
the ViLT model, we provide the text prompt along
with the representative images as input to predict
the masked token. We use the same prompt as the
previous MLM task (i.e., “<Object> can be used
for <MASK_TOKEN> by human.”) and get the
probability of each affordance class as the logit
corresponding to the <MASK_TOKEN>.
Text generation based. Similar to section 5.1.1,
we utilize state-of-the-art VLMs to make predic-
tions regarding object affordances. We provide
with a ‘YES\NO‘ question answering based text
prompt along with the aligned images as input to
the VLMs, and the model should generate an an-
swer whether a particular affordance can be per-
formed on the given object. We use state-of-the-art
VLMs such as IDEFICS (Laurençon et al., 2023),
LLaVA (Liu et al., 2023b), InstructBLIP (Dai et al.,
2023) for this task. The text prompt used for the
models can be found in the Appendix D, Table 10.

Ensemble language and vision prediction. Fol-
lowing Yang et al. (2022), we use the weighted
sum as the late fusion over the final output proba-
bilities of each affordance class from the language
and multi-modal models. Experimental details can
be found in Appendix B.3.

5.2 Few-shot prediction

We conduct few-shot experiments by 1) fine-tuning
the encoder based models, 2) randomly selecting 5
demonstration examples for the generative models
to perform few-shot in-context learning (ICL). We
consider the 62 annotated objects and correspond-

ing 15 affordance classes by Zhu et al. (2014) for
the few-shot based experiments.
Training data To create few-shot training exam-
ples for fine-tuning encoder based PTLMs, we take
all the 62 objects, and for each object we randomly
select exactly 1 positive affordance class (i.e., the
class label annotated as 1) and 1 negative affor-
dance class (i.e., the class label annotated as 0) for
generating the training prompt. Overall they con-
stitute 124 training examples (62 sentence-object
pairs and 2 selected classes for each) for the few-
shot experiment. For more details of the training
data curation and the selection of examples for in-
context learning, refer to Appendix B.4
Experimental setup. We fine-tune the encoder
based language models using the training data, and
for the generative LLMs and the VLMs, we utilize
the training data to select in-context demonstration
examples.
Fine-tuning PTLM: We fine-tune the encoder based
PTLMs in NLI based setup having the context sen-
tence as premise and use same hypothesis (i.e.,
“<object> can be used for <affordance> by human”)
which we use in the zero-shot settings. We use
BERT-large-uncased, RoBERTa-large and BART-
large for fine-tuning in this setup. For implementa-
tion details refer to Appendix B.4
In-context learning for generative models: We em-
ploy the same generative LLMs as well as VLMs to
perform affordance prediction using five demonstra-
tion examples from the training data. We use the
same text prompt as zero-shot setting and concate-
nate the five demonstration examples along with
corresponding label (i.e., ‘NO’ for positive class,
and ‘NO’ for the negative class) to the prompt and
ask the LLMs and VLMs to predict the affordance.
In case of the VLMs, we do not provide any addi-
tional image example here.

6 Benchmarking TEXT2AFFORD
prediction

Evaluation metric. To assess the performance of
the zero-shot affordance prediction, we calculate
accuracy in the following way. Each affordance
class is treated as a binary classification problem,
where a value of 1 represents a positive class indi-
cating that the affordance can be performed on the
object, and a value of 0 represents a negative class
indicating that the affordance cannot be performed.
For each positive class ∈ {P1, P2, ..Pn}, we com-
pare the predicted scores of that affordance class
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with the predicted scores of the negative classes
∈ {N1, N2, ..Nm}. If the predicted score of the
positive class is higher than the predicted score of
all the negative classes (i.e., p(Pi) > p(Nj)∀j), we
increment the correct count by 15. Conversely, if
the predicted score of the negative class is higher,
we increment the wrong count by 1. The final ac-
curacy is calculated by dividing the total number
of correct counts by the total number of the in-
stances. To rank the affordance classes based on
the predicted score, we also report the Mean Aver-
age Precision (mAP@K, where K is the number
of affordance classes).

Encoder based
NLI based

Model Actual Fine-tuned LM + VI (CLIP) LM + VI (ViLT)
Acc mAP Acc mAP Acc mAP Acc mAP

RoBERTa-large-mnli 0.64 0.43 0.72 0.49 0.79 0.52 0.79 0.54
BART-large-mnli 0.65 0.38 0.69 0.48 0.62 0.4 0.64 0.43

MLM based
BERT-large-uncased 0.46 0.26 0.58 0.33 0.55 0.38 0.53 0.37
RoBERTa-large 0.55 0.36 0.77 0.49 0.61 0.41 0.62 0.43
BART-large 0.47 0.28 0.65 0.38 0.56 0.35 0.52 0.34

Multi-modal models (zero-shot)
CLIP-VIT (text-only) 0.47 0.34 - - - - - -
CLIP-VIT (retrieval) 0.56 0.35 - - - - - -
CLIP-VIT (generation) 0.61 0.4 - - - - - -
ViLT (retrieval) 0.41 0.31 - - - - - -
ViLT (generation) 0.44 0.32 - - - - - -

Table 5: Performance for affordance prediction using encoder
based models. Acc: Accuracy, LM: Language model, VI:
Vision. Only LMs are ensembled with VI. The best results are
in bold.

Generation based
Predictions from generative LLM

Model Acc (zero-shot) Acc (ICL)
Random baseline 0.18 -
FLAN-T5-large 0.06 0.13±0.04

FLAN-T5-xl 0.07 0.21±0.03

FLAN-T5-xxl 0.33 0.39±0.04

Falcon-7b-instruct 0.19 0.24±0.03

Falcon-40b-instruct 0.43 0.47±0.06

Llama-3-8b-instruct 0.36 0.43±0.05

ChatGPT (GPT-3.5 turbo) 0.41 0.44±0.05

Multi-modal models

Model Acc (zero-shot) Acc (ICL)
IR based IG based IR based IG based

Idefics-9b-instruct 0.26 0.25 0.36±0.02 0.37±0.03

Llava-1.5-7b 0.32 0.34 0.36±0.03 0.40±0.04

InstructBlip-vicuna-13b 0.37 0.39 0.43±0.03 0.45±0.03

InstructBlip-flan-t5-xl 0.12 0.16 0.15±0.02 0.18±0.02

InstructBlip-flan-t5-xxl 0.39 0.45 0.48±0.04 0.53±0.05

Table 6: Zero-shot and in-context learning (ICL) performance
for affordance prediction using generative models. IR: Image
Retrieval; IG: Image Generation. Number of demonstration
examples used for ICL = 5. We also mention the variance over
different selections of examples. The best results are in bold.

