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Abstract

Large language models (LLMs) have achieved
significant success in complex tasks across var-
ious domains, but they come with high com-
putational costs and inference latency issues.
Pruning, as an effective method, can signifi-
cantly reduce inference costs. However, cur-
rent pruning algorithms for encoder-based lan-
guage models often focus on locally optimal
solutions, neglecting a comprehensive explo-
ration of the global solution space. This over-
sight can lead to instability in the solution pro-
cess, thereby affecting the overall performance
of the model. To address these challenges, we
propose a structured pruning algorithm named
G-Pruner (Global Pruner), comprising two in-
tegral components: PPOM (Proximal Policy
Optimization Mask) and CG²MT (Conjugate
Gradient Squared Mask Tuning), utilizing a
global optimization strategy. This strategy not
only eliminates the need for retraining but also
ensures the algorithm’s stability and adaptabil-
ity to environmental changes, effectively ad-
dressing the issue of focusing solely on im-
mediate optima while neglecting long-term ef-
fects. This method is evaluated on the GLUE
and SQuAD benchmarks using BERTBASE and
DistilBERT models. The experimental results
indicate that without any retraining, G-Pruner
achieves significant accuracy improvements on
the SQuAD2.0 task with a FLOPs constraint
of 60%, demonstrating a 6.02% increase in F1
score compared with baseline algorithms.

1 Introduction

In recent years, Transformer-based pre-trained lan-
guage models (PLMs) Li et al. (2024); Guimarães
et al. (2024); Ho et al. (2024); Xu et al. (2024);
Kojima et al. (2024) have dominated the field of
natural language processing (NLP) Shamshiri et al.
(2024); Oyewole et al. (2024); Zheng et al. (2024);
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Raza et al. (2024); Mei et al. (2024) due to their
outstanding performance. However, the significant
advantages of PLMs come with a substantial in-
crease in model size and high computational costs.
Pruning, as an optimization technique, can effec-
tively reduce model complexity to enhance gener-
alization ability and operational efficiency. Prun-
ing techniques include structured pruning He and
Xiao (2023); Fang et al. (2023); Sun et al. (2020);
Liu et al. (2021a); Hou et al. (2020a); Iandola
et al. (2020); Kitaev et al. (2020); Xia et al. (2022)
and unstructured pruning Cheng et al. (2023); San-
tacroce et al. (2023); Wang et al. (2020); Shi et al.
(2024); Zhang et al. (2024); Dery et al. (2024) aim-
ing to improve efficiency by eliminating redundant
parts of the model. Particularly, structured pruning
has become a key technology for addressing size
and speed issues in encoder-based language mod-
els, systematically removing redundancies without
significantly impairing model performance.

Despite this, existing pruning methods still have
limitations in practical applications. For example,
Kwon et al. (2022) avoided the high costs associ-
ated with retraining by employing three techniques:
mask search, mask rearrangement, and mask tun-
ing. However, this greedy-based pruning method
has been proved to be effective only in the short
term and faced challenges in finding global optima,
particularly when applied to complex or dynami-
cally changing tasks. Moreover, the K-Prune Park
et al. (2023) algorithm aimed to minimize pruning
errors and enhance accuracy by preserving knowl-
edge from pre-trained models. However, it did
not fully consider the accuracy of weight selection
and the long-term stability of the pruning strategy.
Similarly, the KCM Nova et al. (2023) framework
could quickly compress models and minimize per-
formance loss by accurately assessing the impor-
tance of neurons in the short term. However, it
overlooked the long-term stability and adaptability
of the model to complex tasks, especially under
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high FLOPs constraints. Although these pruning
methods can enhance the efficiency of models in
the short term, they typically have a common draw-
back: they primarily focus on finding local optima
and neglect the exploration of global optima.

To address these issues, we introduce a new
retraining-free pruning framework for Transformer
models—G-Pruner, efficiently locating global op-
tima quickly without retraining. This strategy in-
tegrates two advanced technologies: PPOM and
CG²MT. In the PPOM phase, the algorithm first
conducts a comprehensive mask search, then fine-
tunes and optimizes the selected masks using the
PPO (Proximal Policy Optimization) technique
from reinforcement learning. Subsequently, in
the CG²MT phase, we enhance the efficiency and
stability of solving asymmetric matrix problems
through an improved CGS (Conjugate Gradient
Squared ) solver.

