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Abstract

Grapheme-to-Phoneme (G2P) correspondences
form foundational frameworks of tasks such
as text-to-speech (TTS) synthesis or automatic
speech recognition. The G2P process involves
taking words in their written form and gener-
ating their pronunciation. In this paper, we
critique the status quo definition of a grapheme,
currently a forced alignment process relating
a single character to either a phoneme or a
blank unit, that underlies the majority of mod-
ern approaches. We develop a linguistically-
motivated redefinition from simple concepts
such as vowel and consonant count and word
length and offer a proof-of-concept implemen-
tation based on a multi-binary neural classifi-
cation task. Our model achieves competitive
results with a 31.86% Word Error Rate on a
standard benchmark, while generating linguis-
tically meaningful grapheme segmentations.

1 Introduction

Segmenting words into graphemes is crucial for ac-
curate and reliable text-to-speech systems (Le et al.,
2020; Taylor, 2022; Ying et al., 2024), as well as
providing a tokenisation framework for training lan-
guage models for use by varied segments of society
(Raškinis et al., 2019; Basher et al., 2023). The
currently predominant approach to G2P, which ex-
tracts phonemes from a list of graphemes, is one of
forced alignment (Williams et al., 2024; Gao et al.,
2024; Cheng et al., 2016; Rao et al., 2015). In this
approach, a grapheme is defined as a single char-
acter that either does or does not have a respective
phoneme when using G2P correspondences. This
process is illustrated in Table 1 (a) with blank units
denoted as φ. However, from a linguistic perspec-
tive, a grapheme is not just a single character, but
a representation of a phoneme, consisting of up to
four characters (Brooks, 2019). Redefining the no-
tion of grapheme could therefore change sub-word
tokenisation, allowing for models to be trained on

a set of compound graphemes in addition to pro-
viding a more linguistically correct method to split
words into phonemes. This is shown in Table 1 (b).

The contributions of this paper are as follows:

• We redefine the concept of graphemes in
G2P segmentation, aligning it with Referential
Conception theory (Kohrt, 1986).

• We present a novel twin-staged method for
(a) G2P segmentation and (b) phoneme cor-
respondences that approaches the results of
leading techniques on a standard CMUDict
benchmark.

• We release a new dataset to the community,
EngGraph, a subset of CMUDict, with 9,641
pre-transcribed British English graphemes
to enable future grapheme segmentation re-
search.

2 Related Work

LSTM-based G2P Significant advances in
LSTM models for G2P have commonly relied
on a one-to-one mapping between graphemes and
phonemes. Rao et al. (2015) introduced a unidi-
rectional LSTM with output delays, achieving a
word error rate (WER) of 25.8% on the CMUDict
benchmark by ensuring 1:1 phoneme-grapheme
alignment (e.g., "google" transcribed to g, u, g, @,
l, ϕ, where ϕ is a placeholder). Mousa and Schuller
(2016) addressed the many-to-many alignment is-
sue with a bidirectional LSTM (BLSTM), achiev-
ing a 23.23% WER on the same task by adding a
linear projection layer, splicing window, and de-
coding beam to a 4-layer BLSTM network to im-
prove alignment. Yao and Zweig (2015) achieved
a 23.55% WER with a BLSTM and character-to-
phoneme alignment that allowed for single, multi-
ple, or no corresponding phonemes (e.g., "tangle"
transcribed to T, AE, NG, G, AH: L, NULL).

Attention-based G2P Recent advances in atten-
tion mechanisms and transformers have largely
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Word Grapheme Transcription (a) Phoneme Transcription (a) Grapheme Transcription (b) Phoneme Transcription (b)
accuse a-c-c-u-s-e @-k-φ-U-z-φ a-cc-u-se @-k-U-z
commercial c-o-m-m-e-r-c-i-a-l k-ah-m-φ-e-r-s-h-ah-l c-o-mm-er-ci-a-l k-ah-m-er-sh-ah-l
boulevard b-o-u-l-e-v-a-r-d b-φ-uh-l@-φ-v-φ-ar-d b-ou-le-v-ar-d b-ou-l@-v-ar-d