Zero-shot performance. Table 5 shows the results
of the zero-shot affordance predictions from the
mentioned models. The second column (i.e., Ac-

5During calculation we discard the cases when there is no
positive class for a sentence-object pair in the ground truth.
We do not find any instance where no negative class is present.

MLM based
Model Accuracy mAP
BERT-base-uncased-finetuned-piqa 0.45 0.26
BERT-large-uncased-finetuned-piqa 0.56 0.29
RoBERTa-large-finetuned-piqa 0.64 0.45
BART-large-finetuned-piqa 0.59 0.35

Table 7: Affordance prediction using models trained on com-
monsense data. Best results are marked in bold.

tual) indicates the values from the original LM and
multi-modal models. The third and fourth columns
(i.e., LM + VI) indicate the performances of ensem-
bling language models with two of the multi-modal
models we used. We observe that, the PTLMs have
some knowledge about object affordances, but they
still lack the comprehensive reasoning ability about
these affordances, which is reflected in the low
mAP values. Further, the performances vary across
different settings. In case of NLI based setup, the
fine-tuned RoBERTa and BART models show im-
provement in the performance, which indicates that
during fine-tuning on MNLI dataset, those models
gain some reasoning ability. In Table 6 we show
the generation based results in a zero-shot setting.
In case of FLAN-T5-large model, where we use
it to predict a binary label (YES\NO) for an affor-
dance class, the performance drops significantly
(the accuracy is less than 7%). This shows that
there are still some challenges for the text-to-text
models in general reasoning ability about the object
affordances. In addition, we find that, the multi-
modal models do not perform well in text-only
settings, despite being pretrained on text and image
data. The performances of the language models
get boosted when ensembling with the multi-modal
models, which indicates that the prediction of ob-
ject affordance from sentence is a difficult task, and
can be enhanced in presence of images. In addi-
tion to evaluating generative models, we establish
a random baseline (Detailed in Appendix B.1). In-
terestingly, we find that models like Flan-T5-large
and Flan-T5-XL underperform compared to this
random baseline in zero-shot settings.
Finetuning on commonsense datasets. We ob-
serve that the fine-tuned model on commonsense
reasoning task (Table 7) show improved perfor-
mance for the affordance prediction task. This indi-
cates that the pre-trained models lack the reasoning
of object affordance. Interestingly, we find that
the smallest BERT-base model fine-tuned on PIQA,
performs almost similar to that of the BERT-large
or BART-large models (see Table 5).
Few-shot performance. We find that, in presence
of few examples from our affordance dataset, the
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reasoning capability about object affordances can
be enhanced for the PTLMs. The results with 124
shots (62 pairs as discussed earlier) are noted in
Table 5. In Table 6, we note the results for the
in-context learning performance of the generative
LLMs and VLMs. We observe a significant perfor-
mance gain over zero-shot settings. Having said
that, we also observe that, even with the in-context
learning, the performance of the generative models
(with more than 7b parameters) do not reach even
close to the performance of the fine-tuned BERT-
large model (340M parameters). This suggests that,
for the specific affordance prediction tasks from
text, finetuning is absolutely essential even for the
state-of-the-art LLMs and VLMs.
Error analysis
Encoder based models. We conducted a qualitative
analysis of the erroneous cases for the two models
(BART-large and RoBerta-large) in MNLI settings
to understand what are the typical causes of errors.
We take examples where accuracy is below 0.3.
Consider the representative example below.

Sentence: The salt from La Mata is often used
as table salt. Object: table salt
Top 5 predicted affordances (according to
the probability score) - [‘sitOn’, ‘pourFrom’,
‘grasp’, ‘fix’, ‘lookThrough’]

The model predicts ‘SitOn’ as the top affordance
for table salt, implying that the model misinter-
prets “table salt” with “table”. Similarly, for the
object “the window sill”, the model predicts ‘look-
Through’, ‘watch’ as top affordances, which again
suggests that the model is confused between “the
window sill” and a “window”. In another case, the
model predicts [’grasp’, ’writing’, ’typing’, ’look-
Through’, ’throw’] as the top affordance labels for
the object “any rock concerts”.
Analysis of generative models. In Appendix Fig-
ure 6a, we plot the correlation between error rate
made by chatGPT for each affordance classes and
the classwise annotator agreement. We observe
a moderately negative correlation (ρ = −0.29)
which suggests that there is a chance that the model
is making higher mispredictions where the agree-
ment is low. Similarly we observe that the mis-
predictions made by chatGPT for the most fre-
quent objects has a moderately negative correlation
(ρ = −0.58) with the annotator agreement. The
correlation is shown in Figure 6b. The trends are
similar for the other LLMs. These results together
indicate that those objects and affordance classes

which are hard to disambiguate by humans also
pose a challenge to the most sophisticated GenAI
models in predicting the correct answer.

7 TEXT2AFFORD for physical reasoning

Apart from benchmarking LLMs and VLMs, we
observe whether Text2Afford can be used as a
source of affordance knowledge. We choose the
physical commonsense reasoning as a target as the
‘Object affordance’ represents an innate physical
property of an object, and we believe that any lan-
guage model having strong affordance reasoning
capability can enhance the physical reasoning ca-
pability. To explore this, we perform an ‘instruc-
tion fine-tuning’ on the TEXT2AFFORD dataset (al-
though it is not meant for training) using few open-
source LLMs (llama-3-8b-instruct, flan-t5),
and test on two physical reasoning dataset - (1)
PROST (Aroca-Ouellette et al., 2021), which con-
tains 10 types of different physical properties of an
object (including 6 affordance properties - rolling,
breaking, stacking, grasping, sliding, bouncing)
along with complex reasoning questions, and (2)
PIQA (Bisk et al., 2019) which, focuses on se-
lecting appropriate option given a situation that
requires physical commonsense.
For PROST, using llama-3 the accuracy boosts
from 0.36 to 0.42 after instruct fine-tuning with
TEXT2AFFORD. Moreover, out of the 6 affor-
dance properties from PROST, the accuracy got
boosted for the reasoning of 5 affordance proper-
ties. For the PIQA, the same LLM gives a max-
imum of 4% accuracy boost. The full result is
shown in Table 8. This suggest the generalizability
of TEXT2AFFORD in physical reasoning tasks.

