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Abstract

Large language model (LLM)s’ next-word pre-
dictions have shown impressive performance
in capturing human expectations during real-
time language comprehension. This finding
has enabled a line of research on psycho-
metric benchmarking of LLMs against hu-
man language-comprehension data in order to
reverse-engineer humans’ linguistic subjective
probability distributions and representations.
However, to date this work has exclusively
involved unimodal (language-only) compre-
hension data, whereas much human language
use takes place in rich multimodal contexts.
Here we extend psychometric benchmarking
to visual language models (VLMs). We de-
velop a novel experimental paradigm, Image-
Conditioned Maze Reading, in which partici-
pants first view an image and then read a text
describing an image within the Maze paradigm,
yielding word-by-word reaction-time measures
with high signal-to-noise ratio and good local-
ization of expectation-driven language process-
ing effects. We find a large facilitatory effect of
correct image context on language comprehen-
sion, not only for words such as concrete nouns
that are directly grounded in the image but even
for ungrounded words in the image descrip-
tions. Furthermore, we find that VLM surprisal
captures most to all of this effect. We used
these findings to benchmark a range of VLMs,
showing that models with lower perplexity gen-
erally have better psychometric performance,
but that among the best VLMs tested perplex-
ity and psychometric performance dissociate.
Overall, our work offers new possibilities for
connecting psycholinguistics with multimodal
LLMs for both scientific and engineering goals.

1 Introduction

Human language comprehension is highly incre-
mental. Our minds integrate linguistic input with
context very rapidly: words within sentences, and
even phonemes or letters within spoken or writ-

ten words, to update our understanding of linguis-
tic input (Tanenhaus et al., 1995; Rayner, 1998).
This process involves the rapid update of expecta-
tions about the interpretation of what has already
been said and predictions about what might be said
next. These predictions affect how we process the
language we encounter, helping us to recognize
and correct errors (Marslen-Wilson, 1975; Levy,
2008b) and to analyze input more rapidly.

The fundamental operation of large language
models (LLMs) is similar: LLMs put probability
distributions over the next tokens given the preced-
ing context. This convergence has made it natu-
ral to compare LLM distributions with human lin-
guistic behavior. In unimodal language processing,
LLM predictions have been shown to align fairly
well with those generated by humans in the Cloze
task (Goldstein et al., 2022). Furthermore, there
is a linear relationship between the surprisal of a
word in linguistic context (negative log-probability;
(Hale, 2001; Levy, 2008a)) and how long compre-
henders take to read it (Smith and Levy., 2013;
Wilcox et al., 2023). These findings have gener-
ated interest in psychometric benchmarking of lan-
guage models (LMs): comparing LMs in terms
of how well their autoregressive probabilities pre-
dict human reading times or other types of linguis-
tic behavior (Frank and Bod, 2011; Fossum and
Levy, 2012; Goodkind and Bicknell, 2018; Oh and
Schuler, 2023; Shain et al., 2024).

Psychometric benchmarking of LLMs has exclu-
sively involved unimodal, language-only data and
models. However, human language use generally
involves a rich multimodal context. For this reason,
there is growing interest in multimodal language
models. The most advanced such type of model
is vision-language models (VLMs), which relate
visual content (most commonly static images) to
linguistic content. For example, models like BLIP-
2 (Li et al., 2023) can generate text associated with
an image; to do this, it autoregressively places con-

447



ditional probability distributions over next linguis-
tic tokens given an image in context plus preceding
linguistic context. However, evaluation techniques
for VLMs are less developed than for unimodal
LLMs, and we are aware of no work to date on
psychometric benchmarking for VLMs.

