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Abstract

Evaluation of text generation to date has pri-
marily focused on content created sequentially,
rather than improvements on a piece of text.
Writing, however, is naturally an iterative and
incremental process that requires expertise in
different modular skills such as fixing outdated
information or making the writing style more
consistent. Even so, comprehensive evaluation
of a model’s capacity to perform these skills
and the ability to edit remains sparse. This work
introduces EDITEVAL: An instruction-based,
benchmark and evaluation suite that leverages
high-quality existing and new datasets in En-
glish for the automatic evaluation of editing
capabilities, such as making text more cohe-
sive and paraphrasing. We evaluate several pre-
trained models, which shows that InstructGPT
and PEER on average perform the best, but
that most baselines fall below the supervised
state-of-the-art, particularly when neutralizing
and updating information. Our analysis also
shows that commonly used metrics for editing
tasks do not always correlate well, and that
prompts leading to the strongest performance
do not necessarily elicit strong performance
across different models. Through the release
of this benchmark,1 and a publicly available
leaderboard challenge,2 we hope to unlock fu-
ture work on developing models more capable
of controllable and iterative editing.

1 Introduction

Large pre-trained language models have shown im-
pressive text generation capabilities for a wide va-
riety of tasks such as question answering, textual

1Code and data available at https://github.com/
facebookresearch/EditEval

2https://eval.ai/web/challenges/
challenge-page/1866/overview

entailment, and summarization (Devlin et al., 2019;
Radford et al., 2019; Raffel et al., 2020; Brown
et al., 2020; Zhang et al., 2022; Chowdhery et al.,
2022). However, to date, most work employing
language models has focused on generating im-
mutable text in a single pass. This is in stark con-
trast to the way in which humans develop articles
of text, which is naturally an iterative process of
small steps, each with a precise purpose (Seow,
2002). This is a crucial process because it allows
for analysis of “what’s working, what isn’t, and
what it still needs” and adaptation to these needs
along the way (Jackson, 2022). In many cases, a
needed change may only become apparent after
much of the text is created, such as in the case of
a reorganization or fixing inconsistencies or con-
tradictions (Vardi, 2012). In this way, the current
paradigm of generating text passages in a single
pass can be severely limiting.

Additionally, the current paradigm of contin-
uous left-to-right generation is less controllable
and not flexible to human-in-the-loop collabora-
tion and feedback, and this absence of experienced
human mediation in the writing process can be
highly detrimental to the quality of the final prod-
uct (Greenberg, 2010). While there are some exist-
ing production tools geared towards working with
humans to compose articles and emails, such as
Grammarly3, Smart Compose from Google4 and
text predictions from Microsoft5, a majority focus
on sentence completion rather than iteratively im-
proving upon prior text. A more powerful editing

3https://www.grammarly.com/
4https://www.blog.google/products/gmail/subject-write-

emails-faster-smart-compose-gmail/
5https://insider.office.com/en-us/blog/text-predictions-in-

word-outlook
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Barack Obama and Hillary Clinton were both running for 
the Democratic party nominationcandidate nominees of 
the Democratic party for the 2008 Presidential election. 
On June 3rd, Obama received enough endorsements to 
rightly clinch the nomination. Obama went on to win the 
general election against Republican John McCain and 
became the current44th President of the United States of 
America.

Clinton went on to serve as the 67th United States 
Secretary of State, serving within the Obama 
administration. In the 2016 Presidential election, she 
became the nominee of the Democratic party, becoming 
the first woman to be a nominee of a major U.S. political 
party. Clinton, however, loselost the general election to 
Donald Trump. Clinton’s third memoir, What Happened, 
features an account of her loss in the 2016 election.

Rephrase 
this text 

Make the 
text neutral Update the 

article

Simplify the 
text

Add missing 
information

Fix 
grammar 
errors

The benchmark for text improvements

Figure 1: Examples of instructions for paraphrasing, neutralization, simplification, fluency, and updating information
as well as their corresponding expected edits. For illustrative purposes, we ground these examples in the same
passage, but examples in EDITEVAL follow the format as described in Section 6.

assistant, however, should not only be capable of
providing recommendations for text continuations
but also permit non-sequential development of the
text (Seow, 2002). Editing can be absolutely criti-
cal, for example, if new or missing information or
external citations are required to update the text or
if a reshuffling/rebalancing of text is needed.

In this work, we alternatively promote iterative
text generation and improvement—successive iter-
ations of modular additions and modifications of
the text that are relevant to text editing, such as
making the text clearer and adding missing infor-
mation. Many datasets for natural language tasks
are actually annotated at the sentence or paragraph
level, rather than document or article level, natu-
rally lending well to evaluating iterative edits.

We create EDITEVAL, a benchmark and evalua-
tion suite that leverages high-quality existing and
new datasets for the automatic evaluation of edit-
ing capabilities. Currently, many of these relevant
datasets live in separate packages and are often
formatted in uniquely different ways. EDITEVAL

downloads each dataset from their most recent ver-
sion and standardizes these into a single format
conducive to evaluation. Additionally, we include
popular metrics for each task and a set of human-
generated prompts to robustly measure a model’s
capability in executing the modular task when in-
structed. Figure 1 shows examples of such prompts
and an example of a corresponding edit that we

might expect for each prompt. Using these prompts,
we evaluate and compare several state-of-the-art
language models, such as OPT (Zhang et al., 2022),
GPT-3 (Brown et al., 2020), and PEER (Schick
et al., 2022). In summary, our contributions are as
follows:

1. We identify a set of tasks and datasets rele-
vant to iterative text improvement and pro-
vide a pipeline to download and process these
datasets into a single format.