Model
Dataset

PROST PIQA
Zero-shot +TEXT2AFFORD Zero-shot +TEXT2AFFORD

Llama-3-8b 0.36 0.42( +.06 )* 0.74 0.78( +.04 )*
FLAN-T5-xl 0.13 0.16( +.03 ) 0.57 0.59( +.02 )
FLAN-T5-xxl 0.34 0.38( +.04 )* 0.72 0.75( +.03 )

Table 8: Text-only physical reasoning dataset evalua-
tion using different LLMs fine-tuned on TEXT2AFFORD.
+TEXT2AFFORD: instruction fine-tuned on TEXT2AFFORD.
* indicates p-value (< 0.05) using Mann-Whitney U-Test.

8 Additional details

Reason for choosing XNLI. We select XNLI
to incorporate object references from less conven-
tional and commonly explored scenarios. Unlike
typical object identification datasets, XNLI offers
sentences derived from novels, thus presenting a
more in-the-wild textual context, which adds com-
plexity and diversity to our dataset. Specifically,
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we choose the hypothesis portion of the XNLI sen-
tences due to its shorter context length. This choice
intentionally poses a challenge to LLMs, allowing
us to better evaluate their reasoning capabilities,
especially when dealing with minimal contextual
information.

Non-explicit mention about contextual object
affordance in the instruction. The instructions
shown in Appendix Figure 3 represent the initial
guidance provided to annotators as an introduction
to the task. Since understanding contextual object
affordance can be challenging for non-expert an-
notators, this initial step was designed to give a
basic idea of the task. However, we follow this up
with a comprehensive training process and conduct
two AMA (Ask Me Anything) sessions to ensure
that annotators fully understood the need to base
their judgments on the provided context. These
efforts are key in ensuring high-quality annotations
throughout the dataset creation.

Reason for choosing 0-3 Likert scale in data
annotation. We opt for a 0-3 Likert scale (4-
point) to minimize the potential for neutral or non-
committal responses, which can often arise when
a midpoint option is available. Our initial obser-
vations indicated that some annotators tended to
select an “average" value without fully considering
the contextual affordance of the objects, which di-
minished the depth of their evaluations and limited
the discussion around ambiguities. By adopting
a 4-point scale, we aim to encourage more deci-
sive judgments. In addition, we provide a textbox
(see Appendix Figure 3) for annotators to express
any uncertainties or ambiguities they encountered,
which has helped us in capturing more nuanced
feedback.

Reason for choosing visual genome. We chose
visual genome as a primary source for real images
due to its rich, complex scenes, which are widely
used in visual reasoning tasks. The complexity
of the images in visual genome provides diverse
contexts that align well with the goals of our study,
which focuses on contextual object affordances.
While other methods, such as using search engines
like Bing, have been employed in prior work to
retrieve images, we opt for visual genome to ensure
that the images contain sufficient contextual and
visual detail to support affordance prediction, even
if there are minor limitations in reasoning.

Reason for choosing stable diffusion. Regard-
ing the use of stable diffusion, we have been in-
spired by its demonstrated capability to generate
high-quality, realistic images, particularly in prior
studies where it was effective in reasoning tasks.
While CLIP is primarily trained on real-world im-
ages, we hypothesize that stable diffusion could
generate contextual images with sufficient accu-
racy to complement the real images. The generated
images provide additional diversity, which helps us
explore the affordance prediction task from a differ-
ent angle. The benefit of using stable diffusion lies
in its ability to create controlled, context-specific
images that may not always be available in exist-
ing datasets, providing a broader range of testing
scenarios for our models.

Reason for framing generative tasks as a binary
decision problem. In the generative setting, we
opt for a binary yes/no classification to evaluate the
affordance of individual context-object-affordance
triples. We decide this based on the observation
of the tendency of smaller LLMs to hallucinate,
which can make direct affordance prediction chal-
lenging, particularly in zero-shot scenarios. By
framing it as a binary classification task, we aim
to simplify the evaluation and obtain more reliable
results. In addition, our approach allows for a com-
prehensive evaluation of both positive and negative
affordances. This is critical for our dataset, as it is
designed to assess affordances that are applicable,
as well as those that are not, in a given context.

9 Conclusion

In this paper we introduced a novel text-based af-
fordance dataset TEXT2AFFORD to investigate the
affordance knowledge of PTLMs and pre-trained
VLMs in different zero-shot settings. Our findings
suggest that, the state-of-the-art language models,
particularly text-to-text models, still exhibit limi-
tations in their ability to reason about object affor-
dances. In this seemingly easy task, we observe
how context can introduce various levels of ambi-
guity and difficulty. We also observe, that even in
the presence of such difficulty, human performance
is superior and LLMs/VLMs still face difficulty in
gaining such knowledge during their pretraining.
Additionally, we observe how our dataset provides
some additional knowledge that can be useful for
physical commonsense reasoning – stressing its
orthogonality more with respect to the pretraining
knowledge LLMs and VLMs possess.

350



Acknowledgments

We would like to express our sincere gratitude to
our co-authors for their invaluable contributions
throughout this work. We also extend our thanks
to the reviewers for their constructive feedback,
which significantly helped improve the quality of
the paper. Additionally, we gratefully acknowledge
the support of the Toloka Research Grant program,
which partially funded the data annotation process.

