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Abstract

To predict upcoming text, language models
must in some cases retrieve in-context infor-
mation verbatim. In this report, we investigated
how the ability of language models to retrieve
arbitrary in-context nouns developed during
training (across time) and as language mod-
els trained on the same dataset increase in size
(across scale). We then asked whether learn-
ing of in-context retrieval correlates with learn-
ing of more challenging zero-shot benchmarks.
Furthermore, inspired by semantic effects in
human short-term memory, we evaluated the
retrieval with respect to a major semantic com-
ponent of target nouns, namely whether they
denote a concrete or abstract entity, as rated by
humans. We show that verbatim in-context re-
trieval developed in a sudden transition early in
the training process, after about 1% of the train-
ing tokens. This was observed across model
sizes (from 14M and up to 12B parameters),
and the transition occurred slightly later for the
two smallest models. We further found that the
development of verbatim in-context retrieval is
positively correlated with the learning of zero-
shot benchmarks. Around the transition point,
all models showed the advantage of retrieving
concrete nouns as opposed to abstract nouns.
In all but two smallest models, the advantage
dissipated away toward the end of training.

1 Introduction

In language models (LMs), successful prediction
of upcoming words depends on in-context informa-
tion. For example, when given the context prompt
“The novel’s plot and symbolism are centered
around three objects: a centipede, a parachute,
and a waterfall. The first and most important ob-
ject in the list is the ___”, an LM must retrieve the
noun (centipede) out of all in-context tokens to cor-
rectly predict the continuation. In human cognitive
science, this ability to flexibly retrieve items from
recent context is known as short-term memory and
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Figure 1: Overview of the approach and experiments.

is believed to be the core computation underlying
human cognition (Baddeley, 2003).

Recently, Armeni et al. (2022) showed that a
transformer language model (GPT-2, Brown et al.,
2020) develops such flexible short-term memory —
it was able to retrieve the identity and ordering of
lists of arbitrary nouns from recent context (Fig.
1, A), even though retrieval of arbitrary in-context
information is not the explicit objective of LMs (as
opposed to dedicated models of short-term memory,
e.g. Oberauer et al. 2018). Yet, studying retrieval
in a single fully-trained model on arbitrary nouns
neglects three further dimensions of the capacity:
how it is learned, how learning of this dedicated
capacity relates to models’ learning of other tasks,
and the semantics of retrieved nouns.

First, studying learning trajectories of LM ca-
pacities offers complementary insights to study-
ing only performance of fully-trained models (e.g.



Chen et al., 2024). Previous work on LM learning
trajectories showed that transformers learn next-
token prediction by undergoing a sudden transition
(“phase change”) early during training, which co-
incides with the development of attention heads
that attend to repeated tokens (Olsson et al., 2022).
Does verbatim retrieval follow a similar learning
trajectory?

Second, the ability to retrieve and predict in-
context tokens verbatim (i.e. identity-based match-
ing) can be viewed as a rudimentary form of the
more flexible zero-shot learning, where the rele-
vant in-context information is not necessarily given
verbatim and must possibly be retrieved based on
fuzzy, similarity-based matching (Olsson et al.,
2022). How does successful learning of verbatim
retrieval relate to LM’s zero-shot performance on
more challenging benchmark tasks?

Third, while the successful retrieval of arbitrary
nouns underscores the flexibility of transformer
short-term memory, this approach neglects that the
lexicon of natural language is not a set of unorga-
nized, arbitrary words — instead, it has semantic
structure. Two prominent semantic categories are
concrete and abstract nouns. Concrete nouns (e.g.
“hammer”) have sensory referents, whereas abstract
nouns (e.g. “justice”) do not have a straightforward
sensory component. Word concreteness affects
human cognitive processing. Children typically ac-
quire concrete words, especially nouns, earlier than
abstract words (Gleitman et al., 2005). In certain
short-term memory paradigms, humans are better
at recalling concrete than abstract words (Taylor
et al., 2019). Importantly, the two word categories
differ also in their distributional properties: con-
crete words occur in a semantically narrower range
of contexts compared to abstract words (Schulte im
Walde and Frassinelli, 2022). Is the transformer re-
trieval affected by whether nouns refer to concrete
vs. abstract entities?