2. We open-source a publicly available
instruction-based benchmark and leaderboard
for automatic evaluation according to metrics
commonly used for each editing task.

3. We introduce a new dataset, WAFER-INSERT,
for evaluating a model’s capability to update
information, which is based on the WAFER
dataset (Petroni et al., 2022).

4. We provide a comparison of various state-of-
the-art baselines evaluated on EDITEVAL at
the dataset and prompt level.

2 Related Work

Several multitask evaluation benchmarks have
been open-sourced to the community to support
progress in natural language understanding includ-
ing GLUE (Wang et al., 2018), SuperGLUE (Wang

70



et al., 2019), decaNLP (McCann et al., 2018), and
GEM (Gehrmann et al., 2021). These datasets,
however, focus on a broad set of tasks in NLP (e.g.,
question answering, reading comprehension, and
textual entailment). While all of these tasks are crit-
ical to natural language understanding, EDITEVAL

focuses on curating a benchmark for measuring a
model’s capability to improve and edit text.

There are several datasets which focus
on iterative text revisions in the domain of
Wikipedia (Yang et al., 2017; Anthonio et al.,
2020), academic essays (Zhang et al., 2017), and
news articles (Spangher et al., 2022). These works,
however, focus on one particular domain and in
some cases, a particular style like argumentative
writing (Zhang et al., 2017). EDITEVAL, on the
other hand, includes examples from multiple
domains: Wikipedia, Wikinews, news articles, and
arXiv. ITERATER (Du et al., 2022) is perhaps
closet to EDITEVAL in that it provides iterative
tasks from multiple domains, but it has a limited
number of such tasks: fluency, coherence, clarity,
style, and meaning-changed. Because this is a
great starting point, we have included ITERATER
in EDITEVAL, and we additionally develop
prompts for these tasks since ITERATER is not
instruction-based. Moreover, unlike ITERATER,
EDITEVAL includes novel datasets for tasks
such as updating text using new information and
neutralizing the text, which are core components
of editing a factually-correct and unbiased article.

3 The EDITEVAL Benchmark

EDITEVAL is an instruction-based benchmark for
iterative text generation/modification. EDITEVAL

sources existing high-quality datasets—most with
human annotations—containing tasks relevant to
editing. These datasets are combined into a uni-
fied evaluation tool and can be evaluated with any
metric provided in EDITEVAL. A task here refers
to a type of edit (e.g., simplification), and the spe-
cific task dictates which set of prompts to be used
(e.g., simplify this text), the full set of which is
enumerated in Appendix B.

We consider seven editing tasks in EDITEVAL.
The corresponding datasets for each task included
in EDITEVAL are enumerated in Table 1, along
with the size of the dataset in EDITEVAL. For ease
of evaluation, we define a consistent format for
all datasets in the EDITEVAL benchmark. Each
dataset of every task has five core fields: ID, input

Table 1: Tasks, datasets, abbreviations used, and corre-
sponding test size in EDITEVAL. The task type dictates
which set of instructions are used. These are enumerated
in Section B.

Task Dataset Abbrev. Size

Clarity ITERATER ITR-L 1,595
Coherence ITERATER ITR-O 351
Fluency ITERATER ITR-F 942
Fluency JFLEG JFL 1503
Simplification ASSET AST 2,359
Simplification TurkCorpus TRK 2,359
Paraphrasing STS Benchmark STS 419
Neutralization WNC WNC 1,000
Updating FRUIT FRU 914
Updating WAFER-INSERT WFI 4,565

text, gold edits, task type, and reference documents.
The input text is the original text before revision,
and the gold edits are the target edits for that spe-
cific task type. Lastly, the reference documents
provide textual information from external articles
or documents that are relevant to the task. The task
that requires reference documents is updating, and
otherwise, the reference documents field is empty.

The datasets in EDITEVAL were selected if they
test a capability relevant to the art of editing and
contain human-annotated gold edits, if possible.
We also endeavored to include datasets that are
broadly used by the community. The datasets in
EDITEVAL are by no means exhaustive, but the
EDITEVAL framework is flexible such that it can
easily extend to new datasets and metrics in future
versions.

3.1 Fluency, Clarity, and Coherence
In this section, we describe the two datasets that
compose this set of tasks: Fluency (fixing gram-
matical or spelling errors), clarity (making the text
clearer), and coherence (making the text more co-
hesive).

JFLEG JHU FLuency-Extended GUG (Napoles
et al., 2017) focuses only on fluency. JFLEG
is based on the GUG (Grammatical vs Un-
Grammatical) dataset (Heilman et al., 2014), which
is a dataset of sentences originally annotated for
how grammatical the sentence is on a scale of 1
to 4. JFLEG builds upon the ungrammatical sen-
tences in GUG and annotates each sentence with
four corresponding corrected versions.

ITERATER This dataset introduced by Du
et al. (2022) contains both automatically-mined
and human-annotated edits at the sentence and
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document-level. For our benchmark, we only uti-
lize the sentence-level examples with human an-
notations. Additionally, ITERATER has labels for
the intent—the type of edit that produces the tar-
gets, which can be one of six classes: Fluency,
coherence, clarity, style (conveying the writer’s
writing preferences), meaning-changed (updating
or adding new information), and other (none of
the others). We included all classes except style,
meaning-changed, and other. We excluded style
and other because these tasks had roughly 100 or
less test examples, and the definitions were com-
paratively under-specified. We excluded meaning-
changed because the task does not use reference
documents for updating. This dataset is the only
one in EDITEVAL that encompasses multiple tasks,
and we refer to each respective subset using the
abbreviations ITR-F (fluency), ITR-L (clarity), and
ITR-O (coherence).