Here we present a framework and experimental
results on psychometric evaluation of visual lan-
guage models using a novel yet simple psycholin-
guistic experimental paradigm. In an experimental
trial, a participant first previews an image, then
reads a sentence describing an image, with word-
by-word reading times measured (Figure 1). The
image may be the one that the sentence describes
(the Correct Image condition), a different image
that the sentence does not describe (the Wrong
Image condition), or simply a black screen (the
No Image condition). Intuitively, previewing the
correct image should prepare the participant for the
sentence description and facilitate them reading it
more quickly and accurately. However, there are
different forms that this facilitation could take, cor-
responding to different theoretical accounts of how
visual context shapes language processing. Addi-
tionally, we can compare VLMs in terms of how
well they capture how different image contexts in-
fluence the participant’s reading behavior. We can
thus use this experimental paradigm both to gain
insight into the role of visual context in language
processing in the human mind and to psychometri-
cally benchmark visual language models. All the
experiment codes, analysis, and datasets used in the
project are made available at the linked repository.
1.

2 Related Work

2.1 Human vision and language processing

There is considerable psycholinguistic literature
on the vision-language interface, with emphasis
on visual context effects on spoken word recogni-
tion, syntactic disambiguation, and predictive pro-
cessing.Much of this work uses the Visual World
Paradigm (VWP), which investigates eye move-
ments in visual scenes during spoken language un-
derstanding. Allopenna et al. (1998) and Dahan
et al. (2001) used the VWP to demonstrate rapid,
fine-grained effects of sub-word phonetic informa-
tion on word-level interpretations, demonstrating
incrementality of spoken language processing at

1https://github.com/snpushpi/Image-creates-linguistic-
expectation

the sub-word level. (Tanenhaus et al., 1995) used
the VWP to demonstrate that the language pro-
cessing system utilizes visual context to quickly
interpret an ambiguous prepositional phrase, inte-
grating lexical, syntactic, visual, and pragmatic rea-
soning. (Altmann and Kamide, 1999) showed how
visual context aids predictive processing, support-
ing the idea that sentence comprehension involves
anticipating the relationships between verbs, their
syntactic components, and the real-world context
they describe. For a broader review see Huettig
et al. (2011).

2.2 Psychometric benchmarking of LLMs

It has long been known that words predictable
in context are read faster (Ehrlich and Rayner,
1981) and elicit distinctive brain responses (Kutas
and Hillyard, 1980; Kutas and Federmeier, 2011).
Smith and Levy. (2013) found a linear relation-
ship between n-gram word surprisal (negative log-
probability) and reading time, a relationship that
has held up with neural language models (Good-
kind and Bicknell, 2018; Wilcox et al., 2023) and
has been widely used to psychometrically bench-
mark LLMs (Oh and Schuler, 2023; Shain et al.,
2024). There is also some evidence for a linear re-
lationship between surprisal and the N400 ERP re-
sponse (Heilbron et al., 2022, though see Szewczyk
and Federmeier, 2022), and the best alignment of
LM internal representations with brain activation
patterns during language comprehension seems to
be achieved by autoregressive LM architectures
(Schrimpf et al., 2021; Caucheteux and King, 2022;
Antonello et al., 2023). These results raise the
prospect of reverse-engineering human subjective
probabilities active during language processing
through psychometric LLM benchmarking.

2.3 The Maze paradigm

Our experiment involves a simple adaptation of the
Maze paradigm for studying word-by-word read-
ing (Forster et al., 2009; Witzel et al., 2012; Boyce
et al., 2020). In the Maze paradigm, experimen-
tal participants read a text passage through a se-
quence of two-alternative forced-choice tasks, one
per word in the passage. Each word is coupled with
an alternative distractor, one randomly assigned on
the left and the other on the right, and the partici-
pant has to choose which word is correct (i.e., fits
with the preceding linguistic context). The partici-
pant’s reaction time (RT) and whether they chose
the correct word are recorded. These reaction times
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Correct Image Preview No Image Preview Wrong Image Preview

Figure 1: Schematic of image-description A-maze reading in each of the three experimental conditions. Participants first briefly
view an image and then read a description by successively choosing the word fitting the preceding linguistic context and rejecting
a foil word (example selections marked in blue). A mistake triggers an error message, and the participant moves on to the next
trial sentence.

and accuracies carry information about the word’s
difficulty in a context that can be revealed through
statistical analysis. The Maze paradigm has a num-
ber of methodological advantages: it is easily de-
ployable over the web, it has a good signal-to-noise
ratio, and processing difficulty is highly localized:
that is, if a word is difficult for the comprehender,
that difficulty shows up predominantly in RT and
accuracy on that word, rather than "spilling over"
to subsequent words as is often seen with other
reading-time measurement techniques such as eye
tracking or self-paced reading. Boyce and Levy
(2023) showed that a linear relationship between
surprisal and RT holds in the Maze paradigm as it
does for other reading time-measuring paradigms.

