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Introduction

CoNLL is a conference organized yearly by SIGNLL (ACL’s Special Interest Group on Natural Language
Learning), focusing on theoretically, cognitively and scientifically motivated approaches to computatio-
nal linguistics. This year, CoNLL was held alongside EMNLP 2024.

The program of CoNLL 2024 comprises 40 papers. This was the result of a careful selection process.
Reviewing 97 received submissions resulted in a 41% acceptance rate.

Reviewing was organized into 10 tracks, each of them headed by one or two area chairs:

• Computational Psycholinguistics, Cognition and Linguistics (Nathan Schneider)

• Computational Social Science (Kate Atwell)

• Interaction and Grounded Language Learning (Anthony Sicilia)

• Lexical, Compositional and Discourse Semantics (Shira Wein)

• Multilingual Work and Translation (Yuval Marton)

• Natural Language Generation (Tuhin Chakrabarty)

• Resources and Tools for Scientifically Motivated Research (Venkat)

• Speech and Phonology (Huteng Dai)

• Syntax and Morphology (Leshem Choshen)

• Theoretical Analysis and Interpretation of ML Models for NLP (Kevin Small)

We thank our reviewers and area chairs for curating the program. The conference also invited Thamar So-
lorio and Lorna Quandt to present keynotes, and included a session of additional papers on the BabyLM
Challenge, a shared task that challenges community members to train a language model from scratch on
the same amount of linguistic data available to a child in addition to multi-modal data.

We would like to acknowledge support from our sponsor, Google DeepMind.

Malihe Alikhani (Northeastern University)
Libby Barak (Montclair State University)
CoNLL 2024 conference co-chairs
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Keynote Talk
Towards AI models that can help us to become better global

social beings
Thamar Solorio

Mohamed bin Zayed University of Artificial Intelligence, MBZUAI

Abstract: Cultural norms and values fundamentally shape our social interactions. Communication wi-
thin any society reflects these cultural contexts. For example, while direct eye contact is often seen as
a sign of confidence in many Western cultures, it may be viewed as disrespectful in other parts of the
world. Moreover, human-human interactions include so much more than just the words we utter; non-
verbal communication, including body language and other cues, provides rich signals to those around
us.
As vision language models (VLMs) are increasingly integrated into user-facing applications, it is beco-
ming relevant to wonder if and to what extent this technology can robustly process these signals. My
research group is interested in developing evaluation frameworks to assess the abilities of VLMs concer-
ning interpreting social cues and in developing new approaches that can assist us and, perhaps, enhance
our cross-cultural human-human interactions.

Bio: Thamar Solorio is a professor in the NLP department at MBZUAI. She is also a tenured professor of
Computer Science at the University of Houston. She is the director and founder of the RiTUAL Lab. Her
research interests include NLP for low-resource settings and multilingual data, including code-switching
and information extraction. More recently, she was moved towards language and vision problems, focu-
sing on developing inclusive NLP. She received a National Science Foundation (NSF) CAREER award
for her work on authorship attribution and was awarded the 2014 Emerging Leader ABIE Award in Ho-
nor of Denice Denton. She served two terms as an elected board member of the North American Chapter
of the Association of Computational Linguistics (NAACL) and was PC co-chair for NAACL 2019. She
is an Editor in Chief for the ACL Rolling Review (ARR) initiative and was a member of the advisory
board for ARR. She serves as general chair for the 2024 Conference on Empirical Methods in Natural
Language Processing.
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Keynote Talk
Integrating AI-Driven Sign Language Technologies in
Education: Recognition, Generation, and Interaction

Lorna Quandt
Gallaudet University

Abstract: This talk explores integrating AI-driven technologies in sign language research, covering the
unique challenges of sign language recognition and generation. Dr. Quandt will explore these cutting-
edge considerations through the lens of two research projects, ASL Champ! and BRIDGE. Both projects
focus on sign language recognition and generation, which is crucial for advancing interaction in virtual
and educational environments. ASL Champ! utilizes a dataset of 3D signs to enhance deep-learning-
powered sign recognition in virtual reality. At the same time, BRIDGE extends this work by incorpora-
ting both recognition and generation of signs to create a more robust, interactive experience. This dual
focus underscores the importance of pursuing recognition and generation in tandem rather than trea-
ting them as entirely distinct challenges. By leveraging advances in AI and natural language processing
(NLP), we can create technologies that recognize and generate signs and facilitate deeper understanding
and use of signed languages. These advancements hold great educational potential, particularly in provi-
ding more accessible tools for deaf students and enabling broader instruction in sign language. The talk
will also address how these innovations can reshape the NLP field by widening the focus beyond spo-
ken/written language and into multimodal, signed, and nonverbal aspects of language, which can inform
all linguistic research.

Bio: Dr. Lorna Quandt is the Action & Brain Lab director at Gallaudet University in Washington, D.C.
She serves as Co-Director of the VL2 Research Center alongside Melissa Malzkuhn. Dr. Quandt is an
Associate Professor in the Ph.D. in Educational Neuroscience (PEN) program and the Science Director
of the Motion Light Lab. Dr. Quandt founded the Action & Brain lab in early 2016. Before that, Dr.
Quandt obtained her BA in Psychology from Haverford College and a PhD in Psychology, specializing
in Brain & Cognitive Sciences, from Temple University. She completed a postdoctoral fellowship at the
University of Pennsylvania, working with Dr. Anjan Chatterjee. Her research examines how knowledge
of sign language changes perception, particularly visuospatial processing. Dr. Quandt is also pursuing
the development of research-based educational technology to create new ways to learn signed languages
in virtual reality.
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Abstract

Text Segmentation (TS) is the task of segment-
ing bodies of text into coherent blocks, mostly
defined by the topics each segment contains.
Historically, techniques in this area have been
unsupervised, with more success recently com-
ing from supervised methods instead. Although
these approaches see better performance, they
require training data and upfront training time.
We propose a new method called Coherence,
where we use sentence embeddings to pull rep-
resentational keywords as the main constructor
of sentences when comparing them to one an-
other. Additionally, we include a storage of pre-
viously found keywords for the purposes of cre-
ating a more accurate segment representation
instead of just the immediate sentence in ques-
tion. We show improved results over current
state-of-the-art unsupervised techniques when
analyzed using Pk and WindowDiff scores. Co-
herence also requires no fine-tuning.

1 Introduction

We present Coherence, a method that utilizes re-
lated words and their contextual meanings within
sentences for effective Text Segmentation (TS).
In the past decade, advancements in the field of
TS have been primarily dominated by supervised
techniques (Badjatiya et al. (2018), Koshorek et al.
(2018), Somasundaran et al. (2020), Barrow et al.
(2020), Lo et al. (2021), and Inan et al. (2022)),
which require training data and are computed on
a sentence-wise basis (i.e., each sentence is com-
pared with adjacent sentences for evaluation). In
contrast, Coherence uses contextual keyword em-
beddings for comparison, reducing potential noise
and unnecessary sentence-level information that
may not be helpful to the TS task.

Coherence uses a sliding window technique, tra-
ditionally used in supervised TS, to predict segment
breaks (e.g., P (Sn−1, Sn, Sn+1) = 1). However,
Coherence enhances this method by incorporating

contextual information (through contextual key-
word embeddings).

Coherence demonstrates performance improve-
ments, particularly in Pk scores, and does not re-
quire fine-tuning. By leveraging pre-trained sen-
tence encoders like BERT, LaBSE, and S-BERT,
Coherence leverages extracted keywords to form
an end-to-end flow. The core of Coherence lies in
collecting and utilizing important keywords dur-
ing the segmentation process. These keywords are
represented as contextual embeddings, capturing
essential information about their usage within sen-
tences (for example, differentiating “bridge” in the
context of crossing a river from “bridge” in the con-
text of a human’s nose). This process is inspired
by the multi-headed attention mechanism in the
Transformer architecture, providing a nuanced un-
derstanding of sentence relationships without the
need for extensive training and data.

1. A novel approach to unsupervised TS that
achieves state-of-the-art (SOTA) results on
a variety of diverse and widely accepted TS
datasets in the research community.

• Coherence does not require fine-tuning
and is shown to perform competitively
and even outperform current SOTA unsu-
pervised systems in some benchmarks.

• Using pre-trained sentence embeddings,
Coherence leans on both similar and di-
verse keywords to create more orthogo-
nality in representations of sentences.

2. A keyword collection mechanism called Key-
word Map, which creates segment representa-
tions through its most important keywords.

• The Keyword Map stores important
sentence-based representations through
contextual keywords for later reference
during comparison.

1



3. An approach to unsupervised TS that has ex-
plainability in the prediction process, through
the extraction of important keywords.

We show that without the need for expensive
fine-tuning and highly-dimensional sentence em-
beddings as training data, we can achieve perfor-
mance improvements in a space that has been more
recently dominated by advancements in supervised
learning. Using orthogonal keywords in addition
to similar keywords provides more breadth in key-
word representation to further bolster results. All
our code can be found on the Human-Machine Lab
GitHub Repository 1.

2 Related Works

Initially, Hearst (1997) introduced TextTiling,
an unsupervised algorithm that identifies seg-
ment boundaries through lexical overlaps. Sim-
ilarly, Choi (2000) demonstrated the efficacy of
unsupervised methods by analyzing sentence sim-
ilarities, categorizing their work within linear TS
methodologies. These initial contributions set a
new standard in the field.

The landscape of TS shifted with the advent of
advanced word and sentence embeddings, paving
the way for supervised techniques. Koshorek et al.
(2018) explored the potential of processing large
TS datasets through a Bi-LSTM, analyzing three
sentences at a time to understand their interrela-
tions. Building on this, Badjatiya et al. (2018)
proposed a sentence-wise model utilizing attention
mechanisms to enhance performance further. Re-
cent supervised approaches have increasingly incor-
porated LSTMs and Transformers as foundational
components, as seen in works by Somasundaran
et al. (2020), Barrow et al. (2020), Lo et al. (2021),
and Inan et al. (2022). These studies have show-
cased the effectiveness of adding topic information
and emphasizing sentence contextuality in achiev-
ing top-tier results.

Despite the dominance of supervised models,
unsupervised TS techniques continue to show
promise. Misra et al. (2009) revisited the clas-
sic TextTiling approach, refining it with LDA to
identify more precise keywords. Riedl and Bie-
mann (2012) combined LDA and TextTiling for
another innovative unsupervised solution. Further-
more, Glavaš et al. (2016) introduced a novel unsu-
pervised graph-based method, analyzing sentences

1https://github.com/HumanMachineLab/Coherence

as nodes within a graph to predict segment bound-
aries. These unsupervised models underscore the
ongoing exploration and diversity in TS methodolo-
gies. While unsupervised approaches in the field
continue to be important due to their flexibility
and lack of need for domain-specific training data,
more research has recently focused on supervised
approaches. Fragkou et al. (2004)’s approach to
TS relied upon within-segment word similarity and
prior information about segment length, but does
not incorporate inter-sentence comparisons. In con-
trast, Brants et al. (2002) approaches unsupervised
TS by using Probabilistic Latent Semantic Anal-
ysis (PLSA) to identify similar words an in inter-
sentence level. They then apply a TextTiling based
approach for identifying changes in frequency be-
tween sentences.

Another technique by Solbiati et al. (2021) takes
a unique approach to unsupervised TS by group-
ing a series of sentences together, stacking them
on top of each other, and performing max pool-
ing. The resulting matrix is a mixture of sentences,
which can then be used to compare to other matri-
ces. They perform their analysis on meeting data,
which shows improvements upon other techniques.
More recently, John et al. (John et al., 2017) utilize
an LDA-based TextTiling approach that produces
strong results. The boundary adjustment technique
proposed in this work is a retroactive solution to
TopicTiling (Riedl and Biemann, 2012) that helps
improve results.

3 Methodology

The core of Coherence is its ability to pull out key-
words from provided sentences. To accomplish
this, we use a library called KeyBERT 2. This li-
brary goes through each word in a sentence, creates
an embedding for the word and compares it with
the embedding of the sentence at hand. Keywords
are identified as the ones with a higher similarity
to the sentence embedding. Because of this, there
is no need to globally scan the document before-
hand, which other techniques like TF-IDF and LDA
require. Utilizing BERT allows the KeyBERT li-
brary to effectively look into the attention being
paid at every word and phrase to identify important
words. KeyBERT has been shown to outperform
other topic modelling and keyword extraction tech-
niques like LDA and YAKE (Campos et al., 2020).

We also consider the use of an LDA based ap-

2https://github.com/MaartenGr/KeyBERT
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overcast, precipitation, cloudy

astigarraga, ametzagaña, paleolithic

oiasso, varduli, irun

San Sebastián features an oceanic climate (Köppen Cfb) with warm summers and cool winters. 

Like many cities with this climate, San Sebastián typically experiences cloudy or overcast conditions 

for the majority of the year, typically with some precipitation.

The first evidence of human stationary presence in the current city is the settlement of Ametzagaña,

between South Intxaurrondo and Astigarraga. The unearthed remains, such as carved stone

used as knives to cut animal skin, date from 24,000 to 22,000 BC.

San Sebastián is thought to have been in the territory of the Varduli in Roman times.

East of the current city lay the Basque Roman town of Oiasso (Irun)

Figure 1: Topics gathered throughout the keyword extraction phase within the “wiki” dataset. Due to the natural pruning of the
Keyword Map, only the most pertinent topics are retained. Additionally, importance of the keyword to its original
sentence is also maintained. Results shown here are extracted from the “wiki” dataset starting at sample 643.

proach, such as BERTopic 3 as the keyword extrac-
tor, but elect to stick with KeyBERT due to the
following advantages:

• Pulling keywords using KeyBERT does not
require upfront training, whereas BERTopic
does.

• Because BERTopic uses LDA to pull topics,
the requirement to be aware of the entire doc-
ument’s worth of text beforehand increases
processing time and reduces flexibility.

• Inherently, LDA does not use word embed-
dings to pull important topics, which means
that extracted words are in the form of text.
Since our technique compares words in vector
space, constructing embeddings for extracted
words will not retain sentence contextuality.

Coherence is broken down into two major phases.
We use sentences to denote the important keywords
derived from said sentences - sentences are not
compared verbatim, rather the keywords that make
up the sentence are compared. At every step, the
current sentence is compared against prior sen-
tences, as long as they exist in the Keyword Map
(we elaborate on conditions where a sentence’s key-
words would not end up in the Keyword Map later
in this section).

3.1 Keyword Extraction Phase
In this phase, we use KeyBERT to extract important
keywords from sentences at each iteration. Key-
BERT uses BERT or any BERT-based model (e.g.,

3https://github.com/MaartenGr/BERTopic

RoBERTa, DistilBERT, ALBERT, etc.) to create
a representation of each sentence. It then takes
the sentence embedding and each respective word
embedding (as provided by BERT as well). The
higher the similarity between the word and the sen-
tence, the more likely it is considered a keyword.
After extraction, keywords are sorted in descending
order based on its importance to its parent sentence.
This importance is calculated based on how strong
the keyword is in similarity to its parent sentence.

3.2 Prediction Phase

In this phase, we use information from previous
sentences in the segment to compare with the key-
word representation of the current sentence.

Keyword Map. We first create a representation
of the current segment through storage of keywords
gathered throughout the iteration process. We de-
termine the top n keywords that should be stored
per sentence and save them in a map. We then use
this map to compare against the current sentence
during iteration. For example, when we store 3
keywords in the map per sentence and we are on
the fifth sentence in the segment, we will compare
the current sentence to 12 keywords in the map (3
keywords times 4 previous sentences).

When storing keywords in the map, we compare
the current sentence’s keywords to the pre-existing
keywords in the map. We take the most similar
(with respect to the pre-existing keywords in the
map) keywords in the current sentence and store it
in the map. This allows us to build a Keyword Map
that is representative of the overall topics within the
segment. After k (average length of segment size
in the dataset) sentences, we prune the Keyword

3
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Map at every step by removing the oldest set of
keywords, adopting a queue-based FIFO structure.

Comparison. The current sentence’s keywords
are compared to the previous sentence’s keywords
and every keyword in the Keyword Map. All
the comparisons are summed and then averaged
to get an overall similarity score. This similarity
score, which is calculated as shown in Formula 2,
ends up being a representation of how cohesive
the current sentence is with all the sentences pre-
vious to it. Words in earlier sentences of the seg-
ment are also de-emphasized so they do not hold
as much weight in the comparison as words that
are closer to the current sentence. A value of
1/distance(curr_sent, prev_sent) is applied to
all words in the previous sentence. For example, a
word embedding belonging to a sentence that oc-
curred 2 sentences prior will have a weight of 1/2
applied to it.

The output from the prediction phase is a logit
that is the average of all the comparisons between
the current sentences and every sentence in the
Keyword Map, which can be seen in Figure 3.

As shown in Figure 3, the Keyword Map is built
throughout the inference process. This map acts
as a representation of the segment currently being
scanned. Because important segment-based infor-
mation can exist in more places than the current
sentence, the Keyword Map builds a representation
of keywords found earlier in the segment.

During the prediction process, the contents of
the Keyword Map along with the current sentence’s
keywords in the sliding window are compared
using cosine similarity and an average. If the
contents of the Keyword Map and current sen-
tence are dissimilar enough (based on a parameter–
prediction_threshold), the system predicts a one,
indicating that the second sentence is the start of a
new segment. Upon a positive prediction, the Key-
word Map gets emptied so it can begin collecting
new keywords. If the Keyword Map and current
sentence are similar, the system predicts a zero and
continues to build the Keyword Map. To avoid the
Keyword Map becoming too large over time, es-
pecially with longer segments, it is pruned after n
size (e.g., if the Keyword Map has five sentences
worth of keywords and we add another sentence
worth of keywords, we remove the oldest sentence).
For example, we prune the map after it grows to
26 sentences (the average segment size) for the
Clinical dataset (Malioutov, 2006).

Values for the prediction_threshold are tested

between zero and one at every tenth interval and
notice that the lowest Pk and WindowDiff scores
consistently show up when 0.5 is used.

4 Metrics

Two popular metrics that exist solely to benchmark
TS systems are Pk and WindowDiff (WD), which
have become commonplace for work in the TS
field. Pk is the probability that a pair of chosen
sentences with a distance of k are incorrectly clas-
sified. Both the WD and Pk metrics use a sliding
window of fixed size w over the document and
compare the predicted segments with the reference
ones. k is determined as half of the average true
segment size of the document. Since Pk and WD
are both penalty metrics, lower values indicate bet-
ter performance. While Pk is the most widely and
still is the most accepted metric in the TS space,
WD was originally proposed as an update to the Pk

metric. Pk can be thought of as the probability that
two segments drawn from a document are incor-
rectly identified as belonging to the same segment.
WD operates almost identically, but uses a sliding
window to penalize systems that tend to overpre-
dict, resulting in false positives - something that
Pk does not acknowledge as an errant prediction.
Both Pk and WD thus lie between zero and one and
an algorithm that assigns all boundaries correctly
receives a score of zero. WD is considered a bet-
ter measure than Pk as the Pk metric suffers from
issues such as a lack of false positive prediction
penalization (Pevzner and Hearst, 2002).

5 Data

Unsupervised TS methods are often evaluated us-
ing constructed datasets, which amalgamate seg-
ments from varied sources into composite docu-
ments, as evidenced by studies from Choi (Choi,
2000) and Galley et al (Galley et al., 2003).

5.1 Choi Dataset:

Introduced by Choi (2000) in 2000, this dataset
has become a staple for TS research, refer-
enced in works by Misra et al. (2009), Brants
et al. (2002), Fragkou et al. (2004), Glavaš et al.
(2016), Sun et al. (2008), and Galley et al. (2003).
It is crafted from the Brown corpus, containing 700
documents that simulate real text structure. The
compilation includes 400 documents with segments
varying from 3-11 sentences, alongside 100 docu-
ments for each segment length category: 3-5, 6-8,
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Coherence(Sn−1, Sn) =
1
x

∑x
j=1

1
x

∑x
i=1 cos(uj(Sn−1), wi(Sn))

Formula 2: The similarity calculation between two sentences, where each keyword in the respective sentence is compared
with every other keyword in the comparing set of keywords (e.g., the set of w keywords are gathered from Sn and the set of u
keywords are gathered from Sn−1), where w and u are keywords. Each line indicates a cosine similarity calculation and once all
the calculations are done from a keyword on the left to all keywords on the right, they are summed and averaged. This process
continues for all the keywords and the total average is taken. Additionally, each keyword (w of Sn) has a weighting applied to it,
indicating its importance to the sentence it was derived from originally.

Sentence
Collation

S1 - S10 

k2(S1)

Keyword
Extraction

k1(S1)

k2(S10)k1(S10)

Keyword Extraction
Phase

k2(S1)k1(S1)

k2(S2)k1(S2)

k2(S2)k1(S2)

k2(S3)k1(S3)

k2(S9)k1(S9)

k2(S10)k1(S10)

0.67

0.34

0.58

Prediction Phase

k2(S1)

k1(S1)

Keyword
Map

Keyword
Map

k2(S1)

k1(S1)

Keyword
Map

k2(S2)

k1(S2)

+

+

+

Figure 3: Architecture for Coherence. Keywords extracted from in the extraction phase are passed toward the prediction phase
and stored in the Keyword Map. The current sentence’s keywords are derived from current and previous sentences and
are denoted with h, i, j, k, and l. The output from the prediction phase is a logit that is representative of the cohesion
between the current sentence’s keywords and the keywords compared to from the Keyword Map.

and 9-11 sentences.

5.2 Manifesto Dataset:

To complement the synthetic Choi dataset, Coher-
ence’s effectiveness is also tested on real political
texts from the Manifesto Project dataset. This col-
lection of documents has been meticulously seg-
mented into seven topics, such as economy and
welfare, and foreign affairs, by field experts. The
curation of this dataset is attributed to Glavaš et al.
(2016).

5.3 Clinical Dataset:

We also use the Clinical dataset put together
by Malioutov (2006) to showcase our results. This
dataset consists of a set of 227 chapters from a med-
ical textbook. Each chapter is marked into sections
indicated by the author which forms the segmenta-
tion boundaries. It contains a total of 1136 sections.

5.4 Fiction Dataset:

To include even more diversity in our results, we
also showcase our results on the Fiction dataset put
together by Kazantseva and Szpakowicz (2011),
which is a collection of 85 fiction books down-
loaded from Project Gutenberg. Segmentation
boundaries are the chapter breaks in each of the
books.

5.5 Wiki Dataset:

Finally, we test Coherence’s performance on a cu-
rated Wikipedia dataset, introduced by Badjatiya
et al. (2018), is also presented. This dataset consists
of randomly selected set of 300 documents having
an average segment size of 26. The documents
widely fall under the narrative category.
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6 Results

Coherence shows and improvement over SOTA
unsupervised results in the space. Results are
reported on the Choi, Manifesto, Clinical, Fic-
tion, and Wiki Datasets (Choi (2000), Glavaš et al.
(2016), Malioutov (2006), Kazantseva and Sz-
pakowicz (2011), Badjatiya et al. (2018)). Our
performance on these datasets shows the versatil-
ity of Coherence. This gives us hope that with
the use of pre-trained models, unsupervised ap-
proaches can prove to be viable in the TS space.
Results on the Choi and Manifesto datasets are re-
ported against pre-existing SOTA unsupervised TS
approaches. Results for the Clinical, Wiki, and Fic-
tion datasets are compared against Badjatiya et al.
(2018)’s work.

Results on the Clinical and Fiction datasets are
competitive with Badjatiya et al. (2018)’s pre-
existing supervised approach. Coherence does not
do as well on the Wiki dataset however. We be-
lieve this is due to the subjectivity in TS datasets
at the labelling level. The Wiki dataset has an av-
erage segment length of 26 sentences for example.
On Choi’s dataset, Coherence performs extremely
well, outperforming all previous SOTA unsuper-
vised TS techniques. Coherence also performs
competitively, with stronger results in the WD met-
ric on the Manifesto dataset. This performance
improvement on WD versus Pk indicates that Co-
herence makes less false positive predictions than
pre-existing techniques.

We show that, in comparison to previous SOTA
unsupervised techniques, Coherence outperforms
in a variety of datasets using both the Pk and WD
metrics as benchmarks. This comes without the
need for fine-tuning or domain adaptation. Since
the keyword extraction phase of Coherence is mod-
ular, we believe that as sentence and word embed-
ding technology continues to improve, so will the
results of Coherence.

The lack of need for fine-tuning a model is ad-
vantageous and as of such, each round of infer-
ence takes roughly 25ms - 125ms on a cloud-based
A100 GPU. Additionally, Coherence provides util-
ity without the need for training or domain adap-
tation. The lightweight lift of Coherence allows
it to be used against various datasets, due to the
strength of the sentence encoder. The applicability
of Coherence to new and unseen test datasets can
prove to be useful in production settings.

7 Limitations

Coherence shows improvements over pre-existing
SOTA unsupervised systems such as TopicTil-
ing (Riedl and Biemann, 2012) and Graph-
Seg (Glavaš et al., 2016).

The authors for the works found in Table 2 do not
present their findings using the same metrics, nor
do they provide their codebase, and due to resource
limitations, we are not able to replicate their works
to evaluate and report on WD. We acknowledge
that this is a limitation of our work, but we also
illustrate the strengths and improvements of our
system using a wide array of available datasets.

Some reliance for Coherence comes from the
pre-trained sentence encoder (KeyBERT) in the
keyword extraction phase. Although this seems
like a limitation, it can be a strength in the flexibil-
ity of the system. Future iterations of pre-trained
sentence encoders can be used to replace KeyBERT
and enhance Coherence’s output. We show the flex-
ibility of our system by achieving superior results
on a wide array of available datasets without the
need for tedious fine-tuning. This implies that as
keyword extraction techniques become stronger, so
shall our system.

Most of the processing time comes from the key-
word extraction phase, due to the keyword extrac-
tion library. Roughly 90% of this time comes from
the keyword extraction phase, whereby KeyBERT
needs to compare every keyword with its parent
sentence embedding. The majority of the RAM
utilization also comes from this phase, as the em-
bedding model (LaBSE in our case) is loaded into
memory for inference. In our experiments, Co-
herence required less than 3GB RAM throughout
testing. With techniques like quantization, smaller
models can perform this keyword extraction step
more efficiently. This limitation is due to the se-
lected keyword extraction library; KeyBERT in
our case. The majority of processing time in the
KeyBERT library comes from creating contextual
embeddings for each sentence before comparing
each word in the sentence it was pulled from with
the sentence itself.

8 Conclusion

In this work, we present Coherence, which is a
novel approach to unsupervised TS that leverages
contextual keywords from sentences to represent
text segments. We show that the emphasis on
contextual keywords can build representations of
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Clinical Wiki Fiction

Pk ↓ WD ↓ Pk ↓ WD ↓ Pk ↓ WD ↓

Badjatiya et al. (2018) 33.0 31.0 34.0 32.0 38.0 31.0
Coherence 37.1 38.9 50.2 53.4 35.7 61.6

Table 1: Results on the “clinical”, “wiki”, and “fiction” datasets (Badjatiya et al., 2018; Malioutov, 2006; Kazantseva and
Szpakowicz, 2011). We compare our results to Badjatiya’s fine-tuned neural model and show competitive results,
without the need for fine-tuning.