Table 1: Current (a) and proposed (b) linguistic Grapheme transcription examples

kept to the same definition of a grapheme. Tosh-
niwal and Livescu (2016)’s early ensemble model
with global attention achieved a 20.24% WER on
the CMUDict task, struggling with foreign names,
a common issue in G2P models (Waxmonsky and
Reddy, 2012). Řezáčková et al. (2021)’s Text-to-
Text Transfer Transformer showed a 0.96% WER,
but similarly struggled with unseen words, increas-
ing errors to 33.8%. Dong et al. (2022)’s BERT
model had a 23.36% WER on Dutch due to English
complexities, making it a less comparable baseline.

We advocate for a precise linguistic definition
of graphemes, as accurate G2P conversion is vital
for natural and clear speech synthesis. Mousa and
Schuller (2016)’s models adopt a many-to-many
alignment, but still miss the essential graphemic
units of trigraphs (e.g., "ear" in "research" for
the /E:/ phoneme), quadgraphs (e.g., "ough" in
"thought" for the /c:/ phoneme), and split digraphs,
a non contigous two character grapheme, (e.g.,
"a.e" in "rationale" for the /eI/ phoneme).

3 Linguistic Definitions of Graphemes

In NLP areas, a grapheme is currently defined as
a single character, with G2P models aligning each
character with a phoneme or a blank unit. Out-
side of NLP research, there are two linguistic theo-
ries on graphemes. Referential conception (Kohrt,
1986) defines a grapheme as the smallest written
unit corresponding with phonemes, like "ph" in
"phonetics" for the /f/ phoneme. This theory sug-
gests writing depicts speech. The analogical con-
cept (Lockwood, 2000) uses minimal pairs to show
phoneme differences based on spelling, such as "t"
and "k" in "parts" and "parks," arguing that writing
and speech should be studied separately.

G2P correspondences balance these theories by
viewing graphemes as influencing pronunciation
but also as distinct from phonemes in TTS research.
This hybrid approach presents challenges. Given
the focus on TTS in G2P models, we propose adopt-
ing the referential conception for computational lin-
guistic applications as in these applications, writing
is being used to mimic and create spoken language.
We rely on Brooks (2019), who conducted a de-

tailed analysis of British English spelling, identify-
ing 284 graphemes: 89 in the ‘main system’ and
195 in the ‘extended system,’ corresponding to 43
phonemes. Brooks notes that while the number of
graphemes remains the same in American English,
correspondences differ to reflect pronunciation dif-
ferences.

Grapheme
Length

Main
System

Extended
System

Single
Character 26 0

2 Characters 53 118
3 Characters 10 57
4 Characters 0 20

Table 2: Grapheme lengths for the main and extended
system (Brooks, 2019)

Analysing grapheme lengths highlights flaws in
current G2P models, see Table 2. Current models,
which use only single or digraph graphemes, fail
to handle the complexities of English, leading to
mispronunciations. For instance, without recog-
nising trigraphs, TTS systems can add an extra
phoneme in the G2P stage, such as an additional /d/
in "acknowledge." Proper grapheme segmentation
transcribes the word as "a-ck-n-o-w-le-dge" with
the "dge" grapheme represented with a single /g/
sound with the d being silent, enhancing pronunci-
ation accuracy for simple and complex words.

4 Case Study

4.1 Data Analysis
The initial task of this project was to compile a
comprehensive corpus of English words along with
their grapheme transcriptions. The Oxford English
Dictionary states that the 7,000 most common En-
glish words account for 90% of word use (Oxford
Dictionaries, 2023), which we used as lower bound
of coverage for our resource. Given that there are
no existing linguistically transcribed British En-
glish grapheme resources, we selected a large set
of common English words, specifically, the 10,000
most indexed British English words on web-pages
indexed by Google (WorldlyWisdom, 2021) as a
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basis for a new resource. All words were tran-
scribed into grapheme form based on the guidelines
in Brooks (2019). All words in this new British
English dataset are also found in the American En-
glish CMUDict benchmark, although transcribed
to British English pronunciation correspondences
instead of American English correspondences.