3 Experimental Methodology

We developed an Image-Conditioned Maze experi-
mental paradigm which is like the original Maze,
but participants preview an image before reading
each text passage. We chose 108 images and their
corresponding descriptions from the validation split
of Microsoft COCO (Lin et al., 2014). In each ex-
perimental trial, participants were first shown an
image for 5 seconds, and then the image disap-
peared from the screen and they read an image
description word by word in the Maze task. We
generated distractor words using the A(uto)-Maze
software of Boyce et al. (2020), which uses an
LSTM RNN based model (Gulordava et al., 2018)
to generate contextually unlikely words. Reaction
time and response for each word choice (correct vs.
distractor) were recorded. We recruited 69 US na-
tive English speaker participants (a quantity deter-
mined using power analysis based on a pilot study
with a different set of images and descriptions) on
Prolific, showed them some examples, and paid
them 12$/hour for their participation. Each of them

participated in 36 trials, 12 in each of the three
conditions described before in figure (1), with trial
order randomized for each participant. No partici-
pant saw the same image description twice.

In a separate study with different participants,
we collected groundedness ratings for each word
in each description in the context of the correct im-
age associated with the description (Figure 2). We
recruited 42 US native English speaker participants
on Prolific for this study. Each sentence was rated
by 7 participants on average. Participants used a
slider to indicate how "present" each word was in
the image, ranging from −10 (Not Present) to +10
(Surely Present).

4 Psycholinguistic hypotheses

Under wide circumstances, visual input automati-
cally activates corresponding linguistic representa-
tions; a famous example is the Stroop effect, where
a word naming one color but presented in another,
such as blue, is difficult to say due to the inter-
ference between the words activated by the color
versus orthographic information. We thus hypothe-
size that previewing the image will tend to activate
at least some of the linguistic content in the image’s
description, so that reaction times will be faster and
accuracy higher more quickly and accurately in the
Correct Image condition than in the Wrong Image
and No Image conditions. We also hypothesize
that the Wrong Image condition may slow reaction
times and reduce accuracy relative to the No Image
condition, since the linguistic content that the im-
age activates may conflict with the content in the
subsequent text.

We distinguish between two versions of these
hypotheses. One possibility is that activation of
linguistic content may be restricted to content that
is straightforwardly grounded in the image. For
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Figure 2: Example experiment page for a trial in the groundedness rating study. The circle indicates the slider the participant is
currently manipulating. Once a participant chooses the vertical slider, the slider turns green. A participant must rate each word in
the description to continue to the next trial. The scale on the right is a reminder of how the rating works.

example, in the Correct Image example of Figure 1,
the words woman, red, and dress are straightfor-
wardly grounded: the meaning of each word is
prominent in the image without extensive reason-
ing or search for complex linguistic descriptions.
In contrast, the rest of the words in that description
are less straightforwardly grounded. Our lexical-
grounding hypothesis is that linguistic facilitation
or interference effects from the image will be lim-
ited to relatively straightforwardly grounded words.
In cognitive terms, objects, properties, events, and
states in the scene are visually identified, and the
corresponding lemmas are activated so that when
those lemmas are encountered in the image de-
scription, they are processed more effectively. We
operationalize groundedness in two different ways:
first as open-class (generally more grounded) ver-
sus closed-class (generally less grounded) parts of
speech; second, through our grounding study as
described in Section 3.