3.2 Paraphrasing

STSB For paraphrasing, we use the STS bench-
mark from SemEval-2018 (Cer et al., 2017), which
comprises English datasets used in the STS tasks
of SemEval between 2012 and 2017. The selection
of datasets includes text from image captions, news
headlines and user forums. Each example contains
an original sentence, a target sentence, and a simi-
larity score indicating whether the target is a para-
phrase of the original. This dataset is used for clas-
sification or regression, but for EditEval, we utilize
all instances that we are confident are paraphrases,
i.e., have the max similarity score of 5, as targets for
generation evaluation. While other datasets such
as ParaSCI (Dong et al., 2021) exist for paraphrase
generation, these are automatically curated rather
than human annotated, and EDITEVAL strives to
utilize human-annotated datasets where possible.

3.3 Simplification

Simplification can be considered a very similar task
to paraphrasing with the additional constraint that
the output must be simpler than the input. The
datasets we utilize for simplification are TurkCor-
pus (Xu et al., 2016) and ASSET (Alva-Manchego
et al., 2020).

TurkCorpus This dataset, like ASSET, builds
upon the Parallel Wikipedia Simplification
(PWKP) (Zhu et al., 2010). The PWKP dataset
uses the Simple English Wikipedia and Standard
English Wikipedia in parallel to create original-

simplification pairs automatically. However,
several works found PWKP to have a large
proportion of targets that are not simplified or only
partially aligned with the input (Xu et al., 2015;
Amancio and Specia, 2014; Hwang et al., 2015;
Štajner et al., 2015), leading to the creation of a
human-annotated corpus, TurkCorpus. TurkCor-
pus was manually created with eight reference
simplifications for each original sentence in PWKP,
but only used simplifications that are possible
without deleting content or splitting sentences.

ASSET Because TurkCorpus encompassed only
specific kinds of simplifications, this led to the
creation of ASSET, which provides manually-
produced simplifications through a much broader
set of transformations. We include both in EDITE-
VAL, for the sake of comprehensiveness.

3.4 Neutralization

The task of neutralization refers to making the text
more neutral. For example, in the sentence “Obama
was an excellent president who served two terms
from 2008 to 2016” the term excellent violates
Wikipedia’s neutral point of view (POV) policy6.
For information-intensive content like Wikipedia
and news articles in particular, reducing bias is
crucial because bias can be the single largest source
of distrust in the media (Jones, 2019).

WNC We use the Wiki Neutrality Cor-
pus (Pryzant et al., 2020), a collection of
original and de-biased sentence pairs mined from
Wikipedia edits by carefully filtering based on
the editor’s comments. While ideally we would
like to include a human-annotated dataset, to
our knowledge there does not exist a dataset for
de-biasing article content at the sentence level.

3.5 Updating

In this section we describe the task of updating
information which requires references, text from
external sources that are relevant to the particular
task. Because of token-length restrictions, each
external article is chunked into texts of fixed length.
We limit the scope of the task to three chunks, and
we refer to these selected chunks as our reference
documents. These references documents are repre-
sented in the edits by their index in the reference
documents field (e.g., the first would be demarcated

6https://en.wikipedia.org/wiki/Wikipedia:Neutral point of
view
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as [0]), and we discuss below how these reference
documents were selected.

WAFER-INSERT The first dataset for updat-
ing information that we use is the WAFER
dataset (Petroni et al., 2022), which is a dataset
collected from Wikipedia inline citations. Each
instance of the original WAFER dataset contains a
claim, the text surrounding the claim, and a set of
external references, where the task is to choose one
of the references to be cited after the claim. While
the original intention of WAFER was to measure
a system’s capability to choose the correct cita-
tion, EDITEVAL utilizes WAFER for the task of
inserting new information using content from the
reference documents. The examples in the original
WAFER dataset contains an input text and a refer-
ence document, where a sentence (referred to as
the claim) of the input text is factually supported by
the reference. We create WAFER-INSERT, which
differs from WAFER in that the claim is deleted
from the input. The goal here is to derive the orig-
inal claim from the references and insert it back
into the text at the appropriate location. For the ref-
erence documents, we select the top three chunks
from the inline citation chunks that have the highest
scores, using results from the verification engine
introduced in Petroni et al. (2022).

FRUIT In addition to WAFER-INSERT, we in-
clude the FRUIT dataset (Logan IV et al., 2021),
a dataset collected by comparing two snapshots of
a Wikipedia article where one contains updated or
new information. The reference documents were
identified by searching for other Wikipedia articles
that provide evidence to support the update. How-
ever, because there is no certainty that the identified
evidentiary articles support the claim, the authors
of FRUIT created a gold set by employing human
annotation to filter out any new claims that are un-
supported. We include this gold set in EDITEVAL,
and only include reference documents if they actu-
ally appear in the output. Unlike WAFER-INSERT,
the target edit contains not only the updated infor-
mation but also the citation. For EDITEVAL, this
is for verification purposes only, and the citation is
removed when computing the metrics.

4 Metrics

The metrics we included in EDITEVAL are ones
that are (1) shown to have significant correlation
with human judgement for a task in EDITEVAL

and (2) commonly used to benchmark one of the
datasets in EDITEVAL. Below, we discuss some of
the main metrics. Appendix C describes these and
additional metrics in greater detail.