3 – 5 6 – 8 9 – 11 3 – 11

Pk ↓ WD ↓ Pk ↓ WD ↓ Pk ↓ WD ↓ Pk ↓ WD ↓

Choi (2000) 12.0 – 9.0 – 9.0 – 12.0 –
Brants et al. (2002) 7.4 – 8.0 – 6.8 – 10.7 –
Fragkou et al. (2004) 5.5 – 3.0 – 1.3 – 7.0 –
Misra et al. (2009) 23.0 – 15.8 – 14.4 – 16.1 –
Glavaš et al. (2016) 5.6 8.7 7.2 9.4 6.6 9.6 7.2 9.0
Coherence 4.4 6.2 3.1 3.3 2.5 2.6 4.0 4.4

Table 2: Results on the synthetic Choi (Choi, 2000) dataset.

Pk ↓ WD ↓

Riedl and Biemann (2012) 33.39 38.31
Glavaš et al. (2016) 28.09 34.04
Coherence 31.71 33.42

Table 3: Results on the Manifesto (Glavaš et al., 2016) Dataset. We show the versatility of Coherence providing competitive
results in a different domain.

segments, which can be used for TS. Coherence
demonstrates improvements over SOTA unsuper-
vised TS techniques, particularly in the metrics of
Pk and WindowDiff. The main contributions of
Coherence include the diverse extraction of key-
words and an efficient keyword collection mecha-
nism which we termed Keyword Map.

Our results on the Choi, Manifesto, Clinical,
Wiki, and Fiction datasets show that Coherence
can perform well in a variety of domains. While
we also include our results on the newer WikiSec-
tion dataset, other supervised TS approaches show
superior results.

Future work will focus on enhancing Coherence
to consider the contextual relationship between ex-
tracted keywords, while exploring the method’s
applicability across various domains and datasets.
Coherence offers a solution that can be adapted to
various domains without the need for fine-tuning.
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A Appendix

Algorithm 1: Coherence
Result: Extract similar and diverse keywords with globally informed context through sentence

batching.
keywords← keyword_extraction([s0, . . . , s9]) ; /* s0, ..., s9 are sentences. */
keyword_map = [];
similarities = [];
predictions = [];
for i . . . len(keywords) do

curr_kws← keywords[i+ 1];
prev_kws← keyword_map[0 . . . i];
for w ∈ curr_kws do

for k ∈ prev_kws do
similarity ← cosine_similarity(k,w);
similarities.insert(similarity);
if similarity >= coherence_threshold then

gits_map.insert(w) ; /* Add new keyword to map. */
end

end
end
if avg(similarities) >= coherence_threshold then

predictions.insert(0) ; /* The current sentence is similar */
else

predictions.insert(1) ; /* The current sentence is not similar */
end

end
return predictions

Description: coherence_threshold is a hyperparameter set between 0 and 1, which can be used to
enforce the strength keywords need to have between each other for entrance into the Keyword Map.
Through our testing, we notice that this value will vary depending on the sentence encoder used (LaBSE
in our case), since the strength of each keyword and its parent sentence are directly related to the encoder.
To that end, we find the best results (based on Pk and WindowDiff scores) when this value is set to 0.7.
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Abstract

Selectively processing noisy utterances while
effectively disregarding speech-specific ele-
ments poses no considerable challenge for hu-
mans, as they exhibit remarkable cognitive
abilities to separate semantically significant
content from speech-specific noise (i.e. filled
pauses, disfluencies, and restarts). These abil-
ities may be driven by mechanisms based on
acquired grammatical rules that compose ab-
stract syntactic-semantic structures within utter-
ances. Segments without syntactic and seman-
tic significance are consistently disregarded in
these structures. The structures, in tandem with
lexis, likely underpin language comprehension
and thus facilitate effective communication. In
our study, grounded in linguistically motivated
experiments, we investigate whether large lan-
guage models (LLMs) can effectively perform
analogical speech comprehension tasks. In par-
ticular, we examine the ability of LLMs to ex-
tract well-structured utterances from transcrip-
tions of noisy dialogues. We conduct two eval-
uation experiments in the Polish language sce-
nario, using a dataset presumably unfamiliar
to LLMs to mitigate the risk of data contami-
nation. Our results show that not all extracted
utterances are correctly structured, indicating
that either LLMs do not fully acquire syntactic-
semantic rules or they acquire them but can-
not apply them effectively. We conclude that
the ability of LLMs to comprehend noisy utter-
ances is still relatively superficial compared to
human proficiency in processing them.

1 Introduction

In the field of natural language understanding
(NLU), efforts are directed towards simulating
human language comprehension using language
modelling techniques. A crucial aspect of this pur-
suit involves the development of large language
models (LLMs), which play a pivotal role in nu-
merous natural language processing (NLP) tasks
(Vaswani et al., 2017; Rajpurkar et al., 2016; Yang

et al., 2019), tailored for comprehension, genera-
tion, and manipulation of natural language. NLU
research also aims to identify LLMs’ shortcom-
ings, to reverse-engineer phenomena that LLMs fail
to address. Despite impressive capabilities, LLMs
have not achieved the comprehensive and nuanced
linguistic competency inner to human beings (Mao
et al., 2023) and their further study is necessary.

LLMs undergo training on extensive and varied
datasets, which include textual data, code-based
data, structured datasets, and other data sources.
Textual data exhibits significant diversity, compris-
ing edited texts, content from social media plat-
forms as well as speech transcriptions, such as
parliamentary proceedings or pretended dialogues
within narratives or subtitles. Despite spoken lan-
guage’s dominance in daily communication and the
availability of high-quality transcription tools, it re-
mains unexplored whether processing transcribed
utterances is challenging for LLMs. Motivated by
this observation, we aim to examine whether LLMs
can effectively address challenges akin to those
faced by humans during comprehending utterances.

Speech understanding is a complex cognitive
process that plays a fundamental role in human
communication. The nature of speech comprehen-
sion is multifaceted, influenced by neurological,
cognitive and linguistic factors. This study focuses
on the linguistic dimension. When decoding spo-
ken messages, humans struggle with phonologi-
cal difficulties (Vitevitch and Luce, 1998), includ-
ing phonological similarity and ambiguity among
words, and individual phonemic variations. This as-
pect is irrelevant to the current study, as we solely
investigate the processing of texts (transcriptions).
The comprehension of spoken utterances can be af-
fected by syntactic complexity. Processing complex
sentences may increase a cognitive cost and result
in comprehension difficulties (Friederici, 2002).
The semantic aspects of speech understanding are
thoroughly researched. For instance, Rodd et al.
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(2016) investigated the process of word-sense dis-
ambiguation and its associated challenges.

To comprehend an utterance, separating semanti-
cally significant content from speech-specific noise
is crucial. The ability to filter out noise and se-
lectively compose only the semantically relevant
information is inherent to humans. Since it remains
unexplored whether LLMs can perform this task
effectively, we address this issue through linguisti-
cally motivated evaluation tasks in the Polish lan-
guage scenario. In Section 2, we introduce the
proposed approach with its primary objective to
determine whether LLMs are capable of identify-
ing well-structured utterances in transcriptions of
authentic spontaneous utterances that incorporate
noisy speech-specific segments. In Sections 3 and
4, we outline the experimental setup and discuss
the results of the empirical evaluation. Section 5
provides the contextual backdrop for our research,
while Section 6 concludes our research findings.

2 Proposed approach

Processing spoken data is often more challenging
when contrasted with processing genuine written
texts. Firstly, spoken words may be obscured by
background sounds, resulting in transcription gaps.
Secondly, the application of automated transcrip-
tion and punctuation recovery tools can yield lexi-
cal and punctuation errors in transcriptions. Thirdly,
the written mode tends to be more standardised,
whereas the spoken mode often features informal
and colloquial language. Finally, and most impor-
tantly in the context of this study, speech-specific
elements such as fillers, self-corrections, and false
starts increase the complexity of understanding spo-
ken data compared to written texts.

In the era of robust and advanced LLMs, util-
ising them for processing transcribed spoken data
emerges as a rational choice. Nevertheless, uncer-
tainties arise regarding their ability to identify in-
tended content to be comprehended in possibly
noisy utterances. This study examines whether
LLMs possess the competence to selectively pro-
cess noisy utterances while ignoring non-fluency
features. We investigate the capabilities of LLMs
in (1) extracting well-formed sentences determined
by abstract syntactic-semantic structures (see Sec-
tion 2.1) from noisy utterances; (2) disregarding
speech-specific elements (see Section 2.2) that do
not contribute to utterance understanding.

To ascertain the ability of LLMs to disregard

speech-specific elements and to recognise well-
formed sentences within noisy utterances, we em-
ploy the prompting methodology (see Section 2.3).
Based on predefined prompts, LLMs are instructed
to identify and subsequently output all tokens com-
posing well-structured utterances. LLMs’ perfor-
mance in extracting refined utterances and filtering
non-fluency features is evaluated against a gold-
standard dataset (see Section 2.4).

2.1 Abstract syntactic-semantic structure
Each sentence serves an intentional function and
conveys meaning. The principles governing sen-
tence construction, specifically those encompassing
syntactic and semantic aspects, are inherently com-
positional. Syntax, responsible for allowed compo-
sitions, operates in tandem with semantics, i.e. the
composition of well-formed expressions is contin-
gent upon syntactic rules intrinsically linked with
semantic rules. Syntactic rules, founded on word or-
der, agreement, and government principles, dictate
the permissible compositions of words, phrases,
and clauses. Semantic rules, in turn, determine how
the meaning of these composed expressions is de-
rived from the meanings of their components (Par-
tee, 1984, 2004; Jacobson, 2014). In language ac-
quisition, humans internalise these rules and, draw-
ing on their linguistic competence, are able to pro-
duce and process inherently structured sentences.
The question of whether humans derive separate
syntactic and semantic structures or a single uni-
fied compositional structure remains challenging to
answer due to the lack of direct access to cognition
mechanisms. As a compromise solution, we refer
to this structure as the abstract syntactic-semantic
structure (AS).

The process of composing inner ASs is a funda-
mental feature of human language comprehension.
When reading or hearing sentences, humans parse
them in line with their linguistic competence, sub-
consciously constructing ASs of these sentences.
The ASs function as links or interfaces for decoding
sentences to their intended meanings, i.e. enabling
their understanding. While processing speech, hu-
mans encounter an additional challenge, namely the
necessity to selectively disregard speech-specific
elements (see Section 2.2). Composing these ele-
ments with semantically relevant content violates
syntactic and/or semantic rules. Only segments re-
sulting from an inner filtering process are permitted
to compose a coherent and cohesive AS – the foun-
dation for comprehending language.
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To niech pani ... to ... to ja pani podam maila , (yy) a pani mi prześle szczegóły
So let you ... so ... so I you will give email , (yy) and you me will send details

root parataxis:restart
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to ja pani podam maila , a pani mi prześle szczegóły
so I you will give email , and you me will send details

root
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nsubj

iobj obj
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conj
cc
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iobj
obj

Figure 1: The original utterance transcription is depicted in the upper UD tree. The bottom UD tree, obtained via
filtering speech-specific elements from the upper tree, serves as an approximation of the abstract syntactic-semantic
structure of the well-formed sentence "to ja pani podam maila, a pani mi prześle szczegóły" (Eng. I will give you my
e-mail address and you will send me the details).

The exact form of the AS established through
cognitive parsing (Ding et al., 2016) remains in-
determinate. Various proposals have emerged re-
garding its potential representations to facilitate
linguistic research and support NLP. One widely
adopted framework is Universal Dependencies
(UD, de Marneffe et al., 2021), which primarily
focuses on syntactic relations but also includes
semantics facets, such as the distinction between
functional and content words, thematic role ex-
tensions, and named entities. UD trees also cover
speech-specific phenomena. Thereupon, we anchor
our research within this framework and use UD
trees to approximate ASs.

2.2 Examined speech-specific phenomena

Conversations involve at least two speakers and
are structured into alternating turns. A turn that
is a continuous utterance of a speaker serves as
a primary unit for linguistic analysis. Apart from
an intended content, utterances may also include
interruptions or extra elements commonly found in
spoken language: non-linguistic tokens, disfluen-
cies, and restarts.

2.2.1 Non-linguistic tokens

Non-linguistic tokens are segments distinctive to
spoken language, i.e. silent and non-silent pauses
(fillers). Both types of pauses occur when the
speaker momentarily suspends their speech produc-
tion. Intervals of silence can be transcribed as ‘...’
and inarticulate sounds can be denoted as ‘(yy)’ in
transcripts. Pauses are annotated with the discourse
UD dependency type (see Figure 1).

2.2.2 Disfluencies
Disfluencies are interruptions or irregularities that
disrupt the smoothness of speech and serve as in-
dicators of uncertainty and hesitation, or the need
to clarify or amend a statement. Disfluencies are
commonly rectified through speech corrections. In-
stances of disfluency cases include (1) repetitions,
e.g. ‘two, ei... eight, one, five’, (2) substitutions,
e.g. ‘I received... we received a message’, (3) refor-
mulations, e.g. ‘We lost eight... seventy pounds’.
Disfluencies are annotated as dependents of their
corrections and are labelled with the reparandum
dependency type.

2.2.3 Restarts
Restarts refer to clauses or phrases that lack syn-
tactic connections to the antecedent string of to-
kens. These phenomena occur when a speaker aban-
dons the ongoing utterance and initiates a new one,
e.g. ‘cause I don’t have a..., I don’t remember the
password’ (the underlined string should be ignored
while composing the utterance meaning). Restarts
are annotated with the parataxis:restart UD type.

2.3 Prompt-driven cognisance of
well-structured utterances

The prompting technique consists in explicitly in-
structing LLMs to solve specific NLP tasks (Rad-
ford et al., 2019). Given a predefined prompt,
LLMs are directed to generate or analyse texts ac-
cording to the verbal instructions included in this
prompt. The prompting technique is valuable in
tailoring LLMs to specific NLP tasks and attaining
a degree of control over their responses.

In this approach, we prompt LLMs to extract
well-structured utterances while filtering speech-
specific elements. Despite the remarkable zero-
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shot capabilities of LLMs, we apply the few-shot
paradigm (Brown et al., 2020) that involves provid-
ing input-output examples. The pairs of noisy input
utterances and well-structured output utterances
guide LLMs towards better performance.

The prompt-driven process of recognising well-
formed sentences within noisy utterances is illus-
trated in Figure 1. In the input utterance (i.e. tokens
of the upper UD tree), LLM seeks to identify noisy
substrings: the discourse fillers ‘...’ and ‘(yy)’, the
reparandum subtree ‘to...’, as well as the false start
‘To niech pani...’. Fillers and repetition strings rep-
resent conventional forms of noise that LLM should
easily detect. However, identifying substitutions,
reformulations, and false starts poses non-trivial
challenges, requiring deeper analysis of input ut-
terances. After filtering out non-fluency features,
LLM should output tokens that compose a gram-
matically coherent utterance, in line with its inher-
ent syntactic-semantic rules acquired during train-
ing. LLM does not see UD trees of input utterances
nor is it required to produce AS approximations
(i.e. UD trees or other human-conceptualised lin-
guistic representations). Instead, LLM is expected
to internalise ASs, akin to human language process-
ing, and employ rules used to build them to identify
tokens of well-formed sentences. Since predicting
ASs is not a prerequisite for comprehending sen-
tences, LLM is not instructed to do this.

2.4 Definition of evaluation tasks

Probing is a valuable methodology for uncover-
ing abilities and limitations of NLP models, while
solving specialised tasks (Conneau et al., 2018). It
contributes to the interpretation of the information
embedded in their internal representations.

The proposed probing tasks are designed to as-
sess the linguistic competency of LLMs in recog-
nising speech-specific noise and extracting well-
structured and coherent utterances. Our objec-
tive is to gain a deeper understanding of whether
LLMs have learned to distinguish semantically
relevant content from speech-specific noise dur-
ing training on extensive textual data. In all tasks,
we benchmark LLMs’ output against the gold-
standard dataset, wherein tokens of well-structured
utterances are annotated as positive instances and
speech-specific tokens are negative instances.

2.4.1 Well-structure-task
It tests whether all tokens of well-structured utter-
ances are preserved in utterances output by LLMs.

In particular, we test whether extracted tokens
indeed constitute well-formed and coherent sen-
tences, as determined by UD approximations.
Example: In Figure 1,1 the well-structured utter-
ance (the bottom tree) adheres to the predicate-
argument structure of the predicate ‘podam’ (Eng.
I will give).

2.4.2 Discourse, reparandum, and restart
These tasks test whether all tokens of a particular
speech-specific type are correctly removed from
utterances output by LLMs. The additional goal of
these tasks is to identify which speech-specific phe-
nomenon poses the greatest challenge for LLMs.
Discourse-task The idea of this task is to check
whether LLM recognises non-linguistic tokens (i.e.
pauses and inarticulate sounds) and correctly filters
them out from final utterances.
Example: In Figure 1, there are three discourse
subtrees marked with (brown boxes) that should
not appear in the final utterance.
Reparandum-task This task investigates whether
LLM recognises disfluencies (i.e. repetitions, sub-
stitutions, and reformulations) and correctly re-
moves them.
Example: There is one reparandum token marked
with (a blue box). This token together with its
dependent discourse token (i.e. the string ‘to...’)
should be excluded from the ultimate utterance.
Restart-task This task tests whether LLM
recognises all tokens of false start subtrees.
Example: There is one token with the
parataxis:restart label. Its head-subtree marked
with (a green box) represents the false start
‘To niech pani...’ that should not be in the final
utterance.

3 Experimental setup

3.1 Tested models
In this study, we examine various LLMs with the
transformer architecture (Vaswani et al., 2017).
First, we probe two powerful iterations of the
Generative Pre-trained Transformer (Brown et al.,
2020): GPT-3.5 and GPT-4, which are pre-trained
to predict the next token in a document. GPT-
3.5 is notable for its outstanding performance in
NLU tasks. GPT-4 (OpenAI, 2023), in turn, is a
multi-modal model that exhibits human-level per-
formance on various benchmarks. Furthermore,

1All probing tasks are illustrated based on the example
provided in Figure 1.

13



we evaluate publicly available LLMs, specifically
Llama 2 (Touvron et al., 2023) and Mistral 7B
(Jiang et al., 2023). Lastly, we examine Bielik
(Ociepa et al., 2024), the recently released Polish
LLM, which is derived from Mistral 7B.

Interacting via API, we prompt LLMs to extract
tokens of well-structured utterances from noisy in-
put utterances. As we aim for maximal determinism
in LLMs’ output, the temperature and the inference
parameter n are set to 0 and 1, respectively.

3.2 Probing dataset
DiaBiz (Pęzik et al., 2022) is a large, annotated,
multi-modal dataset comprising recorded and tran-
scribed phone conversations in Polish. Its subset
of 101 dialogues (3421 turns and 82,806 tokens)
was manually annotated following the UD guide-
lines (de Marneffe et al., 2021). Each turn has
an assigned conventional UD structure. If a turn
comprises multiple sentences, their UD trees are
interlinked using the parataxis label. In addition
to the standard UD dependency types, the utter-
ance trees contain the discourse, reparandum and
parataxis:restart types.

We use the UD-annotated DiaBiz subset to con-
struct a probing dataset. The new dataset is struc-
tured in a JSON format (see Appendix A), where
each turn token is assigned the status value, either
True (indicating its presence in a well-structured
utterance) or False (denoting a speech-specific to-
ken unsuitable for inclusion in LLM’s output). The
dataset comprises 75,107 True-tokens, resulting
in an average of 21.95 tokens per well-structured
utterance. The remaining 7699 False-tokens build
subtrees of 5577 speech-specific phenomena (see
the labels-column in Table 3). These subtree to-
kens are slated for removal. Hence, in the context
of discourse, LLMs are tasked with eliminating
almost only speech-specific discourse tokens. For
each reparandum, LLMs are expected to remove
an average of two tokens, and for each restart, they
should identify and filter out an average of 8 tokens.

The discourse dependencies typically align with
individual tokens, whereas reparandum and the
heads of parataxis:restart allow for the removal
of other nested speech-specific dependencies. For
example, the second discourse token belongs to
the reparandum subtree (see the bottom UD tree
in Figure 1). In the JSON structure, each token of
a speech-specific subtree is annotated either as True
(indicating its removal in a particular probing task)
or False (indicating its preservation in a probing

task). A single token may be annotated as True in
the context of multiple speech phenomena.

3.3 Prompt engineering

Various factors are considered to engineer prompts
that effectively guide LLM in extracting well-
formed sentences from noisy utterances. First, we
check whether providing an illustrative explana-
tion of speech phenomena or incorporating explicit
input-output examples (few-shot) in prompts en-
hances informativeness, finding the latter approach
more beneficial. Second, regarding input and out-
put formats, we note that only GPT-4 can reliably
process JSON structures. As GPT-3.5 and other
LLMs often generate incorrect JSON, they should
be instructed to use strings for both input and out-
put. Third, regarding the prompt language, i.e. En-
glish vs. Polish, we test different scenarios for the
Polish Bielik LLM and observe that the instruction
language has negligible impact on the resulting
answer. We draft diverse prompts and empirically
test LLMs with these prompts on a small set of 50
turns.

The final prompts (see Appendix B) are de-
signed to be universally applicable across all LLMs
rather than tailored to a specific LLM. They in-
struct LLMs to remove speech-specific disruptions
and output acceptable utterances (i.e. well-formed
phrases, sentences or sequences thereof). In addi-
tion to task-specific instructions, the prompts in-
clude a repertoire of speech-specific phenomena to
be addressed and details regarding input and output
formats, illustrated by examples.

4 Results

4.1 First experiment

To assess LLMs’ ability to extract well-structured
utterances from noisy transcriptions, their out-
comes are compared to gold standard utterances
from the probing dataset. The extraction quality
is measured using accuracy, precision, recall, F1-
measure, and true negative rate (TNR), see Table 1.

The results confirm the superior performance
of GPTs compared to open LLMs, particularly in
recall (or sensitivity) values. GPT-4 and GPT-3.5
show high efficiency in extracting complete struc-
tures, with recall rates of 97% and 94%, respec-
tively. In contrast, Bielik demonstrates significantly
lower recall values of 74-75%, and Mistral and
Llama perform even worse, yielding structures that
are only approximately 50% complete.
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LLM accuracy precision recall F1 TNR CPT

Llama 0.50 0.95 0.47 0.63 0.78 73.4
Mistral 0.56 0.98 0.52 0.68 0.91 70.1

GPT-3.5 0.92 0.97 0.94 0.95 0.69 91.9
GPT-4 0.94 0.97 0.97 0.97 0.69 93.5

Bielik 0.74 0.95 0.75 0.84 0.63 78.1
BielikPL 0.73 0.96 0.74 0.83 0.69 75.7

Table 1: Evaluation of LLMs’ performance in extract-
ing well-structured utterances from noisy transcriptions.
The subscript PL denotes prompts formulated in Polish.
CPT indicates the ratio of characters per turn.

To examine the disparity in recall values more
closely, we conduct a comparative analysis of the
number of extracted characters per turn.2 GPT-4,
achieving the highest recall value, retrieves an av-
erage of 93.5 characters per turn (see the last col-
umn in Table 1). Open LLMs, in turn, demonstrate
lower recall values and lower character-per-turn
ratios. Calculating a correlation between character
counts and recall value reveals strong coefficients:
Pearson’s at 0.93 and Spearman’s at 0.95. Further-
more, GPT-4’s ratio of 93.5 characters per turn on
average is remarkably closer to the gold standard
ratio of 93.4. These nearly identical ratios suggest
that GPT-4’s extractions are relatively complete,
resulting in the higher recall value.

High and comparable precision scores among
LLMs indicate accurate extraction of positive in-
stances, i.e. tokens associated with ASs. We fur-
ther investigate LLM outputs for the correctness
and completeness of their predicate-argument struc-
tures, evaluating missing dependency types and
analysing their significance. Table 2 provides a sta-
tistical summary of missing dependency types, av-
eraged across the UD dependency type categories:
core arguments, non-core dependents, nominal de-
pendents, function words, and other dependents.

The most serious errors stem from the absence
of core arguments, which are vital for the coher-
ence of predicate-argument structures. In Bielik’s
extracted utterances, over a quarter of core argu-
ments are absent, signifying serious deficiencies
in their ASs. Similarly, Mistral’s and Llama’s out-
puts frequently miss multiple core arguments. GPT-
4’s outputs, in turn, omit only 1.4% of core argu-
ments, followed by GPT-3.5 with 3%, denoting that
most GPT-extracted utterances are well-structured

2Possible automatic tokenisation errors make token com-
parison unreliable. Therefore, we opt to count characters per
turn to mitigate this risk.

and coherent, albeit not all of them. Non-core de-
pendents, with an average absence of 9-10% for
GPTs, 23-29% for Bielik, 53-60% for Mistral and
Llama, along with nominal dependents and func-
tion words, exhibiting an average omission of 23-
27% for Bielik, 40-60% for Mistral and Llama,
also contribute to the grammatical disruption of
the extracted utterances. Last but not least, the ab-
sence of predicates poses a significant deficiency,
particularly evident in GPT-3.5 and open LLMs,
where 8% and 22-35% tokens annotated as roots
(within Other dependents) are incorrectly filtered
out. This highlights a serious problem of missing
crucial constituents, which concurrently impacts
the overall quality of extracted utterances.

The vast majority of tokens in the input data,
specifically 90.7%, constitute well-structured utter-
ances. This simplifies the task for the tested mod-
els and may mask their limitations in accurately
identifying speech-specific elements that should be
classified as negative instances. For a precise eval-
uation of rejected tokens, i.e. those which LLMs
consider to be speech-inherent elements, we cal-
culate true negative rates (TNR). The TNR scores,
indicating the quality of detected speech-specific
segments, are lower in comparison to the accuracy
scores of extracting well-structured utterances by
Bielik and GPTs. The TNR scores for these three
models stand at 63-69%, while the average accu-
racy score is 73.5% for Bielik and even 93% for
GPTs. This suggests that GPTs and Bielik incor-
porate many infrequent speech-specific tokens into
the ultimate utterances. Llama and Mistral, in turn,
show significantly higher TNR scores, with Mis-
tral achieving 91%, indicating effective in-depth
control over speech-specific noise.

The final issue concerns out-of-vocabulary
(OOV) words, which are not part of input utter-
ances and ideally should not appear in LLMs’ out-
put. LLMs are prompted to filter words rather than
generate new ones or modify existing ones. Follow-
ing the prompt instructions is a major challenge
for Llama and Mistral that incorrectly generate
18K and 13K OOV words, respectively. Bielik is
more accurate in following instructions, as it out-
puts 3.6K OOV words in the experiment with the
English prompt and 2.6K OOV words with the Pol-
ish prompt. Both GPTs output a small number of
OOV words: GPT-3.5 generates 467 OOV words,
whereas GPT-4 produces 188 (see Appendix C for
a detailed analysis of OOV words).
The OOV words are currently not categorised as
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Dependency category Llama Mistral GPT-3.5 GPT-4 Bielik BielikPL
avg. ratio avg. ratio avg. ratio avg. ratio avg. ratio avg. ratio

Core arguments ccomp, iobj, nsubj, obj, xcomp
925.5 59.50 793.33 45.10 65.00 2.99 33.60 1.44 433.17 27.52 441.67 26.46

Non-core dependents advcl, advmod, discourse:interj, expl, obl, vocative
1548.50 55.99 1591.17 53.02 208.33 9.96 136.50 8.87 729.33 23.51 728.83 29.15

Nominal dependents acl, amod, appos, nmod, nummod
555.00 50.17 452.20 39.45 29.80 3.11 8.60 0.56 272.40 23.74 255.60 22.95

Function words aux, case, cop, det, mark
1446.60 57.49 1442.60 59.42 104.00 4.31 44.20 1.97 664.00 26.65 627.80 24.92

Other dependents cc, conj, dep, fixed, flat, list, orphan, parataxis, punct, root
1522.60 55.41 1199.60 50.97 227.50 10.75 162.38 4.45 825.00 24.26 927.89 26.10

Table 2: Evaluation of dependency category instances missing in LLMs’ outputs compared to gold-standard trees of
well-structured utterances. avg. – the average number of missing instances within a dependency type class; ratio –
the percentage of missing instances relative to gold standard.