The second possibility, the comprehensive-
grounding hypothesis, is that images evoke expec-
tations over complete possible descriptions. This
hypothesis predicts that facilitation or interference
will affect all types of words in the sentence, re-
gardless of part of speech or groundedness. A
particularly strong version of the comprehensive-
grounding hypothesis is that all facilitation and
interference effects from the image will be medi-
ated by this change in linguistic expectations. If
this strong version of the hypothesis is correct, and

if visual language models do a good job of captur-
ing this shift in expectations, then visual language
model surprisal should fully account for the effect
of experimental conditions in the human behavioral
data in our experiment.

5 Modelling Approach

We created a set of predictor variables including
Condition_ID, frequency, word length, grounded-
ness, open vs. closed part of speech, and surprisals
from six Transformer-based LLMs: four visual lan-
guage models with a variety of objectives regarding
language-vision alignment (BLIP2, Li et al., 2023;
KOSMOS2, Peng et al., 2023; LLAVA-7b, Liu
et al., 2023; and IDEFICS-9b, Laurençon et al.,
2024) and two language only models (GPT2, Rad-
ford et al., 2019; and LLAMA2 Touvron et al.,
2023). Condition_ID indicates whether a certain
image description was seen in Correct, Wrong, or
No Image condition, which could be extracted from
the experiment setup on IBEXZehr and Schwarz,
2018. For length, we used the length in characters
excluding end punctuation. We obtain word fre-
quencies from SUBTLEX_US (Brysbaert and New,
2009); for the words not in the database, we use the
minimum frequency of any word in that database.
Groundedness comes from our norming study. For
open versus closed class part of speech, we ran
the Stanford POS tagger on our image descriptions
and considered all nouns, adjectives, adverbs, and
non-auxiliary verbs, as open-class, and the rest as
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Figure 3: Coefficent Estimates and 95% CI of the fixed effects with theoretical interests for models fitted with open and closed
class respectively. Condition_ID was Helmert encoded making comparisons between wrong vs no and correct vs wrong and no
mean

closed-class. Surprisal does not vary across condi-
tions for LLMs, but does so for VLMs for image
conditioning. (Note that for the No Image con-
dition, we used a black screen as the image, and
additionally added "Ignore the image context" as
a prompt preceding the description.) Using these
predictors, for both testing our psycholinguistic
hypotheses and psychometric benchmarking, we
fitted mixed effects regression models to predict
the reading time data that we collected, using the
brms and lmer package in R. These models give
us estimates and statistical significance of coeffi-
cients for all the predictor variables, which we can
later analyze to distinguish between psycholinguis-
tic hypotheses. For psychometric benchmarking,
we fitted many models, each only varying at the
kind of surprisal estimate it’s using. For each fit-
ted model, we then analyze the likelihood of the
ground truth reading time data.

5.1 Regression predictor encoding

Unless otherwise specified, we used Helmert cod-
ing for Condition_ID, set up so that one coeffi-
cient encodes the wrong and no difference and
another coefficient encodes the difference between
correct and (wrong and no) mean. We used sum-
encoding for open vs. closed part of speech (POS).
Unless the model is condition specific, in which
case Condition_ID can’t be used as a predictor,
we also assumed an interaction between Condi-
tion_ID and groundedness and Condition_ID and
POS. Assuming this interaction makes sense since
one would intuitively expect that one reads words
in the correct condition even faster especially when
the words are more highly grounded. For all the

models, we use the maximal random effects struc-
ture justified by the design, so we have included
correlated by-subject, by-sentence, by-word, and
by-wordtoken random slopes for Condition_ID,
the fixed effect of our primary theoretical inter-
est. An example of a mixed effect model fitted for
reading time prediction using data from all con-
ditions and parts of speech(open vs. closed) is
the following - RT ∼ Condition_ID.helm*POS
+ surprisal + Frequency + Length +
(Condition_ID.helm*POS + surprisal |
Subject_ID)+ (Condition_ID.helm | Group)
+ (Condition_ID.helm | WordToken) +
(Condition_ID.helm | Word).