The primary contributions of this study include:

• We propose a structured pruning algorithm
named G-Pruner, designed to prune encoder-
based language models with high precision
without the need of retraining.

• We conduct a comprehensive evaluation us-
ing the GLUE and SQuAD benchmarks on
BERTBASE and DistilBERT models to demon-
strate the performance of G-Pruner. We find
that our method not only outperforms frame-
works that are retraining-free but also sur-
passes other frameworks that do require re-
training at the same pruning cost.

• Under the same FLOPs constraints, G-Pruner
significantly outperforms some existing prun-
ing techniques in pruning time without sacri-
ficing model accuracy. Even under the strict
constraint of allowing a maximum accuracy
reduction of no more than 1%, BERTBASE
achieves 60-70% of the original FLOPs across
all tasks.

2 Related Work

2.1 Pruning For Encoder-Based Language
Model

Pruning enhances model efficiency by removing
insignificant weights or components such as at-
tention heads or layers. There are two types: un-
structured and structured. Unstructured pruning
reduces model size by eliminating individual pa-
rameters. For example, Sanh et al. (2020) offered a

straightforward first-order weight pruning method
for fine-tuning pre-trained models, significantly
boosting performance while maintaining high spar-
sity. Second-order methods like oBERT Kurtic
et al. (2022) used approximate second-order infor-
mation to reduce storage and computational de-
mands of BERT models. Structured pruning sim-
plifies models on a larger scale by removing en-
tire components. For example, Hardware-friendly
block structure pruning techniques Li et al. (2020)
improved compression ratios and speed through
optimizations. FLOP Wang et al. (2019) reduced
model size and enhanced training and inference
speed by maintaining dense weight matrix struc-
tures rather than sparse representations. SLIP Lin
et al. (2020) improved pruning efficiency through
feature layer normalization and unit block identifi-
cation. Sajjad et al. (2023) tackled reducing layers
in pre-trained Transformer models while maintain-
ing task-specific performance. EBERT Liu et al.
(2021b) dynamically determined pruning strategies
per input sample, significantly cutting computa-
tional load and memory use. DynaBERT Hou et al.
(2020b) adjusted BERT model size and latency
adaptively, addressing deployment challenges on
edge devices with diverse hardware performance.

2.2 Pruning For Retraining-free Structured
Model

Data-independent neural pruning algorithm Mus-
say et al. (2019) and post-training weight prun-
ing methods for deep neural networks Lazarevich
et al. (2021) aimed to effectively reduce model size
while minimizing accuracy loss. In the domain of
structured pruning, the concept of "neuron merg-
ing" Kim et al. (2020) and RED’s data-independent
structured compression technique Yvinec et al.
(2021) were employed by utilizing various tech-
nologies to maintain or enhance model accuracy
without incurring accuracy losses. However, these
methods overlooked challenges such as thorough
weight selection analysis, long-term stability, and
maintaining performance under high sparsity. To
effectively address these challenges, a novel post-
training pruning framework named G-Pruner is in-
troduced.

3 Background and Baseline Description

The core of the pruning problem is to find the opti-
mal methods for masking while considering spar-
sity constraints. This study focuses on the com-
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pression of encoder-based language models, no-
tably BERTBASE and DistilBERT. These encoder-
based language models consist of two primary sub-
layer archetypes: Multi-Head Attention (MHA)
and Feed-Forward Network (FFN). In this section,
we explain how to mask the attention heads and
feed-forward networks.

3.1 Structured Pruning by Masking
The formulas for MHA and FFN are expressed as
follows:

MHA
(
x;mMHA

l

)
=
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i=1

mMHA
l,i ◦Atti(x) (1)

FFN
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where the mask variable mMHA
l,i for the ith attention

head in the lth layer is used to decide whether to
retain (mask value of 1) or prune (mask value of 0)
that head. The operator "◦" denotes the Hadamard
product (element-wise multiplication) to determine
each attention head’s contribution to the output.