Limitations

All of our experiments were conducted for English
language. The models may act differently in multi-
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ability to accurately predict affordances, as some
affordances may be more visually dependent.
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Appendices

A Data annotation

A.1 Details of the TEXT2AFFORD dataset
construction

Preprocessing. We select 20, 000 sentences from
a crowdsourced English dataset (XNLI English)
(Conneau et al., 2018)6 and extract the noun
phrases using the Stanford CoreNLP tool. As we
restrict to the affordances that humans can directly
perform, we filter the phrases which do not rep-
resent a tangible object (using ConceptNet). We
manually filter out objects that cannot be acted
upon directly by humans (such as school, build-
ing). After this preprocessing, we obtain a set of
sentence-object pairs (⟨xi, oi⟩), where the sentence
acts as the context for the corresponding object.
Each sentence on average has 2-3 such objects. We
use the 15 predefined affordance classes from Zhu
et al. (2014) to label each sentence-object pair for
annotation.

We further expand our dataset with the labeled
dataset provided by Zhu et al. (2014). Authors
present 62 common objects and their correspond-
ing 15 affordance labels. Given that our task is
context-based affordance prediction, we require to
have sentence-object pairs for labelling. To gener-
ate diverse context for this dataset, we utilize the
ChatGPT UI78 model to generate synthetic sen-
tences for each of the objects, followed by careful
manual correction.
Pilot studies & annotator training. We annotate
the dataset using the Toloka platform9. We design
an interface on this platform, which contained clear
instructions and examples for annotating the data.
We conduct two rounds of pilot studies to analyze
the subjective understanding of the annotators and,
thereby, filter out the high quality, serious annota-
tors. For the first pilot study, we present the anno-
tators with the smaller 62 sentence-object pairs and
ask them to label the instance with each affordance
class on a scale of 0 to 3, indicating whether or
not the affordance can be performed on the object.
Here, 0-1 indicates that the affordance cannot be
performed (high-low) and 2-3 indicates that the
affordance can be performed low-high). We will

6We choose XNLI as a source to facilitate multilingual
extensions of our dataset.

7https://chat.openai.com
8Prompt used: Can you make realistic sentences with the

following objects? Followed by the list of object names.
9https://toloka.ai/

further use these 62 synthetic sentence-object pairs
for few-shot training. For quality control, we se-
lect the top 90% of the available annotators in the
platform, who are proficient in English, and use
computers to complete the tasks10. A total of 15
annotators labelled the data, and all of them were
incentivized uniformly. After the first pilot, we find
that there is an extremely poor agreement among
the annotators, and the overall precision is around
28%. Therefore, we moved on to a second pilot
study. Here, we use all the 62 sentence-object pairs
from the previous study, along with 32 randomly
selected sentence-object pairs from the XNLI data.
We use the top 30% of the annotators (based on
the quality determined by the platform) available
on the platform, while other criteria remained the
same. We annotate 32 sentence-object pairs our-
selves, and use all the labelled examples as control
data points to guide the annotators while labelling.
A total of 114 annotators (including the 14 annota-
tors from the first pilot study) participated in this
version of the pilot study. We assign a specific
skill to the annotators who attained more than 30%
precision and 30% recall. In total, 48 annotators
passed this criteria. Through initial pilot studies,
we learnt that without grounded images, the task
appears quite subjective to annotators. The main
goal of the pilot studies have been to understand
the annotators’ quality, their comprehension of the
task, and their preferences for incentives per task.
We have also conducted two additional AMA (Ask
Me Anything) sessions with interested annotators
to further clarify the task.
Final annotation. In the final phase, we con-
duct the annotation on a larger set of sentence-
object pairs, carefully selecting a total of 2,368
pairs. To ensure diverse perspectives and minimize
bias, we engage 25 skilled annotators in this phase.
Three annotators independently annotated each of
the sentence-object pairs. Each annotator meticu-
lously evaluated the affordance classes for every
pair, contributing to a comprehensive annotation of
the dataset. We perform the annotations in phases
and complete the full task over 10 phases.
Reason for multiple annotation phases. We inten-
tionally consider relatively small number of data
points for annotation in a single phase to make the
review process easier. We carefully reviewed each
annotation and provided feedback with guidance

10We exclude mobile-users as we believe the instructions
may not appear clearly on mobile devices.
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in case of mistakes. For instance, annotators ini-
tially got confused with the affordance ‘Watch’ as
human can watch any visual objects. In another
instance, some annotators asked whether ‘Throw’
can be valid affordance for the object ‘Kittens’ as
humans can perform ‘Lift’, ‘Throw’ to the object
‘Kitten’. We discussed these types of ambiguities
with the annotators after each phase. We mea-
sured class-wise agreement and average agreement
across all classes after each annotation phase to
ensure the quality of the annotations. The over-
all statistics for this currently constructed dataset –
TEXT2AFFORD is in Table 3. Throughout the data
processing pipeline, we put scrupulous attention to
the quality control, including the use of pilot stud-
ies, iterative annotation refinement, and manual
filtering. These measures ensure that the dataset
is comprehensive, accurate, aligned with the ob-
jectives of the study and can be reliably reused in
future. Overall, our TEXT2AFFORD dataset con-
sists of 2368 sentence-object pairs having ∼ 100k
annotations (2368 × 15 × 3).

A.2 Additional analysis on the datapoints by
human

To further interpret the difficulty (or ambiguity) of
the datapoints, we filter out the “sentence-object-
affordance” triples based on the percentage anno-
tator agreement. We categorize the triples into 3
sections:

Agreement > 0.75: Total 26,411 triples
0.4<Agreement < 0.75: Total 7,084 triples
Agreement < 0.4: Total 2,025 triples

In general, the average agreement is higher for
negative affordance classes than that of positive
classes, which implies that it is easier for humans
to tell which ‘affordance’ is not applicable to a par-
ticular object.
We employ three postgraduate students and provide
them with the same set of instructions. We ran-
domly sample 200 datapoints from the high agree-
ment category (>0.75), and 200 samples from the
low agreement category (<0.4) and ask to annotate
independently. For the high agreement category
scenario, we observe that in 86%, 87%, 91% of the
cases their answers aligned with the majority voted
answers. For the low agreement category, in most
of the cases they feel there is not enough informa-
tion in the context to answer about affordance. In
some cases, it was easier to tell the affordance of

the object alone, but the context made it difficult to
answer. For example:
Context: “SCR systems are primarily made from
tree branches , lime and sawdust .” Can a human

“Sit On” tree branches?
Without the context, it is easier to say “Yes”.