To address these questions, we evaluated ver-
batim in-context retrieval on the Pythia suite of
language models (Biderman et al., 2023). Lever-
aging the fact that the suite includes pretrained
LMs ranging from 14M to 12B parameters in scale
and their intermediate training checkpoints across
the entire learning epoch, we evaluated how re-
trieval develops over the course of training and
across model sizes (Fig. 1, B and C). Addition-
ally, the Pythia suite contains zero-shot evaluations
on various benchmarks for each LM checkpoint.
To test how in-context retrieval relates to LM’s

zero-shot performance, we correlated the learning
trajectory of the retrieval against the learning trajec-
tories on zero-shot benchmarks (Fig. 1, D). Finally,
to test the role of noun semantics for in-context
retrieval, we evaluated how noun concreteness, as
rated by human participants (Brysbaert et al., 2014),
affected retrieval over the course of training (Fig.
1, E).

The main contributions of the current work are:
a) In all models, verbatim retrieval developed in a
sudden transition early during training, after about
1% training tokens elapsed, and remained constant
during the rest of training, b) learning of verbatim
retrieval was positively correlated with learning of
zero-shot task performance, and c) around the tran-
sition point, LMs showed an advantage to retrieve
concrete rather than abstract nouns. This advan-
tage almost entirely diminished towards the end of
training.

2 Related work

Several recent studies investigated the behavior of
LMs in domain of either verbatim or in-context
retrieval more generally. Armeni et al. (2022) de-
veloped a paradigm to test the short-term memory
ability (in-context retrieval) of LMs. They showed
that GPT-2 can retrieve the identity and ordering
of repeated arbitrary nouns, but have only tested
a single fully-trained LM and did not investigate
learning trajectories. Vaidya et al. (2023) com-
pared LM (GPT-2) and human word prediction
performance on spans of repeated text. They re-
ported that LMs’ next word prediction performance
diverges from human performance on subsequent
repetitions. They showed that GPT-2 performance
aligned better with humans if its attention heads
had a bias towards recent context. Yu et al. (2023)
investigated in-context retrieval of facts (e.g. re-
trieval of the capital city given a country name)
and how such retrieval was affected by the pre-
training statistics of retrieved facts. They showed
that LMs (Pythia) could override retrieval of (coun-
terfactual) in-context information and instead re-
trieved the fact that has a higher frequency of oc-
currence in training data (e.g., even when given
the in-context counterfactual “The capital city of
Poland is London” they tend to predict the statisti-
cally more likely “Warszaw”).

The current report is also related to the recent
work on LM interpretability and the role of atten-
tion heads in specific forms of retrieval. Several



studies (Elhage et al., 2021; Olsson et al., 2022;
Wang et al., 2023; Yu et al., 2023) have identified
circuits of attention heads that detect repeated in-
context tokens and their previous continuations; the
computations governing the behavior investigated
presently. These studies focused either on how such
attention mechanisms are learned and how they af-
fect generic next-word prediction (Elhage et al.,
2021; Olsson et al., 2022) or how these attention
mechanisms govern the retrieval of proper nouns
as direct objects in sentences (Wang et al., 2022) or
factual knowledge (direct objects, Yu et al., 2023).

Here, we complement these lines of work and
investigate retrieval as the ability of LMs to re-
trieve lists of arbitrary combinations of common
nouns (unlikely seen co-occuring during training)
and their semantic properties.

3 Methods

3.1 Verbatim retrieval paradigm

We used the verbatim retrieval paradigm introduced
by Armeni et al. (2022). Here, LMs process a short
vignette in English where a list of three arbitrary
nouns is repeated twice:

Mary read a list of words: patience, notion,
movie. After the meeting, she took a break and
had a cup of coffee. When she got back, she read
the list again: patience, notion, movie.

We refer to the first list of nouns as original list
and the second one as repeated list. This setup al-
lows us to test how the LM behavior (as reflected
in LM loss, see below) changes as the LM en-
counters the repeated list. The paradigm (retrieval
of arbitrary lists of words) is broadly inspired by
benchmarks for testing models of human working
memory (Oberauer et al., 2018). Whereas human
participants can be tested by just being presented
with lists of nouns alone, our paradigm is format-
ted such that it is more suited to be used as input
to LMs: contextualized in a simple, but plausible
natural language vignette.

3.2 Quantifying verbatim retrieval

Change in repeat loss (Lr) Following Armeni
et al. (2022), we operationalized retrieval as a
change in LM loss on repeated nouns. Specif-
ically, we computed the ratio in LM loss =
− log2 P (wt|w1, ..., wt−1) between each noun in
the original list and its repetition k tokens later:

loss rationoun =
loss(nouni+k)
loss(nouni)

. The loss ratio per
list was obtained by averaging the noun-specific
loss ratios over the three nouns in a list. A loss
ratio < 1 indicates that the loss to the same tokens
has decreased (that is, the LM expected the token
to repeat) and is taken as evidence of verbatim re-
trieval.