Type gold-standard Llama Mistral GPT-3.5 GPT-4 Bielik BielikPL
labels single [# (%)] tokens tokens ratio tokens ratio tokens ratio tokens ratio tokens ratio tokens ratio

discourse 3720 3780 (4.6) 3791 3125 82.4 3769 99.4 3203 84.5 3420 90.2 2859 75.4 2961 78.1
reparandum 1719 3880 (4.7) 3926 2966 75.5 3511 89.4 2531 64.5 2346 59.8 2198 56.0 2489 63.4
restart 138 1096 (1.3) 1109 728 65.6 896 80.8 330 29.8 362 32.6 481 43.4 580 52.3

Table 3: LLM performance in filtering speech-specific tokens from transcriptions. Explanation: labels – the number
of speech-specific instances; single – single speech-specific tokens outside well-formed utterances; tokens – the
number of tokens filtered or to be filtered by LLMs; ratio – the percentage of tokens correctly filtered by LLMs.

false positives because they could be considered
favourable improvements in other NLP tasks.

4.2 Second experiment

To gauge the speech-specific phenomenon posing
the greatest challenge for LLMs, we compare their
outputs against the probing dataset. We measure the
percentage of filtered-out tokens associated with
a particular speech-specific phenomenon, within
the set of all tokens responsible for encoding this
phenomenon in the probing dataset (see Table 3).

The results confirm the noticeable superiority of
Mistral in effectively filtering discourse, reparan-
dum and restart segments, compared to all other
LLMs. The discourse phenomenon is relatively
easy to identify for all LLMs except Bielik, as indi-
cated by the ratio of 99% for Mistral, 84-90% for
GPTs, 82% for Llama and only 75-78% for Bielik.
Among phenomena that all LLMs except Mistral
struggle to filter, the second most challenging one
is reparandum. The most effective LLM – Mistral –
removes almost 90% reparandum segments. Llama
excludes about 75% reparandum instances, while
GPTs and Bielik filter out just over half of the
tokens constituting repetitions, substitutions and
reformulations.

As evidenced by the low restart values, such
as 30% for GPTs, 40-50% for Bielik and 66%

for Llama, LLMs struggle to recognise the restart
phenomenon. This suggests that LLMs face dif-
ficulty in identifying unfinished statements (false
starts) which are intended to be replaced by restarts.
Instead, most of these unfinished statements are
treated by LLMs as syntactically or semantically
sound parts of utterances. False starts that should
be filtered out may be realised as proper clauses
that are acceptable in other contexts. Their subtrees
are typically extensive, averaging around 8 nodes
(an 8-token clause can constitute a well-formed
sentence in Polish). The absence of graphic or to-
pographic clues makes it challenging to identify
restarts as semantically irrelevant within the cur-
rently investigated contexts. Nevertheless, recog-
nising and filtering out entire false start subtrees
is imperative for constructing well-structured and
coherent utterances and only Mistral achieves high
efficiency in accomplishing this removal task.

4.3 Empirical observations

The results of the first experiment might suggest
that LLMs, especially GPTs, excel at detecting
speech-specific noise and extracting sentences that
adhere to ASs. However, a closer examination of
speech-related phenomena, which should not be in-
corporated into output utterances according to the
proposed evaluation approach, reveals that Bielik
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and GPTs commit errors in filtering out noise. The
most challenging phenomenon is restart. Compar-
atively less challenging, though still error-prone,
are repetitions, substitutions, and reformulations
(i.e. reparandum). The process of filtering non-
linguistic elements labelled with the discourse type
poses no challenge for tested LLMs. Conversely,
Mistral demonstrates remarkable efficacy in filter-
ing speech-specific segments. However, its filter-
ing tends to be overly aggressive, excluding not
only speech noise but also elements of predicate-
argument structure (e.g. about 50% arguments). As
a consequence, output utterances are incorrectly
structured and lack coherence.

In summary, GPTs prioritise precision and care-
ful error avoidance, resulting in residual speech
noise, while Mistral’s aggressive filtering strategy
leads to serious grammatical errors. Regardless of
the approach, the errors produced by LLMs reveal
their defective language competence. The acquisi-
tion of deep syntactic and semantic rules remains
an open issue, requiring careful consideration in
LLM development.

5 Related works

Probing state-of-the-art LMs for their syntactic and
semantic knowledge is a widely adopted diagnostic
approach. Numerous studies have attempted to ex-
amine LMs using controlled test sets. Some studies
focus on designing probing tests to directly inspect
the model’s internal structure and identify its re-
gions correlated with linguistic information (Shi
et al., 2016; Tenney et al., 2019b; Peters et al., 2018;
Jawahar et al., 2019; Tenney et al., 2019a; Lin et al.,
2019). For instance, Tenney et al. (2019a) demon-
strate that BERT can effectively execute multiple
stages of an NLP pipeline, including POS tagging,
parsing, named entity recognition, semantic role
labelling, and coreference resolution. They localise
BERT’s regions where linguistic information is em-
bedded and which are responsible for each task.

Parallel investigations endeavour to probe mod-
els to measure their proficiency and limitations in
representing language, with a particular focus on
syntactic and semantic knowledge (Conneau et al.,
2018; Marvin and Linzen, 2018; Poliak et al., 2018;
Hewitt and Manning, 2019; Weissweiler et al.,
2022). For example, Weissweiler et al. (2022) dis-
cover that LMs can classify sentences as instances
of a particular linguistic construction, but they can-
not extract the conveyed meaning and effectively

employ it within a given context. Our research
aligns with the latter line of work, focusing on
LLM’s linguistic competence.

Since our research partially explores speech un-
derstanding, we mention recent studies focusing
on probing speech models for syntax. Shah et al.
(2021) probe them to discern their ability to en-
code linguistic information, including the depth of
syntax trees. Similarly, Shen et al. (2023) conduct
probing tests on speech models to identify the loci
where syntactic structures are embedded.

Speech processing typically involves two main
stages – automatic speech recognition (ASR) and
NLU, with an intermediate step often dedicated
to detecting and possibly removing disfluencies
(Chen et al., 2022; Wagner et al., 2024). Lou and
Johnson (2020) aim at developing joint models
that integrate ASR with disfluency removal. This
approach results in refined transcripts, which stan-
dard NLP and NLU tools can subsequently process.
In our evaluation approach, we test the capability
of LLMs to detect and filter out noise. However,
our goal is not to employ LLMs as noise detectors;
rather, we seek to determine whether LLMs can pri-
oritise the meaningful parts of utterances (i.e. well-
structured sentences) while ignoring noise during
processing noisy utterances.

6 Conclusions

In this study, we have introduced an approach
aimed at evaluating the capabilities of LLMs within
the realm of processing transcribed noisy utter-
ances in Polish. Our primary focus is to ascertain
whether LLMs possess adequate linguistic compe-
tence to detect well-structured sentences in noisy
utterances.

To conduct this research, we leverage the prompt-
ing technique, in which the currently most power-
ful GPTs, two open LLMs (Llama and Mistral)
and a Polish LLM (Bielik) are tasked with iden-
tifying speech-inherent noise and extracting well-
structured utterances. The models’ outcomes are
rigorously evaluated using the probing dataset de-
rived from the UD-annotated subset of DiaBiz.

Recognising speech-specific phenomena, espe-
cially false starts, presents a challenge for the tested
LLMs. Mistral appears proficient in filtering out
false starts and other speech-specific noise. This
proficiency, however, does not stem from its lan-
guage comprehension ability; rather, it arises from
its strategy for aggressive filtering, wherein it elim-
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inates not only noise but also required components
of predicate-argument structures, resulting in gram-
matical errors. GPTs generally exclude fewer re-
quired arguments and semantically crucial modi-
fiers but erroneously retain many speech-specific
segments.

Numerous studies confirm that transformer-
based LMs acquire individual syntactic and seman-
tic rules and can perform syntactic- and semantic-
based NLP tasks. Our experimental results also
indicate that LLMs possess linguistic competence.
However, this competence may be superficial or
insufficient, as LLMs struggle to identify complete
and coherent sentences in noisy utterances. This
superficial competence prevents the full internal-
isation of ASs underlying human language com-
prehension. Deeper syntactic-semantic understand-
ing is necessary for handling restarts and other
speech noise to enable seamless conversation of
LLMs (or large multimodal models) with humans.
Alternatively, LLMs may be unable to apply all
syntactic-semantic rules they have acquired, result-
ing in limited performance. In this case, psycholin-
guistic factors, such as shallow heuristics mixed
with syntactic algorithms (Ferreira, 2003) or ratio-
nal statistical inference (Gibson et al., 2013), could
impact the behaviour of LLMs, as suggested by an
anonymous reviewer. The application of psycholin-
guistic research methods may be highly valuable
for the future evaluation of LLMs.

We anticipate that our novel evaluation approach
will inspire further research into selective language
processing. Considering that ASR outcomes used
in voice assistants and other speech-based systems
require additional text processing, and texts are pre-
dominantly processed with LLMs, LLMs should
handle both written texts and spontaneous speech
transcriptions. This ability is crucial for enabling
human-like dialogue with machines. Moreover, by
integrating speech and text understanding, our ap-
proach lays the groundwork for evaluating LLMs
and potentially large multimodal models.

7 Limitations

Given the specific demands of our experimental
setup, which entail the availability of datasets with
annotated speech-specific elements, we have de-
liberately chosen to focus on a single, albeit less
widely studied language, compared to pervasive
English-only research. We use Polish for several
reasons. First, the DiaBiz dataset is relatively new

and likely unfamiliar to LLMs, and thus the possi-
bility of data contamination is eliminated. Second,
the utterances are transcribed with high precision,
including all non-linguistic and speech-specific el-
ements. Third, this choice poses an additional chal-
lenge for LLMs, requiring them to process a non-
dominant language and a non-dominant text do-
main (i.e. training data for LLMs, except Bielik, al-
legedly encompass only a limited amount of Polish
speech transcriptions). Building upon the preceding
point, certain conclusions can also be drawn regard-
ing LLMs’ competence in cross-linguistically cap-
turing universal linguistic properties, particularly
those related to grammatical relations. Despite the
evident constraint in language scope and general-
isation, we hope this research will be positively
received by the NLP community, creating opportu-
nities for broader research in the future.

Our study follows the direction proposed by Con-
neau et al. (2018) to examine LLMs’ capabilities
and limitations. Therefore, our analyses have obvi-
ous limitations, as we do not inspect LLM’s inter-
nal architectures to identify specific regions related
to distinct linguistic features. We thus lack insight
into LLMs’ layers where speech-specific elements
are recognised and syntactic-semantic structures
are internalised. We plan to address this limitation
in future research on open LLMs.
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A Appendix

An excerpt of the JSON structure used in the prob-
ing dataset.

"1": {
"token": "To",
"status": false,
"speech_type": {

"discourse": false,
"reparandum": false,
"restart": true},

"dep_type": "advmod:emph"},
"2": {

"token": "niech",
"status": false,
"speech_type": {

"discourse": false,
"reparandum": false,
"restart": true},

"dep_type": "aux:imp"},
"3": {

"token": "pani",
"status": false,
"speech_type": {

"discourse": false,
"reparandum": false,
"restart": true},

"dep_type": "root"},
"4": {

"token": "...",
"status": false,
"speech_type": {

"discourse": true,
"reparandum": false,
"restart": true},

"dep_type": "discourse"},
"5": {

"token": "to",
"status": false,
"speech_type": {

"discourse": false,
"reparandum": true,
"restart": false},

"dep_type": "reparandum"},
"6": {

"token": "...",
"status": false,
"speech_type": {

"discourse": true,
"reparandum": true,
"restart": false},

"dep_type": "discourse"},
"7": {

"token": "to",
"status": true,
"speech_type": null,
"dep_type": "advmod:emph"},

"8": {
"token": "ja",
"status": true,
"speech_type": null,
"dep_type": "nsubj"},

9": {
"token": "pani",
"status": true,
"speech_type": null,
"dep_type": "iobj"},

"10": {
"token": "podam",
"status": true,
"speech_type": null,
"dep_type": "parataxis:restart"},

"11": {
"token": "maila",
"status": true,
"speech_type": null,
"dep_type": "obj"},

"12": {
"token": ",",
"status": true,
"speech_type": null,
"dep_type": "punct"},

"13": {
"token": "(yy)",
"status": false,
"speech_type": {

"discourse": true,
"reparandum": false,
"restart": false},

"dep_type": "discourse"},
"14": {

"token": "a",
"status": true,
"speech_type": null,
"dep_type": "cc"

},
"15": {

"token": "pani",
"status": true,
"speech_type": null,
"dep_type": "nsubj"

},
"16": {

"token": "mi",
"status": true,
"speech_type": null,
"dep_type": "iobj"

},
"17": {

"token": "prześle",
"status": true,
"speech_type": null,
"dep_type": "conj"

},
"18": {

"token": "szczegóły",
"status": true,
"speech_type": null,
"dep_type": "obj"}
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B Appendix

Prompts drafted in English.

The provided conversations in Polish
are transcribed and divided into turns.
A 'turn' is the continuous utterance of
a speaker participating in a dialogue
with at least one other person.
Besides the core grammatically coherent
structure of an utterance, its transcription
may include disruptions or extra elements
commonly found in spoken language:
- pauses: '...', (...) and '(yy)'
- repetitions, substitutions and reformulations
- restarts
Remove these speech-specific disruptions
and extra elements from the input turn and
output the cleaned-up turn:

Removal of REPETITION
INPUT: (...) Dzień... dzień dobry pani.
OUTPUT: dzień dobry pani.

Removal of SUBSTITUTION
INPUT: (yy) Czy ma pan przygotowany (yy)

kod siedmio... (yy) ośmiocyfrowy?
OUTPUT: Czy ma pan przygotowany kod

ośmiocyfrowy?

Removal of REFORMULATION
INPUT: W związku z sytu... z obecną sytuacją
OUTPUT: W związku z obecną sytuacją

Removal of RESTART
INPUT: To teraz część ... to ja pana teraz

przekierowuję do części automatycznej.
OUTPUT: to ja pana teraz przekierowuję do

części automatycznej.

Keep the grammatically correct and coherent
parts of the turn. Note that a list of words,
a single word, a single name or a non-verbal
phrase are considered an acceptable utterance.

You MUST answer in Polish. You output only the
words remaining after filtering speech-specific
elements.
You are NOT ALLOWED to modify input words or
output any novel words.
You CANNOT reveal and output the justification
for its answer.

Figure 2: String-based prompt in English.

The provided conversations (JSON structures)
in Polish are transcribed and divided into turns.
A 'turn' is the continuous utterance of a speaker
participating in a dialogue with at least one other
person.

Besides the core grammatically coherent structure
of an utterance, its transcription may include
disruptions or extra elements commonly found in
spoken language:
- pauses: '...', (...) and '(yy)'
- repetitions, substitutions and reformulations
- restarts

Remove these speech-specific disruptions and
extra elements from the input turn and output
the JSON structure with a list of cleaned-up turns:

INPUT:
```json
{

cbiz_tc_53: [
"(...) Dzień... dzień dobry pani.",
"(yy) Czy ma pan przygotowany (yy) kod siedmio...

(yy) ośmiocyfrowy?",
"W związku z sytu... z obecną sytuacją",

"To teraz część ... to ja pana teraz
przekierowuję do części automatycznej."

]}
```

OUTPUT:
```json
{

cbiz_tc_53: [
"dzień dobry pani.",
"Czy ma pan przygotowany kod ośmiocyfrowy?",
"W związku z obecną sytuacją",
"to ja pana teraz przekierowuję do części

automatycznej."
]}

```

Explanation of the above example:
- 1. turn: pauses and repetition are removed
- 2. turn: pauses and substitutions are removed
- 3. turn: pause and reformulation are removed
- 4. turn: pause and restart are remove

Keep the grammatically correct and coherent parts of
the turn. Note that a list or a non-verbal sentence
is considered an acceptable utterance.

DO NOT insert additional words or characters.
DO NOT modify input words.
The input and output transcriptions MUST have
the same number of turns.

Figure 3: JSON-based prompt in English.
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C Appendix

We analyse the out-of-vocabulary words newly gen-
erated by LLMs in detail and categorise them into
(LLMs’ outputs are highlited in green):

1. corrections of grammatical errors and typos:
• zadzwonię [FUTURE TENSE] (Eng. I will call)→
zadzwoniłem[PAST TENSE] (Eng. I called)
• płatności [SINGULAR NUMBER] (Eng. payments)
→ płatność[PLURAL NUMBER] (Eng. a payment)

2. completions of elided words:
• dwóch roboczych (Eng. lit. two working)
→ dwóch dni roboczych (Eng. two working
days)

3. questionable morphological modifications:
• aspect change: nastawiałabym
się [IMPERFECTIVE] (Eng. I would set my-
self up)→ nastwiłabym się[PERFECTIVE]

• gender change: zajęłam [FEMININE] (Eng. I
occupied)→ zająłem[MASCULINE]

4. completing false starts instead of removal:
• Rozumiem, że... (yy) jeszcze raz jakbym...
Przepraszam, jakby mogła pani jeszcze
powtórzyć (Eng. I understand that...
(yy) again I’m like... I’m sorry,
could you repeat once again) →
Rozumiem, że [chodzi o płatność kartą].
Przepraszam, jakby mogła pani jeszcze
powtórzyć.

5. Adding English translations instead of or
with Polish output:
• (yy) Tak, potwierdzam. (Eng. (yy) Yes, I con-
firm.)→ Tak, potwierdzam. (I confirm.)

6. Adding explanations:
• Aha. → Aha. (This is a non-verbal sound
and not considered an utterance.)

7. Incorrect language identification:
• No SMS-em (Eng. Well, by text message)→
Brak SMS-ów (Eng. No SMS-s).
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Abstract

Sociocultural norms serve as guiding princi-
ples for personal conduct in social interactions
within a particular society or culture. The study
of norm discovery has seen significant develop-
ment over the last few years, with various in-
teresting approaches. However, it is difficult to
adopt these approaches to discover norms in a
new culture, as they rely either on human anno-
tations or real-world dialogue contents. This pa-
per presents a robust automatic norm discovery
pipeline, which utilizes the cultural knowledge
of GPT-3.5 Turbo (ChatGPT) along with sev-
eral social factors. By using these social factors
and ChatGPT, our pipeline avoids the use of hu-
man dialogues that tend to be limited to specific
scenarios, as well as the use of human annota-
tions that make it difficult and costly to enlarge
the dataset. The resulting database - Multi-
cultural Norm Base (MNB) - covers 6 distinct
cultures, with over 150k sociocultural norm
statements in total. A state-of-the-art Large
Language Model (LLM), Llama 3, fine-tuned
with our proposed dataset, shows remarkable
results on various downstream tasks, outper-
forming models fine-tuned on other datasets
significantly.

1 Introduction

Sociocultural norms are informal rules or guide-
lines that dictate acceptable behavior within a par-
ticular society or culture (Morris et al., 2015).
These norms encompass a wide range of behav-
iors, including manners, customs, values, and tra-
ditions. They govern how individuals interact with
one another and shape societal expectations regard-
ing appropriate conduct in various contexts. With
the rapid development of AI in the last decade, it
is crucial to define effective methods for discov-
ering and assessing the cultural knowledge of AI

*Corresponding authors. Contact details: {thanh.pham1,
gholamreza.haffari}@monash.edu

systems, especially the knowledge of sociocultural
norms.

The study of cultural norm discovery has wit-
nessed significant development in recent years.
SOCIAL-CHEM-101 (Forbes et al., 2020), one
of the earliest corpora, introduces social norms rep-
resented in a Rule of Thumb (RoT) format. Norm-
Bank (Ziems et al., 2023) is another large-scale
corpus of norms that contains situational norms
within a multivalent sociocultural frame. While
these datasets have high-quality samples and can be
applied to many culture-related tasks, they are con-
structed by humans, which is very time-consuming
and costly. In response to this problem, Fung et al.
(2023) introduced NormSage, a norm dataset con-
structed with a fully automated pipeline. Norm
statements in NormSage are extracted by prompt-
ing Large Language Models (LLMs) with dialogue-
based contents. The norms are then fed to a self-
verification process to ensure their quality. While
NormSage showcases a promising direction for
automatic norm discovery, it is based on real di-
alogue data, which may not be available in dif-
ferent cultures and can be limited to specific do-
mains. Moreover, social norms, relevant to specific
frames, should possess the flexibility to be appli-
cable across diverse dialogues, instead of being
bound to a single specific conversation.

To address the above challenges, in this paper,
we present an automated frame-based pipeline for
norm dataset construction using ChatGPT in a
multi-cultural setting. Socio-cultural norms are
often strongly associated with several social fac-
tors (Zhan et al., 2023), and we refer to the com-
bination of social factors as situational frames.
Norms in the proposed dataset are generated by
prompting ChatGPT with situational frames as the
context, instead of using real-world dialogue con-
tent like existing works. These frames consist of
carefully chosen social factors (culture, social re-
lation, power distance, and so on) which help to
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align the norm generation process. In this way,
we will not have to collect dialogue data for spe-
cific cultures and can easily expand the dataset.
Once the norms are extracted, we evaluate them
both intrinsically and extrinsically. For the former,
we use human evaluation to assess the quality of
the extracted norm statements. For the latter, we
employ the constructed norm database in various
downstream tasks to prove the adaptability as well
as the performance of our proposed dataset. To
summarise, our contributions are as follows:

• We propose an automatic pipeline for extracting
socio-cultural norm statements in multiple cul-
tures. This pipeline makes use of the implicit cul-
tural knowledge of ChatGPT, as well as a set of
carefully chosen social factors, to derive meaning-
ful norm statements. In this way, we address the
aforementioned problems of pioneering works.
By using social factors and ChatGPT, we avoid
the high costs of human annotation. Addition-
ally, our social factors can also replace human
dialogues, which tend to be limited to specific
domains (Fung et al., 2023).

• With the proposed pipeline, we construct the
Multi-Cultural Norm Base (MNB) dataset and
make it publicly available to the research com-
munity. The dataset contains 150k sociocultural
norm statements for 6 different cultural back-
grounds, extracted from 29k situational frames.
MNB is also one of the very few datasets that
feature multi-cultural settings. We will make the
dataset and code publicly available upon paper
publication.

• We conduct extensive experiments to analyze the
quality of MNB, as well as to demonstrate the
benefits of MNB in various downstream tasks.
Intrinsic evaluation results highlight both the
strengths and weaknesses of our method. We
observe that using ChatGPT for norm extraction
results in correct and insightful norms. At the
same time, the model cannot utilize all of the
given social factors, which, in many cases, leads
to norms being too general. On the other hand,
however, extrinsic experimental results show that
MNB can generalize well across multiple related
datasets and their corresponding benchmarks, out-
performing other datasets significantly.

2 Related Work

2.1 Commonsense Knowledge Bases

Commonsense Knowledge Bases (CKBs) encap-
sulate essential information that mirrors human
everyday understanding and reasoning, covering
broad aspects such as relational taxonomies (Liu
and Singh, 2004), logical associations (Zhang et al.,
2018; Elsahar et al., 2018), and the underlying prin-
ciples of causality and mechanics (Talmor et al.,
2019; Bisk et al., 2020). Following Cyc’s estab-
lishment (Lenat, 1995), there has been a signif-
icant advancement in the development of expan-
sive, human-curated CKBs (Liu and Singh, 2004;
Speer et al., 2017; Forbes et al., 2020; Bisk et al.,
2020; Hwang et al., 2021; Mostafazadeh et al.,
2020; Ilievski et al., 2021). Notably, Concept-
Net (Speer et al., 2017) exemplifies a compre-
hensive commonsense knowledge graph, charac-
terized by its structured representation of knowl-
edge in entity-relation-entity triples. The ATOMIC
(Sap et al., 2019) advances this domain by cata-
loging social interaction dynamics through nearly
880,000 annotated triples. Its enhanced iteration,
ATOMIC2020 (Hwang et al., 2021), further in-
tegrates ConceptNet’s relational framework with
additional novel relations, thereby constructing
a more elaborate CKB focused on event-related
dynamics. Moreover, GLUCOSE (Mostafazadeh
et al., 2020), derived from narrative texts in ROC
Stories (Schwartz et al., 2017), delineates a frame-
work for understanding causal relationships and
effects based on foundational events, presenting a
nuanced exploration of commonsense dimensions.

2.2 Sociocultural NormBase Construction

SOCIAL-CHEM-101 (Forbes et al., 2020) intro-
duced a comprehensive dataset of social and moral
guidelines, established through a crowdsourcing ap-
proach to gathering descriptive norms from various
situations using rules-of-thumb as fundamental ele-
ments. Another critical contribution is from (Ziems
et al., 2023), who introduced a scheme for hierar-
chically organizing the space of human behaviors
that determine social norms, then employed hu-
mans to create NormBank, a social knowledge bank
that leverages this contextual data to form contrast
sets rich in conditioned defeasible social norms.
Our methodology diverges significantly from that
of NormBank by implementing an automated sys-
tem to discover sociocultural norms, in contrast
to the reliance of NormBank on manual annota-
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Figure 1: Proposed norm discovery pipeline.

tion. Moreover, we focus on extracting norms from
situations that involve interactions between peo-
ple to better reflect the cultural values and beliefs,
rather than only representing accepted human be-
haviors in a specific culture. Moreover, the research
by (Fung et al., 2023) introduced the NormSage
framework, aimed at identifying norms embedded
within conversations, utilizing LLM prompting and
self-verification techniques, and drawing from real-
life scenarios like negotiations, casual discussions,
and documentaries. Our approach sets itself apart
from NormSage by focusing on extracting norms
through situational frames, which contain several
social factors that mimic the interactions between
people, therefore omitting the need for dialogue-
based information.

3 Building Multi-cultural Norm Base

In this section, we describe our proposed automatic
pipeline for collecting socio-cultural norms for var-
ious cultures. The following subsections will dis-
cuss the overall pipeline, as well as provide a de-
tailed explanation for each step in the pipeline. For
simplicity, the term socio-cultural norm will be
referred to as norm or social norm for short.

3.1 Overall Pipeline
The overall norm discovery pipeline is illustrated
in Figure 1. Starting from a collection of situation
frames, we begin by filtering invalid frames, fol-
lowed by performing norm extraction, deduplica-
tion, and verification to construct the multicultural
norm base.

3.2 Situational Frame Construction
Social norms are context-specific patterns that gov-
ern behavior in a given situation (Morris et al.,
2015). Therefore, we design situational frames

to ground meaningful norms and create diversity
in the proposed dataset. Following the works of
social factor taxonomy (Hovy and Yang, 2021)
and SocialDial (Zhan et al., 2023), these situa-
tional frames consist of several social factors that
mimic the conversations between two speakers.
Specifically, there are 10 key social factors in a
frame, and these factors are categorized as either
conversation-related factors (Norm Category, Con-
versation Topic, Conversation Location, Culture,
Formality) or speaker-related factors (Age, Gender,
Social Relation, Social Distance, Power Distance).
Each of these social factors can take a range of
values, some of which are sourced from SocialDial
and LDC (Li et al., 2022).