In this paper, we have drawn on the research find-
ings of Kwon et al. (2022) to formalize the prun-
ing problem of encoder-based language models
as a constrained optimization problem concerning
a mask. The goal is to minimize the loss func-
tion L(m) while ensuring that the computational
cost (measured in FLOPs or latency) of the model
pruned according to mask m remains within ac-
ceptable limits. Given a mask m, the optimization
formula is as follows:

arg min
m

L(m) s.t. Cost(m) ≤ C (3)

where Cost(m) denotes the FLOPs or latency of
the architecture after pruning by mask, L(m) repre-
sents the loss function, and C is the given constraint
on FLOPs or latency.

Within a given FLOPs constraint C, the objec-
tive is to find the optimal mask configuration m,
such that the FLOPs of the pruned model are re-
duced and the impact on performance is minimized.
The problem can be formalized as:

argmin
m

∑

i∈Z(m)

Iii s.t. Fhead ∥mMHA∥0 + Ffilter ∥mFFN∥0 ≤ C

(4)
where Fhead and Ffilter respectively represent the
FLOPs required to execute a head and a filter, while
∥mMHA∥0 and ∥mFFN∥0 respectively represent the
number of retained heads and filters in the MHA
and FFN layers.

3.2 Baseline Description

In our study, we adopt Kwon et al.’s approach as
the baseline method. The framework consists of
three stages: mask search, mask rearrangement,
and mask tuning. During the mask search stage,
the Fisher information matrix is used to identify
which attention heads and filters are crucial and
should be retained, and which are relatively less
important and can be pruned. Following the initial
steps of mask search, the mask rearrangement pro-
cess relies on a greedy algorithm, which reselects
the heads and filters to be pruned by analyzing in-
teractions between layers within the model. In the
final phase of mask tuning, linear least squares are
used to minimize reconstruction error and optimize
the values of the non-zero mask variables. Since
the mask search method based on the Fisher infor-
mation matrix has been widely proven effective, no
further improvements are pursued in this study.

4 Methodology

4.1 Framework Overview

As illustrated in Figure 1, our framework is di-
vided into two main stages: the PPOM module
(Section 4.2) and the CG²MT module (Section 4.3).
During the PPOM mask optimization phase, we
utilize Fisher information to determine which at-
tention heads and filters are crucial and should be
retained, and which are relatively unimportant and
can be pruned. Subsequently, with the aid of re-
inforcement learning, the already identified mask
patterns are adjusted to better explore intra-layer in-
teractions among mask variables to optimize model
performance. Subsequently, in the CG²MT mask
tuning phase, the non-zero mask variables are fine-
tuned by restructuring inter-layer output signals to
compensate for any potential accuracy loss caused
by pruning. The framework is designed to incor-
porate three primary inputs: a Transformer model
fine-tuned for a specific downstream task, a small-
scale sample dataset (typically containing 1,000 to
2,000 examples), and a resource constraint condi-
tion.

4.2 PPOM(Proximal Policy Optimization
Mask)

While Fisher information-based mask search effec-
tively identifies key model parameters, it doesn’t
guarantee minimal gradient impact during early
pruning stages. Thus, initial pruning results often
need detailed reordering and optimization. Com-
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Figure 1: Overview of the G-Pruner framework. (a) Mask variables initialized to 1. (b) PPOM (Section 4.2)
and (c) CG²MT (Section 4.3).

mon greedy algorithms attempt to reduce overall
gradient impact through local optimization but may
not fully optimize model performance long-term.
To address this, we propose using the PPO algo-
rithm for further mask refinement. Initially, we an-
alyze masks derived from Fisher information and
gradient data for each layer, focusing on weight
matrices, pruning masks, and gradients. For layers
where all elements are fully pruned or untouched,
the original mask remains. For other layers, we
reorder neurons or attention heads based on their
impact on model performance and gradients.

4.2.1 Design Actors and Critics
In our study, we employ the Actor-Critic frame-
work, combining the value function (Critic) and
the policy function (Actor) to learn jointly. The
primary task of the Actor network is to intelligently
generate policies πθ(at | st) tailored to different
states st. It not only handles decision-making for
individual states but also manages challenges posed
by multidimensional and complex state spaces. In
specific environmental states, the Actor network
employs intricate computations to output a series
of probability distributions directly linked to poten-
tial actions. Particularly when integrated closely
with attention mechanisms, the Actor network can
finely assess and optimize different attention heads
or neurons.