• EM (exact match) is the percentage of ex-
amples for which the performed edit exactly
matches any of the targets. EM-diff is a vari-
ant computed at the diff level.

• SARI Xu et al. (2016) is an n-gram based
metric that averages match scores for three op-
erations: adding, deleting, and keeping words.

• LENS (Maddela et al., 2022) is a recently pro-
posed model-based text simplification metric
that uses an adaptive ranking loss.

• GLEU (Napoles et al., 2015) is a variant
of BLEU frequently used for grammatical
error correction (Grundkiewicz et al., 2019;
Yuan and Briscoe, 2016; Chollampatt and Ng,
2018), where penalties are incurred only when
words are changed in the reference but not in
the output.

• ROUGE (Lin, 2004) is metric that mea-
sures n-gram overlap. UpdateROUGE (Lo-
gan IV et al., 2021), a simple modification
of ROUGE, computes ROUGE only on the
updated sentences rather than the full text.

• BERTScore (Zhang et al., 2019a) which is
based on using the cosine similarity between
the BERT embeddings of the candidate and
reference.

5 Baselines

For each baseline, we use greedy decoding, and
we do not perform any task-specific fine-tuning or
in-context learning. We evaluate on EDITEVAL

using the following baselines:

• GPT-3 (Brown et al., 2020) is a 175B param-
eter pretrained decoder-only model. We eval-
uate GPT-3 through OpenAI’s API.7

• InstructGPT (Ouyang et al., 2022) is a
variant of GPT-3 that was instruction-tuned.
We evaluate the text-davinci-001 version de-
scribed in (Ouyang et al., 2022) since, at the
time of writing, details about the training pro-
cess for text-davinci-002 were not publicly
available.

7https://beta.openai.com/
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• OPT (Zhang et al., 2022) is an open-source
replica of GPT-3. Like GPT-3, it is not fine-
tuned on any labeled data.

• T0 (Sanh et al., 2022) is a pretrained encoder-
decoder model, which has demonstrated better
performance than GPT-3 on several tasks de-
spite being much smaller.

• T0++ (Sanh et al., 2022) is similar to T0, but
trained on a few additional datasets from Su-
perGLUE (Wang et al., 2019).

• Tk-Instruct (Wang et al., 2022) is similar to
T0 and T0++ but instead fine-tuned on their
dataset, Natural Instructions v2, a collection
of instructions for more than 1,600 tasks, in-
cluding grammatical error correction and text
simplification.

• PEER (Schick et al., 2022) is a collaborative
language model initialized from the LM Adapt
variant of T5, and further fine-tuned on edit
histories from Wikipedia. We use the 3B and
11B PEER models that were shown to perform
the best in Schick et al. (2022).

6 Formatting

We evaluate these baselines on their general ca-
pability to accomplish each task when prompted
in natural language in a zero-shot fashion. Be-
cause there are a diverse set of ways in which to
instruct for each task, we manually construct a set
of 3–11 prompts in order to more robustly evaluate
performance. For each task prompt t and input
i, the model is given a formatted input following
the template: Task: t\nInput: i\nOutput: with
an additional field for references, should they be
required. Figure 2 shows an example of an input
including references. For tasks without references,
we exclude this field. Some slight modification to
this template were made. For example, Tk-Instruct
expects the prompt to be prefixed by the string
“Definition:” rather than “Task:”). For preprocess-
ing, we used the Natural Language Toolkit (NLTK)
package (Bird et al., 2009) for tokenizing the text.

1

Update 
information

Obama went on to win the general 
election against Republican John 
McCain and became the current 
President of the United States.

[0] Barack Obama | Barack 
Hussein Obama II is an American 
politician who served as the 44th 
President of the United States.

Obama went on to win the general 
election against Republican John 
McCain and became the 44th 
President of the United States 

Task:

Input:

Reference:

Output:

Figure 2: Example of inputs formatted when evaluating
the baseline models. Each input is evaluated with a set
of prompts that are determined by the task type.

7 Results

We summarize results in Table 2 with the afore-
mentioned baselines averaged over all datasets and
the breakdown for each dataset in Table 3. To vi-
sualize the variance, we show boxplots for each
dataset and model in Figure 3. We discuss these
observations in more detail below.

InstructGPT and PEER perform the best over-
all. In Table 2, we show the mean SARI scores
for each model averaged across all tasks using the
average, maximum, and minimum scores across
prompts. When using the average and minimum
across prompts (third and fifth column, respec-
tively) we see that InstructGPT performs the best
overall, but when using the maximum score across
prompts (fourth column), PEER-11 performs the
best. Table 3 enumerates the breakdown of the
third column according to each dataset. In gen-
eral, we see that InstructGPT achieves the highest
scores with the exception of the updating and neu-
tralization datasets, as well as ITR-F and ITR-L.
For these datasets, the PEER models clearly outper-
form InstructGPT by a large margin, despite being
nearly 60× smaller than InstructGPT and GPT-3.
The substantially smaller models (T0, T0++, and
Tk-Instruct) struggle the most overall, even falling
behind the copy baseline at times, except on ITR-L
where Tk-Instruct performs the best.
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Model Params Avg. Max Min CV

Tk 3B 28.2 30.1 26.1 4.65
T0 3B 26.6 29.3 24.5 6.03
T0++ 11B 28.4 30.3 26.7 5.13
PEER-3 3B 38.8 41.8 35.0 6.36
PEER-11 11B 39.1 42.1 35.6 5.75
OPT 175B 32.8 36.4 29.0 6.70
GPT-3 175B 32.8 35.8 29.4 6.74
InstructGPT 175B 39.6 41.3 37.4 3.60

Table 2: Mean SARI scores (other metrics shown in Ta-
ble C2) all tasks using the average (Avg.), the maximum
(Max), and the minimum (Min) across prompts. The
coefficient of variance (CV), computed as the standard
deviation across prompts normalized by the average,
is shown in the final column. Best values are in bold.
When using averages across prompts and using the min-
imum, InstructGPT performs the best, but PEER per-
forms the best when using the maximum across prompts.