Conversation-related Factors. In each situa-
tional frame, Norm Category can take values from
greetings, requests, apologies, persuasion, and crit-
icism. Formality is characterized as either formal
or informal. Conversation Location spans various
settings, including open areas, online platforms,
homes, police stations, restaurants, stores, and ho-
tels. Conversation Topic covers a wide array of
subjects, such as sales, everyday life trivialities,
office affairs, school life, culinary topics, farm-
ing, poverty assistance, police corruption, counter-
terrorism, and cases of child disappearance. Cul-
ture refers to the cultural background of a con-
versation, which can be derived from one of the
following values: American, British, Canadian, In-
dian, Afghan, and Chinese. These cultures exhibit
distinct social norms and practices. For instance,
Chinese and Indian cultures have deep-rooted tra-
ditions and customs that influence social behavior,
while Western cultures like the American, British,
and Canadian have different societal norms shaped
by their histories and current societal dynamics. In-
cluding Afghan allows for the representation of a
culture with different social and religious practices.

Speaker-related Factors. Regarding the
speaker-related factors, Social Distance encom-
passes five distinct values: family, friends, roman-
tic partners, working relationships, and strangers.
Social Relation covers the following cases: peer-
to-peer, elder-junior, chief-subordinate, mentor-
mentee, student-professor, customer-server, and
partner-partner. Age describe the age group of each
speaker in the conversation, which can take the fol-
lowing values: child, teenager, adult, middle-aged
adult, senior adult, and elderly. Similarly, Gender
represents the gender of each speaker, which is cat-
egorized as either male or female. Lastly, Power
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distance is the perceived degree of inequality be-
tween the two speakers. This factor can take values
from lower, equal, or higher, which indicates the
inequality of the first speaker with respect to the
second speaker.

3.3 Frame Filtering

With the values of each social factor predefined
in the previous section, we then proceed to re-
move invalid situational frames. Invalid frames
are those considered to have combinations of val-
ues that hardly represent real-world scenarios (eg.
“a student and a professor discussing life trivialities
in a police station”, or “two colleagues discussing
school life at a restaurant”). In general, we propose
to train a frame classification model, along with sev-
eral hand-written rules to filter out invalid frames.
The process of this can be broken down into three
steps: Training Data Construction, Model Training,
and Frame Classification.

Training Data Creation. The training data of
the frame classification model will have two parts,
golden-labeled data and pseudo-labeled data. For
the golden-labeled subset, we utilize the human-
labeled frames from SocialDial, as many of the fac-
tor values of our data are sourced from this dataset.
The number of human-labeled frames is 6,433. Re-
garding the pseudo-labeled data, we first sample
100,000 combinations of factor values, then prompt
ChatGPT1 for labeling. The prompt template is il-
lustrated in Figure 2. To minimize the label errors
made by ChatGPT API, we derive the probabili-
ties of generating the tokens "Yes" or "No" from
the API. Specifically, frames with either of the two
probability scores higher than 0.85 are kept and
assigned with the corresponding labels, and the re-
maining frames are removed. In total, we created
a frame classification dataset with 41,016 samples,
in which 16,547 samples are labeled as valid.

Model Training. With the constructed training
dataset, we opt for the RoBERTa architecture (Liu
et al., 2019) for frame classification. Specifically,
the large version of the pretrained model is used
for fine-tuning. We randomly split the constructed
dataset into a training and development subset, with
a ratio of 8:2. Adam optimization (Kingma and
Ba, 2014) is used for model training. The choices
of values for hyperparameters, such as learning
rate, batch size, and number of epochs, are tuned
through grid search over the development subset.

1https://openai.com/blog/chatgpt

Figure 2: The prompt template for situational frame
classification.

Frame Classification. The fine-tuned RoBERTa
model is applied for frame classification. To ensure
the label quality, we kept only the frames that the
model predicted with a 0.995 probability value of
the positive class. Additionally, we also introduced
30 handwritten simple rules that are used to filter
out invalid frames. These rules are represented as
combinations of different values for social factors
that are not considered relevant in the real world.

3.4 Norm Extraction
The norm extraction process is illustrated in Figure
3. Specifically, we include the filtered situational
frames in the prompts to discover social norms
with ChatGPT. The prompt template includes four
distinct parts:
• A template header describing the nature of the

situational frame data.

• The body of the prompt template that outlines the
social factors in a situational frame.

• A direct question describing the task of social
norm extraction. This is followed by several con-
straints to ensure the quality and format of the
generated norm statements are unified and con-
trollable.

• Some Rules of Thumbs (RoTs) constraints. These
contain RoT templates (Forbes et al., 2020) that
will help to better structure the norm statement
(eg. “In [X] culture, it is good to do action [Y],
under situation [Z].”).

3.5 Norm Deduplication
As the extracted norms can overlap in a single sit-
uational frame as well as across different frames,
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Figure 3: The norm extraction process with ChatGPT.

we remove one norm statement from each dupli-
cating pair. This process is done separately for
each culture. Specifically, we calculate the cosine
similarity scores for every pair using their BERT
embeddings (Devlin et al., 2019). If the similarity
score is higher than 0.95, we flag the norm pair as
duplicated.

3.6 Norm Verification

With the distinct norms obtained after the dedu-
plication process, we begin to filter invalid norms.
Invalid norm statements are norms that are incor-
rect in a specific culture, and we utilize ChatGPT
for this verification process. Similar to Section
3.3, we prompt ChatGPT with a Yes-No question,
and derive the probability of the token "Yes" for
filtering. Details of the prompt are given in the
Appendix A.1. The probability threshold for valid
norms is set to be 0.85.

3.7 Dataset Summary

With the above pipeline, we obtained the Multi-
cultural Norm Base (MNB), which consists of
155,929 norm statements, extracted from more than
28,804 situational frames of 6 distinct cultures. The
norm statements also represent real-world scenar-
ios, where they reflect daily conversational situa-
tions through various speaker attributes. The norm
statistics of the 6 cultures are reported in Table
1. The cultures have roughly equal numbers of
situational frames. On average, about 5 norm state-
ments are extracted with each situational frame in
our data.

Culture # of Norm Statements # of Frames
American 27,481 4,505
Canadian 25,726 5,072
British 34,213 5,133
Chinese 24,789 4,496
Indian 25,760 4,675
Afghan 17,960 4,923

All 155,929 28,804

Table 1: Statistics of norms in different cultures.

4 Experiments

To demonstrate the quality of our proposed method
and dataset, we carry out experiments with our data
and other related datasets. Our experiments are di-
vided into two types: Intrinsic Evaluation and
Extrinsic Evaluation. For intrinsic evaluation, we
examine the quality of the constructed norm knowl-
edge base and the norm extraction method. In the
case of extrinsic evaluation, we demonstrate the ap-
plicability of our proposed dataset across different
downstream tasks and compare the performance
with other datasets.

4.1 Intrinsic Norm Discovery Evaluation
Similar to NormSage (Fung et al., 2023), we as-
sess each norm statement on a Likert scale ranging
from 1 to 5, where 1 denotes “Very Unsatisfied”
and 5 denotes “Very Satisfied”, for five criteria:
Relevance, Well-Formedness, Correctness, Insight-
fulness, Relatableness. A detailed description of
each criterion is provided in Appendix A.2.1.

As there are many norm statements in the dataset
and evaluating all of them will be very time-
consuming, we sample 200 norms from each cul-
ture for evaluation. Specifically, we randomly sam-
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Culture Relevance Well-formedness Correctness Insightfulness Relatableness
Chinese 3.91 4.10 4.03 3.97 3.93
Afghan 3.93 3.97 4.02 4.00 3.94
Indian 3.80 3.80 3.84 3.90 3.84
British 3.86 3.29 3.16 3.08 3.26
American 3.97 3.73 4.01 3.81 3.93
Canadian 3.67 4.10 4.05 3.72 4.04

All 3.85 3.82 3.83 3.75 3.80

Table 2: Average Likert scale (1-5) ratings of each culture in MNB.

ple 200 situational frames from each culture and
then sample 1 norm statement from each of the
frames. This ensures that the selected data is di-
verse and covers a wide range of scenarios. To per-
form the evaluation, we employed native Amazon
Mechanical Turk workers for each of the 6 cultures
to assess the data (e.g. British annotators will label
the British samples) to ensure the annotation qual-
ity. Further information about the annotators and
the annotation process is described in Appendix
A.2.1.

Table 2 summarizes the Likert-scale scores as-
signed to the cultural norms of six cultures within
the proposed dataset. The inter-rater reliability
of the annotators, along with the score distri-
butions of the 6 cultures, will be given in Ap-
pendix A.2.3 and A.2.4. Chinese norms consis-
tently received high scores, particularly in Well-
Formedness (4.10) and Correctness (4.03), indicat-
ing well-structured and accurate norms. Afghan
norms also performed well, with high scores in
Insightfulness (4.00) and Relevance (3.93), reflect-
ing strong cultural understanding and applicability.
Indian norms showed moderate scores across all
metrics, suggesting balanced yet average represen-
tations. In contrast, British norms scored lower
in Well-Formedness (3.29), Correctness (3.16), In-
sightfulness (3.08), and Relatableness (3.26), indi-
cating structural and applicability issues. Ameri-
can norms were notable for their high Relevance
(3.97) and Correctness (4.01), showcasing relevant
and accurate norms. Canadian norms excelled in
Well-Formedness (4.10) and Relatableness (4.04),
highlighting well-structured and broadly applicable
norms. Overall, while Chinese, Afghan, American,
and Canadian norms were well-represented, British
norms require significant improvement.

4.2 Extrinsic Evaluation on Downstream
Tasks

To set up extrinsic evaluations, we derive several re-
lated datasets and their corresponding downstream
tasks, which can be categorized into generation

tasks and classification tasks. For all extrinsic
experiments, we will use Llama 32 and perform
fine-tuning with different instruction tasks. Specifi-
cally, the 8B version of the Llama3-Instruct model
(Llama3-Instruct-8B) is used for fine-tuning, as it
already has been fine-tuned with a large set of in-
struction tasks and can be used as the baseline in
experiments.

4.2.1 Generation Task
In terms of the generation task, we opt for the
Moral Integrity Corpus (MIC) (Ziems et al., 2022)
for our experiments. The norms covered in this
dataset mostly are sourced from Reddit and belong
to the American culture. The authors of MIC have
set up the task of RoT generation, which requires
models to generate a norm statement with a given
dialogue content. To carry out the experiments, we
compare the performance of the following models:

• Llama3 The original Llama3-Instruct-8B model.

• Llama3 SC The Llama3-Instruct-8B model fine-
tuned with the SOCIAL-CHEM-101 dataset. The
instruction task is generating a norm statement
based on a given situation and a behavior.

• Llama3 MNB The Llama3-Instruct-8B model
fine-tuned with our MulticulturalNormBase
dataset. The instruction task is to generate a norm
statement based on a set of social factors (similar
to how we extract the norms with ChatGPT in
Section 3.4).

While the NormBank dataset can be used for
training as it is also a norm dataset, its norms have
a very different structure compared to our data as
well as SOCIAL-CHEM-101 and MIC. The sit-
uational norms in NormBank are represented as
taxonomies of various factors, while in the other 3
datasets, the norms are stated as Rules of Thumb
statements. As converting the taxonomy-based
norms into RoT involves great complexities, we

2https://ai.meta.com/blog/meta-llama-3/
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Metric Llama3 Llama3 SC Llama3 MNB

ROUGE-1 15.53 20.15 30.41
ROUGE-2 3.59 6.01 14.90
ROUGE-L 14.65 19.46 29.50
BLEU 11.95 16.16 24.61
BERT-Score 88.60 89.35 90.93
Avg. Len 11.65 10.95 9.05

Table 3: Experimental results on the MIC dataset. The
average length of the norms in the data is 8.74.

chose to not experiment with the NormBank dataset
for this generation task.

Following the authors of MIC, for the evaluation
metrics, we apply the standard ROUGE (Lin and
Hovy, 2003) (ROUGE-1, ROUGE-2, and ROUGE-
L), BLEU score (Papineni et al., 2002), and BERT-
Score (Zhang et al., 2020). The experimental re-
sults are reported in Table 3. All three models are
evaluated in a zero-shot setting, meaning that they
have not seen or been trained with the MIC dataset.
It can be observed that when trained with cultural
or commonsense knowledge data, the performance
improves over the baseline. Both the Llama models
trained with SOCIAL-CHEM-101 and our dataset
present better results than those of the baseline
model. On all metrics, the model trained with
our data (Llama3 MNB) achieves higher results
than the one trained with SOCIAL-CHEM-101
(Llama3 SC). Our model also generates sentences
that have lengths closer to the golden sentences in
the data than the Llama3 SC model. This demon-
strates that the extracted cultural norms are highly
useful, and can be used to train models to adapt on
different benchmarks.

4.2.2 Classification Tasks
Regarding the classification tasks, we consider the
following datasets for evaluation:

EtiCor. (Ziems et al., 2023) This is a corpus of
etiquettes, consisting of texts about social norms
from five different regions across the globe, serving
as a benchmark for evaluating LLMs for knowl-
edge and understanding of region-specific etiquette.
Specifically, the dataset covers 5 regions: EA (East
Asia), IN (India), MEA (Middle East & Africa), NE
(North America & Europe), and LA (Latin Amer-
ica). With this data, the corresponding evaluation
task is “Etiquette Sensitivity”. Given a statement
about etiquette, the task is to predict whether the
statement is appropriate for a region. For this
dataset, we use the entire data for evaluation.

NormBank. (Ziems et al., 2023) This is a knowl-
edge base of situational norms in multicultural set-
tings. To extract the cultural information of norms
in this dataset, we identify constraints that mention
“Person Y’s country is XX” and link them to spe-
cific cultures. We follow their evaluation on the
task of “Norm Classification”. Specifically, this
task requires models to classify a combination of
behavior and some constraints to be either expected,
okay, or unexpected. To perform an evaluation on
this dataset, we randomly split the samples into a
training and test subset, with a ratio of 8:2. The
training set will be used to train a Llama 3 model,
and the test set will be used to compare different
fine-tuned models.

Regarding the models for evaluation, we fine-
tuned the Llama 3 model separately with the Norm-
Bank dataset and our dataset. Both models are
trained with the classification task and the training
procedure is different for each of the datasets, as
their data attributes are different:

• Llama3 NB-CLS The Llama3-Instruct-8B model
fine-tuned with the training subset that we derived
from the NormBank dataset. The model is trained
for the task of norm classification, which utilizes
the 3-class labels described previously.

• Llama3 MNB-CLS The Llama3-Instruct-8B model
fine-tuned with our MulticulturalNormBase
dataset. The instruction task is also norm classifi-
cation. Since the norms of our dataset are all rec-
ommended behaviors, we perform data augmen-
tation to negate a portion of the data. Specifically,
we apply rule-based and model-based negative
claim generation. For the model-based negative
claim generation method, we utilize a pretrained
BART model3 to generate the negative version of
a norm statement.

Apart from the fine-tuned models, we also ex-
perimented with a RAG (Retrieval Augmented
Generation) based method with our data and the
NormBank dataset. We derive two models -
Llama3 MNB-RAG and Llama3 NB-RAG - which use
the baseline Llama 3 model and retrieve the most
relevant norms from our data and NormBank for
a test sample, respectively. To ensure this method
gets maximized results, we experimented with
several numbers of norms being retrieved, rang-
ing from 1 to 10, and reported only the best re-
sults. Interestingly, both Llama3 MNB-RAG and

3https://huggingface.co/minwhoo/bart-base-negative-
claim-generation
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Region Llama3 (Baseline) Llama3 NB-CLS Llama3 NB-RAG Llama3 MNB-CLS Llama3 MNB-RAG

EA 69.97 66.88 63.67 76.99 73.75
IN 70.98 69.62 67.56 80.72 73.30
MEA 71.03 69.11 67.82 78.94 73.69
NE 82.62 84.07 79.40 92.27 84.95
LA 67.66 63.87 66.01 76.05 72.38

All 72.45 70.71 68.89 80.99 75.31

Table 4: F1 scores of different models on the EtiCor dataset.

Culture Llama3 (Baseline) Llama3 NB-CLS Llama3 NB-RAG Llama3 MNB-CLS Llama3 MNB-RAG

British 7.22 38.26 20.44 23.16 19.24
Canadian 5.17 57.82 32.23 35.51 16.07
American 4.67 50.20 15.69 32.60 19.89
Afghan 4.37 36.27 15.69 28.90 14.21
Indian 26.21 45.28 35.76 36.82 26.60
Chinese 16.23 43.81 25.24 27.93 26.60

All 9.68 45.26 24.18 30.82 20.42

Table 5: F1 scores of different models on the NormBank dataset.

Llama3 NB-RAG achieve optimal results when us-
ing only 1 norm in the context.

Results on EtiCor. The experimental results on
the EtiCor dataset are described in Table 4. The
model trained with our dataset (Llama3 MNB-CLS)
consistently demonstrates better results than the
other two models, in all regions. The model shows
the smallest absolute and relative improvements
on the EA (East Asia) subset of EtiCor. This
is because while our dataset consists of norms
for the Chinese culture, EtiCor itself does not in-
clude Chinese data in the EA subset. Regarding
Llama3 NB-CLS, while the nature of NormBank is
also similar to EtiCor, however, the model does
not achieve better overall results than the baseline
Llama3 model, except for the NE (North America
& Europe) subset, where the model demonstrates
an improvement. This is understandable, as the
portion of North American data accounts for al-
most 30% of the NormBank dataset. Despite be-
ing not as good as fine-tuning, the retrieval-based
method also shows its improvements over the base-
line, where the Llama3 MNB-RAG model achieves
roughly 2.8% F1 improvement over the Llama3
model.

Results on NormBank. The experimental re-
sults of different models on the NormBank dataset
are described in Table 5. Llama3 NB-CLS ob-
viously achieves the best results in terms of
F1 score, as it is trained on the NormBank
data. However, Llama3 MNB-CLS - the model

trained with MNB still shows great improve-
ments over the baseline, with more than 21%
absolute improvements in F1 score. In terms
of retrieval-based model, Llama3 MNB-RAG and
Llama3 NB-RAG achieve competitive results, even
though Llama3 NB-RAG takes advantage of retriev-
ing norms from NormBank itself. Interestingly,
Llama3 MNB-RAG reaches a better F1 score than
Llama3 NB-RAG on the American subset, despite
this is the largest subset of the NormBank dataset.
These results have proven that models utilizing our
MNB dataset can generalize well across different
domains and cultures, in both cases of fine-tuning
and RAG.

5 Conclusions

In this paper, we propose an automatic norm discov-
ery pipeline using ChatGPT for the multi-cultural
setting. The pipeline extracts norm statements upon
situational frames filled with crucial social factors.
As real dialogues are not always available and can
be limited to some domains, we have showcased
that it is possible to extract meaningful norm state-
ments only from social factors. Our derived norm
database has shown its effectiveness in the exper-
iments, achieving remarkable results on several
downstream tasks and outperforming other norm
datasets. In the future, we plan to expand the data
with coverage to more cultures and implement large
language models embedded with explicit cultural
knowledge.
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Limitations

Our proposed pipeline is based on the implicit
knowledge of ChatGPT from OpenAI to extract
cultural norm statements from conversational situa-
tions. While ChatGPT is trained on a large amount
of data, its cultural knowledge and reasoning capa-
bilities can have potential bias. We also acknowl-
edge that cultural norms can vary and evolve sig-
nificantly over time, which requires LLM to have
better adaptation to new data. Despite the availabil-
ity of more robust LLMs, such as GPT-44, we opted
to use ChatGPT in our experiments due to the time
limitation and costly usage of GPT-4. Addition-
ally, more datasets should be compared with the
proposed MNB dataset in future works. NormSage
(Fung et al., 2023) is the closest work to ours, as it
also has the multi-cultural element, but at the time
of submitting this paper, the NormSage dataset and
code are not publicly available for us to make a fair
comparison in the experiments.

Another limitation of our work is the limited
number of human annotators for intrinsic evalua-
tion. We acknowledge that hiring more people to
annotate the norms will better represent the norm
quality, but due to the time constraint and cost limit,
there is only one annotator for each culture. Al-
though the chosen annotators are all native, there
can still exist potential biases in the evaluation pro-
cess.

Ethical Considerations

We recognize that automatically generated socio-
cultural norm statements can carry an authoritative
and normative tone (Fung et al., 2023). Therefore,
we want to emphasize that these statements are not
intended to serve as the basis for establishing a
normative system or framework within any society.
Their application in any operational system must be
approached with caution. It is imperative to involve
manual oversight to validate their accuracy prior to

4https://openai.com/gpt-4

deployment. Consequently, these norm statements
primarily serve only research purposes.
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A Appendix

A.1 Norm Verification
As discussed in Section 3.6, we prompt ChatGPT
to filter invalid norm statements. Figure 4 illus-
trates the prompt template for norm verification.
Similar to previous prompt templates in Section
3.4 and Section 3.6, this template includes a header
describing the nature of the situational frame, and
a body outlining the social factors.

A.2 Intrinsic Evaluation
A.2.1 Evaluation Criteria
The definition for each criterion of the intrinsic
evaluation process is as follows:
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Culture Relevance Well-formedness Correctness Insightfulness Relatableness
Chinese 0.74 0.66 0.59 0.65 0.72
Afghan 0.75 0.76 0.62 0.77 0.73
Indian 0.75 0.76 0.66 0.67 0.69
British 0.65 0.74 0.73 0.71 0.91
American 0.60 0.70 0.70 0.73 0.72
Canadian 0.72 0.59 0.68 0.69 0.68

Table 6: Krippendorff’s Alpha coefficient of different metrics for each culture.

Figure 4: Prompt template for norm verification.

• Relevance. This criterion measures how well
the situation inspires the generated norm. If
a norm does not use the provided informa-
tion from the situational frame, regardless of
whether the norm is correct or not, the rele-
vance score should be low.

• Well-Formedness. This criterion measures
how well is the norm structured – is the norm
self-contained, and does it include both a judg-
ment of acceptability and an action or soci-
etal/cultural phenomena that is assessed?

• Correctness. This criterion measures the cor-
rectness of the norm. If a norm is considered
to be correct in a given culture, its correctness
score should be high.

• Insightfullness. This criterion measures the
degree to which the norm conveys an enlight-
ening understanding of what is considered ac-
ceptable and standard in the provided cultural
background.

• Relatableness. This criterion measures the
degree of generalization of a norm. If the
given norm is highly applicable in various
situations, the relatableness score should be
high.

A.2.2 Annotation Settings
Worker Qualification. To ensure that the MTurk
workers are native to the 6 cultures, we designed
a qualification test consisting of cultural-related
questions, provided in the respective native lan-
guages. Additionally, the questions are given in
images, preventing the workers from searching for
the answers directly on public media. Workers
must pass this qualification test demonstrating a
success rate of 95% or higher. To do the labeling
task for intrinsic evaluation, workers who pass the
initial qualification test then proceed to do another
test of understanding the task instruction, in which
workers with success rates of 98% are chosen to do
the annotation for intrinsic evaluation.

Annotation Qualification. To ensure the high
quality of the intrinsic evaluation process, each
norm is scored by 5 native workers. After the
norms are annotated, we perform a manual check
to verify the scores.

A.2.3 Inter-rater Reliability
To assess the agreement rate among annotators,
we apply Krippendorff’s Alpha coefficient with
each intrinsic evaluation metrics. Table 6 describe
the values for each culture. Overall, the results
highlight varying degrees of annotator agreement,
with some metrics and cultures showing strong
reliability while others indicate the need for further
refinement in evaluation criteria.

A.2.4 Intrinsic Score Distribution
We provide the intrinsic score distribution of each
culture in Figure 5. Overall, most cultures exhibit
acceptable quality in each evaluation metric, where
the distributions skewed toward scores of 4 and 5.
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(a) Score distribution of the Chinese culture.

(b) Score distribution of the Afghan culture.

(c) Score distribution of the Indian culture.

(d) Score distribution of the British culture.

(e) Score distribution of the American culture.

(f) Score distribution of the Canadian culture.

Figure 5: Likert-scale rating distribution of each culture.
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Abstract
English relative clauses are a critical test
case for theories of syntactic processing.
Expectation- and memory-based accounts
make opposing predictions, and behavioral
experiments have found mixed results. We
present a technical extension of Lossy Context
Surprisal (LCS) and use it to model relative
clause processing in three behavioral experi-
ments. LCS predicts key results at distinct
retention rates, showing that task-dependent
memory demands can account for discrepant
behavioral patterns in the literature.

1 Introduction

A fundamental goal of computational psycholin-
guistics is to predict and explain syntactic process-
ing difficulty as manifested in reading times. Sur-
prisal from modern language models is a strong pre-
dictor of reading times on naturalistic text: words
take longer to read when they are less predictable
(e.g. Wilcox et al., 2023). This finding aligns with
expectation-based theories of syntactic processing
(Hale, 2001; Levy, 2008). However, surprisal fails
to account for certain effects from the psycholin-
guistic literature — particularly locality effects, in
which longer syntactic dependencies lead to in-
creased processing effort (e.g. Grodner and Gibson,
2005; Bartek et al., 2011). Under surprisal theory,
this is unexpected: additional intervening context
should generally make prediction easier.

Locality effects are naturally explained in terms
of human memory limitations, which motivate
memory-based theories of syntactic processing.
One example is Dependency Locality Theory (Gib-
son, 1998; Gibson et al., 2000), which posits that
the processing cost of integrating a syntactic depen-
dency is proportional to dependency length. Sim-
ilar locality predictions arise from cue-based re-
trieval theories (e.g. Lewis and Vasishth, 2005).

Recent research has offered a principled concep-
tual unification of expectation- and memory-based

The director that
1.0      1.0              1.0

the dancer admired

admired the dancer
1.0              

60% retention

20% retention

The director that
0.2     0.5              0.9

admired the dancer

the dancer admired
0.99  0.99

Figure 1: Illustration of lossy context surprisal (LCS)
with retention probabilities of individual words. At high
retention rates (top), LCS predicts an expectation-based
processing slowdown at “the" for object relative clauses
(red). At low retention rates (bottom), LCS predicts a
memory-based processing slowdown at the verb.

perspectives in terms of Lossy-Context Surprisal
(LCS; Futrell et al., 2020). This theory holds that
expectations are derived from imperfect memory
representations of the context; hence, words are
easy to process only when they are easy to pre-
dict from lossy context representations. Resource-
Rational Lossy-Context Surprisal (RR-LCS) (Hahn
et al., 2022) implements LCS for general input by
constraining GPT-2 (Radford et al., 2019) with ra-
tionally optimized lossy context representations.

Here, we use LCS to model memory and ex-
pectation in the context of English relative clause
processing (Figure 1) – long considered a key set-
ting where memory- and expectation-based models
make opposing predictions (e.g. Levy, 2008, 2013).
Object relative clauses (ORCs), such as “The di-
rector that the dancer admired," are more difficult
to process than subject relative clauses (SRCs),
such as “The director that admired the dancer."
Surprisal theory and DLT differ as to when this
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difficulty arises in incremental processing. Under
the expectation-based account of surprisal theory,
comprehenders use their experience of English syn-
tactic distributions to predict upcoming structures.
Subject relatives are more frequent than object rela-
tives in written corpora (Roland et al., 2007). There-
fore, given the prefix “The director that," readers
should expect a tensed verb such as “admired," and
slow down on encountering the ORC determiner
“the." Surprisal theory thus predicts that the pro-
cessing difficulty for ORCs relative to SRCs will
appear primarily on the determiner. By contrast,
DLT posits that processing difficulty reflects the
integration of long-distance dependencies. Under
this account, the main slowdown in ORCs should
instead appear at the verb “admired," as comprehen-
ders integrate the dependency to the distant object
“director."