During the pruning process, "state" refers to the
current parameter state of the neural network, in-
cluding weight matrices, pruning masks, gradients,
and other information. The Actor network receives
these state representations as inputs and generates a
probability distribution describing the likelihood of
each action (e.g., preserving or pruning a neuron).
The length of the output vector equals the number
of actions and can be a two-dimensional vector
where each element represents the probability of a

corresponding action. This probability distribution
can be expressed as:

πθ(at | st) = softmax(fθ(st)) (5)

where fθ(st) denotes the output layer of the Actor
network with parameters θ, predicting scores for
each action at given state st. The softmax function
transforms these scores into a probability distribu-
tion, ensuring that the probabilities of all actions
sum to 1.

The Critic network, as a core component of the
value function estimator, is primarily used to assess
the expected impact of each pruning operation on
the overall performance of neural networks, specif-
ically the expected cumulative return. Based on
the Critic network’s output of expected cumula-
tive return, each pruning decision is evaluated for
its effectiveness. Higher expected returns indicate
potential benefits to network performance, while
lower returns may lead to performance degradation.

Its design aims to output the expected value
Vω(st) of the current state to guide policy updates
in the Actor network. Specifically, the Critic net-
work is trained by minimizing the mean squared
error (MSE) between its predicted value and the
actual reward:

L(ω) = E[(yt − Vω(st))
2] (6)

where ω represents the Critic network parameters,
yt is the expected cumulative reward at time step
t, and Vω(st) is the Critic network’s output layer
responsible for predicting the expected cumulative
reward value given state st.

yt = Rt + γVω(st+1) (7)

where Rt denotes the reward at time step t, γ is the
discount factor, and Vω(st+1) is the estimated state
value function at time step t+ 1.
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The evaluation results of the Critic network are
used as feedback to adjust the pruning strategies
generated by the Actor network. This feedback
directly influences the decision-making process of
the Actor network, enabling it to intelligently se-
lect pruning operations. Through continuous learn-
ing and evaluation, the Critic network dynamically
adjusts pruning strategies. For instance, in each
pruning iteration, based on the evaluation results
of the current state, the Critic network can recom-
mend whether to retain or prune specific layers or
neurons, thereby maximizing the overall network
performance. In summary, the Critic network col-
laborates with the Actor network to evaluate the
effectiveness of its strategies and provide feedback,
optimizing the pruning decision-making process of
neural networks.

4.2.2 Pruning Execution
Based on the policy (probability distribution) gen-
erated by the Actor network, pruning operations
are selected. These operations can be binary (re-
tain or prune) or more complex (applying different
pruning probabilities to each neuron or attention
head). According to the policy outputted by the
Actor network, a corresponding pruning mask M
is generated to determine whether each neuron or
attention head should be pruned. The process of
generating the pruning mask is as follows:

M = Bernoulli(πθ(at | st)) (8)

where πθ(at | st) is the probability distribution
outputted by the Actor network. The Bernoulli
function generates a binary vector M , where each
element represents the operation on the correspond-
ing neuron or attention head (1 for retain, 0 for
prune).

4.2.3 Algorithm Updates
In the pruning task, the advantage function calcu-
lates the expected gain or loss after performing
pruning operations. This metric is used in the PPO
algorithm to compute policy gradients, guiding the
Actor network to update its policy to maximize
long-term cumulative rewards. The formula for the
advantage function is:

A(st, at) = yt − Vω(st) (9)

where yt represents the expected cumulative re-
ward after taking action at in state st, and Vω(st) is
the estimated state value function outputted by the

Critic network, indicating the expected cumulative
reward in state st.

In the pruning task, the PPO algorithm updates
the Actor network parameters by maximizing the
objective function of proximal policy optimization
before and after policy updates. The primary goal
of the Actor network is to generate a probability
distribution for pruning decisions to optimize the
performance or efficiency of the neural network.
Specifically, the PPO algorithm first computes the
importance sampling ratio rt(θ) between the new
and old policies:

rt(θ) =
πθ(at | st)
πθold(at | st)

(10)

where πθ(at | st) and πθold(at | st) denote the
probabilities of taking action at under state st for
the new and old policies, respectively.

The objective function of PPO aims to maximize
the advantage function A(st, at), while constrain-
ing the policy update magnitude through a clipping
function ρclip(rt(θ)). The formula is as follows:

JCLIP(θ) = E(st,at)∼πθold

[
min(rt(θ)A(st, at), ρclip(rt(θ))A(st, at)

]

(11)
By maximizing the objective function JCLIP(θ),

we effectively update the Actor network parameters
θ to optimize pruning decision strategies.