To quantify retrieval as increasing with better
performance, we report it as repeat loss change
Lr = 1 − loss ratio, expressed as percentage. In
this way, a 0% change in repeat loss indicates no
retrieval whereas a change towards 100% indicates
evidence towards (perfect) retrieval. Importantly,
repeat loss change is a continuous measure of in-
context retrieval, baselined against the LM loss
at the beginning of the sequence which facilitates
comparison across models (e.g. models that show
different baseline loss as expected over the course
of training and across scale) and across different
types of inputs.

3.3 Language models

Pythia suite To evaluate retrieval over the course
of training and across scale (see Section 3.4 be-
low), we used the publicly-available pretrained LM
checkpoints released as part of the Pythia language
modeling suite (Biderman et al., 2023).1 Pythia is
a suite of decoder-only autoregressive transformer
LMs spanning from 14M to 12B parameters in size
together with 144 intermediate checkpoints stored
during training. The models were trained on the
Pile dataset (Gao et al., 2020), an English-only cor-
pus for training large-scale LMs containing texts
from 22 sources (for example, Common Crawl,
Wikipedia, Project Gutenberg, Books3, arXiv etc.,
see Biderman et al., 2022, for details). The model
checkpoints used in this report were trained on
the version of the dataset containing approximately
300B tokens. For the full architecture and training
details, readers are referred to the original report
(Biderman et al., 2023).

In our experiments, we evaluated the following
model sizes: {14M, 31M, 70M, 160M, 410M, 1B,
6.9B, 12B} at 18 training checkpoints spanning 6
orders of magnitude across the training steps (in
number of training tokens, 106, ..., 1011) from the
initialized to the final fully-trained model2. All

1https://github.com/EleutherAI/pythia
2Specifically we evaluated the checkpoints from the fol-

lowing training steps: {0, 1, 4, 32, 128, 256, 512, 1000, 2000,
3000, 4000, 8000, 10000, 30000, 40000, 50000, 100000,
143000}. A single step contained 2,097,152 tokens (Biderman

https://github.com/EleutherAI/pythia


Task Domain Reference

AI2 Reasoning Challenge (ARC) Multiple choice science exams Clark et al. (2018)
Lambada Discourse-based word prediction Paperno et al. (2016)
LogiQA Logical reasoning Liu et al. (2020)
Massive multitask lang. understanding (MMLU) Exam knowledge across diverse domains Hendrycks et al. (2021)
PiQA Physical common-sense reasoning Bisk et al. (2020b)
SciQ Scientific knowledge Welbl et al. (2017)
Winograd schema challenge (WSC) Common-sense reasoning Levesque et al. (2012)
Winogrande Common-sense reasoning Sakaguchi et al. (2021)

Table 1: The benchmark tasks used to compute in learning trajectory correlations in Fig. 3.

model checkpoints were accessed through the Hug-
gingFace Transformers library (Wolf et al., 2020).

3.4 Experiments

Experiment 1: Retrieval of arbitrary nouns
across time and scale In the first experiment,
word lists in the vignette were constructed by ran-
domly sampling nouns from the Toronto word
pool3 as used in Armeni et al. (2022). Noun lists
in the set (23 lists of 10 nouns) were constructed
such that each noun was tested in all 10 possible
ordinal positions in the list (e.g. “patience, no-
tion, movie”, “notion, movie, patience”, etc.) to
control for any position-specific retrieval effects.
This procedure resulted in the final stimulus set
that contained N = 230 samples of vignettes. In
the present experiment, we used the version of the
stimulus set where the list length was capped at 3
nouns.

Evaluating an LM on the full retrieval evaluation
suite yields one retrieval score (repeat loss change)
per each input vignette. The final retrieval score,
per each training step and per model size, was ob-
tained by taking an average across all (in this case
N = 230) scores. To minimize the potential in-
fluence of outliers in averaging, we used the 20%
trimmed mean (Wilcox and Keselman, 2003) as the
aggregating metric. The results of this experiment
are reported in Figure 2.