Behavioral studies of relative clause processing
have found discrepant results depending on the task.
Experimental data from eye-tracking (Traxler et al.,
2002; Staub, 2010) and self-paced reading (Grod-
ner and Gibson, 2005; Roland et al., 2007; Frinsel
and Christiansen, 2024) support the memory-based
prediction of longer reading time on ORC verbs.
Using the Maze task, however, Forster et al. (2009)
find only the determiner slowdown predicted by sur-
prisal theory. In a recent study, Vani et al. (2021)
collect Maze data with stimuli from earlier eye-
tracking experiments, and reproduce the determiner
slowdown. The authors suggest that the later ORC
verb slowdown found in eye-tracking studies may
reflect spillover rather than memory effects.

In the current study, we investigate whether the
task-dependent discrepancies observed in English
relative clause processing can be modeled as a
trade-off between memory and expectation. We
manipulate how much of the preceding sentence
context is remembered in the lossy context surprisal
model, and evaluate Vani et al.’s stimuli at a range
of retention rates. We additionally evaluate LCS
predictions on the relative clause stimuli of Roland
et al. (2021), who report both spillover and memory
effects in their eye-tracking data.

Figure 1 illustrates our results. At a high reten-
tion rate (e.g. 60%), LCS predicts the expectation-
based determiner slowdown on ORC test items,
consistent with the observed RTs for the Maze filler
data. At a low retention rate (e.g. 20%), however,
LCS predicts the ORC verb slowdown found in
eye-tracking studies such as Staub (2010). Further-
more, we find that low-retention LCS predictions

also capture the memory effects found by Roland
et al. after adjusting for spillover per their analysis.
This finding suggests an alternative explanation for
observed task discrepancies: eye-tracking while
reading likely imposes lower memory demands
than the Maze task, leading to a stronger influence
of memory constraints on incremental processing.

This paper presents two key contributions:1

• We release and document a technical improve-
ment to the RR-LCS model. Through extend-
ing the lossy context model to subword to-
kenization, the new model can now handle
out-of-vocabulary inputs.

• We show that, through manipulating the reten-
tion rate, LCS predicts two distinct behavioral
patterns of relative clause processing which
have been reported in different tasks. This
finding shows that task-dependent memory
demands can explain apparently contradictory
results in the literature.

2 Background

Measuring incremental processing Behavioral
methods which track word-by-word reading time
(RT) offer scientific insight into human language
processing, as longer RTs reflect processing diffi-
culty. Special eye-tracking (ET) equipment can col-
lect RT data in a laboratory setting by monitoring
participants’ eye movements as they read (Rayner,
1998). This method most closely approximates
natural reading, but ET data collection is resource-
intensive and the resulting RTs can be noisy and
challenging to interpret. One crucial source of
noise comes from spillover effects: longer process-
ing time for one word can “spill over" to following
words. In such cases, systematically longer RTs on
a specific word do not reflect difficulty processing
that word, but instead the word or words preceding.

An alternative cost-effective source of RT data
is self-paced reading (SPR), in which participants
must press a button to reveal each word in sequence.
Unfortunately, spillover effects are typically much
larger in SPR compared to ET data. The Maze task
(Forster et al., 2009) modifies SPR by introduc-
ing distractors: participants are shown two words
at each step, and must select the word which cor-
rectly continues the sentence. This task is more
cognitively demanding, and appears to reduce or

1See https://github.com/kmccurdy/LCS for model
and analysis code.
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eliminate spillover effects (Boyce and Levy, 2020;
Boyce et al., 2020). Witzel et al. (2012) compare
Maze and ET for three types of ambiguous sen-
tences and find that Maze RTs capture most — but
not all — patterns of incremental processing diffi-
culty seen in ET RTs. In this paper, we consider the
possibility that higher working memory demands
in the Maze task account for key discrepancies be-
tween Maze and ET results.

Modeling memory and expectation Language
models (LMs) are typically trained on a next-
word prediction objective, which aligns them with
the expectation-based account of Surprisal Theory.
Modern large language models, however, have be-
come worse predictors of human RT data due to
their superhuman capacity for memorization (Oh
and Schuler, 2023). This has motivated model-
ing approaches which combine LMs with memory
constraints. Timkey and Linzen (2023) propose a
model architecture with a single self-attention head,
which reduces the capacity to retrieve earlier repre-
sentations from context. Kuribayashi et al. (2022)
find improved fits to RTs by simply truncating
words from the preceding context. Here, we model
memory constraints with Resource-Rational Lossy
Context Surprisal (RR-LCS; Hahn et al., 2022),
which learns to stochastically retain or delete spe-
cific words from the representation of the preceding
context. Crucially, we can systematically vary the
LCS retention rate to simulate different patterns of
working memory engagement.

3 Computing Lossy Context Surprisal

3.1 Resource-Rational Lossy Context
Surprisal

Standard surprisal theory assumes that processing
difficulty of a word is proportional to its surprisal—
that is, its negative log-probability in context:

− logP (xT+1|x1...T ) (1)

Lossy Context Surprisal (Futrell et al., 2020) modi-
fies this by conditioning not on the exact context,
but on a lossy memory representation:

− logP (xT+1|MT ) (2)

where M is a lossy representation generated from
x1 . . . xT . To generate testable Lossy Context
Surprisal predictions, we must specify (1) lossy
representations MT and (2) how these are gen-
erated from contexts x1...T−1. Such a specifica-
tion is provided by Resource-Rational Surprisal

(RR-LCS; Hahn et al., 2022). Following Futrell
et al. (2020), RR-LCS specifies the lossy represen-
tations in terms of retaining or masking individual
words. Formally, the model operates over contexts
x ∈ ΣT , where T is a maximum context size, set to
20 in Hahn et al. (2022). The model is specified by
a family of retention probabilities (after Anderson
and Milson, 1989; Anderson and Schooler, 1991)
pw,i ∈ [0, 1] (1 ≤ i ≤ T ), where pw,i indicates
the probability that word w at position i is avail-
able when predicting word T (Figure 1). Given a
context x1...T , each word is independently kept or
masked depending on these probabilities, yielding a
lossy representation MT := y ∈ (Σ ∪ {LOST})T .

The retention probabilities pw,i are chosen so as
to minimize average lossy-context surprisal:

min
pw,i

Ex1...T+1,y1...T [− logP (xT+1|y1 . . . yT )] (3)

subject to a bound on the average number of re-
tained words:

Ex,y[#{i : yi = LOST}] ≤ δT (4)

where the expectations range over contexts x1...T
with associated next word xT+1 from a large cor-
pus, and lossy versions y drawn via the retention
probabilities pw,i. Importantly, the retention rate
δ ∈ [0, 1] is the model’s single free parameter: it
indicates how many words on average are retained.
Given a budget specified by δ, the model thus learns
to prioritize retaining those words that are usually
more helpful for predicting future words. On a
technical level, the constrained optimization (3–4)
is implemented using Lagrangian duality; see Hahn
et al. (2022, Supp. Mat. §1) for details. Empiri-
cally, the optimized retention probabilities strongly
favor forgetting less recent words, especially high-
frequency function words.

3.2 Implementation
In the parameterization of Hahn et al. (2022), given
the embedding gi of the i-the token and pi of the i-
th position, the retention probabilities receive a log-
biaffine parameterization after Dozat and Manning
(2017):

pw,i = σ
(
Fpi +MLP2(gi) + pTi MLP1(gi)

)

(5)
where MLPi denotes ReLU MLPs with one hid-
den layer with d dimensions, and σ is the logistic
sigmoid function. Both the positional and word
embeddings can directly influence the probability
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(first and second summands); there is also an op-
tion for multiplicative interaction between the two
(third summand). The parameters of the two MLPs,
the transform F , and the embeddings gi, and pi are
trainable parameters, optimized for (3–4).

By Bayes’ Rule, the predictive distribution
P (xT+1|MT ) in (2) is proportional to:

∑

x1...xT∈ΣT

P (x1...T+1)P (MT |x1...T ) (6)

where the sum ranges over hypothetical contexts
x1...T , weighted by their probability of giving rise
to the imperfect representation MT . The term
P (MT |x1...T ) can be computed in terms of pw,i.
The other term, P (x1...T+1), describes the expec-
tations in the absence of any memory limitations;
Hahn et al. (2022) estimate it using GPT-2 Medium
(Radford et al., 2019). Plugging these components
into (6), lossy-context surprisal (2) is then esti-
mated using importance sampling. Importantly, in
the limit where no memory limitations are present
(δ = 1), the predictions equal those of the GPT-2
model. Varying δ from 0 to 1, the resource-rational
lossy-context surprisal model thus interpolates be-
tween a predictive model without any context, and
a full transformer language model.

Implementation based on subwords An im-
portant limitation of the original implementation
from Hahn et al. (2022) is that it uses a traditional
word-based tokenization, with a vocabulary of 50K
words. While sufficient to model their experimen-
tal stimuli, the model frequently faces OOV tokens
when applied to other data, hindering broader val-
idation.2 In order to apply the model to other ex-
perimental stimuli, we straightforwardly adapted
the model to modern subword-based tokenizations:
Assume a word w consists of tokens t1 . . . tN , each
represented by token embeddings e1 . . . eN , where
N ≤ Nmax = 5.3 We concatenate e1, . . . , eN to
a vector of length N · d and pad with zeros to ob-
tain a vector of length Nmax · d; we then use a
trainable one-layer ReLU MLP to transform this
vector into the vector gi fed into (5), in place of
the word embeddings from the original word-based
model.4 When a word xi has been forgotten, it is
represented in y as a single special token, LOST ,

2For example, 8% of the stimuli evaluated in §4 contain at
least one OOV under the original model.

3In very rare cases of longer words, the tokens starting
from the sixth one were disregarded.

4In preliminary experiments, we also considered alterna-
tive parameterizations, such as simply summing embeddings

M
A

Z
E

E
Y

E
S

P
R

20% 30% 40% 50% 60% 70% 80% 90%

73950

73975

74000

74025

91105

91110

91115

91120

91125

91130

21375

21380

21385

21390

21395

Retention rate

A
IC

Figure 2: Linear mixed-effects model fit for LCS to
Maze (Hahn et al., 2022), ET, and SPR data for filler
items from Vasishth et al. (2010). Points are individual
LCS model instances, line shows GAM smooth, x-axis
shows retention rate, y-axis shows goodness of fit in AIC
— lower is better. Maze data are better approximated by
LCS with a higher retention rate (40%) compared to ET
and SPR data (20%).

indicating that a word was present but not how
many tokens it spanned. Hence, while the model
is now specified in terms of subwords, it continues
to implement the same cognitive theory; in partic-
ular, forgetting continues to apply on the level of
words.5

Setup We train the model using this parameteri-
zation, using the GPT-2 Tokenizer, and otherwise
matching the setup of Hahn et al. (2022): The
model is trained, separately for different values
of δ, on the same English Wikipedia corpus (2.3
billion words). Paragraphs are shuffled and sepa-
rated by an EOS token. The model is applied to
contexts of size T across sentence and paragraph
boundaries. In evaluation, the context is padded
or truncated to length T (long enough to cover the
experimental stimuli); padding is removed before
passing to the GPT-2 model. We set T = 20.

without any nonlinear transformation. We compared the op-
tions at δ = 10, and chose the one with the best result on the
objective function (3-4).

5Note that another option would be to apply the model at
the level of subwords, but this would be of unclear cognitive
plausibility, as subwords do not directly correspond to any
units of theoretical cogniitive interest, and even depend on
tokenizers.
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3.3 Evaluation

Hahn et al. (2022) validated that, with a nonzero
forgetting rate, their LCS implementation improved
fit to Maze RTs on their filler sentences when com-
pared to a model variant with zero forgetting rate.
These filler sentences had previously been used in
ET and SPR experiments by Vasishth et al. (2010).
Crucially, for these fillers, RT data is available from
three paradigms: Maze from Hahn et al. (2022),
ET and SPR from Vasishth et al. (2010). The fillers
comprise both critical items and fillers from Grod-
ner and Gibson (2005, Expt. 1). The items contain
a mixture of syntactic structures, including some
embedded structures. The key advantage of these
filler data compared to datasets such as the Dundee
corpus (Kennedy and Pynte, 2005) or Natural sto-
ries (Futrell et al., 2017) is that data from three
paradigms—Maze, SPR, and ET—is publicly avail-
able for exactly the same sentences, neutralizing
confounding effects of factors such as genre.

We evaluate our subword model implementation
on the same stimuli and range of modalities. This
evaluation has two goals: 1) to confirm that our
subword implementation achieves comparable fits
to reading time data as the original word-based
model, in the sense that relatively low retention
rates should model RT better than high retention
rates, and 2) to inform our later analysis of task
differences in relative clause processing. We model
reading time fit per word using the same linear
mixed-effects model structure6 as Hahn et al. (2022,
Supp. Mat. §9). We also report goodness of fit in
terms of Akaike’s An Information Criterion (AIC).

Our findings (Fig. 2) are qualitatively similar to
those of Hahn et al. (2022, Supp. Mat. Fig. 30). We
observe a comparable spread of AIC values across
retention rates, with an average ∆AIC ≥ 10 sep-
arating the best-fitting retention rate from others.
This stark differentiation in goodness of fit suggests
that the best-fitting retention rate captures mean-
ingful variation in reading time. Moreover, in line
with other literature (§2), we also see that memory
constraints — i.e. retention rates much lower than
100%7 — produce superior fits to human RT data.

We also reproduce the task-specific trends re-
6LMER formula: log(RT ) ∼ LCS +

wordPositionInItem + log(WordFreq) +
WordLength+prevWordLCS+log(prevWordFreq)+
prevWordLength+ log(prevWordRT )+(1|ItemID)+
(1|ParticipantID)

7Note that LCS with 100% retention rate is function-
ally equivalent to pure language model surprisal, i.e. GPT2-
Medium in our implementation.
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Figure 3: Linear mixed-effects model fit for LCS to
Maze RT data on filler items (Vani et al., 2021). Points
are individual LCS model instances, line shows GAM
smooth, x-axis shows retention rate, y-axis shows good-
ness of fit in AIC. Retention rate 60–70% achieves the
best fit on average.

ported by Hahn et al.. They found that Maze RTs
were best modeled at a higher retention rate of 5 out
of 20 words (25%; compare to 40% in our imple-
mentation) compared to ET and SPR RTs, which
were best fit at 3 out of 20 words (15%; compare to
20% in our implementation). The remainder of this
paper investigates whether these task-dependent
differences can account for discrepant empirical
results from the relative clause literature.

4 Modeling Relative Clause Processing

The increased difficulty in processing object rela-
tive clauses (ORCs) compared to subject relative
clauses (SRCs) provides a testing ground for ef-
fects of memory and expectation. Memory-based
accounts such as Dependency Locality Theory
(DLT; Gibson, 1998; Gibson et al., 2000) predict
increased reading time (RT) at the ORC verb, re-
flecting integration of long-distance dependencies.
This prediction has been realized in eye-tracking
(ET) studies (Traxler et al., 2002; Staub, 2010). The
expectation-based Surprisal Theory (Hale, 2001;
Levy, 2008), however, predicts an RT slowdown
only at the start of the ORC noun phrase, and this
pattern has been found in Maze studies (Forster
et al., 2009; Vani et al., 2021). Vani et al. sug-
gest that the ORC verb slowdown found in eye-
tracking studies may reflect spillover effects rather
than memory constraints.

We explore the alternative hypothesis that ET
experiments impose lower memory demands rel-
ative to the Maze task. At lower retention rates,
lossy context surprisal (LCS) models memory con-
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Figure 4: LCS predictions (left; error bars show standard error across model instances and items) and reading time
data (right) for stimuli from Staub (2010, ET gaze duration, Experiment 1) and Vani et al. (2021, Maze, Experiment
1; cf. their Figs. 3 and 4). At the higher retention rate (60%), LCS predicts only the determiner slowdown observed
in Maze data (top row). At the lower retention rate (20%), LCS also predicts the ORC verb slowdown observed in
ET data (bottom row).

straints, but not spillover effects; if LCS captures
the patterns in ET behavioral data, this supports
the interpretation that ORC verb slowdowns are
memory-driven but also modulated by task de-
mands. Using our LCS implementation with sub-
word tokenization, we generate predictions on criti-
cal RC stimuli and compare them to behavioral
results from Maze (Vani et al., 2021) and eye-
tracking (Staub, 2010; Roland et al., 2021). We
draw on Roland et al.’s statistical analysis to fur-
ther distinguish spillover and memory effects.

4.1 Selecting Retention Rate

Maze We use the same evaluation procedure de-
scribed in §3.3 on the Maze filler item RT data
from Experiment 1 of Vani et al. (Fig. 3). Note
that these model fits span a broad range of AIC val-
ues, so we can confidently state that LCS at higher
retention rates better predicts RT data from this ex-
periment. We observe similarly high performance
at 60% and 70% retention rates. As the evaluation
in §3.3 found a lower retention rate (40%) provided
the best fit to Maze data, we conservatively select
60% as more consistent with our earlier analysis.8

8This difference — 60%–70% retention, vs. the 40% found
in §3.3 — may also reflect task demands. Hahn et al. (2022)
use the A-Maze task, in which participants distinguish words
from length-matched words with low contextual probability.
Vani et al. (2021) introduce the I-Maze task variant, which
interpolates lexical and grammatical competitors and may
impose higher memory demands.

Eye-tracking Unfortunately, filler data is not
available for either of the ET studies we aim to
model. We select 20% as our prospective reten-
tion rate based on the evaluation in §3.3. This low
retention rate is consistent with our hypothesis of
reduced memory demand in ET studies.

4.2 Evaluating Relative Clause Processing

The previous section identified two distinct reten-
tion rates at which to evaluate LCS, based on their
fit to reading times from the Maze and eye-tracking
experimental settings. In this section, we generate
LCS predictions at these two retention rates for the
critical relative clause items tested by Vani et al.
(2021), Staub (2010), and Roland et al. (2021). Pre-
dictions at each retention rate are averaged over
multiple LCS model instances trained with differ-
ent random seeds and hyperparameter configura-
tions, with a minimum of four instances per reten-
tion rate. We then compare the predictions to the
behavioral patterns reported on these stimuli for
Maze and eye-tracking data.

4.2.1 Eye-tracking vs. Maze
We hypothesize that participants systematically en-
gage their working memory at higher capacity dur-
ing the Maze task compared to the more natural-
istic eye-tracking while reading setting. If this is
the case, then we expect that LCS at higher reten-
tion rates will predict the relative clause processing
behavior observed in Maze studies, with an ORC
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Figure 5: Original and spillover-adjusted gaze duration RT data (left; error bars show standard error across
participants and items) and LCS predictions (right; error bars show standard error across model instances and items)
for full-NP stimuli from Roland et al. (2021, Experiment 2). At the lower retention rate (20%), LCS predicts ORC
slowdowns on the RC verb, consistent with both the original and spillover-adjusted RT data.

slowdown at the beginning of the RC noun phrase,
i.e. on the determiner. Conversely, we expect LCS
at lower retention rates to predict the pattern of
effects observed in eye-tracking studies, with the
main ORC slowdown appearing on the RC verb.

LCS predictions largely conform to the expected
patterns (Figure 4). At a 60% retention rate, LCS
mirrors the processing behavior of participants in
Vani et al.’s Maze task, with an ORC slowdown at
the determiner but not at the RC noun or verb. At
20% retention, however, we see an ORC slowdown
on the RC verb, and a relative ORC speedup on
the RC noun — both effects reported in gaze dura-
tion ET data from Staub (2010). Crucially, we see
the same pattern in LCS predictions across experi-
ments. Vani et al. use test items from Traxler et al.
(2002) in their Experiment 1, which differ from
the critical items in Experiment 1 of Staub (2010).
Nonetheless, the same memory-based pattern —
ORC slowdown on the RC verb and speedup on
the RC noun — emerges in low-retention LCS pre-
dictions for both sets of stimuli.9

We use linear mixed-effects models10 to assess
the reliability of these patterns for each retention
rate, critical region, and experiment. At the de-

9We also generate LCS predictions at both retention rates
for Experiment 2 from Vani et al./Staub, which served as a
control comparison between ORCs and embedded sentence
complements in both studies. LCS predictions capture the tar-
get effect and do not vary across retention rates — as expected
for a control experiment with no predicted memory effects —
so we do not consider these findings further.

10LMER formula: LCS ∼ Condition+ (1|ItemID) +
(1|ModelID)

terminer, both the high- and low-retention LCS
models predict a large and significant ORC slow-
down for both experiments. This aligns with the
Maze data, but not with the ET data; there is a
small ORC slowdown on the determiner, but it is
not significant per the statistical analysis of Staub
(2010). We speculate that this absence may reflect
spillover in the SRC condition, as the determiner
directly follows the RC verb; this could raise RT
times compared to the ORC condition (in which
the determiner follows“that"), obscuring the ORC
slowdown effect. At the RC noun, both LCS mod-
els predict a significant ORC speed-up: small at
60% retention, much larger at 20% retention. This
appears consistent with the RT data — while Vani
et al. report no RC effect here with Maze, Staub
finds a significant ORC speed-up in gaze duration.
Finally, at the RC verb, LCS captures the critical
pattern: no ORC slowdown with high retention,
as seen in the Maze data — but significant ORC
slowdown at low retention, as seen in the ET data.
This pattern supports a memory-based rather than
spillover interpretation of the ORC verb effect.

4.2.2 Memory vs. Spillover
To further investigate the role of spillover effects
in eye-tracking, we draw on the data and analysis
of Roland et al. (2021). Their Experiment 2 also
compares ORC and SRC processing on a distinct
set of RC stimuli.11 Roland et al. also conduct

11Roland et al. (2021) include an additional manipulation
of NP type, in which the RC noun is either a full noun phrase
or a pronoun. For simplicity, we consider only the full NP
stimuli here.

42



an extensive statistical analysis of spillover effects
on their gaze duration data. We use the estimated
coefficients from their fully specified model (2021,
Table 12) to adjust RT values while controlling for
spillover.12

Recall that the key prediction of memory-based
accounts is an ORC slowdown on the RC verb. Fig-
ure 5 shows that this effect is visible in the original
gaze duration data, and remains after adjusting for
spillover. It also shows that this ORC verb slow-
down is predicted by LCS at 20% retention, but
not at 60% retention — a pattern consistent with
the findings of the previous section. Linear mixed-
effect model analysis confirms that both high- and
low-retention LCS models predict a significant ef-
fect of RC type at the verb, but in opposed direc-
tions: the 60% retention model predicts an ORC
speed-up, while the 20% retention model predicts
an ORC slowdown, consistent with the spillover-
adjusted RT data. Once again, the observed pattern
supports a memory-based account of the RC verb
effect observed in ET gaze data.

5 Discussion

Our main finding is that low-retention LCS repro-
duces key predictions of memory-based accounts,
and provides a plausible fit to ET data — whereas
high-retention LCS reproduces expectation-based
predictions, and better fits Maze data. The Maze
task requires that participants actively reject dis-
tractor words and select the correct sentence con-
tinuation; this activity strikes us as clearly more
cognitively demanding than naturalistic reading, so
task-dependent memory demands present a viable
explanation for these discrepant results.13 An alter-
native hypothesis suggested by Vani et al. (2021)
attributes the ORC verb slowdown seen in ET data
to spillover effects. Our analysis indicates that this
is unlikely: the ORC verb slowdown is consistently
predicted by low-retention LCS, pointing toward a
memory-driven explanation.

To be clear, we do not claim that spillover has
no systematic influence on relative clause process-
ing. The detailed modeling analysis conducted by

12Note that we adjust only for spillover predictors, not for
other estimated effects.

13While tasks with higher cognitive load are often associ-
ated with reduced memory capacity in the research literature,
we note that the cognitive load in the Maze task is not opposed
to sentence processing, but in fact perfectly aligned with it.
Higher retention of the preceding sentence context will facil-
itate higher performance on the task itself, i.e. selecting the
correct sentence continuation.

Roland et al. (2021) indicates that spillover at least
partly accounts for the ORC verb slowdown. The
slowdown effect persists, however, even after ad-
justing for spillover, and our LCS simulations sug-
gest that the slowdown reflects memory constraints
(Figure 5).

We note that LCS consistently predicts some pat-
terns which have not been given a formal theoreti-
cal articulation. Further investigation is required to
assess when these discrepancies could be system-
atic and theoretically meaningful. The ORC noun
speed-up presents an interesting case study: this
effect is not directly predicted by either expectation
or memory accounts, but it appears robustly in both
LCS predictions and the ET data for Experiment
1 of Staub (2010). This unexpected concordance
suggests that memory constraints may also drive
this effect. On the other hand, LCS appears to
incorrectly predict an ORC slowdown at the RC
NP for the Roland et al. (2021) stimuli (Figure 5);
however, closer analysis reveals that this effect is
driven by the ORC slowdown at the determiner —
on the RC noun itself, LCS once again predicts
an ORC speedup, and this effect is larger at the
lower retention rate of 20%.14 Under LCS, mem-
ory constraints appear to drive both the ORC verb
slowdown and the ORC noun speedup, although
to our knowledge the latter effect has not been dis-
cussed in connection with memory-based accounts.
Exploring the nature of this connection could be a
promising direction for future research.

Future work could also explore alternative ap-
proaches to modeling expectation. While surprisal
theory is well-represented in the research litera-
ture and closely aligned with the standard language
model learning objective, other research has formu-
lated expectation in terms of information gain (e.g.
Hale, 2016; Hoover, 2024). Under an information
gain account, the incremental cost of processing
a given word reflects not its conditional probabil-
ity (as posited by surprisal theory), but rather the
uncertainty reduction it provides between alterna-
tive sentence continuations. Chen and Hale (2021)
use one such approach, namely Entropy Reduction
(Hale, 2003), to model the same relative clause
processing asymmetry addressed here. They use
corpus statistics to compute word-by-word transi-
tions in entropy over the probabilities of following
syntactic derivations, and find that this measure

14We are unable to compare this prediction directly to the
Roland et al. ET data, as RTs are reported for critical regions
rather than individual words.
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predicts the observed ORC slowdown at both the
RC NP determiner and the RC verb. Their model
can therefore account for the ORC verb slowdown
observed in ET data — however, it would not ap-
pear to predict the pattern observed in Maze data
by Vani et al. (2021). An alternative information
gain approach (e.g. Hoover, 2024) could in prin-
ciple address such task-dependent effects. In the
meantime, we note that LCS straightforwardly cap-
tures this variation in relative clause processing as
a consequence of memory demands.

Other avenues for future research could address
further limitations of the current study. For in-
stance, it might be more appropriate to vary reten-
tion rates not only at the experiment level, but also
to model differences between individual partici-
pants. One could also pursue more interpretability
in LCS predictions through detailed analysis of spe-
cific word-level reconstructions. Lastly, this paper
focuses on one grammatical phenomenon in one
language; a thorough treatment of memory effects
in online language comprehension will naturally
require a broader scope of evaluation.