6 Results

6.1 Reading Time Prediction

Consider figure (3), which plots the coefficient
estimates and 95% confidence interval of the ef-
fects of theoretical interests from the model fit-
ted with equation RT ∼ Condition_ID.helm
+ surprisal + Frequency + Length
+ (Condition_ID.helm + surprisal |
Subject_ID)+ (Condition_ID.helm | Group)
+ (Condition_ID.helm | WordToken) +
(Condition_ID.helm | Word), individually for
open and closed class words. Now note the second
rows in both panels for models fitted with text-
based surprisals(indicated in light blue in the fig-
ure). For the left panel, the second row is saying
that on average people need 125 ms less to read
an open class word in the correct condition com-
pared to other conditions. Similarly, for the right
panel, the second row indicates that on average peo-
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ple need 30ms less to read a closed class word in
the correct condition compared to other conditions.
So there is a very significant facilitation for both
open and closed-class words when people get a pre-
view of the relevant image compared to when they
don’t. This evidence strongly suggests that peo-
ple’s facilitation of reading image descriptions after
having a relevant visual preview can be explained
by Comprehensive Grounding Hypothesis and
not by Lexical Grounding Hypothesis. Note that
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Change in RT in 
Correct vs wrong

 &no mean for
change in POS
        level (ms)

Change in RT in
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Figure 4: Coefficent Estimates and 95% CI of the fixed ef-
fects with theoretical interests. Note that the model had a
Condition_ID*POS term, where Condition_ID was Helmert
encoded making comparisons between wrong vs no and cor-
rect vs mean of wrong and no and POS was sum encoded with
two levels, resulting in 2 interaction terms and 2 main effect
terms for Condition_ID

we want to consider only the text surprisal fitted
models’ condition-related effects to distinguish be-
tween lexical and comprehensive grounding hy-
potheses. It is because in this scenario the only
image-related information we want to use for RT
prediction should be through Condition_ID/POS
levels. In both panels of Figure (3), we can see that
the impact of condition ID-related effects is no-
ticeably smaller—or even non-existent—in VLM
surprisal-fitted models compared to text surprisal-
fitted models. However, the overall effect of sur-
prisal itself is quite similar across both types of
models. To gain a complete understanding of the
differences between these models, we fit reading
time data from all three conditions and parts of
speech in Figure (4). From the coefficient esti-
mates and their significance in the first and second
rows, we observe significant facilitation—around
30 ms and 90 ms on average respectively in the
"no" condition compared to the "wrong" condition,
and in the "correct" condition compared to the oth-
ers, in models fitted with text-based surprisals. This
indicates that people are significantly faster in cor-
rect condition compared to other conditions and
wrong condition significantly slows people down

compared to not seeing any image at all. As be-
fore, we see that these effects, however, tend to
shrink or disappear in models fitted with VLM sur-
prisals(indicated with orange-pink on the diagram),
while the impact of surprisal itself (along with other
fixed predictors not shown in the figure) remains
consistent across all models. This strongly sug-
gests that the notable difference in condition ID-
related effects can only be explained by how the
nature of surprisal changes when transitioning
from text-based to multimodal models. All this
evidence also strongly indicates that Correct Image
preview substantially affects comprehenders’ ex-
pectations and that visual-language model surprisal
captures a substantial part (though not all) of this
effect.

6.2 Error Prediction
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Figure 5: X axis indicates the conditions and correctness status
of words(whether or not someone made a mistake in that
word) and Y axis indicates mean and standard error of BLIP2
surprisal for words in a certain condition and correctness status

To investigate if the errors that people make have
anything theoretically interesting to tell us, we first
look into a univariate analysis showing the sur-
prisal distribution across words in different condi-
tions and correctness status. Consider the distribu-
tion of BLIP2 surprisal, which is a VLM, in figure
(5). There is a very clear trend of high average
contextual surprisal values for words that people
got wrong. To prove this claim rigorously with a
multivariate analysis, we fit a logistic regression
model, so the goal is to predict the log-likelihood
of making an error. Figure(6) shows the coeffi-
cient estimates and 95% confidence intervals of
theoretically interesting predictors of this logistic
regression model. From this figure, three things
become evident - 1. From the first two rows, we
see that the error occurrence likelihood does not
vary much across different conditions, 2. From row
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odds of the fixed effects with theoretical interests. Note that
the model had a Condition_ID*POS term, where the encoding
of these terms is similar to before, resulting in 2 main effects
of Condition_ID and 2 interaction terms, which is what we
showed in the figure, along with surprisal.