In the PPO algorithm, Actor network parameter
θ is updated using policy gradient methods with
the update formula:

θ ← θ + σA∇θJ(θ) (12)

where σA is the learning rate of the Actor network.
The Critic network also updates its parameter

ω to more accurately estimate the performance
change of the neural network after pruning opera-
tions. The update formula for the Critic network
is:

ω ← ω − σC∇ωL(ω) (13)

where σC is the learning rate of the Critic network.
In each iteration, the Actor network determines

pruning probabilities for each neuron using current
model gradient information, guiding network struc-
ture evolution. Simultaneously, the Critic network
assesses expected model performance post-pruning,
balancing exploration and efficiency. Despite ini-
tial mask imperfections, the PPO algorithm reduces
reliance on single Fisher information, enhancing
method effectiveness by analyzing intra-layer inter-
actions. This adaptive approach optimizes perfor-
mance iteratively throughout pruning.
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4.3 CG²MT(Conjugate Gradient Squared
Mask Tuning)

In the PPOM stages, to simplify the search dur-
ing the model pruning process, the mask values
are strictly constrained to 0 or 1. As the process
advances, this restriction is gradually relaxed, the
non-zero variables in the mask can be adjusted to
any real number, with the objective of restoring
the accuracy of the pruned model by fine-tuning
the mask variables. Nonetheless, when the least
squares method is used for solving, numerical in-
stability may be encountered, especially when fac-
ing extremely unstable or ill-conditioned problems.
To address such challenges, the CGS solver pro-
vides an optimization strategy for efficiently solv-
ing asymmetric matrix problems. This solver per-
forms double the computations in each iteration
and squares the residuals, which not only acceler-
ates convergence but also enhances the stability of
the algorithm.

In our framework, we utilize the CGS solver to
adjust the mask variables in the pruned model to
minimize the reconstruction errors between differ-
ent layers. The specific operations are as follows:
Starting from the first layer of the model, we use
the remaining heads or filters after pruning to recon-
struct the output activations of the original model.
This process can be formally represented by the
following mathematical formula:

argmin
ml

∥x+ layer(x;ml)− (x′ + layer(x′; 1))∥22
(14)

where x and x′ are the inputs to the pruned and
original model layers, respectively, and layer can
be either MHA or FFN. Furthermore, we simplify
this problem into a CGS solver problem, expressed
by the following formula:

argmin
ml

∥Aml − b∥22 (15)

where vector b represents the difference between
the output activations of the two models. Matrix
A represents the output activations of the heads or
filters pruned by a binary mask.

Considering the large scale of matrix A, direct
application of CGS solver might lead to numerical
stability issues. Therefore, we reparameterize the
CGS solver problem and transform it into a damped
problem, enhancing the stability of the solution
by fixing the damping value at 1. The formula is
expressed as:

argmin
rl
∥Arl +A · 1− b∥22 (16)

where ml = 1 + rl. Additionally, to prevent
the adjusted masks from negatively impacting the
model’s accuracy, we restrict the range of the ad-
justed mask variables to between [−10, 10]. If we
find that the mask of any layer exceeds this range,
we discard that layer’s mask and cease further mask
adjustments.

Algorithm 1 CGS Solver Iterative Mask Optimiza-
tion Algorithm

1: Initialize: Start with an initial guess x0, com-
pute the initial residual r0 = b − Ax0, set
p0 = r0, initialize step size coefficient α0 = 0,
auxiliary variables u0 = 0, v0 = Ap0, and r0
is the initial direction vector for iteration.

2: Iteration step: For each iteration k =
0, 1, 2, . . . until convergence criteria are met.