6 Conclusion

We find that manipulating the retention rate of a
lossy context surprisal (LCS) model captures task-
dependent differences observed in reading times
(RTs). Filler item RTs from the Maze task are best
fit with a relatively high retention rate (e.g. 60%),
while lower retention (20%) better predicts eye-
tracking RTs for those same items. Furthermore,
based on these task-dependent retention rates, LCS
correctly predicts critical RT patterns observed
for English relative clauses. In particular, low-
retention (20%) LCS follows memory-based the-
ories and predicts higher RTs for object relative
verbs — an effect found in eye-tracking but not
Maze studies. These results can explain the appar-
ently contradictory behavioral evidence supporting
both memory- and expectation-driven accounts: rel-
ative clause processing is likely modulated by the
memory demands of the task, and we can use LCS
to model this phenomenon.
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Abstract

Large language models (LLMs) have achieved
significant success in complex tasks across var-
ious domains, but they come with high com-
putational costs and inference latency issues.
Pruning, as an effective method, can signifi-
cantly reduce inference costs. However, cur-
rent pruning algorithms for encoder-based lan-
guage models often focus on locally optimal
solutions, neglecting a comprehensive explo-
ration of the global solution space. This over-
sight can lead to instability in the solution pro-
cess, thereby affecting the overall performance
of the model. To address these challenges, we
propose a structured pruning algorithm named
G-Pruner (Global Pruner), comprising two in-
tegral components: PPOM (Proximal Policy
Optimization Mask) and CG²MT (Conjugate
Gradient Squared Mask Tuning), utilizing a
global optimization strategy. This strategy not
only eliminates the need for retraining but also
ensures the algorithm’s stability and adaptabil-
ity to environmental changes, effectively ad-
dressing the issue of focusing solely on im-
mediate optima while neglecting long-term ef-
fects. This method is evaluated on the GLUE
and SQuAD benchmarks using BERTBASE and
DistilBERT models. The experimental results
indicate that without any retraining, G-Pruner
achieves significant accuracy improvements on
the SQuAD2.0 task with a FLOPs constraint
of 60%, demonstrating a 6.02% increase in F1
score compared with baseline algorithms.

1 Introduction

In recent years, Transformer-based pre-trained lan-
guage models (PLMs) Li et al. (2024); Guimarães
et al. (2024); Ho et al. (2024); Xu et al. (2024);
Kojima et al. (2024) have dominated the field of
natural language processing (NLP) Shamshiri et al.
(2024); Oyewole et al. (2024); Zheng et al. (2024);

*Guangzhen Yao and Yuehan Wang contributed equally.
†corresponding author.
‡corresponding author.

Raza et al. (2024); Mei et al. (2024) due to their
outstanding performance. However, the significant
advantages of PLMs come with a substantial in-
crease in model size and high computational costs.
Pruning, as an optimization technique, can effec-
tively reduce model complexity to enhance gener-
alization ability and operational efficiency. Prun-
ing techniques include structured pruning He and
Xiao (2023); Fang et al. (2023); Sun et al. (2020);
Liu et al. (2021a); Hou et al. (2020a); Iandola
et al. (2020); Kitaev et al. (2020); Xia et al. (2022)
and unstructured pruning Cheng et al. (2023); San-
tacroce et al. (2023); Wang et al. (2020); Shi et al.
(2024); Zhang et al. (2024); Dery et al. (2024) aim-
ing to improve efficiency by eliminating redundant
parts of the model. Particularly, structured pruning
has become a key technology for addressing size
and speed issues in encoder-based language mod-
els, systematically removing redundancies without
significantly impairing model performance.

Despite this, existing pruning methods still have
limitations in practical applications. For example,
Kwon et al. (2022) avoided the high costs associ-
ated with retraining by employing three techniques:
mask search, mask rearrangement, and mask tun-
ing. However, this greedy-based pruning method
has been proved to be effective only in the short
term and faced challenges in finding global optima,
particularly when applied to complex or dynami-
cally changing tasks. Moreover, the K-Prune Park
et al. (2023) algorithm aimed to minimize pruning
errors and enhance accuracy by preserving knowl-
edge from pre-trained models. However, it did
not fully consider the accuracy of weight selection
and the long-term stability of the pruning strategy.
Similarly, the KCM Nova et al. (2023) framework
could quickly compress models and minimize per-
formance loss by accurately assessing the impor-
tance of neurons in the short term. However, it
overlooked the long-term stability and adaptability
of the model to complex tasks, especially under
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high FLOPs constraints. Although these pruning
methods can enhance the efficiency of models in
the short term, they typically have a common draw-
back: they primarily focus on finding local optima
and neglect the exploration of global optima.

To address these issues, we introduce a new
retraining-free pruning framework for Transformer
models—G-Pruner, efficiently locating global op-
tima quickly without retraining. This strategy in-
tegrates two advanced technologies: PPOM and
CG²MT. In the PPOM phase, the algorithm first
conducts a comprehensive mask search, then fine-
tunes and optimizes the selected masks using the
PPO (Proximal Policy Optimization) technique
from reinforcement learning. Subsequently, in
the CG²MT phase, we enhance the efficiency and
stability of solving asymmetric matrix problems
through an improved CGS (Conjugate Gradient
Squared ) solver.

The primary contributions of this study include:

• We propose a structured pruning algorithm
named G-Pruner, designed to prune encoder-
based language models with high precision
without the need of retraining.

• We conduct a comprehensive evaluation us-
ing the GLUE and SQuAD benchmarks on
BERTBASE and DistilBERT models to demon-
strate the performance of G-Pruner. We find
that our method not only outperforms frame-
works that are retraining-free but also sur-
passes other frameworks that do require re-
training at the same pruning cost.

• Under the same FLOPs constraints, G-Pruner
significantly outperforms some existing prun-
ing techniques in pruning time without sacri-
ficing model accuracy. Even under the strict
constraint of allowing a maximum accuracy
reduction of no more than 1%, BERTBASE
achieves 60-70% of the original FLOPs across
all tasks.

2 Related Work

2.1 Pruning For Encoder-Based Language
Model

Pruning enhances model efficiency by removing
insignificant weights or components such as at-
tention heads or layers. There are two types: un-
structured and structured. Unstructured pruning
reduces model size by eliminating individual pa-
rameters. For example, Sanh et al. (2020) offered a

straightforward first-order weight pruning method
for fine-tuning pre-trained models, significantly
boosting performance while maintaining high spar-
sity. Second-order methods like oBERT Kurtic
et al. (2022) used approximate second-order infor-
mation to reduce storage and computational de-
mands of BERT models. Structured pruning sim-
plifies models on a larger scale by removing en-
tire components. For example, Hardware-friendly
block structure pruning techniques Li et al. (2020)
improved compression ratios and speed through
optimizations. FLOP Wang et al. (2019) reduced
model size and enhanced training and inference
speed by maintaining dense weight matrix struc-
tures rather than sparse representations. SLIP Lin
et al. (2020) improved pruning efficiency through
feature layer normalization and unit block identifi-
cation. Sajjad et al. (2023) tackled reducing layers
in pre-trained Transformer models while maintain-
ing task-specific performance. EBERT Liu et al.
(2021b) dynamically determined pruning strategies
per input sample, significantly cutting computa-
tional load and memory use. DynaBERT Hou et al.
(2020b) adjusted BERT model size and latency
adaptively, addressing deployment challenges on
edge devices with diverse hardware performance.

2.2 Pruning For Retraining-free Structured
Model

Data-independent neural pruning algorithm Mus-
say et al. (2019) and post-training weight prun-
ing methods for deep neural networks Lazarevich
et al. (2021) aimed to effectively reduce model size
while minimizing accuracy loss. In the domain of
structured pruning, the concept of "neuron merg-
ing" Kim et al. (2020) and RED’s data-independent
structured compression technique Yvinec et al.
(2021) were employed by utilizing various tech-
nologies to maintain or enhance model accuracy
without incurring accuracy losses. However, these
methods overlooked challenges such as thorough
weight selection analysis, long-term stability, and
maintaining performance under high sparsity. To
effectively address these challenges, a novel post-
training pruning framework named G-Pruner is in-
troduced.

3 Background and Baseline Description

The core of the pruning problem is to find the opti-
mal methods for masking while considering spar-
sity constraints. This study focuses on the com-
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pression of encoder-based language models, no-
tably BERTBASE and DistilBERT. These encoder-
based language models consist of two primary sub-
layer archetypes: Multi-Head Attention (MHA)
and Feed-Forward Network (FFN). In this section,
we explain how to mask the attention heads and
feed-forward networks.

3.1 Structured Pruning by Masking
The formulas for MHA and FFN are expressed as
follows:

MHA
(
x;mMHA

l

)
=

H∑

i=1

mMHA
l,i ◦Atti(x) (1)

FFN
(
x;mFFN

l

)
=
(∑N

i=1m
FFN
l,i ◦W (2)

:,i σ
(
W

(1)
i,: x+ b

(1)
i

))
+ b(2)

(2)

where the mask variable mMHA
l,i for the ith attention

head in the lth layer is used to decide whether to
retain (mask value of 1) or prune (mask value of 0)
that head. The operator "◦" denotes the Hadamard
product (element-wise multiplication) to determine
each attention head’s contribution to the output.

In this paper, we have drawn on the research find-
ings of Kwon et al. (2022) to formalize the prun-
ing problem of encoder-based language models
as a constrained optimization problem concerning
a mask. The goal is to minimize the loss func-
tion L(m) while ensuring that the computational
cost (measured in FLOPs or latency) of the model
pruned according to mask m remains within ac-
ceptable limits. Given a mask m, the optimization
formula is as follows:

arg min
m

L(m) s.t. Cost(m) ≤ C (3)

where Cost(m) denotes the FLOPs or latency of
the architecture after pruning by mask, L(m) repre-
sents the loss function, and C is the given constraint
on FLOPs or latency.

Within a given FLOPs constraint C, the objec-
tive is to find the optimal mask configuration m,
such that the FLOPs of the pruned model are re-
duced and the impact on performance is minimized.
The problem can be formalized as:

argmin
m

∑

i∈Z(m)

Iii s.t. Fhead ∥mMHA∥0 + Ffilter ∥mFFN∥0 ≤ C

(4)
where Fhead and Ffilter respectively represent the
FLOPs required to execute a head and a filter, while
∥mMHA∥0 and ∥mFFN∥0 respectively represent the
number of retained heads and filters in the MHA
and FFN layers.

3.2 Baseline Description

In our study, we adopt Kwon et al.’s approach as
the baseline method. The framework consists of
three stages: mask search, mask rearrangement,
and mask tuning. During the mask search stage,
the Fisher information matrix is used to identify
which attention heads and filters are crucial and
should be retained, and which are relatively less
important and can be pruned. Following the initial
steps of mask search, the mask rearrangement pro-
cess relies on a greedy algorithm, which reselects
the heads and filters to be pruned by analyzing in-
teractions between layers within the model. In the
final phase of mask tuning, linear least squares are
used to minimize reconstruction error and optimize
the values of the non-zero mask variables. Since
the mask search method based on the Fisher infor-
mation matrix has been widely proven effective, no
further improvements are pursued in this study.

4 Methodology

4.1 Framework Overview

As illustrated in Figure 1, our framework is di-
vided into two main stages: the PPOM module
(Section 4.2) and the CG²MT module (Section 4.3).
During the PPOM mask optimization phase, we
utilize Fisher information to determine which at-
tention heads and filters are crucial and should be
retained, and which are relatively unimportant and
can be pruned. Subsequently, with the aid of re-
inforcement learning, the already identified mask
patterns are adjusted to better explore intra-layer in-
teractions among mask variables to optimize model
performance. Subsequently, in the CG²MT mask
tuning phase, the non-zero mask variables are fine-
tuned by restructuring inter-layer output signals to
compensate for any potential accuracy loss caused
by pruning. The framework is designed to incor-
porate three primary inputs: a Transformer model
fine-tuned for a specific downstream task, a small-
scale sample dataset (typically containing 1,000 to
2,000 examples), and a resource constraint condi-
tion.

4.2 PPOM(Proximal Policy Optimization
Mask)

While Fisher information-based mask search effec-
tively identifies key model parameters, it doesn’t
guarantee minimal gradient impact during early
pruning stages. Thus, initial pruning results often
need detailed reordering and optimization. Com-
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Figure 1: Overview of the G-Pruner framework. (a) Mask variables initialized to 1. (b) PPOM (Section 4.2)
and (c) CG²MT (Section 4.3).

mon greedy algorithms attempt to reduce overall
gradient impact through local optimization but may
not fully optimize model performance long-term.
To address this, we propose using the PPO algo-
rithm for further mask refinement. Initially, we an-
alyze masks derived from Fisher information and
gradient data for each layer, focusing on weight
matrices, pruning masks, and gradients. For layers
where all elements are fully pruned or untouched,
the original mask remains. For other layers, we
reorder neurons or attention heads based on their
impact on model performance and gradients.

4.2.1 Design Actors and Critics
In our study, we employ the Actor-Critic frame-
work, combining the value function (Critic) and
the policy function (Actor) to learn jointly. The
primary task of the Actor network is to intelligently
generate policies πθ(at | st) tailored to different
states st. It not only handles decision-making for
individual states but also manages challenges posed
by multidimensional and complex state spaces. In
specific environmental states, the Actor network
employs intricate computations to output a series
of probability distributions directly linked to poten-
tial actions. Particularly when integrated closely
with attention mechanisms, the Actor network can
finely assess and optimize different attention heads
or neurons.

During the pruning process, "state" refers to the
current parameter state of the neural network, in-
cluding weight matrices, pruning masks, gradients,
and other information. The Actor network receives
these state representations as inputs and generates a
probability distribution describing the likelihood of
each action (e.g., preserving or pruning a neuron).
The length of the output vector equals the number
of actions and can be a two-dimensional vector
where each element represents the probability of a

corresponding action. This probability distribution
can be expressed as:

πθ(at | st) = softmax(fθ(st)) (5)

where fθ(st) denotes the output layer of the Actor
network with parameters θ, predicting scores for
each action at given state st. The softmax function
transforms these scores into a probability distribu-
tion, ensuring that the probabilities of all actions
sum to 1.

The Critic network, as a core component of the
value function estimator, is primarily used to assess
the expected impact of each pruning operation on
the overall performance of neural networks, specif-
ically the expected cumulative return. Based on
the Critic network’s output of expected cumula-
tive return, each pruning decision is evaluated for
its effectiveness. Higher expected returns indicate
potential benefits to network performance, while
lower returns may lead to performance degradation.

Its design aims to output the expected value
Vω(st) of the current state to guide policy updates
in the Actor network. Specifically, the Critic net-
work is trained by minimizing the mean squared
error (MSE) between its predicted value and the
actual reward:

L(ω) = E[(yt − Vω(st))
2] (6)

where ω represents the Critic network parameters,
yt is the expected cumulative reward at time step
t, and Vω(st) is the Critic network’s output layer
responsible for predicting the expected cumulative
reward value given state st.

yt = Rt + γVω(st+1) (7)

where Rt denotes the reward at time step t, γ is the
discount factor, and Vω(st+1) is the estimated state
value function at time step t+ 1.
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The evaluation results of the Critic network are
used as feedback to adjust the pruning strategies
generated by the Actor network. This feedback
directly influences the decision-making process of
the Actor network, enabling it to intelligently se-
lect pruning operations. Through continuous learn-
ing and evaluation, the Critic network dynamically
adjusts pruning strategies. For instance, in each
pruning iteration, based on the evaluation results
of the current state, the Critic network can recom-
mend whether to retain or prune specific layers or
neurons, thereby maximizing the overall network
performance. In summary, the Critic network col-
laborates with the Actor network to evaluate the
effectiveness of its strategies and provide feedback,
optimizing the pruning decision-making process of
neural networks.

4.2.2 Pruning Execution
Based on the policy (probability distribution) gen-
erated by the Actor network, pruning operations
are selected. These operations can be binary (re-
tain or prune) or more complex (applying different
pruning probabilities to each neuron or attention
head). According to the policy outputted by the
Actor network, a corresponding pruning mask M
is generated to determine whether each neuron or
attention head should be pruned. The process of
generating the pruning mask is as follows:

M = Bernoulli(πθ(at | st)) (8)

where πθ(at | st) is the probability distribution
outputted by the Actor network. The Bernoulli
function generates a binary vector M , where each
element represents the operation on the correspond-
ing neuron or attention head (1 for retain, 0 for
prune).

4.2.3 Algorithm Updates
In the pruning task, the advantage function calcu-
lates the expected gain or loss after performing
pruning operations. This metric is used in the PPO
algorithm to compute policy gradients, guiding the
Actor network to update its policy to maximize
long-term cumulative rewards. The formula for the
advantage function is:

A(st, at) = yt − Vω(st) (9)

where yt represents the expected cumulative re-
ward after taking action at in state st, and Vω(st) is
the estimated state value function outputted by the

Critic network, indicating the expected cumulative
reward in state st.

In the pruning task, the PPO algorithm updates
the Actor network parameters by maximizing the
objective function of proximal policy optimization
before and after policy updates. The primary goal
of the Actor network is to generate a probability
distribution for pruning decisions to optimize the
performance or efficiency of the neural network.
Specifically, the PPO algorithm first computes the
importance sampling ratio rt(θ) between the new
and old policies:

rt(θ) =
πθ(at | st)
πθold(at | st)

(10)

where πθ(at | st) and πθold(at | st) denote the
probabilities of taking action at under state st for
the new and old policies, respectively.

The objective function of PPO aims to maximize
the advantage function A(st, at), while constrain-
ing the policy update magnitude through a clipping
function ρclip(rt(θ)). The formula is as follows:

JCLIP(θ) = E(st,at)∼πθold

[
min(rt(θ)A(st, at), ρclip(rt(θ))A(st, at)

]

(11)
By maximizing the objective function JCLIP(θ),

we effectively update the Actor network parameters
θ to optimize pruning decision strategies.

In the PPO algorithm, Actor network parameter
θ is updated using policy gradient methods with
the update formula:

θ ← θ + σA∇θJ(θ) (12)

where σA is the learning rate of the Actor network.
The Critic network also updates its parameter

ω to more accurately estimate the performance
change of the neural network after pruning opera-
tions. The update formula for the Critic network
is:

ω ← ω − σC∇ωL(ω) (13)

where σC is the learning rate of the Critic network.
In each iteration, the Actor network determines

pruning probabilities for each neuron using current
model gradient information, guiding network struc-
ture evolution. Simultaneously, the Critic network
assesses expected model performance post-pruning,
balancing exploration and efficiency. Despite ini-
tial mask imperfections, the PPO algorithm reduces
reliance on single Fisher information, enhancing
method effectiveness by analyzing intra-layer inter-
actions. This adaptive approach optimizes perfor-
mance iteratively throughout pruning.

50



4.3 CG²MT(Conjugate Gradient Squared
Mask Tuning)

In the PPOM stages, to simplify the search dur-
ing the model pruning process, the mask values
are strictly constrained to 0 or 1. As the process
advances, this restriction is gradually relaxed, the
non-zero variables in the mask can be adjusted to
any real number, with the objective of restoring
the accuracy of the pruned model by fine-tuning
the mask variables. Nonetheless, when the least
squares method is used for solving, numerical in-
stability may be encountered, especially when fac-
ing extremely unstable or ill-conditioned problems.
To address such challenges, the CGS solver pro-
vides an optimization strategy for efficiently solv-
ing asymmetric matrix problems. This solver per-
forms double the computations in each iteration
and squares the residuals, which not only acceler-
ates convergence but also enhances the stability of
the algorithm.

In our framework, we utilize the CGS solver to
adjust the mask variables in the pruned model to
minimize the reconstruction errors between differ-
ent layers. The specific operations are as follows:
Starting from the first layer of the model, we use
the remaining heads or filters after pruning to recon-
struct the output activations of the original model.
This process can be formally represented by the
following mathematical formula:

argmin
ml

∥x+ layer(x;ml)− (x′ + layer(x′; 1))∥22
(14)

where x and x′ are the inputs to the pruned and
original model layers, respectively, and layer can
be either MHA or FFN. Furthermore, we simplify
this problem into a CGS solver problem, expressed
by the following formula:

argmin
ml

∥Aml − b∥22 (15)

where vector b represents the difference between
the output activations of the two models. Matrix
A represents the output activations of the heads or
filters pruned by a binary mask.

Considering the large scale of matrix A, direct
application of CGS solver might lead to numerical
stability issues. Therefore, we reparameterize the
CGS solver problem and transform it into a damped
problem, enhancing the stability of the solution
by fixing the damping value at 1. The formula is
expressed as:

argmin
rl
∥Arl +A · 1− b∥22 (16)

where ml = 1 + rl. Additionally, to prevent
the adjusted masks from negatively impacting the
model’s accuracy, we restrict the range of the ad-
justed mask variables to between [−10, 10]. If we
find that the mask of any layer exceeds this range,
we discard that layer’s mask and cease further mask
adjustments.

Algorithm 1 CGS Solver Iterative Mask Optimiza-
tion Algorithm

1: Initialize: Start with an initial guess x0, com-
pute the initial residual r0 = b − Ax0, set
p0 = r0, initialize step size coefficient α0 = 0,
auxiliary variables u0 = 0, v0 = Ap0, and r0
is the initial direction vector for iteration.

2: Iteration step: For each iteration k =
0, 1, 2, . . . until convergence criteria are met.

3: Compute step size coefficient: αk =
rTk rk
vTk vk

4: Update auxiliary variable: qk+1 = uk − αkvk
5: Update solution vector: xk+1 = xk +

αk (qk+1 + uk)
6: Update residual vector: rk+1 = rk −

αk (qk+1 + uk + vk)
7: Check for convergence: If ∥rk+1∥ is small

enough, stop the algorithm.
8: Calculate correction coefficient: βk =

rTk+1rk+1

rTk rk
9: Update another auxiliary variable: uk+1 =

rk+1 + βkqk+1

10: Update direction vector: vk+1 = Auk+1

This iterative process starts from the first layer of
the neural network and progresses to the final layer,
ensuring that while model parameters are reduced,
performance loss is minimized as much as possi-
ble. Each iteration entails precise tuning of the
mask variables, with the goal of preserving accu-
racy while pruning the model architecture. This in-
tricately crafted optimization process enables us to
strike a fine balance between the model’s complex-
ity and performance, guaranteeing that the pruned
model maintains accuracy levels comparable to
those of the original model while streamlining its
structure.
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Table 1: G-pruner compares its accuracy against the baseline model under various FLOPs constraints.

BERTBASE

Method QQP MNLI SST-2 QNLI SQuAD1.1 SQuAD2.0

FLOPs 60% 65% 70% 60% 65% 70% 60% 65% 70% 60% 65% 70% 60% 65% 70% 60% 65% 70%

Baseline 87.40 87.55 87.71 80.52 81.54 81.52 90.50 90.91 91.30 87.04 87.46 87.92 83.82 84.34 84.89 72.29 72.88 73.41
G-pruner 90.63 90.84 90.98 82.87 83.41 83.92 92.89 93.22 93.50 90.50 90.82 91.10 87.52 88.05 88.57 78.31 78.62 78.93

+3.23% +3.29% +3.27% +2.35% +2.87% +2.40% +2.39% +2.31% +2.20% +3.46% +3.36% +3.18% +3.70% +3.71% +3.68% +6.02% +5.74% +5.52%

DistilBERT

Method QQP MNLI SST-2 QNLI SQuAD1.1 SQuAD2.0

FLOPs 60% 65% 70% 60% 65% 70% 60% 65% 70% 60% 65% 70% 60% 65% 70% 60% 65% 70%

Baseline 85.92 86.32 86.71 78.83 79.25 79.64 88.60 88.82 89.00 84.90 85.06 85.41 80.12 80.73 81.46 62.00 62.35 62.71
G-pruner 89.20 89.55 89.93 81.05 81.49 81.89 90.85 91.08 91.23 88.20 88.44 88.65 83.22 84.03 84.76 67.29 67.64 67.93

+3.28% +3.23% +3.22% +2.22% +2.24% +2.25% +2.25% +2.26% +2.23% +3.30% +3.38% +3.24% +3.10% +3.30% +3.30% +5.29% +5.29% +5.22%

Figure 2: Based on the BERTBASE model, we compare the performance of our pruning method with several
existing structured pruning techniques.

5 Experiments

5.1 Experimental Setup

Datasets and Pretrained models. Our research
utilizes PyTorch v1.9.1 and Hugging Face’s Trans-
formers v4.12.0. Experiments are conducted on a
single NVIDIA GeForce RTX 3090 GPU for effi-
ciency and result reproducibility. We evaluate our
pruning method on popular benchmarks: GLUE
for tasks like QQP (364K), SST-2 (67K), MNLI
(392K), and QNLI (105K), and SQuAD1.1 (88K)
and SQuAD2.0 (130K) for question-answering.
We focus on BERTBASE and DistilBERT models.

Competitors and and Performance Compari-
son. In our research, we conduct detailed compar-
isons of our pruning method with several domain-
specific retraining-free algorithms: KCM Nova
et al. (2023), Kwon et al. (2022), and K-prune Park
et al. (2023). Additionally, we compare against
recent retraining-based algorithms like Flop Wang
et al. (2019), SLIP Lin et al. (2020), Sajjad et al.
Sajjad et al. (2023), EBERT Liu et al. (2021b), and
DynaBERT Hou et al. (2020b). These comparisons
focus on performance metrics under various FLOPs
constraints. Given the slight variations in baseline
accuracy among these papers, directly comparing
the absolute accuracy of pruned models is chal-
lenging. To facilitate effective comparisons, we
adopt accuracy degradation (i.e., the difference in
accuracy between pruned and original models) as

the primary evaluation metric. Regarding pruning
efficiency, our focus is primarily on performance
under a 60% FLOPs constraint.

Baseline Configuration. We use BERTBASE
and DistilBERT as our baseline models, maintain-
ing their original architectures and configurations.
For pruning, we randomly select 2,000 samples
from their training sets to ensure swift and efficient
processing, avoiding overfitting while preserving
model accuracy. We evaluate accuracy on GLUE
tasks and F1 score on SQuAD tasks. To ensure
reliable results, we conduct experiments with ten
random seeds and report average outcomes.

5.2 Accuracy Comparison

As shown in Figure 2, while all methods inevitably
sacrifice some degree of accuracy when reducing
FLOPs, our approach exhibits the least accuracy
degradation in most cases. Particularly under more
lenient FLOPs constraints, its performance advan-
tage becomes more pronounced. This suggests
that at the same pruning cost, our method achieves
significantly higher accuracy compared to other al-
gorithms. In other words, if we can maintain the
same level of accuracy as other algorithms, we can
perform more extensive pruning operations.

As shown in Table 1, we compare the accuracy
of BERTBASE and DistilBERT models against the
baseline model under different FLOPs constraints.
The results indicate a significant improvement in
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Figure 3: Under a 60% FLOPs constraint, the ac-
curacy of compressed models is compared with the
time cost required for pruning.

Figure 4: Despite a strict 1% maximum allowable
drop in accuracy,BERTBASE achieves 60–70% of the
original FLOPs for all tasks.

accuracy with G-Pruner. Particularly, under a 60%
FLOPs constraint, the model achieves a 6.02%
higher F1 score on the SQuAD2.0 task compared
to the baseline model.

5.3 Speed Comparison

As shown in Figure 3, we evaluate the cost-
effectiveness of each pruning algorithm by com-
paring the model accuracy at a 60% compression
rate on the MNLI and QNLI datasets and the time
required for pruning (measured in hours). Notably,
G-pruner not only shows higher accuracy than other
methods in all experimental settings but also signif-
icantly reduces pruning costs, by up to 1124×.