A.3 Comparison with other reasoning dataset

A.4 Instruction page on the Toloka platform

Figure 3 shows the guidelines/instructions, that the
annotators had to follow for labelling.

A.5 Interface for labelling

A sample task interface is shown in Figure 4.

A.6 Annotators demographics

Figure 5 provides the demographic information
about the annotators. We can observe that a large
number of annotators (36%) are from Russia and
most of the annotators having the age in between
20-35.

A.7 Phasewise annotator agreement

We plot the soft agreement11, hard agreement12 in
Figure 7, which shows gradual increase in agree-
ment scores.

A.8 Incentive details

During the pilot study, we provided USD 0.05 per
task-suite where in each task-suite, there were 10
examples (15 affordance labels for each example)
to be answered. We attempted to take feedback
from the tolokers who had answered randomly (e.g.,
mark all the values as 0), to understand their re-
quirements properly. Most of them suggested that
a wage of $0.1 to $0.15 would be ideal for the
survey.

During the main study we provided USD 0.25
per task-suite, where in each task-suite there were
5 examples to be answered. Some of them were
consistently providing good answers and few of
them also suggested improvement on the objects.
We awarded them with an additional bonus of USD
0.5. Overall, we spent USD 777 for the annotation
process.

11Soft agreement: Mapping Likert scale ratings to binary
labels for measuring agreement by applying a threshold value.

12Hard agreement: Treating each Likert scale rating as a
distinct label.
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Dataset Train size Dev size Test size Reasoning type Source Image-
dependent

Targeted
affordance

Publicly
available

αNLI (Bhagavatula et al., 2020) 169,654 - 1,532 Abductive logical reasoning Crowd-sourced ✗ ✗ ✔

αARCT (Niven and Kao, 2019) 2420 632 888 Abductive logical reasoning Crowd-sourced ✗ ✗ ✔

FOLIO (Han et al., 2022) 1004 204 227 Deductive logical reasoning Expert written ✗ ✗ ✔

ANLI (Nie et al., 2020) 162,865 3,200 3,200 Deductive logical reasoning Synthetic ✗ ✗ ✔

WinoLogic (He et al., 2021) - - 562 Deductive logical reasoning Crowd-sourced ✗ ✗ ✔

LogiQA (Liu et al., 2021) 7,376 651 651 Mixed logical reasoning Crowd-sourced ✗ ✗ ✔

LogiQA 2.0 (Liu et al., 2023a) - - 3,238 Mixed logical reasoning Crowd-sourced ✗ ✗ ✔

PaCo (Qasemi et al., 2022a) 5,580 1,860 4,960 Preconditioned commonsense Crowd-sourced ✗ ✗ ✔

δ-NLI(Rudinger et al., 2020) 36,999 3,329 3,512 Defeasible commonsense Other dataset ✗ ✗ ✔

WINOVENTI (Do and Pavlick, 2021) - - 4,352 Commonsense with exceptions Crowd-sourced ✗ ✗ ✔

PVLIR (Qasemi et al., 2023) 34,000 Preconditioned visual commonsense Other dataset ✔ ✗ ✗

Normlense (Han et al., 2023) - - 10,000 Defeasible visual commonsense Crowd-sourced ✔ ✗ ✔

WinoViz (Jin et al., 2024) - - 1,380 Reasoning object’s visual property Crowd-sourced ✗ ✗ ✗

PROST (Aroca-Ouellette et al., 2021) - - 18,736 Reasoning object’s physical property Other dataset ✗ ✗ ✔

NEWTON (Wang et al., 2023) - - 2,800 Reasoning object’s physical property Crowd-sourced ✗ ✗ ✔

Persiani and Hellström (2019) 734,002 - 314,572 Object affordance without context Synthetic ✗ ✔ ✗

TEXT2AFFORD (Ours) - - 35,520
(2368 * 15) Contextual object affordance Crowd-sourced ✗ ✔ ✔

Table 9: Comparison of TEXT2AFFORD with other reasoning datasets.

A.9 Correlation of affordances

In Figure 9 we show the correlation between the
different affordance classes.

A.10 Most frequent objects

Figure 8a shows the most frequent 15 objects in the
TEXT2AFFORD dataset.

B Experimental setup

B.1 Random baseline

In addition to evaluating generative models, we es-
tablish a random baseline. For this baseline, we
randomly assign "yes" to the 15 affordance classes
for each sentence-object pair, with random selec-
tions made from 0 to 9 (based on the observation
that the maximum number of positive affordances
per pair is 9). Interestingly, we find that models
like Flan-T5-large and Flan-T5-XL underperform
compared to this random baseline in zero-shot set-
tings, highlighting the inherent difficulty of the task
in such scenarios.

B.2 Zero-shot experiments

B.2.1 Commonsense reasoning tasks
To understand whether the injection of the com-
mon sense knowledge in the pre-trained models
can enhance the performance of the affordance pre-
diction, we first fine-tune the pre-trained models
on common sense reasoning dataset such as PIQA
(Bisk et al., 2019). Then we run the fine-tuned
models on our dataset using the MLM setup. We
use BERT-base, BERT-large, RoBERTa-large, and
BART-large finetuned on MNLI.
NLI based approach. The NLI task considers a
premise and a hypothesis as input pair ⟨p, h⟩, and

the models are trained to predict the probability
whether the hypothesis is entailed by, contradicts
or neutral with respect to the premise. Here we
use the entailment probability from the models:
pLa(h|p) = p(l = “ENTAILMENT”|(p, h)).
This approach requires language models to be fine-
tuned on premise-hypothesis pairs with the cor-
responding labels. Here we use RoBERTa-large
and BART-large fine-tuned on the Multi-genre NLI
(MNLI) corpus (Williams et al., 2018) consisting of
433k sentence pairs. For each sentence-object pair
in our dataset as the premise, and use the hypoth-
esis as “<object> can be used for <affordance>
by human” for each object present in the sentence
and 15 affordance classes. Using the NLI setting,
we predict the entailment score for each affordance
class for the given sentence-object pair. We use
these scores for ranking the affordance classes and
report mAP scores as well as accuracy.