4, we see that people are less likely to make errors
for open parts of speech in the correct condition
compared to other conditions (since the blue bars
are on the negative side of the plot) and 3. From
row 5, we see that the effect of surprisals is con-
sistent across all models and increasing surprisal
leads to more likelihood of error occurrence.

6.3 Can surprisal difference be explained as a
function of groundedness?
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Figure 7: Every word token in every sentence in the dataset is
indicated with a dot here. X coordinate of that dot indicates
the GPT2 surprisal of that word given the previous words in
that sentence and the Y coordinate of that dot indicates the
KOSMOS2 surprisal of that word given the previous words
and the image that sentence is describing, i.e, the KOSMOS2
surprisal in the correct condition. The color of the dot is
determined by the groundedness rating of the word, noted as
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Consider the figure (7). We can notice that most
dots below the dark blue line, the best-fitted lin-
ear relationship between GPT2 and KOSMOS2
surprisals, are light blue dots indicating highly

grounded words. This motivation suggests that a
lot of highly grounded words exhibit notably lower
surprisal values in VLMs when contrasted with
those derived solely from textual models. Intu-
itively speaking, ImageConditionedTextSurprisal
minus TextSurprisal for a word roughly indicates
the reduction of surprisal for the presence of the
image. Hence, we expect that the more negative Im-
ageConditionedTextSurprisal minus TextSurprisal
is for a word, the more the effect of the image is
on that word, hence the more grounded that word
should be in the image. To formally analyze this
nuance, in figure (8) we predicted the surprisal
difference between two conditions from the same
model using POS type, POS type and groundedness
interaction, frequency and length as fixed effect
predictors. In addition, we incorporated a random
effect predictor that encompasses all fixed predic-
tors, with the sentence type serving as the grouping
variable. The significance of the groundedness ef-
fect on the surprisal difference for each type of POS
is indicated such that “ns” means "not significant";
* means p < 0.01 and ** means p < 0.001.
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Figure 8: For each of the 4 VLMs we considered for this paper,
the X axis indicates the groundedness value of a word and the
Y axis indicates the difference between the surprisals of that
word in correct condition and no condition (left panel) and
wrong condition and no condition(right panel). The best linear
fits for each type of POS(open/closed) are shown in the plots.
The significance of groundedness contribution for each type
of POS is also indicated in each plot.
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Note that when comparing correct condition to
no condition, we notice a consistent pattern of open
class words’ groundedness significantly contribut-
ing to the surprisal difference for all models. But
we don’t notice the same for closed class words,
which makes sense given that they are mostly not
strongly grounded in the image and hence the pres-
ence of an image doesn’t give much extra infor-
mation about them. These findings highlight a
strong correlation between human judgment of
a word’s degree of grounding in an image and
the reduction in that word’s surprisal for the
presence of that image, as measured by recent
VLMs.

However, we notice a significant contribution
of open class words’ groundedness on surprisal
difference between wrong and no conditions for
BLIP2 and IDEFICS(but in the opposite direction
of what we saw in the other comparison). At first,
it might seem counter-intuitive but it just tells us
that models like BLIP2 and IDEFICS struggle to
ignore the image context in the wrong image condi-
tion, hence for the open class words in a sentence
that would otherwise be grounded in the image
in the ’Correct Image’ context, they have signif-
icantly high surprisal due to those words’ visual
absence in the ’Wrong Image’ context, resulting in
the significance we observe in figure (8).