Our new corpus EngGraph includes 9,641 words
annotated with grapheme transcriptions, grapheme
counts, and basic linguistic features such as word
length, vowel and consonant count. In this dataset,
all characters are consonants except for the vow-
els [a,e,i,o,u].1 Figure 1 illustrates the number of
graphemes against characters, consonants and vow-
els. While the feature counts plotted approximate
Gaussian distributions, some grapheme distribu-
tions exhibit significant skew and overlap. These
deviations pose challenges for mathematical mod-
els by distorting data representation and compli-
cating decision boundaries. Specifically, skewness
results in asymmetric distributions, affecting mem-
bership function evaluations, while overlap makes
class distinction difficult, leading to less precise
classification and increased ambiguity. This skew
proved a challenge for classical mathematical mod-
elling approaches such as Fuzzy Inference Sys-
tems (Rose and Kambhampati, 2024), having a
grapheme count classification accuracy of 50.18%,
with an accuracy of 95.51% if a margin of ± 1 is
given, highlighting the issue of class overlapping.

4.2 One-vs-Rest (OvR) Model

As our key aim is to evaluate the effectiveness
of our new linguistically-motivated definition of
grapheme, we opt for a simple, easy-to-replicate
One-vs-Rest (OvR) architecture: a set of ten identi-
cal binary feedforward neural networks. Each net-
work has three inputs (word length, vowel count,
consonant count), two dense layers with 128 units,
and 30% dropout, with a binary output. The models
were trained for 150 epochs with ADAM optimisa-
tion, a learning rate of 0.001, a batch size of 8, and
early stopping with a patience of 20 epochs.

The architecture was trained on curated subsets
of our EngGraph corpus, ensuring all elements are
also present in the CMUDict benchmark dataset
for comparability. We generated 10 balanced data
subsets by selecting all examples with a specified
number of graphemes (from 1 to 10) and augment-

1This dataset can be found at: https://github.com/
SamuelRoseAI/EngGraph-Dataset/tree/main

Figure 1: Character, consonant, and vowel count distri-
butions for different numbers of graphemes.

ing each subset with an equal number of examples
featuring a different number of graphemes. For
instance, the subset for one grapheme includes all
records with one grapheme, alongside an equal
number of randomly selected records with 2-10
graphemes. This approach ensures an equal dis-
tribution of true and false records for each OvR
model, with a random 30% of the data reserved
as a testing set. Earlier experiments with a single
multi-class architecture failed with low accuracy,
arguably due to complexities shown in Figure 1.

Following the classification of grapheme counts,
we developed a word-to-grapheme mapping
method to established word error rates. This

466

https://github.com/SamuelRoseAI/EngGraph-Dataset/tree/main
https://github.com/SamuelRoseAI/EngGraph-Dataset/tree/main


One-vs-Rest Neural Network OutputsWord Input One Two Three Four Five Six Seven Eight Nine Ten
Grapheme

Count
labelled [8,3,5] 0.0002 0.0001 0.0217 0.3746 0.6110 0.8101 0.1190 0.0237 0.0097 0.0057 6
ribbon [6,2,4] 0.0009 0.0028 0.1512 0.7157 0.7987 0.2549 0.0023 0.0021 0.0016 0.0018 5
study [5,1,4] 0.0054 0.0129 0.5885 0.8390 0.3667 0.0003 0.0001 0.0002 0.0006 0.0006 4
strengthen [10,2,8] 0.0001 0.0000 0.0001 0.0085 0.0611 0.4718 0.8796 0.8622 0.4068 0.6171 6

Table 3: One-vs-Rest Networks Input and Output Examples

OvR Model n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
Accuracy 0.9531 0.9238 0.8744 0.7976 0.7844 0.7855 0.8402 0.8878 0.9255 0.9466
F1-Score 0.95 0.93 0.86 0.82 0.81 0.80 0.85 0.89 0.93 0.95
Recall 0.94 0.99 0.88 0.91 0.89 0.89 0.96 0.97 0.94 0.98
Precision 0.97 0.88 0.85 0.74 0.74 0.73 0.77 0.83 0.92 0.93