B.3 Ensemble language and vision prediction

Following Yang et al. (2022), we use the weighted
sum as the late fusion over the final output prob-
abilities of each affordance class from the lan-
guage and multi-modal models. Before late fu-
sion, we normalize the output probability scores
from different models. We calculate the score as:
Pens(y|x) = (1−w)pLa(y|x)+wpVI

(y|x) where
w is the relative size of the vision-text model and
the language model (following Yang et al. (2022)):
w = Sigmoid

(
ρVI
ρLa

)
. Here ρVI

and ρLa denote
the number of parameters of the multi-modal and
language models respectively.
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Introduction

Mike has bought a Robot to do simple household tasks such as writing on a paper, playing a guitar, throwing garbage outside based
on what Mike says to the Robot. However, the Robot is not accustomed with the Mike's household objects, so it does not
know which thing can be used for which of the tasks. For example, the Robot is not aware that a pen or a pencil can be used for
writing on a paper, but can not be played. A guitar or a banjo can be played, but not used for writing.  This is important for the
Robot to know before acting on instructions such as "clean the dishes for me".
However, the good-news is that the Robot can be taught about any object and its corresponding action. You, as a trainer, have been
asked to teach the Robot about the household objects.  Your task is simple -- there are few common objects (or things) in the house
and you need to tell the Robot what actions (i.e. tasks) can be performed with each of those from a set of selected actions (tasks).
This will help the Robot learn about what action can be performed on what type of objects.

See the below figure to understand which kind of action can be performed on which objects.

 

Task Description

You are given a sentence and the object name present in the sentence. You are required to mark the actions that can be performed from a
given list of 15 actions.

For example:

Sentence: The tennis shoes have a range of prices.
Object: The tennis shoes

Out of the 15 given actions: Grasp, Lift, Throw, Push, Fix, Ride, Play, Watch, SitOn, Feed, Row, PourFrom, LookThrough, WriteWith, TypeOn
Select: Grasp, Lift, Throw, Push, Fix as that is something we typically do/is done/can be done with "The tennis shoe".

For each of the given actions, you are given a scale ranging from   0 to 3 .  The selection of a score of "0" means you strongly believe the
action cannot be done, while a score of "3" means you strongly believe the action can be done. Scores of "1" and "2" are for cases
where you are less sure about whether or not the action can be done. One example of selections is given below for the object "The
tennis shoes" 

Additional Examples:

1. Objects that can be grasped: Pencil, tennis ball

2. Objects that can be Lift: a book, a box, a chair

3. Objects that can be Thrown: a baseball, a frisbee, a rock

4. Objects that can be Pushed: table, brakes of a car

5. Objects that can be Fixed: machines, vehicles, electronics

6. Objects that can be Ride: bicycles, motorcycles, horses, roller coasters

7. Objects that can be Play: musical instruments (guitar, piano, violin), sports equipment (tennis racket, soccer ball), electronic devices (video game console)

8. Objects that can be Watch: televisions, computer screens, movie screens

9. Objects that can be SitOn: chairs, benches, sofas

10. Objects that can be Feed: animals such as dogs and cats, as well as birds

11. Objects that can be Row: boats, canoes, kayaks, and rowboats

12. Objects that can be PourFrom: a pitcher, a bottle, a jug, a teapot

13. Objects that can be looked through:  windows, telescopes, binoculars

14. Objects that can be WriteWith: pens, pencils, markers

15. Objects that can be TypeOn: computers, laptops, tablets, smartphones

Figure 3: The instruction used for annotators in the Toloka platform

B.4 Few-shot experiments

Training data To create few-shot training
examples for fine-tuning encoder based PTLMs,
we take all the 62 objects, and for each object we
randomly select exactly 1 positive affordance class

(i.e., the class label annotated as 1) and 1 negative
affordance class (i.e., the class label annotated
as 0) for generating the training prompt. As this
dataset does not contain any context sentences
for a corresponding object, we use ChatGPT UI
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Figure 4: The sample task interface used for the annotators
in the Toloka platform

to generate the sentences for the corresponding
objects and manually verify the sentences, so
that it does not contain any invalid information.
Finally, we have 62 sentence-object pairs and
2 classes (one positive and one negative) per
pair, which we use to generate training examples.
Each training example consists of a prompt and a
label. They constitute 124 training examples (62
sentence-object pairs and 2 selected classes for
each) for the few-shot experiment.

Selecting examples for in-context learning
: We randomly sample five sentence-object-
affordance triples from the above training data
as the incontext demonstration examples in such
a way that there should be k positive affordance
classes. We vary the number of positive affordance
classes k ∈ {1, 2, 3} and report the average
accuracy.

Experimental setup. We fine-tune the encoder
based language models using the training data, and
for the generative LLMs and the VLMs, we utilize
the training data to select in-context demonstration
examples.
Fine-tuning PTLM: We fine-tune the PTLMs in two
different setups - NLI based and prompt based. For
the NLI based setup we have the context sentence
as premise and use same prompt (i.e., “<object>
can be used for <affordance> by human”) which
we use in the zero-shot settings as hypothesis. We
use label as 1 for the positive affordance and label
as 0 for the negative affordance. We use BERT-
large-uncased, RoBERTa-large and BART-large for
fine-tuning in this setup. We reuse these fine-tuned
models for few-shot predictions in MLM setup.
We use Adam optimizer with a learning rate of
2× 10−5. We fine-tune the model for 5 epochs for

(a) Country distribution of the annotators

(b) Age distributions of the annotators

Figure 5: The Annotators Demographics

each case.
In-context learning for generative models: We em-
ploy the same generative LLMs as well as VLMs to
perform affordance prediction using five demonstra-
tion examples from the training data. We use the
same text prompt as zero-shot setting and concate-
nate the five demonstration examples along with
corresponding label (i.e., ‘YES’ for positive class,
and ‘NO’ for the negative class) to the prompt and
ask the LLMs and VLMs to predict the affordance.
In case of the VLMs, we do not provide any addi-
tional image example here.