Most baselines lag substantially behind the su-
pervised SOTA, especially in the task of updat-
ing and neutralization. We show the supervised
state-of-the-art results in the final row of Table 3,
which in almost all cases surpasses the performance
of the best baseline. The gap is largest for the
tasks of neutralization and updating (34–50% de-
crease from the supervised SOTA to the best base-
line scores), whereas for other tasks, this decrease
is only within 5–14%. It is conceivable that the dif-
ficulty with these two tasks is a consequence of the
comparatively fewer datasets and research devoted
to them compared to that of the more mainstream
NLP tasks, such as text simplification.

The most challenging tasks do not necessarily
have the highest variance across models. In ob-
serving Figure 3a, we see that the tasks which have
the largest variance across models (assessed using
the interquartile range or IQR) are fluency and up-
dating information. This is despite the fact that the
fluency datasets are arguably easier (i.e., many of
the models come close to the supervised scores)
than the updating datasets, exemplifying that diffi-
culty and robustness can be independent axes. JF-
LEG also appears to be easier than ITR-F (average
SARI of 45.1 versus 38.2), which is understand-
able since JFLEG sources from the TOEFL exam
(primarily simpler and conversational sentences),
while ITERATER sources technical sentences from
Wikipedia, ArXiv, and Wikinews. Likewise, Turk-
Corpus seems on average to be slightly easier than
ASSET, which is expected since it includes more
diverse simplifications than TurkCorpus.

(a) Scores for each dataset averaged across models. Datasets
which have the largest variance amongst the baselines are not
necessarily harder tasks.

(b) Scores for each model averaged across datasets. PEER has
the largest range in performance across datasets.

Figure 3: Boxplot of SARI scores for each dataset (a)
and model (b).

PEER has the highest total variance, but OPT
and GPT-3 are less robust to different prompts.
From Figure 3, we observe that the PEER models
have the largest variance in performance overall
(as measured by the larger IQR). If we compute
the standard deviation across prompts and normal-
ize by the mean (CV in Table 2), however, GPT-3
and OPT, have the highest average across datasets
(6.74% and 6.70%, respectively), whereas for the
3B and 11B PEER models, these values are smaller
(6.36% and 5.75%). This could be a consequence
of the fact that GPT-3 and OPT are not instruction-
tuned, whereas the remaining baselines are.

Optimizing prompts according to maximum per-
formance and according to robustness to differ-
ent models can be orthogonal objectives. Ide-
ally, we would like to create prompts that achieve
the highest performance using the best baseline,
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Fluency Clarity Coherence Para. Simplification Neutral. Updating
Model JFL ITR-F ITR-L ITR-O STS TRK AST WNC FRU WFI

Copy 26.7 / 40.5 32.3 / 86.0 29.5 / 62.9 31.3 / 77.2 21.1 26.3 20.7 31.9 / 0.0 29.8 / 0.0 33.6 / –

Tk 31.8 / 39.0 32.4 / 61.6 38.4 / 58.4 33.8 / 70.4 30.2 32.8 29.9 31.3 / 0.4 12.6 / 3.6 1.3 / 4.5
T0 42.0 / 38.8 24.6 / 34.9 32.6 / 30.2 22.2 / 21.6 34.3 34.4 32.3 22.3 / 0.0 14.2 / 9.6 5.1 / 16.3
T0++ 34.7 / 43.2 35.3 / 75.8 37.6 / 56.5 32.7 / 59.9 28.4 32.9 28.2 29.3 / 0.3 12.6 / 3.7 4.4 / 8.1
PEER-3 55.5 / 54.3 51.4 / 84.3 32.1 / 47.1 32.1 / 59.8 28.6 32.5 30.5 53.3 / 21.6 39.1 / 30.9 34.4 / 18.7
PEER-11 55.8 / 54.3 52.1 / 85.2 32.5 / 51.3 32.7 / 62.7 28.2 32.1 29.5 54.5 / 22.8 39.6 / 31.4 34.9 / 20.4
OPT 47.3 / 47.5 34.7 / 70.6 31.5 / 31.5 27.6 / 36.1 29.1 32.6 31.8 31.2 / 0.4 35.9 / 27.3 26.7 / 11.2
GPT-3 50.3 / 51.8 32.1 / 56.7 33.5 / 39.7 26.9 / 36.1 27.2 33.0 30.5 31.7 / 0.6 36.0 / 21.5 27.2 / 10.6
InsGPT 61.8 / 59.3 48.8 / 82.7 35.1 / 48.4 35.9 / 60.2 42.5 38.8 38.0 35.4 / 2.2 36.3 / 24.7 23.6 / 16.1