3: Compute step size coefficient: αk =
rTk rk
vTk vk

4: Update auxiliary variable: qk+1 = uk − αkvk
5: Update solution vector: xk+1 = xk +

αk (qk+1 + uk)
6: Update residual vector: rk+1 = rk −

αk (qk+1 + uk + vk)
7: Check for convergence: If ∥rk+1∥ is small

enough, stop the algorithm.
8: Calculate correction coefficient: βk =

rTk+1rk+1

rTk rk
9: Update another auxiliary variable: uk+1 =

rk+1 + βkqk+1

10: Update direction vector: vk+1 = Auk+1

This iterative process starts from the first layer of
the neural network and progresses to the final layer,
ensuring that while model parameters are reduced,
performance loss is minimized as much as possi-
ble. Each iteration entails precise tuning of the
mask variables, with the goal of preserving accu-
racy while pruning the model architecture. This in-
tricately crafted optimization process enables us to
strike a fine balance between the model’s complex-
ity and performance, guaranteeing that the pruned
model maintains accuracy levels comparable to
those of the original model while streamlining its
structure.
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Table 1: G-pruner compares its accuracy against the baseline model under various FLOPs constraints.

BERTBASE

Method QQP MNLI SST-2 QNLI SQuAD1.1 SQuAD2.0

FLOPs 60% 65% 70% 60% 65% 70% 60% 65% 70% 60% 65% 70% 60% 65% 70% 60% 65% 70%

Baseline 87.40 87.55 87.71 80.52 81.54 81.52 90.50 90.91 91.30 87.04 87.46 87.92 83.82 84.34 84.89 72.29 72.88 73.41
G-pruner 90.63 90.84 90.98 82.87 83.41 83.92 92.89 93.22 93.50 90.50 90.82 91.10 87.52 88.05 88.57 78.31 78.62 78.93

+3.23% +3.29% +3.27% +2.35% +2.87% +2.40% +2.39% +2.31% +2.20% +3.46% +3.36% +3.18% +3.70% +3.71% +3.68% +6.02% +5.74% +5.52%

DistilBERT

Method QQP MNLI SST-2 QNLI SQuAD1.1 SQuAD2.0

FLOPs 60% 65% 70% 60% 65% 70% 60% 65% 70% 60% 65% 70% 60% 65% 70% 60% 65% 70%

Baseline 85.92 86.32 86.71 78.83 79.25 79.64 88.60 88.82 89.00 84.90 85.06 85.41 80.12 80.73 81.46 62.00 62.35 62.71
G-pruner 89.20 89.55 89.93 81.05 81.49 81.89 90.85 91.08 91.23 88.20 88.44 88.65 83.22 84.03 84.76 67.29 67.64 67.93

+3.28% +3.23% +3.22% +2.22% +2.24% +2.25% +2.25% +2.26% +2.23% +3.30% +3.38% +3.24% +3.10% +3.30% +3.30% +5.29% +5.29% +5.22%

Figure 2: Based on the BERTBASE model, we compare the performance of our pruning method with several
existing structured pruning techniques.

5 Experiments

5.1 Experimental Setup

Datasets and Pretrained models. Our research
utilizes PyTorch v1.9.1 and Hugging Face’s Trans-
formers v4.12.0. Experiments are conducted on a
single NVIDIA GeForce RTX 3090 GPU for effi-
ciency and result reproducibility. We evaluate our
pruning method on popular benchmarks: GLUE
for tasks like QQP (364K), SST-2 (67K), MNLI
(392K), and QNLI (105K), and SQuAD1.1 (88K)
and SQuAD2.0 (130K) for question-answering.
We focus on BERTBASE and DistilBERT models.

Competitors and and Performance Compari-
son. In our research, we conduct detailed compar-
isons of our pruning method with several domain-
specific retraining-free algorithms: KCM Nova
et al. (2023), Kwon et al. (2022), and K-prune Park
et al. (2023). Additionally, we compare against
recent retraining-based algorithms like Flop Wang
et al. (2019), SLIP Lin et al. (2020), Sajjad et al.
Sajjad et al. (2023), EBERT Liu et al. (2021b), and
DynaBERT Hou et al. (2020b). These comparisons
focus on performance metrics under various FLOPs
constraints. Given the slight variations in baseline
accuracy among these papers, directly comparing
the absolute accuracy of pruned models is chal-
lenging. To facilitate effective comparisons, we
adopt accuracy degradation (i.e., the difference in
accuracy between pruned and original models) as

the primary evaluation metric. Regarding pruning
efficiency, our focus is primarily on performance
under a 60% FLOPs constraint.