5.4 FLOPs

As illustrated in Figure 4, we further analyzed the
accuracy variations of BERTBASE and DistilBERT
under different FLOPs constraints. Our analysis
demonstrates that with just a 1% decrease in accu-
racy, BERTBASE maintains 60-70% of its original
FLOPs across all tasks.

5.5 Ablation Studies

As shown in Table 2, we conducted ablation stud-
ies on the PPOM and CG²MT enhancement mod-

Table 2: The ablation study, the accuracy results
under the 60% FLOPs constraint.

Accuracy(%)

QQP MNLI SST-2 QNLI Avg. Diff

Mask search 87.40 80.52 90.50 87.04 -
+ PPOM 89.84 81.87 91.25 89.33 +1.70
+ CG²MT 89.67 81.58 91.66 89.07 +1.63
+ PPOM + CG²MT 90.63 82.87 92.89 90.50 +2.85

Pruning Time(s)

QQP MNLI SST-2 QNLI Avg. Diff

Mask search 30.21 31.44 52.45 53.38 -
+ PPOM 40.15 41.57 63.44 64.52 +10.55
+ CG²MT 9.07 10.58 16.56 16.47 -28.70
+ PPOM + CG²MT 13.43 14.55 21.21 21.03 -24.31

ules. While maintaining 60% of FLOPs, we set
mask search as the baseline pruning method and
then compared it with the addition of PPOM and
CG²MT modules. The results indicate that intro-
ducing the PPOM module slightly reduces model
speed, but adjusting the CG²MT module signifi-
cantly reduces the time required for model pruning.
Additionally, both PPOM and CG²MT modules sig-
nificantly improve accuracy. For instance, in the
QNLI task, the CG²MT module increases the ac-
curacy of the BERTBASE model by 2.03%, while
the CG²MT module shows a more pronounced im-
provement, boosting accuracy by 2.29%.

6 Conclusion

In this work, we introduce a structured pruning
algorithm named G-Pruner, which achieves high-
precision pruning without the need to retrain Trans-
former models. By incorporating two novel tech-
niques, PPOM and CG²MT, we effectively address
the shortsightedness problem commonly encoun-
tered in traditional methods when assessing the
importance of attention heads and feed-forward
neural networks. Simultaneously, our approach
significantly optimizes the iterative process, re-
ducing numerical instability during computation
and achieving faster convergence. Under the same
FLOPs constraints, G-Pruner significantly outper-
forms all existing pruning techniques in pruning
time without sacrificing model accuracy.

Funding. This work was supported by
the National Natural Science Foundation of
China (No.62107009) and the Fund of Jilin
Provincial Department of Education Project
(No.JJKH20241427KJ).
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Abstract

To predict upcoming text, language models
must in some cases retrieve in-context infor-
mation verbatim. In this report, we investigated
how the ability of language models to retrieve
arbitrary in-context nouns developed during
training (across time) and as language mod-
els trained on the same dataset increase in size
(across scale). We then asked whether learn-
ing of in-context retrieval correlates with learn-
ing of more challenging zero-shot benchmarks.
Furthermore, inspired by semantic effects in
human short-term memory, we evaluated the
retrieval with respect to a major semantic com-
ponent of target nouns, namely whether they
denote a concrete or abstract entity, as rated by
humans. We show that verbatim in-context re-
trieval developed in a sudden transition early in
the training process, after about 1% of the train-
ing tokens. This was observed across model
sizes (from 14M and up to 12B parameters),
and the transition occurred slightly later for the
two smallest models. We further found that the
development of verbatim in-context retrieval is
positively correlated with the learning of zero-
shot benchmarks. Around the transition point,
all models showed the advantage of retrieving
concrete nouns as opposed to abstract nouns.
In all but two smallest models, the advantage
dissipated away toward the end of training.

1 Introduction

In language models (LMs), successful prediction
of upcoming words depends on in-context informa-
tion. For example, when given the context prompt
“The novel’s plot and symbolism are centered
around three objects: a centipede, a parachute,
and a waterfall. The first and most important ob-
ject in the list is the ___”, an LM must retrieve the
noun (centipede) out of all in-context tokens to cor-
rectly predict the continuation. In human cognitive
science, this ability to flexibly retrieve items from
recent context is known as short-term memory and
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Figure 1: Overview of the approach and experiments.

is believed to be the core computation underlying
human cognition (Baddeley, 2003).

Recently, Armeni et al. (2022) showed that a
transformer language model (GPT-2, Brown et al.,
2020) develops such flexible short-term memory —
it was able to retrieve the identity and ordering of
lists of arbitrary nouns from recent context (Fig.
1, A), even though retrieval of arbitrary in-context
information is not the explicit objective of LMs (as
opposed to dedicated models of short-term memory,
e.g. Oberauer et al. 2018). Yet, studying retrieval
in a single fully-trained model on arbitrary nouns
neglects three further dimensions of the capacity:
how it is learned, how learning of this dedicated
capacity relates to models’ learning of other tasks,
and the semantics of retrieved nouns.

First, studying learning trajectories of LM ca-
pacities offers complementary insights to study-
ing only performance of fully-trained models (e.g.
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Chen et al., 2024). Previous work on LM learning
trajectories showed that transformers learn next-
token prediction by undergoing a sudden transition
(“phase change”) early during training, which co-
incides with the development of attention heads
that attend to repeated tokens (Olsson et al., 2022).
Does verbatim retrieval follow a similar learning
trajectory?

Second, the ability to retrieve and predict in-
context tokens verbatim (i.e. identity-based match-
ing) can be viewed as a rudimentary form of the
more flexible zero-shot learning, where the rele-
vant in-context information is not necessarily given
verbatim and must possibly be retrieved based on
fuzzy, similarity-based matching (Olsson et al.,
2022). How does successful learning of verbatim
retrieval relate to LM’s zero-shot performance on
more challenging benchmark tasks?

Third, while the successful retrieval of arbitrary
nouns underscores the flexibility of transformer
short-term memory, this approach neglects that the
lexicon of natural language is not a set of unorga-
nized, arbitrary words — instead, it has semantic
structure. Two prominent semantic categories are
concrete and abstract nouns. Concrete nouns (e.g.
“hammer”) have sensory referents, whereas abstract
nouns (e.g. “justice”) do not have a straightforward
sensory component. Word concreteness affects
human cognitive processing. Children typically ac-
quire concrete words, especially nouns, earlier than
abstract words (Gleitman et al., 2005). In certain
short-term memory paradigms, humans are better
at recalling concrete than abstract words (Taylor
et al., 2019). Importantly, the two word categories
differ also in their distributional properties: con-
crete words occur in a semantically narrower range
of contexts compared to abstract words (Schulte im
Walde and Frassinelli, 2022). Is the transformer re-
trieval affected by whether nouns refer to concrete
vs. abstract entities?

To address these questions, we evaluated ver-
batim in-context retrieval on the Pythia suite of
language models (Biderman et al., 2023). Lever-
aging the fact that the suite includes pretrained
LMs ranging from 14M to 12B parameters in scale
and their intermediate training checkpoints across
the entire learning epoch, we evaluated how re-
trieval develops over the course of training and
across model sizes (Fig. 1, B and C). Addition-
ally, the Pythia suite contains zero-shot evaluations
on various benchmarks for each LM checkpoint.
To test how in-context retrieval relates to LM’s

zero-shot performance, we correlated the learning
trajectory of the retrieval against the learning trajec-
tories on zero-shot benchmarks (Fig. 1, D). Finally,
to test the role of noun semantics for in-context
retrieval, we evaluated how noun concreteness, as
rated by human participants (Brysbaert et al., 2014),
affected retrieval over the course of training (Fig.
1, E).

The main contributions of the current work are:
a) In all models, verbatim retrieval developed in a
sudden transition early during training, after about
1% training tokens elapsed, and remained constant
during the rest of training, b) learning of verbatim
retrieval was positively correlated with learning of
zero-shot task performance, and c) around the tran-
sition point, LMs showed an advantage to retrieve
concrete rather than abstract nouns. This advan-
tage almost entirely diminished towards the end of
training.

2 Related work

Several recent studies investigated the behavior of
LMs in domain of either verbatim or in-context
retrieval more generally. Armeni et al. (2022) de-
veloped a paradigm to test the short-term memory
ability (in-context retrieval) of LMs. They showed
that GPT-2 can retrieve the identity and ordering
of repeated arbitrary nouns, but have only tested
a single fully-trained LM and did not investigate
learning trajectories. Vaidya et al. (2023) com-
pared LM (GPT-2) and human word prediction
performance on spans of repeated text. They re-
ported that LMs’ next word prediction performance
diverges from human performance on subsequent
repetitions. They showed that GPT-2 performance
aligned better with humans if its attention heads
had a bias towards recent context. Yu et al. (2023)
investigated in-context retrieval of facts (e.g. re-
trieval of the capital city given a country name)
and how such retrieval was affected by the pre-
training statistics of retrieved facts. They showed
that LMs (Pythia) could override retrieval of (coun-
terfactual) in-context information and instead re-
trieved the fact that has a higher frequency of oc-
currence in training data (e.g., even when given
the in-context counterfactual “The capital city of
Poland is London” they tend to predict the statisti-
cally more likely “Warszaw”).

The current report is also related to the recent
work on LM interpretability and the role of atten-
tion heads in specific forms of retrieval. Several
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studies (Elhage et al., 2021; Olsson et al., 2022;
Wang et al., 2023; Yu et al., 2023) have identified
circuits of attention heads that detect repeated in-
context tokens and their previous continuations; the
computations governing the behavior investigated
presently. These studies focused either on how such
attention mechanisms are learned and how they af-
fect generic next-word prediction (Elhage et al.,
2021; Olsson et al., 2022) or how these attention
mechanisms govern the retrieval of proper nouns
as direct objects in sentences (Wang et al., 2022) or
factual knowledge (direct objects, Yu et al., 2023).

Here, we complement these lines of work and
investigate retrieval as the ability of LMs to re-
trieve lists of arbitrary combinations of common
nouns (unlikely seen co-occuring during training)
and their semantic properties.

3 Methods

3.1 Verbatim retrieval paradigm

We used the verbatim retrieval paradigm introduced
by Armeni et al. (2022). Here, LMs process a short
vignette in English where a list of three arbitrary
nouns is repeated twice:

Mary read a list of words: patience, notion,
movie. After the meeting, she took a break and
had a cup of coffee. When she got back, she read
the list again: patience, notion, movie.

We refer to the first list of nouns as original list
and the second one as repeated list. This setup al-
lows us to test how the LM behavior (as reflected
in LM loss, see below) changes as the LM en-
counters the repeated list. The paradigm (retrieval
of arbitrary lists of words) is broadly inspired by
benchmarks for testing models of human working
memory (Oberauer et al., 2018). Whereas human
participants can be tested by just being presented
with lists of nouns alone, our paradigm is format-
ted such that it is more suited to be used as input
to LMs: contextualized in a simple, but plausible
natural language vignette.

3.2 Quantifying verbatim retrieval

Change in repeat loss (Lr) Following Armeni
et al. (2022), we operationalized retrieval as a
change in LM loss on repeated nouns. Specif-
ically, we computed the ratio in LM loss =
− log2 P (wt|w1, ..., wt−1) between each noun in
the original list and its repetition k tokens later:

loss rationoun =
loss(nouni+k)
loss(nouni)

. The loss ratio per
list was obtained by averaging the noun-specific
loss ratios over the three nouns in a list. A loss
ratio < 1 indicates that the loss to the same tokens
has decreased (that is, the LM expected the token
to repeat) and is taken as evidence of verbatim re-
trieval.

To quantify retrieval as increasing with better
performance, we report it as repeat loss change
Lr = 1 − loss ratio, expressed as percentage. In
this way, a 0% change in repeat loss indicates no
retrieval whereas a change towards 100% indicates
evidence towards (perfect) retrieval. Importantly,
repeat loss change is a continuous measure of in-
context retrieval, baselined against the LM loss
at the beginning of the sequence which facilitates
comparison across models (e.g. models that show
different baseline loss as expected over the course
of training and across scale) and across different
types of inputs.

3.3 Language models

Pythia suite To evaluate retrieval over the course
of training and across scale (see Section 3.4 be-
low), we used the publicly-available pretrained LM
checkpoints released as part of the Pythia language
modeling suite (Biderman et al., 2023).1 Pythia is
a suite of decoder-only autoregressive transformer
LMs spanning from 14M to 12B parameters in size
together with 144 intermediate checkpoints stored
during training. The models were trained on the
Pile dataset (Gao et al., 2020), an English-only cor-
pus for training large-scale LMs containing texts
from 22 sources (for example, Common Crawl,
Wikipedia, Project Gutenberg, Books3, arXiv etc.,
see Biderman et al., 2022, for details). The model
checkpoints used in this report were trained on
the version of the dataset containing approximately
300B tokens. For the full architecture and training
details, readers are referred to the original report
(Biderman et al., 2023).

In our experiments, we evaluated the following
model sizes: {14M, 31M, 70M, 160M, 410M, 1B,
6.9B, 12B} at 18 training checkpoints spanning 6
orders of magnitude across the training steps (in
number of training tokens, 106, ..., 1011) from the
initialized to the final fully-trained model2. All

1https://github.com/EleutherAI/pythia
2Specifically we evaluated the checkpoints from the fol-

lowing training steps: {0, 1, 4, 32, 128, 256, 512, 1000, 2000,
3000, 4000, 8000, 10000, 30000, 40000, 50000, 100000,
143000}. A single step contained 2,097,152 tokens (Biderman
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Task Domain Reference

AI2 Reasoning Challenge (ARC) Multiple choice science exams Clark et al. (2018)
Lambada Discourse-based word prediction Paperno et al. (2016)
LogiQA Logical reasoning Liu et al. (2020)
Massive multitask lang. understanding (MMLU) Exam knowledge across diverse domains Hendrycks et al. (2021)
PiQA Physical common-sense reasoning Bisk et al. (2020b)
SciQ Scientific knowledge Welbl et al. (2017)
Winograd schema challenge (WSC) Common-sense reasoning Levesque et al. (2012)
Winogrande Common-sense reasoning Sakaguchi et al. (2021)

Table 1: The benchmark tasks used to compute in learning trajectory correlations in Fig. 3.

model checkpoints were accessed through the Hug-
gingFace Transformers library (Wolf et al., 2020).

3.4 Experiments

Experiment 1: Retrieval of arbitrary nouns
across time and scale In the first experiment,
word lists in the vignette were constructed by ran-
domly sampling nouns from the Toronto word
pool3 as used in Armeni et al. (2022). Noun lists
in the set (23 lists of 10 nouns) were constructed
such that each noun was tested in all 10 possible
ordinal positions in the list (e.g. “patience, no-
tion, movie”, “notion, movie, patience”, etc.) to
control for any position-specific retrieval effects.
This procedure resulted in the final stimulus set
that contained N = 230 samples of vignettes. In
the present experiment, we used the version of the
stimulus set where the list length was capped at 3
nouns.

Evaluating an LM on the full retrieval evaluation
suite yields one retrieval score (repeat loss change)
per each input vignette. The final retrieval score,
per each training step and per model size, was ob-
tained by taking an average across all (in this case
N = 230) scores. To minimize the potential in-
fluence of outliers in averaging, we used the 20%
trimmed mean (Wilcox and Keselman, 2003) as the
aggregating metric. The results of this experiment
are reported in Figure 2.

Experiment 2: Correlations with zero-shot
benchmark learning. To test how learning of
verbatim in-context retrieval relates to the learning
of zero-shot benchmark tasks assessing text un-
derstanding, we collected the zero-shot evaluation
results on various NLP benchmarks that were avail-
able for the Pythia suite of LMs4. Evaluations were

et al., 2023).
3http://memory.psych.upenn.edu/files/

wordpools/nouns.txt
4https://github.com/EleutherAI/pythia/tree/

main/evals/pythia-v1

available for the following 6 model sizes: {160M,
410M, 1.4B, 2.8B, 6.9B, 12B} and across 27 check-
points5 during training, starting with the initial and
ending with the fully-trained model. All individual
tasks (N = 65) used accuracy as the final metric.
The main groups of tasks used in the experiment
are summarized in Table 1. See Table 3, Appendix
A for the full task list.

For each benchmark task (e.g. Lambada,
SciQ etc.), we computed the correlation ρtraj =
Spearman(Sret, Sbench) between the learning tra-
jectory of the benchmark task Sbench (i.e. task
performance scores across the 27 checkpoints) and
the learning trajectory of our verbatim retrieval ef-
fect Sret (i.e. repeat loss change Lr across the
same 27 checkpoints). The Massive multitask un-
derstanding benchmark (MMLU, Hendrycks et al.,
2021) consists of an array of domain-specific ex-
ams (e.g. marketing, clinical knowledge, nursing)
which are grouped into 4 higher-level categories
(humanities, STEM, social sciences, and ‘other
(business, health, misc.)’, see Table 3, Appendix
A). For these grouped tasks, we first averaged the
learning trajectories per each group and then corre-
lated them with verbatim retrieval effect. We used
the rank-based Spearman correlation coefficient
where a value of 1 indicates a perfect monotoni-
cally increasing relationship between two variables
and is robust to any deviations from normality in
data distributions.

Experiment 3: Effect of noun concreteness on
retrieval. To test for retrieval of concrete and
abstract nouns, we evaluated LMs on the same
paradigm as in the first experiment, but the noun
lists were composed of either concrete or abstract
nouns. We used abstract and concrete English

5Checkpoints corresponding to the following Pythia train-
ing steps were evaluated: {0, 1, 2, 4, 8, 16, 32, 64, 128, 256,
512, 1000, 3000, 13000, 23000, 33000, 43000, 53000, 63000,
73000, 83000, 93000, 103000, 113000, 123000, 133000,
143000}.

59

http://memory.psych.upenn.edu/files/wordpools/nouns.txt
http://memory.psych.upenn.edu/files/wordpools/nouns.txt
https://github.com/EleutherAI/pythia/tree/main/evals/pythia-v1
https://github.com/EleutherAI/pythia/tree/main/evals/pythia-v1


100M
(0.03%)

1B
(0.33%)

10B
(3.33%)

100B
(33.35%)

Training step (Nr. and % total training tokens elapsed)

0

20

40

60

80

100

Re
pe

at
 lo

ss
 c

ha
ng

e 
(%

)

299B
(100%)

Model size
14M
31M
70M
160M

410M
1B
6.9B
12B

(a) Capacity to retrieve verbatim repetitions of arbitrary nouns (average
across three nouns in a list) is learned early during LM training and
predominantly conserved across scale.
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(b) Retrieval improves for items
later in the list (fully-trained mod-
els).

Figure 2: Retrieval of arbitrary nouns across time and scale. Each data point represents the 20% trimmed mean
across N = 230 observations, shaded areas/error bars are 95% confidence intervals (bootstrap).

nouns collected by Brysbaert et al. (2014) where
human participants were asked to indicate “how
concrete the meaning of each word is for you” by
rating each noun on a 5-point rating scale ranging
from 1 “abstract (language-based)” to 5 “concrete
(experience-based)”. Each word was rated by at
least 25 participants and an average score across
participants represents each noun’s final rating.

Table 2: The topmost, mid and lowest ranked words and
their concreteness ratings for the concrete and abstract
noun pool.

Concrete Abstract
Rank Word Rating Word Rating

1 whisky 5.00 oneness 1.96
250 canister 4.93 respite 1.77
500 eyebrow 4.85 spirituality 1.07

Concreteness extremes In our experiments, we
used the “concreteness extremes” subset of the
noun pool by Schulte im Walde and Frassinelli
(2022). This subset contained the 500 nouns ranked
as most concrete and 500 nouns ranked as most
abstract. To give an idea, the topmost, mid and
lowest ranked nouns for each category are shown
in Table 2. As in Experiment 1, each noun was
presented in all ordinal positions to rule out any
position-specific effects. Our final stimulus set con-
tained, for each semantic category, N = 498 input
sequences with lists of 3 nouns.

4 Results

4.1 Verbatim retrieval across time and scale.

Verbatim retrieval learned early in training
across model sizes. All tested models, from the
smallest (14 million parameters) to the largest (12
billion parameters), learned to retrieve verbatim
repeated nouns (Fig. 2a). At the end of training, all
models above 31 million parameters showed a near
100% repeat loss change, indicating exact retrieval.
The smallest two models (14M and 31M parame-
ters) showed weaker, yet still substantial retrieval
effect (around 80% change in repeat loss).

Inspecting the dynamics of repeat loss change
across training, we see that generally models
learned verbatim retrieval early. After about 1B
tokens (0.3% of total dataset), the change in repeat
loss starts increasing and, for all larger models,
plateaus at approximately 4B tokens (less than 5%
of the total tokens in the dataset). The smallest two
models had a slower learning curve as evidenced
in the fact that their repeat loss change plateaued
later, after roughly 20B tokens.

To confirm that reduction in repeat loss was due
to retrieval of the original nouns and not due to
LMs simply having more context when encounter-
ing nouns at the end of sequence or due to mem-
orization of lists from training data, we evaluated
the loss change in the same paradigm but where the
nouns in the second list were unrelated to the nouns
in the original list (i.e. there were no matching in-
context nouns to retrieve). Fig. 6 in Appendix A.1
confirms that no important loss change occurred
in this condition (loss change overall remained <
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Figure 4: Examples of learning trajectories (12B model)
for tasks that showed strongest correlations with verba-
tim retrieval for the largest tested model. For visualiza-
tion purposes, accuracy scores are min-max normalized
to fall in the [0, 1] range.

10%), replicating the GPT-2 results by Armeni et al.
(2022) and indicating that the change of loss was
specific to verbatim retrieval of tokens from con-
text.

Retrieval improves for nouns deeper in the list.
In the previous result, we reported repeat loss
change aggregated over all three nouns in the list.
Yet, nouns deeper in the list have an advantage be-
cause at that point the LM has seen strong evidence
of repetition. Does retrieval performance depend
on the position in the list?

In Fig. 2b, we report repeat loss change of fully-
trained models broken down per noun position
within the list. Retrieval indeed becomes better
later in the list. While all models show this trend,

the position-specific advantage is more pronounced
for the smaller models (14M, 31M, and 70M). For
example, the 70M model shows 62% repeat loss
change on the first and a 95% change on the last
token in the list. This indicates that subsequent
repetitions reinforce the evidence that the model
has entered a repeated list and is in line with recent
results where next-word prediction performance of
GPT-2 improved on spans of repeated text (Vaidya
et al., 2023).

4.2 Correlations with benchmark task
learning

Learning of verbatim retrieval is positively cor-
related with zero-shot performance on more
challenging benchmark tasks. In Figure 3 we
show the results of the correlation experiment. Gen-
erally, most tasks showed a positive correlation
with the learning of verbatim retrieval. The correla-
tions and their reliability, as well as the benchmark
accuracy itself, tended to increase as the models
grow in size, showing that the larger models were
more robust learners overall. The highest correla-
tions were observed for the Lambada, PiQA, SciQ,
and ARC (easy) benchmarks. For example, the
largest 12B model (Figure 4) showed a near per-
fect rank correlation (ρ ≃ 0.95) on the four tasks.
These are also the tasks where the model showed
generally the highest performance accuracy at the
end of training.

For the Winograd schema challenge, LogiQA,
and the hard version of the AI2 reasoning chal-
lenge, the correlation estimates were generally un-
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Figure 5: Retrieval of concrete and abstract nouns. a) Each bar shows the 20% trimmed mean across N = 498
observations, error bars show 95% confidence intervals (bootstrap). See also Fig. 7 in Appendix A.2. b) Each data
point concreteness advantage: the difference in mean repeat loss change for concrete vs. abstract nouns.

stable, likely because the performance on these
benchmarks was lower to begin with. That is, even
though all the models were able to retrieve ver-
batim in-context tokens, they failed to solve the
respective benchmarks in zero-shot settings.

4.3 Effect of noun concreteness on retrieval

Concreteness retrieval advantage observed early
during training. Overall, all models learned to
retrieve either abstract or concrete nouns. Repeat
loss change at the end of training (on either re-
peated concrete or abstract nouns) was generally
high and ranged from 73% (14M model) to around
95% for models larger than 160M parameters (Fig.
5a). The 14M, 31M and 70M models showed better
retrieval for concrete nouns. The effects, although
detectable, were small — on average the relative
loss change for concrete nouns is greater by be-
tween 2% and 6% compared to abstract nouns (see
also Fig. 7, Appendix A.2 for visualizations of full
distributions).

To test whether nouns semantics affected re-
trieval during training, we computed the difference
in average repeat loss change between concrete and
abstract nouns ∆Lr = L̄r

concrete− L̄r
abstract across

the training checkpoints. The difference curves
in Fig. 5b show that around the transition point
(1-2B tokens intro training), when LMs begin to
learn the retrieval, concrete nouns showed 7-17%
greater change in repeat loss meaning they were
easier to retrieve than abstract nouns. The con-
creteness advantage occurred in all models and the
smallest models (14 and 70M parameters) showed
the largest effects.

5 Discussion

We showed that transformer LMs learned verbatim
retrieval in a sudden transition, early in training,
with the performance remaining stable over the
course of training. The sharp onset of retrieval
capacity around 1-2B tokens in training (approx-
imately 1% total training data) is in line with the
results reported by Olsson et al. (2022) who showed
that the LM loss over in-context tokens started drop-
ping suddenly 1-2% tokens in training (between
2.5B and 5B tokens). Once the learning change
had occurred, the LMs became better at predicting
repeated text — which is what was tested in the
current work.

The learning trajectory of verbatim retrieval also
coincides with the LMs’ learning trajectories on
zero-shot benchmarks. This was reflected in the
generally high and robust correlations across train-
ing for select tasks in our results. Specifically, an
abrupt change around 1B tokens in training was
observed in the task of predicting the last token of
a narrative passage (Lambada, Paperno et al. 2016),
multiple choice exams (SciQ, Welbl et al. 2017,
ARC Reasoning Challenge, Clark et al. 2018), and
in the Winogrande benchmark (Sakaguchi et al.,
2021) which requires pronoun resolution based on
common-sense reasoning.

Retrieving in-context information (e.g. lists of
nouns) verbatim is a basic computation needed for
solving a zero-shot multiple-choice task: given a
prompt with only in-context instructions (that is,
the question and the list of possible answers), an
LM system must index and retrieve (i.e. increase
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the probability of) the token representing the cor-
rect answer. In this sense, retrieving the correct
in-context tokens is a necessary step. It is evident,
however, that it is not sufficient and that verbatim
retrieval must be learned along with other compu-
tations.

Consider the Lambada and Winogrande bench-
marks, where the task is to predict the passage- or
sentence-final word which itself is not predictable
on the basis of immediately preceding words. To
take an example from the Winogrande benchmark:
“Robert woke up at 9am while Samuel woke up at
6am, so he had less time to get ready for school”6.
The task is to answer who the pronoun “he” refers
to (Robert or Samuel). To this end, the LM must
first establish that 9am is later than 6am — a dis-
tinct computational step indicating that “he” refers
to “Robert” — and only then retrieve the name to
be predicted as the response.

In the final experiment, we show that around the
transition point (after ≃1B training tokens), when
the capacity for verbatim retrieval occurs, noun
semantics affect the retrieval — models showed
an advantage to retrieve concrete, as opposed to
abstract nouns. Why would LM in-context retrieval
be sensitive to noun semantics?