SotA – / 62.4 37.2 / – 46.2 / – 38.3 / – – 34.4 37.2 – / 45.8 – / 47.4 – / –

Table 3: Results for all datasets, averaged across prompts (max and min results in Table C2). The best results for
each dataset are shown in bold. Tk-Instruct and InstructGPT are shorthanded as Tk and InsGPT, respectively. The
first numbers for each task are SARI scores; additional metrics are GLEU for fluency, clarity, and coherence, EM
for neutralization, Update-R1 for updating. Supervised scores are from Ge et al. (2018) (JFLEG), Du et al. (2022)
(ITERATER), Martin et al. (2020) (TurkCorpus and ASSET), Pryzant et al. (2020) (WNC), and Logan IV et al.
(2021) (FRUIT), respectively.

but also perform reliably well for any model. In as-
sessing variance from Figure 4, we see that certain
prompts stand out as less robust to different models
relative to others. For example, for neutralization,
Prompts #1, 2, and 7 are less robust likely because
they use uncommon language such as “Remove
points of views” or “Neutralize this text”. Some of
the prompts which are less robust for simplification
(Prompts #4, 7) and paraphrasing (Prompts #4, 6)
are sometimes ones that are less specific such as
“Rewrite this text” versus “Rewrite this with differ-
ent wording”—in the case of the former, an em-
pirical assessment shows that the models seem to
more often copy the original text and make fewer
modifications. Unfortunately, choosing prompts
that achieve the maximum score does not always
entail prompts which are the most robust—Prompt
#5 for clarity achieves the maximum but has the
largest variance in performance or IQR. Some of
the tasks exhibit a great degree of outlier behavior
(coherence, paraphrasing, or neutralization), which
is either due to T0 performing exceedingly low or
InstructGPT/PEER performing exceedingly well.
Other tasks such as fluency and updating seem to
have prompts with a similar range of variance.

Commonly used metrics are not always well-
correlated. We measure the Pearson correlation
between each pair of metrics using evaluation
scores for all baselines, which is shown in Figure 5,
and find that many of the commonly used metrics
do not always correlate well with each other, a find-
ing echoed by prior works (Choshen and Abend,
2018; Alva-Manchego et al., 2021), which focuses

on the task of grammatical error correction. We
exclude PEER in this analysis since it shows ex-
ceedingly strong performance in some cases, and
we exclude the updating datasets since they are
of a very different nature from the other datasets.
We find that while families of variants like BLEU
and iBLEU as well as ROUGE and UpdateROUGE
show strong correlation within each respective set
(> 0.97), the two sets are inversely correlated with
one another (-0.29 to -0.1). ROUGE actually ap-
pears to be the metric that most conflicts with all
other metrics, whereas GLEU seems to be the met-
ric that is most in harmony with the rest (0.41–0.76).
Though SARI is not correlated with ROUGE, it is
the metric which shows the strongest correlation
with EM-Diff (0.83) and UpdateROUGE (0.7).

8 Discussion

We present EDITEVAL, a benchmark composed of
handcrafted, task-specific instructions for several
editing datasets across multiple domains. EDITE-
VAL is a means of evaluating models for these tasks
according to multiple popular metrics, all within
a single, unified tool. We show that while models
such as InstructGPT have impressive performance,
in general the baselines lag behind the supervised
state-of-the-art, particularly for the task of updat-
ing and neutralization. Our analysis of metrics
and prompts shows that several popular metrics are
not well-correlated, even conflicting at times, and
that small changes in the wording of a prompt can
lead to substantial changes in performance and ro-
bustness to different models. This suggests further
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Figure 4: Boxplot of SARI scores for each prompt averaged across models. The prompts which achieve the
maximum scores for each dataset (Table C2), are Prompts #6 and 11 (fluency), 4 (clarity), 2 (coherence), 8 and 10
(simplification), 3 (paraphrasing), 2 (neutralization) and 2 and 1 (updating). Certain prompts evoke more variation
across models due to factors such as using less frequently used language or being too unspecific.

Figure 5: Pearson correlation between metrics using
data for all datasets except WAFER and FRUIT and all
baselines except PEER. Different families of metrics
can have low correlation and even conflict, at times.

work is needed to develop models comprehensively
capable of executing editing tasks in addition to de-
veloping a standardized way of measuring editing
capabilities and systematically selecting prompts.
In releasing this work, we hope to bolster work in
which language models are utilized for text genera-
tion that is iterative, more controllable, collabora-
tive, and capable of revising and correcting text.
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A Domains

In EDITEVAL we strive to encompass datasets from
many different domains, with an emphasis on fac-
tual content. Below in Table A1, we enumerate
these domains.

Table A1: Number of targets provided (|T |) and the
domains covered by each dataset.

Dataset |T | Domains

ITERATER 1 Wikipedia, ArXiv, and Wikinews
JFLEG 4 TOEFL exam
WNC 1 Wikipedia
STS Benchmark 1 Wikipedia, Q&A, news forums,

videos, image descriptions
ASSET 10 Wikipedia
TurkCorpus 8 Wikipedia

WAFER 1 Wikipedia
FRUIT 1 Wikipedia

B Prompts

Below we enumerate the prompts used in EDITE-
VAL for each task. We also present Table C2 which
shows the max and min results across these prompts
as opposed to the average in Table 3.