B.4.1 Multimodal task setup
Images contain necessary information about shape,
texture, and size of objects that can be utilized to
effectively predict an object affordance (such as
the handle of the bucket can be used to grasp and
lift). Hence, we also convert the problem into a
multi-modal task by retrieving (or generating) a
corresponding image from the context sentence,
and predict the affordance of an object (mentioned
in the sentence) based on the input.
Synthesizing images. In this setup, we use two
different techniques to synthesize semantically
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(a) (b)

Figure 6: (a) Correlation between average classwise error rate made by chatGPT and the annotator agreement. (ρ = −0.29) (b)
Correlation between frequent object wise error rate made by chatGPT and the annotator agreement. (ρ = −0.58∗). *indicates a
p-value < 0.05.

Figure 7: Phase-wise annotator agreement.

close images to corresponding context sentences
using 1) retrieval and 2) generation. We further
use top five images for both, to get an accurate
estimation.
Retrieval based: We employ Visualgenome
(Krishna et al., 2017) dataset, consisting of
108,077 images and 3.8 million object instances
as the image database. We first encode the images
using multi-modal CLIP (Radford et al., 2021)
based sentence-transformers architecture, and
index those image embeddings using Approximate
Nearest Neighbour search (ANN)13, for making
the search efficient. Now, for each sentence, we
search for top five images from the database to be
used further.
Generation based: Recently, the multi-modal gen-
erative models (Ramesh et al., 2022; Saharia et al.,
2022) have shown incredibly good performance
for text based image generation tasks. We adopt

13https://pypi.org/project/annoy/

the recent StableDiffusion (Rombach et al., 2022)
model to generate top five images based on the
sentence as a text prompt.

We use the top five retrieved images by using
retrieval and generation methods each. We use
CLIP (Radford et al., 2021) and ViLT (Kim et al.,
2021) as our vision-text models. CLIP is pre-
trained on 400M image-caption pairs with the con-
trastive learning strategy. CLIP has a text encoder
fT and a visual encoder fV , which can project
text and image into the shared latent space. We
aggregate the k (=5) corresponding images and
use CLIP to compute the relevance score of (x,
y): ScoreV I(x, y) =

1
k

∑K
i=1 cos (fT (x), fv(I

k
y )),

where Iky is the kth image for the input text y. In
the ViLT model we provide the text prompt along
with the representative images as input to predict
the masked token. We use the same prompt as the
previous MLM task (i.e., “<Object> can be used
for <MASK_TOKEN> by human.”) and get the
probability of each affordance class as the logit
corresponding to the <MASK_TOKEN>.
Text generation based. Similar to section 5.1.1,
we utilize state-of-the-art VLMs to make predic-
tions regarding object affordances. We provide
with a ‘YES\NO‘ question answering based text
prompt along with the aligned images as input to
the VLMs, and the model should generate an an-
swer whether a particular affordance can be per-
formed on the given object. We use state-of-the-art
VLMs such as IDEFICS (Laurençon et al., 2023),
LLaVA (Liu et al., 2023b), InstructBLIP (Dai et al.,
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(a) (b)

Figure 8: (a) Most frequent 15 objects and their corresponding frequency in the TEXT2AFFORD dataset. (b)
Annotator agreement for the most frequent 15 objects.

Figure 9: Correlation between each of the affordance
classes.

2023) for this task. The text prompt used for the
models can be found in the Appendix D, Table 10.

C Additional (mis)prediction analysis

C.1 Affordance classwise mis-prediction

We analyze the mis-prediction rates for each class
using the best LLMs (chatGPT, llama-3-8b). We
observe that, the classwise mis-prediction rate is
similar to the distribution of each class in the origi-
nal data, i.e., the classes such as ‘grasp’, ‘lift’ hav-
ing higher mis-predictions compared to ‘typeOn’,
‘row’.

C.2 Objects with multiple positive affordances

We conduct an analysis to determine whether the
frequency of positive affordances for an object im-
pacts model accuracy. Our findings indicate that
the accuracy is highest when an object has a single
positive affordance. Beyond this point, the num-
ber of positive affordances does not significantly
influence the model’s performance. Specifically,
we observe that as the number of positive affor-
dances increases, the accuracy fluctuates without
a clear pattern, suggesting that additional positive
affordances do not contribute to a consistent im-
provement or decline in model accuracy.

C.3 Correlation of ChatGPT accuracy and
average human agreement

We provide the figures corresponding to the gener-
ative model analysis in Figure 6.

D Prompt selection

We use intuitive prompts for each of the setups,
which are suitable for affordance related to object.

E Instruction fine-tuning setup

Data sample selection. We select sentence-
object pairs from the TEXT2AFFORD dataset where
at least one positive affordance is present. For
each selected sentence-object pair, we randomly
assign one positive affordance and one negative
affordance, yielding a balanced dataset of 1819
training instances (positive and negative classes).
To incorporate additional domain knowledge and
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Model Prompt used

FLAN-T5 consider {sentence}. Now, from this information
can human {affordance} the {object_name}? An-
swer YES or NO:

Falcon """You are a helpful AI assistant. Answer only
"YES" or "NO" for the question based on the given
context. Context:sentence \n »QUESTION« Can
human {affordance} the {object_name}? \n »AN-
SWER«""".strip()

I-BLIP, IDEFICS, LLaVA consider the sentence {sentence}. Now from this
information, can human {affordance} the {ob-
ject_name}? Accompanying this query is an image
of the object_name. Note that the image may con-
tain noise or variations in appearance. Given the
textual description and the image, answer YES or
NO whether the human can {affordance} the {ob-
ject_name}. Answer: "

Table 10: Prompt format used by different models for
the prediction. I-BLIP: InstructBLIP.

reduce the likelihood of generating hallucinated an-
swers, we include 500 randomly sampled instances
from the training set of the target task (i.e., PIQA).
For the PROST task, as the training set is not ex-
plicitly available, we sample from the test set and
ensure these samples are removed from the eval-
uation set during testing. The training instances
are framed in a multiple-choice question answering
format.

Fine-tuning setup. We utilize Alpaca-formatted
prompts (shown in Table 11, Table 12 and Table 13
for the TEXT2AFFORD, PIQA and PROST tasks,
respectively). We fine-tune 4-bit quantized models
with PEFT, focusing on the adapter layers. We
perform the fine-tuning over 5 epochs with a batch
size of 8, a learning rate of 2e-10, weight decay,
and a maximum sequence length of 256.