7 Perplexity and psychometric accuracy

In recent years, there has been an effort to study
the increase of log-likelihood for including LLM
surprisal estimate from models as a function of
perplexity(Oh and Schuler, 2023). To investigate
what traits in a VLM give them better predictive
power for human RT, we ran a similar analysis
with different-sized open-sourced versions of all
the models we used in the work - two versions of
all the VLMs except for KOSMOS-2 and a new
VLM that improved upon Llava, Llava-Next. The
baseline regression model was considered with all
baseline predictors such as main effects of helmert
encoded Condition_ID and sum encoded POS and
interaction between them, frequency, length and
full regression models additionally contained each
LM surprisal predictor. Both the baseline and full
regression models had the same random effects
structure; a random intercept and slope for Condi-
tion_ID within each subject, sentence, word, and
word token type was included. After fitting the
regression models, we determined the increase in

log-likelihood (∆LL) for each model by subtract-
ing the log-likelihood of the baseline model from
that of the full model. Finally, the perplexity of
each model type was calculated in our dataset of
all items. Figure (9) shows the resultant plots.
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for ease of interpretation.

Note that the increase of log-likelihood for
adding surprisals from different-sized versions of
the same model isn’t very different, however dif-
ferent models can have very different predictive
power regardless of the size, consider Llava and
Llava-Next for example, both versions considered
for these models have the same sizes(7B and 13B
parameter) but Llava-Next has a lot more predictive
power compared to Llava. This strongly indicates
that training diet and objective are more important
than the model size when it comes to psychomet-
ric predictive power. However, all the smaller-size
versions except for Llava-Next are better than the
bigger-size versions. Although this needs further
exploration, the observations indicate that for each
type of training objective and diet, there is possibly
an optimal number of parameters that make the
model most aligned with human expectations, and
beyond that alignment decreases.

8 Conclusion

In this work, we have developed a novel experi-
mental paradigm, Image-Conditioned Maze Read-
ing, to study human linguistic expectations during
real-time language comprehension when a visual
context is involved. Our results demonstrate a sub-
stantial facilitatory effect of correct image context
on language comprehension. This effect is evident
not only for concrete nouns, adjectives, or verbs
directly present in the image but also extends to
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words not explicitly grounded in the visual con-
text. We extended psychometric benchmarking to
visual language models and found that VLM sur-
prisals capture most to all of the facilitator effect
that occurs due to the presence of a relevant vi-
sual context. We discovered that as one goes from
text based model surprisal to VLM surprisal, the
effect of surprisal on reading time doesn’t change
much, but the huge Condition_ID related effects
mostly disappear for VLM surprisal based mod-
els. So, the explanation is in how the nature of the
surprisal changes. We also found a strong corre-
lation between the human judgment of a word’s
degree of grounding in the image and the reduc-
tion of that word’s surprisal for the presence of that
image. We showed empirical support indicating
that heightened contextual surprisal significantly
contributes to errors in maze tasks. Finally, our
findings reveal compelling evidence that the train-
ing objectives and diet of Vision-Language Models
(VLMs) significantly impact their psychometric
predictive power, more so than their size. However,
this observation warrants further investigation.

9 Limitations

In this study, we used images and descriptions from
the validation split of the COCO dataset. At that
time, we were uncertain about the specifics of inves-
tigating Vision-Language Models (VLMs). Upon
further examination down the line, we discovered
that Llava and BLIP-2 had COCO in their pre-
training data, indicating that these models may have
encountered some of our items before. In future
work, we plan to use images and descriptions from
a dataset that has not been used for pre-training any
of the models.

Another challenge we faced was the limited
availability of different-sized versions of open-
sourced VLMs for comprehensive analysis. There
are typically only 2-3 versions available for each
model. This limited our analysis compared to stud-
ies like (Oh and Schuler, 2023), which utilized
many versions of Pythia models (Biderman et al.,
2023) for interpretability analysis and understand-
ing the development of knowledge in autoregres-
sive transformers. The scarcity of multiple versions
of open-sourced VLMs hindered our ability to per-
form a similarly comprehensive analysis.
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