Fluency
1. Fix grammar errors
2. Fix grammar or spelling mistakes
3. Fix grammar errors in this sentence
4. Fix all grammatical errors
5. Fix errors in this text
6. Update to remove grammar errors
7. Remove all grammatical errors from this text
8. Improve the grammar of this text
9. Grammar improvements

10. Remove grammar mistakes
11. Fix the grammar mistakes

Clarity
1. Make the text more formal, concise, readable

and understandable
2. Make the text more formal
3. Make the text more concise
4. Make the text more readable
5. Improve the readability of the text
6. Make the text more understandable
7. Make the text clearer
8. Make the text easier to understand
9. Improve the clarity of the text

Coherence
1. Make the text more cohesive, logically linked

and consistent as a whole

2. Make the text more cohesive
3. Improve the cohesiveness of the text
4. Make the text more logical
5. Make the text more consistent
6. Improve the consistency of the text
7. Make the text more understandable
8. Make the text clearer
9. Make the text easier to understand

10. Improve the coherency of the text

Neutralization
1. Remove POV
2. Neutralize this text
3. Make this more neutral
4. Make this text more neutral
5. Make this paragraph more neutral
6. Remove unsourced opinions from this text
7. Remove non-neutral points of view
8. Remove points of view
9. Make this text less biased

Paraphrasing
1. Paraphrase this sentence
2. Paraphrase
3. Paraphrase this paragraph.
4. Use different wording
5. Paraphrase this text
6. Rewrite this text
7. Rewrite this text with different wording
8. Rephrase this text
9. Reword this text

Simplification
1. Simplify this sentence
2. Make this simpler
3. Simplify
4. Make this easier to understand
5. Simplification
6. Change to simpler wording
7. Simplify this paragraph.
8. Use simpler wording
9. Simplify this text

10. Make this text less complex

Updating
1. Add missing information
2. Update the article
3. Update with new information
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C Metrics

In this section, we describe each metric included
in EDITEVAL in greater detail and our motivations
for including them. In the cases where more than
multiple valid targets, we follow convention and
take the maximum of the scores computed using
each target, since there can potentially be many
valid edits, and a prediction only needs to align
with one of the references.

EM and EM-Diff Exact match (EM) is the per-
centage of examples for which the performed edit
exactly matches any of the targets. EM-Diff is a
variant of EM that is computed on the diff level,
where diffs are obtained using Python’s difflib li-
brary. For a model output O, we compute EM-Diff
as follows:

|diff(I,R) ∩ diff(I,O)|
max(|diff(I,R)|, |diff(I,O)|)

SARI Introduced by Xu et al. (2016), SARI is an
n-gram based metric commonly used for measur-
ing simplification (Nisioi et al., 2017; Zhao et al.,
2018) and other editing tasks such as sentence fu-
sion (Malmi et al., 2019). It has been demonstrated
to correlate most closely with human judgement
for simplification compared to many other n-gram
based metrics (Xu et al., 2016). The metric mea-
sures how simplified a candidate system output is
relative to the original and to the simplification ref-
erences by rewarding words added, kept, or deleted
in both the target and the output. More specifically,
this is done by computing the arithmetic mean of
n-gram F1-scores for each of the three operations.
We utilize the EASSE (Alva-Manchego et al., 2019)
implementation of SARI, which addresses incon-
sistencies in the original implementation 8.

GLEU GLEU (Napoles et al., 2015) is another
variant of BLEU frequently used for grammatical
error correction (Grundkiewicz et al., 2019; Yuan
and Briscoe, 2016; Chollampatt and Ng, 2018).
The issue with using BLEU for minimal edits can
be attributed to the difference between analyzing
machine translation and editing tasks. In the former,
an untranslated word should always be penalized,
but in the editing setting, an unmodified word in
both the target and the output does not necessarily
need to be penalized. Unlike BLEU, GLEU is cus-
tomized to penalize n-grams changed in the targets

8https://github.com/feralvam/easse#differences-with-
original-sari-implementation

but left unchanged by the system output. Napoles
et al. (2015) not only demonstrated that GLEU cor-
relates well with human rankings of corrections,
but also that GLEU correlates much better than
BLEU does.

ROUGE and UpdateROUGE For the task of
updating or adding new information, we follow
Logan IV et al. (2021) and use ROUGE and Up-
dateROUGE (Logan IV et al., 2021). ROUGE (Lin,
2004) is a popular n-gram based metric that is
commonly used for evaluating summarization sys-
tems (Ren et al., 2016; Pasunuru and Bansal, 2018),
but is also used in other tasks such as improving flu-
ency (Kann et al., 2018) and simplification (Vander-
wende et al., 2006). ROUGE essentially measures
the overlap in n-grams. UpdateROUGE, a simple
modification of ROUGE, computes ROUGE on the
updated sentences rather than the full text. This
is intended for tasks such as updating, because a
majority of the target will remain unchanged. On
the other hand, when evaluating using ROUGE, a
system can often superficially achieve high scores
by simply copying the input.

BERTScore BERTScore (Zhang et al., 2019b) is
a versatile automatic metric that has been demon-
strated to correlate well with tasks such as ma-
chine translation, image captioning, and abstrac-
tive text compression (Zhang et al., 2019b). We
note, however, that some studies have demonstrated
the metric’s poor generalization ability to differ-
ent datasets (Unanue et al., 2021). We include
BERTScore in EDITEVAL for its broad applicabil-
ity and its popularity.