Experiment 2: Correlations with zero-shot
benchmark learning. To test how learning of
verbatim in-context retrieval relates to the learning
of zero-shot benchmark tasks assessing text un-
derstanding, we collected the zero-shot evaluation
results on various NLP benchmarks that were avail-
able for the Pythia suite of LMs4. Evaluations were

et al., 2023).
3http://memory.psych.upenn.edu/files/

wordpools/nouns.txt
4https://github.com/EleutherAI/pythia/tree/

main/evals/pythia-v1

available for the following 6 model sizes: {160M,
410M, 1.4B, 2.8B, 6.9B, 12B} and across 27 check-
points5 during training, starting with the initial and
ending with the fully-trained model. All individual
tasks (N = 65) used accuracy as the final metric.
The main groups of tasks used in the experiment
are summarized in Table 1. See Table 3, Appendix
A for the full task list.

For each benchmark task (e.g. Lambada,
SciQ etc.), we computed the correlation ρtraj =
Spearman(Sret, Sbench) between the learning tra-
jectory of the benchmark task Sbench (i.e. task
performance scores across the 27 checkpoints) and
the learning trajectory of our verbatim retrieval ef-
fect Sret (i.e. repeat loss change Lr across the
same 27 checkpoints). The Massive multitask un-
derstanding benchmark (MMLU, Hendrycks et al.,
2021) consists of an array of domain-specific ex-
ams (e.g. marketing, clinical knowledge, nursing)
which are grouped into 4 higher-level categories
(humanities, STEM, social sciences, and ‘other
(business, health, misc.)’, see Table 3, Appendix
A). For these grouped tasks, we first averaged the
learning trajectories per each group and then corre-
lated them with verbatim retrieval effect. We used
the rank-based Spearman correlation coefficient
where a value of 1 indicates a perfect monotoni-
cally increasing relationship between two variables
and is robust to any deviations from normality in
data distributions.

Experiment 3: Effect of noun concreteness on
retrieval. To test for retrieval of concrete and
abstract nouns, we evaluated LMs on the same
paradigm as in the first experiment, but the noun
lists were composed of either concrete or abstract
nouns. We used abstract and concrete English

5Checkpoints corresponding to the following Pythia train-
ing steps were evaluated: {0, 1, 2, 4, 8, 16, 32, 64, 128, 256,
512, 1000, 3000, 13000, 23000, 33000, 43000, 53000, 63000,
73000, 83000, 93000, 103000, 113000, 123000, 133000,
143000}.

http://memory.psych.upenn.edu/files/wordpools/nouns.txt
http://memory.psych.upenn.edu/files/wordpools/nouns.txt
https://github.com/EleutherAI/pythia/tree/main/evals/pythia-v1
https://github.com/EleutherAI/pythia/tree/main/evals/pythia-v1
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Figure 2: Retrieval of arbitrary nouns across time and scale. Each data point represents the 20% trimmed mean
across N = 230 observations, shaded areas/error bars are 95% confidence intervals (bootstrap).

nouns collected by Brysbaert et al. (2014) where
human participants were asked to indicate “how
concrete the meaning of each word is for you” by
rating each noun on a 5-point rating scale ranging
from 1 “abstract (language-based)” to 5 “concrete
(experience-based)”. Each word was rated by at
least 25 participants and an average score across
participants represents each noun’s final rating.

Table 2: The topmost, mid and lowest ranked words and
their concreteness ratings for the concrete and abstract
noun pool.

Concrete Abstract
Rank Word Rating Word Rating

1 whisky 5.00 oneness 1.96
250 canister 4.93 respite 1.77
500 eyebrow 4.85 spirituality 1.07

Concreteness extremes In our experiments, we
used the “concreteness extremes” subset of the
noun pool by Schulte im Walde and Frassinelli
(2022). This subset contained the 500 nouns ranked
as most concrete and 500 nouns ranked as most
abstract. To give an idea, the topmost, mid and
lowest ranked nouns for each category are shown
in Table 2. As in Experiment 1, each noun was
presented in all ordinal positions to rule out any
position-specific effects. Our final stimulus set con-
tained, for each semantic category, N = 498 input
sequences with lists of 3 nouns.

4 Results

4.1 Verbatim retrieval across time and scale.

Verbatim retrieval learned early in training
across model sizes. All tested models, from the
smallest (14 million parameters) to the largest (12
billion parameters), learned to retrieve verbatim
repeated nouns (Fig. 2a). At the end of training, all
models above 31 million parameters showed a near
100% repeat loss change, indicating exact retrieval.
The smallest two models (14M and 31M parame-
ters) showed weaker, yet still substantial retrieval
effect (around 80% change in repeat loss).