Table 4: One-vs-Rest Neural Network classification results, where n equals the number of graphemes.

method uses the OvR classifier with the highest
confidence to identify grapheme mappings. If no
valid mapping of graphemes is possible using the
classified number of graphemes, the class with the
next highest confidence is selected. This process
is repeated until a valid grapheme mapping and
phonetic transcription are obtained. To achieve
this, an iterative approach was employed. The list
of graphemes was ordered from largest to small-
est, and the largest grapheme matching the first
n characters of the word was selected. This pro-
cess continued with the remaining characters until
all characters in the word were mapped to a valid
grapheme representation. The procedure iterates
recursively, ruling out certain grapheme combina-
tions when a valid mapping is not found for the cur-
rent branch. This approach was validated against
the ground truth phonetic transcriptions, yielding
a Word Error Rate (WER) of 31.86%, comparable
to the models discussed in Sec. 2. This indicates a
significant opportunity for future refinements to en-
hance the accuracy of G2P transcriptions using our
proposed new redefinition of graphemes in NLP.

4.3 Results and Discussion

The performance of these ten networks is notably
high, see Table 4, and approaching the WERs pre-
sented in Sec. 2, despite our simple architecture.
The system is computationally efficient despite
maintaining ten neural networks. Our OvR format
ensures each model is trained on a balanced dataset,
distinguishing the characteristics of words with a
specified number of graphemes, which adds trans-
parency to grapheme analyses. Our multi-network
system is easily extendable, e.g. new datasets can
accommodate longer, more linguistically complex
words, and more complex neural architectures may

further enhance classification performance. Ta-
ble 3 shows examples of network inputs and out-
puts, where 3/4 predictions matched the correct
grapheme count, while the fourth was off by one.

5 Conclusion

Our redefinition of graphemes, inspired by the ref-
erential conception theory, has profound implica-
tions for the task of G2P. Already approaching
results given in state-of-the-art methods using a
simple architecture, our research challenges cur-
rent methodologies, highlighting the limitations of
single-character graphemes, and offering a more
inclusive framework for text representation and se-
mantic research. This shift paves the way for more
accurate, culturally-sensitive language processing
systems. This paper advances NLP research by
advocating for hybrid graphemes, addressing crit-
ical gaps in existing methods. It provides practi-
tioners with tools to improve the performance and
adaptability of their applications, and encourages
exploration of the phonetics-semantics connection,
influencing text tokenisation, segmentation, and
feature extraction in NLG applications. Addition-
ally, the application of hybrid graphemes will aid
in speech recognition tasks, such as differentiat-
ing homophones, and modelling dialect differences
in English, reflecting true linguistic diversity and
additionally allowing for more culturally sensitive
models.

Limitations

Our study has several limitations that should be
noted. The dataset, while comprehensive, includes
only 9,641 words and focuses on British English
pronunciation, potentially limiting its applicability
to other English dialects and languages. In addition,
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while all elements of EngGraph are present in the
standard CMUDict Dataset, our study is looking
at British English compared to American English
and additionally our dataset is not as expansive
as the CMUDict dataset which has over 134,000
words with their phonetic transcription. The prepro-
cessing steps and basic feature set, including word
length, vowel count, and consonant count, may
not fully capture the nuances required for accurate
grapheme segmentation, particularly for irregular,
slang, borrowed, or complex words. Additionally,
the model’s simple architecture, though computa-
tionally efficient, may not perform as well as more
advanced architectures like transformers.

The use of Word Error Rate (WER) as the pri-
mary evaluation metric, while standard, does not
fully reflect linguistic accuracy, particularly for par-
tial matches. Ethical considerations include po-
tential biases in the dataset, which overlooks re-
gional dialects and minority languages, impacting
accessibility and fairness in applications. Further-
more, our study has not been extensively tested
in real-world scenarios, which may present chal-
lenges not accounted for in controlled experiments.
Future work should explore more advanced archi-
tectures, a wider range of linguistic features, and
larger, more diverse datasets, as well as extend the
approach to other languages, English dialects, and
real-world applications.
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