F Model implementation details

The language models and the ViLT are built on
top of the huggingface API14. For NLI based zero-
shot prediction, we use the zero-shot classification
pipeline 15. We adapted the CLIP model from the
OpenAI’s public repo 16, and we select the ViT/B32
as the image encoder. For ViLT, we select the
vilt-b32-mlm 17 model. For generative LLMs and
VLMs we apply the models available on hugging-
face 18. All the experiments were conducted on 2x
NVIDIA RTX 4090 GPU server.

14https://huggingface.co/
15https://huggingface.co/docs/transformers/

main_classes/pipelines
16https://github.com/openai/CLIP
17dandelin/vilt-b32-mlm
18https://huggingface.co/models

G Details of evaluation metric

For a ‘Sentence-Object’ pair we calculate accuracy
in the following way. In the ground-truth, each
affordance class is treated as a binary value, where
a value of 1 represents a ‘positive affordance’ indi-
cating that the affordance can be performed on the
object, and a value of 0 represents a ‘negative af-
fordance’ indicating that the affordance cannot be
performed. Now, for a particular ‘Sentence-Object’
pair, let’s assume there are two positive affordances
(P1, P2) in the ground truth; then there will be 13
negative affordances (as we have a total 15 affor-
dance classes). In case of encoder-based models,
for each positive affordance, we compare its pre-
diction score against each negative affordance’s
score. If a positive affordance’s score is higher, we
increase the Correct count; otherwise, the Wrong
count. Accuracy is calculated as Correct / (Correct
+ Wrong).
In case of encoder-decoder or decoder-only models,
Due to the inherent difficulty in automatic evalu-
ation, we predict ’YES\NO’ for each affordance
class, mapping ’YES’ to 1 and ’NO’ to 0. Accuracy
is then measured in the same way as for encoder-
based models (assuming 1 or 0 as the score for each
affordance class).

H Dataset creation time

Annotating affordances about the object from a
text itself is a difficult and very subjective task. It
took approximately 5 months for completing the
extraction of noun-phrases from xnli data, filter-
ing objects, selecting skillful tolokers and training,
and then final phase-wise annotation after rigorous
review process.

I Sample dataset

Figure 10 shows a sample of TEXT2AFFORD

dataset

J Additional experiments

J.1 Qualitative analysis of generated images
We conducted a qualitative analysis on 50 randomly
sampled objects and their corresponding generated
images. Two annotators (one Phd student and one
undergrad student) marked each of the 5 gener-
ated images as 1 or 0 according to their relevance
and non-relevance to the object respectively. We
considered the image as relevant if both of the an-
notators marked that image as 1. We achieved an
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Instruction to fine-tune TEXT2AFFORD

Below is an instruction that describes a task. Write a response that appropriately completes the
request.

### Instruction:
You are an AI assistant that has strong reasoning capability. You are given a context containing
an object, and you are asked to answer a question about the object based on the context. Just
response ’Yes’ or ’No’.

### Context:
{context}

### Object:
{object}

### Question:
Can human {affordance} the {object}?

### Answer:
{answer}

Table 11: Instruction to fine-tune TEXT2AFFORD.

Instruction to fine-tune PIQA

Below is an instruction that describes a task. Write a response that appropriately completes the
request.

### Instruction:
You are an AI assistant that has strong reasoning capability. You are given a situation and asked
to choose the most appropriate option from given two options.

### Situation:
{situation}

### Options:
[0] {option0}
[1] {option1}

Only response the ‘answer id’. For example if the answer is [0] then response 0. DO NOT
respond anything other than <0, 1>.

### Answer:
{answer}

Table 12: Instruction to fine-tune PIQA.
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Instruction to fine-tune PROST

Below is an instruction that describes a task. Write a response that appropriately completes the
request.

### Instruction:
You are an AI assistant that has strong reasoning capability. You are given a question with 4
options and you have to choose the right option.

### Question:
{question}

### Options:
[0] {option_A}
[1] {option_B}
[2] {option_C}
[3] {option_D}

Only response the ‘answer id’. For example if the answer is [0] then response 0. DO NOT
respond anything other than <0, 1, 2, 3>.

### Answer:
{answer}

Table 13: Instruction to fine-tune PROST.
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Sentence Object Grasp Lift Throw Push Fix Ride Play Watch SitOn Feed Row PourFrom LookThrough WriteWith TypeOn
This diablo only comes out to 
slaughter the cattle . cattle 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0
Delivery points should include at 
least a bench and a locked storage 
compartment . bench 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0
There are four fences , and you can 
only go past the second one if you 
are a member of the imperial family , 
or a high-ranking priest . fences 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0
Users are excited about being able 
to share their own events on the 
calendar page . calendar page 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0
White ran towards where the people 
were hitting each other with swords . swords 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
The cat ate every kind of fish except 
tuna . fish 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
The snake was hissing underneath 
the deck . deck 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
On the higher levels of the town hall , 
Umbrian and Tuscan paintings are 
on show . the town hall 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
He couldn 't follow up because his 
mouth was gagged by a group of 
mercenaries . mercenaries 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0
A gristle gun is featured . gristle gun 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 10: Example snapshot of TEXT2AFFORD dataset.

Acc@1 of 0.2, Acc@5 of 0.88 and an MAP@5
of 0.36. Which suggests that in most of the cases
there are relevant images in the top-5 generated
images. In our pursuit of assessing the statistical
significance of our sampled data (i.e., the 50 ex-
amples), we embarked upon a rigorous hypothesis
testing procedure utilizing the binomial distribu-
tion. Within our specific context, we accorded
greater significance to the top-5 accuracy metric,
which demonstrated an impressive achievement of
0.88. This signifies that among the 50 selected
examples, in 44 instances, at least one of the five
generated images displayed relevance to the object
under consideration.

Guided by this success rate, we proceeded to con-
duct a meticulous hypothesis test employing the
binomial distribution. We assumed an expectation
of success at 0.75. The outcome of this statisti-
cal analysis revealed a p-value of less than 0.02,
thereby underscoring the statistical significance of
our success rate.
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