Inspecting the dynamics of repeat loss change
across training, we see that generally models
learned verbatim retrieval early. After about 1B
tokens (0.3% of total dataset), the change in repeat
loss starts increasing and, for all larger models,
plateaus at approximately 4B tokens (less than 5%
of the total tokens in the dataset). The smallest two
models had a slower learning curve as evidenced
in the fact that their repeat loss change plateaued
later, after roughly 20B tokens.

To confirm that reduction in repeat loss was due
to retrieval of the original nouns and not due to
LMs simply having more context when encounter-
ing nouns at the end of sequence or due to mem-
orization of lists from training data, we evaluated
the loss change in the same paradigm but where the
nouns in the second list were unrelated to the nouns
in the original list (i.e. there were no matching in-
context nouns to retrieve). Fig. 6 in Appendix A.1
confirms that no important loss change occurred
in this condition (loss change overall remained <
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10%), replicating the GPT-2 results by Armeni et al.
(2022) and indicating that the change of loss was
specific to verbatim retrieval of tokens from con-
text.

Retrieval improves for nouns deeper in the list.
In the previous result, we reported repeat loss
change aggregated over all three nouns in the list.
Yet, nouns deeper in the list have an advantage be-
cause at that point the LM has seen strong evidence
of repetition. Does retrieval performance depend
on the position in the list?

In Fig. 2b, we report repeat loss change of fully-
trained models broken down per noun position
within the list. Retrieval indeed becomes better
later in the list. While all models show this trend,

the position-specific advantage is more pronounced
for the smaller models (14M, 31M, and 70M). For
example, the 70M model shows 62% repeat loss
change on the first and a 95% change on the last
token in the list. This indicates that subsequent
repetitions reinforce the evidence that the model
has entered a repeated list and is in line with recent
results where next-word prediction performance of
GPT-2 improved on spans of repeated text (Vaidya
et al., 2023).

4.2 Correlations with benchmark task
learning

Learning of verbatim retrieval is positively cor-
related with zero-shot performance on more
challenging benchmark tasks. In Figure 3 we
show the results of the correlation experiment. Gen-
erally, most tasks showed a positive correlation
with the learning of verbatim retrieval. The correla-
tions and their reliability, as well as the benchmark
accuracy itself, tended to increase as the models
grow in size, showing that the larger models were
more robust learners overall. The highest correla-
tions were observed for the Lambada, PiQA, SciQ,
and ARC (easy) benchmarks. For example, the
largest 12B model (Figure 4) showed a near per-
fect rank correlation (ρ ≃ 0.95) on the four tasks.
These are also the tasks where the model showed
generally the highest performance accuracy at the
end of training.

For the Winograd schema challenge, LogiQA,
and the hard version of the AI2 reasoning chal-
lenge, the correlation estimates were generally un-
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stable, likely because the performance on these
benchmarks was lower to begin with. That is, even
though all the models were able to retrieve ver-
batim in-context tokens, they failed to solve the
respective benchmarks in zero-shot settings.

4.3 Effect of noun concreteness on retrieval

Concreteness retrieval advantage observed early
during training. Overall, all models learned to
retrieve either abstract or concrete nouns. Repeat
loss change at the end of training (on either re-
peated concrete or abstract nouns) was generally
high and ranged from 73% (14M model) to around
95% for models larger than 160M parameters (Fig.
5a). The 14M, 31M and 70M models showed better
retrieval for concrete nouns. The effects, although
detectable, were small — on average the relative
loss change for concrete nouns is greater by be-
tween 2% and 6% compared to abstract nouns (see
also Fig. 7, Appendix A.2 for visualizations of full
distributions).

To test whether nouns semantics affected re-
trieval during training, we computed the difference
in average repeat loss change between concrete and
abstract nouns ∆Lr = L̄r

concrete− L̄r
abstract across

the training checkpoints. The difference curves
in Fig. 5b show that around the transition point
(1-2B tokens intro training), when LMs begin to
learn the retrieval, concrete nouns showed 7-17%
greater change in repeat loss meaning they were
easier to retrieve than abstract nouns. The con-
creteness advantage occurred in all models and the
smallest models (14 and 70M parameters) showed
the largest effects.

5 Discussion

We showed that transformer LMs learned verbatim
retrieval in a sudden transition, early in training,
with the performance remaining stable over the
course of training. The sharp onset of retrieval
capacity around 1-2B tokens in training (approx-
imately 1% total training data) is in line with the
results reported by Olsson et al. (2022) who showed
that the LM loss over in-context tokens started drop-
ping suddenly 1-2% tokens in training (between
2.5B and 5B tokens). Once the learning change
had occurred, the LMs became better at predicting
repeated text — which is what was tested in the
current work.