Baseline Configuration. We use BERTBASE
and DistilBERT as our baseline models, maintain-
ing their original architectures and configurations.
For pruning, we randomly select 2,000 samples
from their training sets to ensure swift and efficient
processing, avoiding overfitting while preserving
model accuracy. We evaluate accuracy on GLUE
tasks and F1 score on SQuAD tasks. To ensure
reliable results, we conduct experiments with ten
random seeds and report average outcomes.

5.2 Accuracy Comparison

As shown in Figure 2, while all methods inevitably
sacrifice some degree of accuracy when reducing
FLOPs, our approach exhibits the least accuracy
degradation in most cases. Particularly under more
lenient FLOPs constraints, its performance advan-
tage becomes more pronounced. This suggests
that at the same pruning cost, our method achieves
significantly higher accuracy compared to other al-
gorithms. In other words, if we can maintain the
same level of accuracy as other algorithms, we can
perform more extensive pruning operations.

As shown in Table 1, we compare the accuracy
of BERTBASE and DistilBERT models against the
baseline model under different FLOPs constraints.
The results indicate a significant improvement in
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Figure 3: Under a 60% FLOPs constraint, the ac-
curacy of compressed models is compared with the
time cost required for pruning.

Figure 4: Despite a strict 1% maximum allowable
drop in accuracy,BERTBASE achieves 60–70% of the
original FLOPs for all tasks.

accuracy with G-Pruner. Particularly, under a 60%
FLOPs constraint, the model achieves a 6.02%
higher F1 score on the SQuAD2.0 task compared
to the baseline model.

5.3 Speed Comparison

As shown in Figure 3, we evaluate the cost-
effectiveness of each pruning algorithm by com-
paring the model accuracy at a 60% compression
rate on the MNLI and QNLI datasets and the time
required for pruning (measured in hours). Notably,
G-pruner not only shows higher accuracy than other
methods in all experimental settings but also signif-
icantly reduces pruning costs, by up to 1124×.

5.4 FLOPs

As illustrated in Figure 4, we further analyzed the
accuracy variations of BERTBASE and DistilBERT
under different FLOPs constraints. Our analysis
demonstrates that with just a 1% decrease in accu-
racy, BERTBASE maintains 60-70% of its original
FLOPs across all tasks.

5.5 Ablation Studies

As shown in Table 2, we conducted ablation stud-
ies on the PPOM and CG²MT enhancement mod-

Table 2: The ablation study, the accuracy results
under the 60% FLOPs constraint.

Accuracy(%)

QQP MNLI SST-2 QNLI Avg. Diff

Mask search 87.40 80.52 90.50 87.04 -
+ PPOM 89.84 81.87 91.25 89.33 +1.70
+ CG²MT 89.67 81.58 91.66 89.07 +1.63
+ PPOM + CG²MT 90.63 82.87 92.89 90.50 +2.85

Pruning Time(s)

QQP MNLI SST-2 QNLI Avg. Diff

Mask search 30.21 31.44 52.45 53.38 -
+ PPOM 40.15 41.57 63.44 64.52 +10.55
+ CG²MT 9.07 10.58 16.56 16.47 -28.70
+ PPOM + CG²MT 13.43 14.55 21.21 21.03 -24.31

ules. While maintaining 60% of FLOPs, we set
mask search as the baseline pruning method and
then compared it with the addition of PPOM and
CG²MT modules. The results indicate that intro-
ducing the PPOM module slightly reduces model
speed, but adjusting the CG²MT module signifi-
cantly reduces the time required for model pruning.
Additionally, both PPOM and CG²MT modules sig-
nificantly improve accuracy. For instance, in the
QNLI task, the CG²MT module increases the ac-
curacy of the BERTBASE model by 2.03%, while
the CG²MT module shows a more pronounced im-
provement, boosting accuracy by 2.29%.

6 Conclusion

In this work, we introduce a structured pruning
algorithm named G-Pruner, which achieves high-
precision pruning without the need to retrain Trans-
former models. By incorporating two novel tech-
niques, PPOM and CG²MT, we effectively address
the shortsightedness problem commonly encoun-
tered in traditional methods when assessing the
importance of attention heads and feed-forward
neural networks. Simultaneously, our approach
significantly optimizes the iterative process, re-
ducing numerical instability during computation
and achieving faster convergence. Under the same
FLOPs constraints, G-Pruner significantly outper-
forms all existing pruning techniques in pruning
time without sacrificing model accuracy.
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