D Limitations

Our evaluation tool is by no means an exhaustive
measurement of editing capabilities. Firstly, there
are additional domains that could potentially be
added to EDITEVAL, such as books and blogs;
as it currently stands, EDITEVAL is heavily con-
structed from the domain of Wikipedia. Fortu-
nately, EDITEVAL’s framework is flexible to the ad-
dition of datasets, provided that it has an input and
target edit. In the same spirit, there are additional
editing tasks such as verifying facts, citing, and
reorganizing sentences/paragraphs which would be
valuable to include in EDITEVAL. While we recog-
nize these tasks as important to include in EDITE-
VAL, we consider these to be out of scope for the
work at hand. Finally, our results demonstrate that
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Fluency Clarity Coherence Para. Simplification Neutral. Updating
Model JFL ITR-F ITR-L ITR-O STS TRK AST WNC FRU WFI

Tk 32.9 / 41.6 36.0 / 77.6 39.5 / 63.3 35.7 / 77.1 33.1 34.9 32.6 33.8 / 1.3 12.9 / 4.1 1.3 / 5.0
T0 45.4 / 43.1 32.6 / 50.9 33.8 / 34.0 23.7 / 25.5 35.9 35.3 35.9 27.5 / 0.1 14.9 / 12.4 5.4 / 17.2
T0++ 36.7 / 43.9 37.2 / 82.0 38.6 / 61.6 36.0 / 75.8 30.7 33.9 33.3 32.1 / 0.6 12.8 / 3.7 4.6 / 8.5
PEER-3 59.3 / 57.7 54.5 / 86.3 34.0 / 60.6 33.8 / 74.1 34.6 36.4 35.5 57.4 / 29.3 40.2 / 33.6 34.7 / 20.2
PEER-11 60.6 / 59.4 55.4 / 87.0 34.4 / 61.4 34.5 / 75.8 33.1 35.7 33.9 59.0 / 30.9 40.8 / 33.4 35.2 / 21.4
OPT 53.5 / 53.9 41.0 / 78.5 35.6 / 44.4 34.4 / 56.9 31.1 34.7 35.3 34.9 / 0.9 35.9 / 28.1 27.0 / 12.3
GPT-3 52.6 / 54.2 39.1 / 79.2 35.6 / 45.8 29.9 / 42.9 29.4 35.5 35.9 34.9 / 1.1 36.3 / 21.6 28.2 / 11.2
InsGPT 62.7 / 60.4 51.0 / 85.0 36.5 / 52.6 37.6 / 68.8 45.2 40.2 40.9 37.2 / 3.8 36.6 / 25.2 26.0 / 17.3

Tk 30.3 / 35.9 27.9 / 42.1 36.8 / 49.9 32.2 / 63.4 28.6 30.6 26.1 27.9 / 0.0 12.3 / 3.4 1.2 / 4.1
T0 39.5 / 34.2 21.2 / 26.7 31.4 / 27.4 21.0 / 18.0 31.9 32.9 27.6 18.5 / 0.0 13.7 / 8.1 4.8 / 15.6
T0++ 33.0 / 42.2 33.1 / 62.3 36.8 / 52.6 29.3 / 45.8 25.5 31.9 25.4 27.4 / 0.2 12.5 / 3.7 3.9 / 7.5
PEER-3 50.2 / 49.8 45.4 / 77.2 30.5 / 36.7 31.1 / 47.3 23.2 29.1 25.4 44.4 / 13.5 37.0 / 26.5 34.1 / 16.3
PEER-11 49.8 / 46.7 45.9 / 82.5 31.4 / 43.3 31.9 / 47.9 24.3 29.4 25.7 45.5 / 15.7 37.5 / 27.3 34.7 / 19.0
OPT 40.7 / 41.0 29.7 / 55.5 27.8 / 22.1 22.9 / 24.6 26.1 30.3 26.2 25.0 / 0.0 35.8 / 26.6 26.5 / 9.8
GPT-3 43.6 / 46.7 27.8 / 41.3 32.2 / 35.8 24.4 / 28.8 25.3 29.3 22.6 26.0 / 0.2 35.6 / 21.2 26.1 / 10.0
InsGPT 59.2 / 56.2 44.7 / 77.4 34.1 / 44.3 33.4 / 53.0 40.2 37.0 35.4 32.4 / 0.7 35.9 / 24.4 22.2 / 15.3

Copy 26.7 / 40.5 32.3 / 86.0 29.5 / 62.9 31.3 / 77.2 21.1 26.3 20.7 31.9 / 0.0 29.8 / 0.0 33.6 / –
SotA – / 62.4 37.2 / – 46.2 / – 38.3 / – – 34.4 37.2 – / 45.8 – / 47.4 – / –

Table C2: Maximum (top half) and minimum (bottom half) scores across prompts for all downstream tasks
considered. The first numbers for each task are SARI scores; additional metrics are GLEU for fluency, clarity, and
coherence, EM for neutralization, Update-R1 for updating. The best results are highlighted in bold. Tk-Instruct and
InstructGPT are shorthanded as Tk and InsGPT, respectively.

many of the metrics give conflicting signal as to the
rankings of the baselines, indicating further work
is needed to identify better metrics for measuring
overall editing capacity.

E Broader Impact and Ethics

Before being deployed, this work was reviewed by
an internal board to ensure compliance with all li-
censing. We also verified that no datasets included
in EDITEVAL contains information that uniquely
identifies individual people. All code, results, and
a leaderboard are made publicly available. Our
benchmark is intended to help drive the develop-
ment of language models that can edit. Such sys-
tems may be able to carry out a wide variety of
text modifications and have a broad range of so-
cietal implications, such as enabling those with
limited access to educational resources to create
knowledge-intensive or professional articles (Redi
et al., 2020). EDITEVAL is not to be used for ill-
intended purposes, such as making adversarial text
modifications that introduce misleading or prob-
lematic content. Additionally, EDITEVAL inherits
biases inherent in its constituent datasets, and we
encourage further work to understand the biases
and limitations of the datasets used in EDITEVAL.
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