The learning trajectory of verbatim retrieval also
coincides with the LMs’ learning trajectories on
zero-shot benchmarks. This was reflected in the
generally high and robust correlations across train-
ing for select tasks in our results. Specifically, an
abrupt change around 1B tokens in training was
observed in the task of predicting the last token of
a narrative passage (Lambada, Paperno et al. 2016),
multiple choice exams (SciQ, Welbl et al. 2017,
ARC Reasoning Challenge, Clark et al. 2018), and
in the Winogrande benchmark (Sakaguchi et al.,
2021) which requires pronoun resolution based on
common-sense reasoning.

Retrieving in-context information (e.g. lists of
nouns) verbatim is a basic computation needed for
solving a zero-shot multiple-choice task: given a
prompt with only in-context instructions (that is,
the question and the list of possible answers), an
LM system must index and retrieve (i.e. increase



the probability of) the token representing the cor-
rect answer. In this sense, retrieving the correct
in-context tokens is a necessary step. It is evident,
however, that it is not sufficient and that verbatim
retrieval must be learned along with other compu-
tations.

Consider the Lambada and Winogrande bench-
marks, where the task is to predict the passage- or
sentence-final word which itself is not predictable
on the basis of immediately preceding words. To
take an example from the Winogrande benchmark:
“Robert woke up at 9am while Samuel woke up at
6am, so he had less time to get ready for school”6.
The task is to answer who the pronoun “he” refers
to (Robert or Samuel). To this end, the LM must
first establish that 9am is later than 6am — a dis-
tinct computational step indicating that “he” refers
to “Robert” — and only then retrieve the name to
be predicted as the response.

In the final experiment, we show that around the
transition point (after ≃1B training tokens), when
the capacity for verbatim retrieval occurs, noun
semantics affect the retrieval — models showed
an advantage to retrieve concrete, as opposed to
abstract nouns. Why would LM in-context retrieval
be sensitive to noun semantics?

In humans, concrete words, especially nouns,
tend to be acquired earlier in development com-
pared to abstract words (Gleitman et al., 2005).
This advantage is presumably conferred by hearing
words for concrete objects and concurrently observ-
ing or interacting with the objects the heard words
refer to in the world. LMs as text-based statistical
learners by construction have no direct access to
word semantics via experience or text-external data
(Bisk et al., 2020a). Nevertheless, text statistics,
governed by human language use, can serve as a
cue to the semantic structure of language — in
this case, the lexicon. It is an empirical question
whether and what aspects of the linguistic system
are in fact recovered by LMs in the service of the
next-word prediction objective and subsequently re-
flected in the LM behavior or internal mechanisms
(Manning, 2022; Pavlick, 2023).

We speculate that earlier in training, LMs are
leveraging the fact that concrete nouns tend to
be used in more predictable, less diverse contexts
(Schulte im Walde and Frassinelli, 2022) where
presumably token repetition would be more likely
to occur. However, once the LMs and the training

6https://winogrande.allenai.org/

compute scale in size, this distributional difference
no longer confers an important advantage for re-
trieval. The phenomenon of concreteness advan-
tage early, but not later in training underscores the
general notion that with the increasing amounts of
training data, LMs as machine learning systems
become incommensurate with human learners (see
also Vaidya et al., 2023), who operate on the or-
der(s) of magnitude smaller amount of learning
data, at least in terms of number of words — recent
estimates point to around 100M words by adoles-
cence (Warstadt and Bowman, 2022).

Future work. In this study we investigated re-
trieval across a diverse set of nouns, and broken
down by a core semantic dimension. However,
LMs are statistical learners. A dimension of future
work will be to disentangle the learning sources
that LMs leverage to perform retrieval. In a recent
study, Yu et al. (2023) showed that pretraining fre-
quency can override the retrieval of counterfactual
in-context information. An LM is more likely to
predict a proper noun that was frequently occur-
ring in pretraining, e.g. “Warszaw”, even when the
counterfactual in-context prompt suggests it should
retrieve a different name ( “The capital of Poland
is London. What is the capital of Poland?”). Our
present results do not speak directly to this issue
as our paradigm does not involve counterfactuals.
It is based on lists of arbitrary nouns that unlikely
frequently co-occurred in pretraining data. How-
ever, it would be important to establish whether
and to what extent the in-context retrieval in gen-
eral is governed by the pretraining frequencies of
individual common nouns and to what degree this
capacity is robust to pretraining statistics.

Finally, our measure of verbatim retrieval is a
behavioral measure insofar that it only takes into ac-
count the output of the LM. The field of model inter-
pretability has seen an increased interest in recent
years and aims to reverse engineer the computa-
tions of LMs (e.g. Olsson et al., 2022; Elhage et al.,
2021; Wang et al., 2023; Zhang and Nanda, 2023,
among others). Future work could focus on investi-
gating the internal mechanisms and their causal role
in transformer in-context retrieval. There is con-
sistent evidence suggesting that LMs develop ded-
icated attention heads (Olsson et al., 2022; Wang
et al., 2023; Yu et al., 2023; Vaidya et al., 2023)
governing the retrieval capacity. Whereas this line
work frequently focuses on interpretability for prac-
tical purposes (e.g. better control of LM output in

https://winogrande.allenai.org/


downstream applications), it would be valuable to
simultaneously develop a more fine-grained com-
putational characterization of LM mechanisms in-
terpretable with respect to cognitive science con-
structs like the short-term memory (Cowan, 2017).

In cognitive neuroscience, language features de-
rived from transformer LMs (contextualized word
embeddings) are currently among the best perform-
ing when it comes to predicting brain data recorded
in human language processing tasks (e.g. Schrimpf
et al., 2021; Goldstein et al., 2022; Caucheteux and
King, 2022). However, these high-dimensional fea-
tures and the resulting statistical fits are frequently
hard to interpret. Coupled with loose theoretical
motivations such high predicting models can be
right for the wrong scientific reasons (see e.g. An-
tonello and Huth, 2023). A better characterization
of LM mechanisms in terms of cognitive capacities
(e.g. Lakretz et al., 2022) would be instrumental
in understanding how and why LMs succeed in
modeling human brain and cognitive data.

6 Conclusion

Retrieving information from context is an impor-
tant capacity of transformer language models. In
this work, we investigated how the ability to re-
trieve repeated nouns from context develops across
LM training and scale and its dependence on
whether the retrieved nouns denote concrete or ab-
stract entities. Retrieval was learned early in train-
ing across scale and once learned, it remained sta-
ble. Retrieval learning was robustly correlated with
learning of zero-shot task performance. Around the
point when the in-context retrieval was learned, the
models showed advantage to retrieving concrete
as opposed to abstract nouns and the advantage
dissipated as the models saw more training data.

7 Limitations

There are certain limitations to current work. While
our test suite was designed to test arbitrary target
nouns, we did not investigate whether and how well
LM retrieval generalizes to other parts of speech
(say, to verbs, adjectives). Similarly, the currently
reported paradigm relies on a single vignette, it
would be important to use a more diverse set of vi-
gnettes to confirm that the results generalize across
topic domains. However, given the robustness and
size of the effect here and in past reports by others,
it is likely that the finding would generalize across
a diversity of vignettes. Finally, our results are

limited to English, which currently the dominant
language in terms of available resources in lan-
guage technologies. Extending the study to other
languages with, for example, different grammatical
properties (e.g. richer noun morphology) or less
resources would be a welcome effort.

Data and Code Availability

The code used to run the experiments is available
at: https://github.com/KristijanArmeni/
verbatim-memory-in-NLMs
The materials and data used in the experiments are
available at: https://doi.org/10.17605/OSF.
IO/A6GSW

Computational requirements

Experiments described in this report were run
on the A100 Nvidia GPU nodes on an high-
performance computing cluster (HPC). To evaluate
the smallest (14M) model, we requested 8GB of
RAM and the evaluation completed on the order of
a few minutes. RAM requirements were progres-
sively increased to evaluate larger models. For the
largest (12B) model, we requested 80GB of RAM
and the evaluation completed in about 30 minutes.
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Figure 6: Evaluating repeat loss change in a control condition where there were no verbatim repeated in-context
nouns (hence, no retrieval was possible). Each data point shows the 20% trimmed mean across N = 230
observations, shaded areas/error bars are 95% confidence intervals (bootstrap).
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Figure 7: Data distributions comparing retrieval scores for concrete and abstract nouns for 4 smallest models from
Fig. 5. Each violin plot KDE density estimates over N = 498 data points. The inner lines show the first, second
(median) and the third quartiles of the distribution.

A.2 Abstract vs. concrete data distributions
The violin plots in Fig. A.2 show the distributions
underlying respective bar plots in Fig. 5a.

A.3 Zero-shot benchmark tasks overview
The full list of benchmark tasks used in Experiment
2 is provided in Table 3.



Table 3: Benchmark categories for the Pythia models. The Task Key column corresponds to the task key used in the
Pythia evaluation files (https://github.com/EleutherAI/pythia/tree/main/evals/pythia-v1).

Benchmark Name Benchmark Subcategory Task Key

1 ARC (challenge) None arc_challenge
2 ARC (easy) None arc_easy
3 Lambada (OpenAI) None lambada_openai
4 LogiQA None logiqa
5 MMLU MMLU (Soc. sci.) mmlu_high_school_government_and_politics
6 MMLU MMLU (Soc. sci.) mmlu_sociology
7 MMLU MMLU (Other) mmlu_business_ethics
8 MMLU MMLU (Other) mmlu_medical_genetics
9 MMLU MMLU (STEM) mmlu_high_school_physics
10 MMLU MMLU (Other) mmlu_professional_medicine
11 MMLU MMLU (Other) mmlu_miscellaneous
12 MMLU MMLU (STEM) mmlu_college_physics
13 MMLU MMLU (Humanities) mmlu_professional_law
14 MMLU MMLU (Humanities) mmlu_high_school_world_history
15 MMLU MMLU (Other) mmlu_global_facts
16 MMLU MMLU (Humanities) mmlu_high_school_us_history
17 MMLU MMLU (Other) mmlu_marketing
18 MMLU MMLU (Soc. sci.) mmlu_high_school_microeconomics
19 MMLU MMLU (Other) mmlu_college_medicine
20 MMLU MMLU (Soc. sci.) mmlu_human_sexuality
21 MMLU MMLU (STEM) mmlu_electrical_engineering
22 MMLU MMLU (STEM) mmlu_elementary_mathematics
23 MMLU MMLU (STEM) mmlu_high_school_chemistry
24 MMLU MMLU (Other) mmlu_professional_accounting
25 MMLU MMLU (Humanities) mmlu_world_religions
26 MMLU MMLU (STEM) mmlu_machine_learning
27 MMLU MMLU (Soc. sci.) mmlu_high_school_psychology
28 MMLU MMLU (Humanities) mmlu_moral_scenarios
29 MMLU MMLU (STEM) mmlu_high_school_computer_science
30 MMLU MMLU (Soc. sci.) mmlu_security_studies
31 MMLU MMLU (STEM) mmlu_computer_security
32 MMLU MMLU (Humanities) mmlu_high_school_european_history
33 MMLU MMLU (STEM) mmlu_college_computer_science
34 MMLU MMLU (Soc. sci.) mmlu_econometrics
35 MMLU MMLU (STEM) mmlu_college_mathematics
36 MMLU MMLU (Other) mmlu_clinical_knowledge
37 MMLU MMLU (Soc. sci.) mmlu_professional_psychology
38 MMLU MMLU (Other) mmlu_nutrition
39 MMLU MMLU (STEM) mmlu_abstract_algebra
40 MMLU MMLU (Humanities) mmlu_logical_fallacies
41 MMLU MMLU (STEM) mmlu_astronomy
42 MMLU MMLU (STEM) mmlu_high_school_mathematics
43 MMLU MMLU (STEM) mmlu_high_school_biology
44 MMLU MMLU (Soc. sci.) mmlu_high_school_geography
45 MMLU MMLU (Other) mmlu_anatomy
46 MMLU MMLU (Humanities) mmlu_jurisprudence
47 MMLU MMLU (Other) mmlu_management
48 MMLU MMLU (Humanities) mmlu_prehistory
49 MMLU MMLU (STEM) mmlu_college_biology
50 MMLU MMLU (Humanities) mmlu_moral_disputes
51 MMLU MMLU (STEM) mmlu_high_school_statistics
52 MMLU MMLU (Soc. sci.) mmlu_us_foreign_policy
53 MMLU MMLU (Other) mmlu_human_aging
54 MMLU MMLU (STEM) mmlu_college_chemistry
55 MMLU MMLU (Other) mmlu_virology
56 MMLU MMLU (Soc. sci.) mmlu_public_relations
57 MMLU MMLU (STEM) mmlu_conceptual_physics
58 MMLU MMLU (Soc. sci.) mmlu_high_school_macroeconomics
59 MMLU MMLU (Humanities) mmlu_international_law
60 MMLU MMLU (Humanities) mmlu_philosophy
61 MMLU MMLU (Humanities) mmlu_formal_logic
62 PiQA None piqa
63 SciQ None sciq
64 Winogrande None winogrande
65 WSC None wsc

https://github.com/EleutherAI/pythia/tree/main/evals/pythia-v1
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