In humans, concrete words, especially nouns,
tend to be acquired earlier in development com-
pared to abstract words (Gleitman et al., 2005).
This advantage is presumably conferred by hearing
words for concrete objects and concurrently observ-
ing or interacting with the objects the heard words
refer to in the world. LMs as text-based statistical
learners by construction have no direct access to
word semantics via experience or text-external data
(Bisk et al., 2020a). Nevertheless, text statistics,
governed by human language use, can serve as a
cue to the semantic structure of language — in
this case, the lexicon. It is an empirical question
whether and what aspects of the linguistic system
are in fact recovered by LMs in the service of the
next-word prediction objective and subsequently re-
flected in the LM behavior or internal mechanisms
(Manning, 2022; Pavlick, 2023).

We speculate that earlier in training, LMs are
leveraging the fact that concrete nouns tend to
be used in more predictable, less diverse contexts
(Schulte im Walde and Frassinelli, 2022) where
presumably token repetition would be more likely
to occur. However, once the LMs and the training

6https://winogrande.allenai.org/

compute scale in size, this distributional difference
no longer confers an important advantage for re-
trieval. The phenomenon of concreteness advan-
tage early, but not later in training underscores the
general notion that with the increasing amounts of
training data, LMs as machine learning systems
become incommensurate with human learners (see
also Vaidya et al., 2023), who operate on the or-
der(s) of magnitude smaller amount of learning
data, at least in terms of number of words — recent
estimates point to around 100M words by adoles-
cence (Warstadt and Bowman, 2022).

Future work. In this study we investigated re-
trieval across a diverse set of nouns, and broken
down by a core semantic dimension. However,
LMs are statistical learners. A dimension of future
work will be to disentangle the learning sources
that LMs leverage to perform retrieval. In a recent
study, Yu et al. (2023) showed that pretraining fre-
quency can override the retrieval of counterfactual
in-context information. An LM is more likely to
predict a proper noun that was frequently occur-
ring in pretraining, e.g. “Warszaw”, even when the
counterfactual in-context prompt suggests it should
retrieve a different name ( “The capital of Poland
is London. What is the capital of Poland?”). Our
present results do not speak directly to this issue
as our paradigm does not involve counterfactuals.
It is based on lists of arbitrary nouns that unlikely
frequently co-occurred in pretraining data. How-
ever, it would be important to establish whether
and to what extent the in-context retrieval in gen-
eral is governed by the pretraining frequencies of
individual common nouns and to what degree this
capacity is robust to pretraining statistics.

Finally, our measure of verbatim retrieval is a
behavioral measure insofar that it only takes into ac-
count the output of the LM. The field of model inter-
pretability has seen an increased interest in recent
years and aims to reverse engineer the computa-
tions of LMs (e.g. Olsson et al., 2022; Elhage et al.,
2021; Wang et al., 2023; Zhang and Nanda, 2023,
among others). Future work could focus on investi-
gating the internal mechanisms and their causal role
in transformer in-context retrieval. There is con-
sistent evidence suggesting that LMs develop ded-
icated attention heads (Olsson et al., 2022; Wang
et al., 2023; Yu et al., 2023; Vaidya et al., 2023)
governing the retrieval capacity. Whereas this line
work frequently focuses on interpretability for prac-
tical purposes (e.g. better control of LM output in
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downstream applications), it would be valuable to
simultaneously develop a more fine-grained com-
putational characterization of LM mechanisms in-
terpretable with respect to cognitive science con-
structs like the short-term memory (Cowan, 2017).

In cognitive neuroscience, language features de-
rived from transformer LMs (contextualized word
embeddings) are currently among the best perform-
ing when it comes to predicting brain data recorded
in human language processing tasks (e.g. Schrimpf
et al., 2021; Goldstein et al., 2022; Caucheteux and
King, 2022). However, these high-dimensional fea-
tures and the resulting statistical fits are frequently
hard to interpret. Coupled with loose theoretical
motivations such high predicting models can be
right for the wrong scientific reasons (see e.g. An-
tonello and Huth, 2023). A better characterization
of LM mechanisms in terms of cognitive capacities
(e.g. Lakretz et al., 2022) would be instrumental
in understanding how and why LMs succeed in
modeling human brain and cognitive data.

6 Conclusion

Retrieving information from context is an impor-
tant capacity of transformer language models. In
this work, we investigated how the ability to re-
trieve repeated nouns from context develops across
LM training and scale and its dependence on
whether the retrieved nouns denote concrete or ab-
stract entities. Retrieval was learned early in train-
ing across scale and once learned, it remained sta-
ble. Retrieval learning was robustly correlated with
learning of zero-shot task performance. Around the
point when the in-context retrieval was learned, the
models showed advantage to retrieving concrete
as opposed to abstract nouns and the advantage
dissipated as the models saw more training data.

7 Limitations

There are certain limitations to current work. While
our test suite was designed to test arbitrary target
nouns, we did not investigate whether and how well
LM retrieval generalizes to other parts of speech
(say, to verbs, adjectives). Similarly, the currently
reported paradigm relies on a single vignette, it
would be important to use a more diverse set of vi-
gnettes to confirm that the results generalize across
topic domains. However, given the robustness and
size of the effect here and in past reports by others,
it is likely that the finding would generalize across
a diversity of vignettes. Finally, our results are

limited to English, which currently the dominant
language in terms of available resources in lan-
guage technologies. Extending the study to other
languages with, for example, different grammatical
properties (e.g. richer noun morphology) or less
resources would be a welcome effort.

Data and Code Availability

The code used to run the experiments is available
at: https://github.com/KristijanArmeni/
verbatim-memory-in-NLMs
The materials and data used in the experiments are
available at: https://doi.org/10.17605/OSF.
IO/A6GSW

Computational requirements

Experiments described in this report were run
on the A100 Nvidia GPU nodes on an high-
performance computing cluster (HPC). To evaluate
the smallest (14M) model, we requested 8GB of
RAM and the evaluation completed on the order of
a few minutes. RAM requirements were progres-
sively increased to evaluate larger models. For the
largest (12B) model, we requested 80GB of RAM
and the evaluation completed in about 30 minutes.
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A Appendix A

A.1 Retrieval control

Figure 6 shows memory retrieval results when
nouns are not repeated.

66

https://doi.org/10.1162/daed_a_01905
https://doi.org/10.1162/daed_a_01905
https://doi.org/10.1037/bul0000153
https://doi.org/10.1037/bul0000153
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.1098/rsta.2022.0041
https://doi.org/10.1098/rsta.2022.0041
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://doi.org/10.1073/pnas.2105646118
https://doi.org/10.1073/pnas.2105646118
https://doi.org/10.3389/frai.2021.796756
https://doi.org/10.3758/s13421-018-0857-x
https://doi.org/10.3758/s13421-018-0857-x
https://doi.org/10.3758/s13421-018-0857-x
https://doi.org/10.48550/arXiv.2310.06408
https://doi.org/10.48550/arXiv.2310.06408
https://doi.org/10.48550/arXiv.2211.00593
https://doi.org/10.48550/arXiv.2211.00593
https://doi.org/10.48550/arXiv.2211.00593
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://doi.org/10.18653/v1/W17-4413
https://doi.org/10.1037/1082-989X.8.3.254
https://doi.org/10.1037/1082-989X.8.3.254
https://doi.org/10.1037/1082-989X.8.3.254
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.48550/arXiv.2310.15910
https://doi.org/10.48550/arXiv.2310.15910
https://doi.org/10.48550/arXiv.2310.15910
https://doi.org/10.48550/arXiv.2309.16042
https://doi.org/10.48550/arXiv.2309.16042
https://doi.org/10.48550/arXiv.2309.16042


100M
(0.03%)

1B
(0.33%)

10B
(3.33%)

100B
(33.35%)

Training step (Nr. and % total training tokens elapsed)

0

20

40

60

80

100

Re
pe

at
 lo

ss
 c

ha
ng

e 
(%

)

299B
(100%)

Model size
14M
31M
70M
160M

410M
1B
6.9B
12B

Figure 6: Evaluating repeat loss change in a control condition where there were no verbatim repeated in-context
nouns (hence, no retrieval was possible). Each data point shows the 20% trimmed mean across N = 230
observations, shaded areas/error bars are 95% confidence intervals (bootstrap).
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Figure 7: Data distributions comparing retrieval scores for concrete and abstract nouns for 4 smallest models from
Fig. 5. Each violin plot KDE density estimates over N = 498 data points. The inner lines show the first, second
(median) and the third quartiles of the distribution.

A.2 Abstract vs. concrete data distributions
The violin plots in Fig. A.2 show the distributions
underlying respective bar plots in Fig. 5a.

A.3 Zero-shot benchmark tasks overview
The full list of benchmark tasks used in Experiment
2 is provided in Table 3.
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Table 3: Benchmark categories for the Pythia models. The Task Key column corresponds to the task key used in the
Pythia evaluation files (https://github.com/EleutherAI/pythia/tree/main/evals/pythia-v1).

Benchmark Name Benchmark Subcategory Task Key

1 ARC (challenge) None arc_challenge
2 ARC (easy) None arc_easy
3 Lambada (OpenAI) None lambada_openai
4 LogiQA None logiqa
5 MMLU MMLU (Soc. sci.) mmlu_high_school_government_and_politics
6 MMLU MMLU (Soc. sci.) mmlu_sociology
7 MMLU MMLU (Other) mmlu_business_ethics
8 MMLU MMLU (Other) mmlu_medical_genetics
9 MMLU MMLU (STEM) mmlu_high_school_physics
10 MMLU MMLU (Other) mmlu_professional_medicine
11 MMLU MMLU (Other) mmlu_miscellaneous
12 MMLU MMLU (STEM) mmlu_college_physics
13 MMLU MMLU (Humanities) mmlu_professional_law
14 MMLU MMLU (Humanities) mmlu_high_school_world_history
15 MMLU MMLU (Other) mmlu_global_facts
16 MMLU MMLU (Humanities) mmlu_high_school_us_history
17 MMLU MMLU (Other) mmlu_marketing
18 MMLU MMLU (Soc. sci.) mmlu_high_school_microeconomics
19 MMLU MMLU (Other) mmlu_college_medicine
20 MMLU MMLU (Soc. sci.) mmlu_human_sexuality
21 MMLU MMLU (STEM) mmlu_electrical_engineering
22 MMLU MMLU (STEM) mmlu_elementary_mathematics
23 MMLU MMLU (STEM) mmlu_high_school_chemistry
24 MMLU MMLU (Other) mmlu_professional_accounting
25 MMLU MMLU (Humanities) mmlu_world_religions
26 MMLU MMLU (STEM) mmlu_machine_learning
27 MMLU MMLU (Soc. sci.) mmlu_high_school_psychology
28 MMLU MMLU (Humanities) mmlu_moral_scenarios
29 MMLU MMLU (STEM) mmlu_high_school_computer_science
30 MMLU MMLU (Soc. sci.) mmlu_security_studies
31 MMLU MMLU (STEM) mmlu_computer_security
32 MMLU MMLU (Humanities) mmlu_high_school_european_history
33 MMLU MMLU (STEM) mmlu_college_computer_science
34 MMLU MMLU (Soc. sci.) mmlu_econometrics
35 MMLU MMLU (STEM) mmlu_college_mathematics
36 MMLU MMLU (Other) mmlu_clinical_knowledge
37 MMLU MMLU (Soc. sci.) mmlu_professional_psychology
38 MMLU MMLU (Other) mmlu_nutrition
39 MMLU MMLU (STEM) mmlu_abstract_algebra
40 MMLU MMLU (Humanities) mmlu_logical_fallacies
41 MMLU MMLU (STEM) mmlu_astronomy
42 MMLU MMLU (STEM) mmlu_high_school_mathematics
43 MMLU MMLU (STEM) mmlu_high_school_biology
44 MMLU MMLU (Soc. sci.) mmlu_high_school_geography
45 MMLU MMLU (Other) mmlu_anatomy
46 MMLU MMLU (Humanities) mmlu_jurisprudence
47 MMLU MMLU (Other) mmlu_management
48 MMLU MMLU (Humanities) mmlu_prehistory
49 MMLU MMLU (STEM) mmlu_college_biology
50 MMLU MMLU (Humanities) mmlu_moral_disputes
51 MMLU MMLU (STEM) mmlu_high_school_statistics
52 MMLU MMLU (Soc. sci.) mmlu_us_foreign_policy
53 MMLU MMLU (Other) mmlu_human_aging
54 MMLU MMLU (STEM) mmlu_college_chemistry
55 MMLU MMLU (Other) mmlu_virology
56 MMLU MMLU (Soc. sci.) mmlu_public_relations
57 MMLU MMLU (STEM) mmlu_conceptual_physics
58 MMLU MMLU (Soc. sci.) mmlu_high_school_macroeconomics
59 MMLU MMLU (Humanities) mmlu_international_law
60 MMLU MMLU (Humanities) mmlu_philosophy
61 MMLU MMLU (Humanities) mmlu_formal_logic
62 PiQA None piqa
63 SciQ None sciq
64 Winogrande None winogrande
65 WSC None wsc
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Abstract

Evaluation of text generation to date has pri-
marily focused on content created sequentially,
rather than improvements on a piece of text.
Writing, however, is naturally an iterative and
incremental process that requires expertise in
different modular skills such as fixing outdated
information or making the writing style more
consistent. Even so, comprehensive evaluation
of a model’s capacity to perform these skills
and the ability to edit remains sparse. This work
introduces EDITEVAL: An instruction-based,
benchmark and evaluation suite that leverages
high-quality existing and new datasets in En-
glish for the automatic evaluation of editing
capabilities, such as making text more cohe-
sive and paraphrasing. We evaluate several pre-
trained models, which shows that InstructGPT
and PEER on average perform the best, but
that most baselines fall below the supervised
state-of-the-art, particularly when neutralizing
and updating information. Our analysis also
shows that commonly used metrics for editing
tasks do not always correlate well, and that
prompts leading to the strongest performance
do not necessarily elicit strong performance
across different models. Through the release
of this benchmark,1 and a publicly available
leaderboard challenge,2 we hope to unlock fu-
ture work on developing models more capable
of controllable and iterative editing.

1 Introduction

Large pre-trained language models have shown im-
pressive text generation capabilities for a wide va-
riety of tasks such as question answering, textual

1Code and data available at https://github.com/
facebookresearch/EditEval

2https://eval.ai/web/challenges/
challenge-page/1866/overview

entailment, and summarization (Devlin et al., 2019;
Radford et al., 2019; Raffel et al., 2020; Brown
et al., 2020; Zhang et al., 2022; Chowdhery et al.,
2022). However, to date, most work employing
language models has focused on generating im-
mutable text in a single pass. This is in stark con-
trast to the way in which humans develop articles
of text, which is naturally an iterative process of
small steps, each with a precise purpose (Seow,
2002). This is a crucial process because it allows
for analysis of “what’s working, what isn’t, and
what it still needs” and adaptation to these needs
along the way (Jackson, 2022). In many cases, a
needed change may only become apparent after
much of the text is created, such as in the case of
a reorganization or fixing inconsistencies or con-
tradictions (Vardi, 2012). In this way, the current
paradigm of generating text passages in a single
pass can be severely limiting.

Additionally, the current paradigm of contin-
uous left-to-right generation is less controllable
and not flexible to human-in-the-loop collabora-
tion and feedback, and this absence of experienced
human mediation in the writing process can be
highly detrimental to the quality of the final prod-
uct (Greenberg, 2010). While there are some exist-
ing production tools geared towards working with
humans to compose articles and emails, such as
Grammarly3, Smart Compose from Google4 and
text predictions from Microsoft5, a majority focus
on sentence completion rather than iteratively im-
proving upon prior text. A more powerful editing

3https://www.grammarly.com/
4https://www.blog.google/products/gmail/subject-write-

emails-faster-smart-compose-gmail/
5https://insider.office.com/en-us/blog/text-predictions-in-

word-outlook
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Barack Obama and Hillary Clinton were both running for 
the Democratic party nominationcandidate nominees of 
the Democratic party for the 2008 Presidential election. 
On June 3rd, Obama received enough endorsements to 
rightly clinch the nomination. Obama went on to win the 
general election against Republican John McCain and 
became the current44th President of the United States of 
America.

Clinton went on to serve as the 67th United States 
Secretary of State, serving within the Obama 
administration. In the 2016 Presidential election, she 
became the nominee of the Democratic party, becoming 
the first woman to be a nominee of a major U.S. political 
party. Clinton, however, loselost the general election to 
Donald Trump. Clinton’s third memoir, What Happened, 
features an account of her loss in the 2016 election.

Rephrase 
this text 

Make the 
text neutral Update the 

article

Simplify the 
text

Add missing 
information

Fix 
grammar 
errors

The benchmark for text improvements

Figure 1: Examples of instructions for paraphrasing, neutralization, simplification, fluency, and updating information
as well as their corresponding expected edits. For illustrative purposes, we ground these examples in the same
passage, but examples in EDITEVAL follow the format as described in Section 6.

assistant, however, should not only be capable of
providing recommendations for text continuations
but also permit non-sequential development of the
text (Seow, 2002). Editing can be absolutely criti-
cal, for example, if new or missing information or
external citations are required to update the text or
if a reshuffling/rebalancing of text is needed.

In this work, we alternatively promote iterative
text generation and improvement—successive iter-
ations of modular additions and modifications of
the text that are relevant to text editing, such as
making the text clearer and adding missing infor-
mation. Many datasets for natural language tasks
are actually annotated at the sentence or paragraph
level, rather than document or article level, natu-
rally lending well to evaluating iterative edits.

We create EDITEVAL, a benchmark and evalua-
tion suite that leverages high-quality existing and
new datasets for the automatic evaluation of edit-
ing capabilities. Currently, many of these relevant
datasets live in separate packages and are often
formatted in uniquely different ways. EDITEVAL

downloads each dataset from their most recent ver-
sion and standardizes these into a single format
conducive to evaluation. Additionally, we include
popular metrics for each task and a set of human-
generated prompts to robustly measure a model’s
capability in executing the modular task when in-
structed. Figure 1 shows examples of such prompts
and an example of a corresponding edit that we

might expect for each prompt. Using these prompts,
we evaluate and compare several state-of-the-art
language models, such as OPT (Zhang et al., 2022),
GPT-3 (Brown et al., 2020), and PEER (Schick
et al., 2022). In summary, our contributions are as
follows:

1. We identify a set of tasks and datasets rele-
vant to iterative text improvement and pro-
vide a pipeline to download and process these
datasets into a single format.

2. We open-source a publicly available
instruction-based benchmark and leaderboard
for automatic evaluation according to metrics
commonly used for each editing task.

3. We introduce a new dataset, WAFER-INSERT,
for evaluating a model’s capability to update
information, which is based on the WAFER
dataset (Petroni et al., 2022).

4. We provide a comparison of various state-of-
the-art baselines evaluated on EDITEVAL at
the dataset and prompt level.

2 Related Work

Several multitask evaluation benchmarks have
been open-sourced to the community to support
progress in natural language understanding includ-
ing GLUE (Wang et al., 2018), SuperGLUE (Wang
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et al., 2019), decaNLP (McCann et al., 2018), and
GEM (Gehrmann et al., 2021). These datasets,
however, focus on a broad set of tasks in NLP (e.g.,
question answering, reading comprehension, and
textual entailment). While all of these tasks are crit-
ical to natural language understanding, EDITEVAL

focuses on curating a benchmark for measuring a
model’s capability to improve and edit text.

There are several datasets which focus
on iterative text revisions in the domain of
Wikipedia (Yang et al., 2017; Anthonio et al.,
2020), academic essays (Zhang et al., 2017), and
news articles (Spangher et al., 2022). These works,
however, focus on one particular domain and in
some cases, a particular style like argumentative
writing (Zhang et al., 2017). EDITEVAL, on the
other hand, includes examples from multiple
domains: Wikipedia, Wikinews, news articles, and
arXiv. ITERATER (Du et al., 2022) is perhaps
closet to EDITEVAL in that it provides iterative
tasks from multiple domains, but it has a limited
number of such tasks: fluency, coherence, clarity,
style, and meaning-changed. Because this is a
great starting point, we have included ITERATER
in EDITEVAL, and we additionally develop
prompts for these tasks since ITERATER is not
instruction-based. Moreover, unlike ITERATER,
EDITEVAL includes novel datasets for tasks
such as updating text using new information and
neutralizing the text, which are core components
of editing a factually-correct and unbiased article.

3 The EDITEVAL Benchmark

EDITEVAL is an instruction-based benchmark for
iterative text generation/modification. EDITEVAL

sources existing high-quality datasets—most with
human annotations—containing tasks relevant to
editing. These datasets are combined into a uni-
fied evaluation tool and can be evaluated with any
metric provided in EDITEVAL. A task here refers
to a type of edit (e.g., simplification), and the spe-
cific task dictates which set of prompts to be used
(e.g., simplify this text), the full set of which is
enumerated in Appendix B.

We consider seven editing tasks in EDITEVAL.
The corresponding datasets for each task included
in EDITEVAL are enumerated in Table 1, along
with the size of the dataset in EDITEVAL. For ease
of evaluation, we define a consistent format for
all datasets in the EDITEVAL benchmark. Each
dataset of every task has five core fields: ID, input

Table 1: Tasks, datasets, abbreviations used, and corre-
sponding test size in EDITEVAL. The task type dictates
which set of instructions are used. These are enumerated
in Section B.

Task Dataset Abbrev. Size

Clarity ITERATER ITR-L 1,595
Coherence ITERATER ITR-O 351
Fluency ITERATER ITR-F 942
Fluency JFLEG JFL 1503
Simplification ASSET AST 2,359
Simplification TurkCorpus TRK 2,359
Paraphrasing STS Benchmark STS 419
Neutralization WNC WNC 1,000
Updating FRUIT FRU 914
Updating WAFER-INSERT WFI 4,565

text, gold edits, task type, and reference documents.
The input text is the original text before revision,
and the gold edits are the target edits for that spe-
cific task type. Lastly, the reference documents
provide textual information from external articles
or documents that are relevant to the task. The task
that requires reference documents is updating, and
otherwise, the reference documents field is empty.

The datasets in EDITEVAL were selected if they
test a capability relevant to the art of editing and
contain human-annotated gold edits, if possible.
We also endeavored to include datasets that are
broadly used by the community. The datasets in
EDITEVAL are by no means exhaustive, but the
EDITEVAL framework is flexible such that it can
easily extend to new datasets and metrics in future
versions.

3.1 Fluency, Clarity, and Coherence
In this section, we describe the two datasets that
compose this set of tasks: Fluency (fixing gram-
matical or spelling errors), clarity (making the text
clearer), and coherence (making the text more co-
hesive).

JFLEG JHU FLuency-Extended GUG (Napoles
et al., 2017) focuses only on fluency. JFLEG
is based on the GUG (Grammatical vs Un-
Grammatical) dataset (Heilman et al., 2014), which
is a dataset of sentences originally annotated for
how grammatical the sentence is on a scale of 1
to 4. JFLEG builds upon the ungrammatical sen-
tences in GUG and annotates each sentence with
four corresponding corrected versions.

ITERATER This dataset introduced by Du
et al. (2022) contains both automatically-mined
and human-annotated edits at the sentence and
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document-level. For our benchmark, we only uti-
lize the sentence-level examples with human an-
notations. Additionally, ITERATER has labels for
the intent—the type of edit that produces the tar-
gets, which can be one of six classes: Fluency,
coherence, clarity, style (conveying the writer’s
writing preferences), meaning-changed (updating
or adding new information), and other (none of
the others). We included all classes except style,
meaning-changed, and other. We excluded style
and other because these tasks had roughly 100 or
less test examples, and the definitions were com-
paratively under-specified. We excluded meaning-
changed because the task does not use reference
documents for updating. This dataset is the only
one in EDITEVAL that encompasses multiple tasks,
and we refer to each respective subset using the
abbreviations ITR-F (fluency), ITR-L (clarity), and
ITR-O (coherence).

3.2 Paraphrasing

STSB For paraphrasing, we use the STS bench-
mark from SemEval-2018 (Cer et al., 2017), which
comprises English datasets used in the STS tasks
of SemEval between 2012 and 2017. The selection
of datasets includes text from image captions, news
headlines and user forums. Each example contains
an original sentence, a target sentence, and a simi-
larity score indicating whether the target is a para-
phrase of the original. This dataset is used for clas-
sification or regression, but for EditEval, we utilize
all instances that we are confident are paraphrases,
i.e., have the max similarity score of 5, as targets for
generation evaluation. While other datasets such
as ParaSCI (Dong et al., 2021) exist for paraphrase
generation, these are automatically curated rather
than human annotated, and EDITEVAL strives to
utilize human-annotated datasets where possible.

3.3 Simplification

Simplification can be considered a very similar task
to paraphrasing with the additional constraint that
the output must be simpler than the input. The
datasets we utilize for simplification are TurkCor-
pus (Xu et al., 2016) and ASSET (Alva-Manchego
et al., 2020).

TurkCorpus This dataset, like ASSET, builds
upon the Parallel Wikipedia Simplification
(PWKP) (Zhu et al., 2010). The PWKP dataset
uses the Simple English Wikipedia and Standard
English Wikipedia in parallel to create original-

simplification pairs automatically. However,
several works found PWKP to have a large
proportion of targets that are not simplified or only
partially aligned with the input (Xu et al., 2015;
Amancio and Specia, 2014; Hwang et al., 2015;
Štajner et al., 2015), leading to the creation of a
human-annotated corpus, TurkCorpus. TurkCor-
pus was manually created with eight reference
simplifications for each original sentence in PWKP,
but only used simplifications that are possible
without deleting content or splitting sentences.

ASSET Because TurkCorpus encompassed only
specific kinds of simplifications, this led to the
creation of ASSET, which provides manually-
produced simplifications through a much broader
set of transformations. We include both in EDITE-
VAL, for the sake of comprehensiveness.

3.4 Neutralization

The task of neutralization refers to making the text
more neutral. For example, in the sentence “Obama
was an excellent president who served two terms
from 2008 to 2016” the term excellent violates
Wikipedia’s neutral point of view (POV) policy6.
For information-intensive content like Wikipedia
and news articles in particular, reducing bias is
crucial because bias can be the single largest source
of distrust in the media (Jones, 2019).

WNC We use the Wiki Neutrality Cor-
pus (Pryzant et al., 2020), a collection of
original and de-biased sentence pairs mined from
Wikipedia edits by carefully filtering based on
the editor’s comments. While ideally we would
like to include a human-annotated dataset, to
our knowledge there does not exist a dataset for
de-biasing article content at the sentence level.

3.5 Updating

In this section we describe the task of updating
information which requires references, text from
external sources that are relevant to the particular
task. Because of token-length restrictions, each
external article is chunked into texts of fixed length.
We limit the scope of the task to three chunks, and
we refer to these selected chunks as our reference
documents. These references documents are repre-
sented in the edits by their index in the reference
documents field (e.g., the first would be demarcated

6https://en.wikipedia.org/wiki/Wikipedia:Neutral point of
view
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as [0]), and we discuss below how these reference
documents were selected.

WAFER-INSERT The first dataset for updat-
ing information that we use is the WAFER
dataset (Petroni et al., 2022), which is a dataset
collected from Wikipedia inline citations. Each
instance of the original WAFER dataset contains a
claim, the text surrounding the claim, and a set of
external references, where the task is to choose one
of the references to be cited after the claim. While
the original intention of WAFER was to measure
a system’s capability to choose the correct cita-
tion, EDITEVAL utilizes WAFER for the task of
inserting new information using content from the
reference documents. The examples in the original
WAFER dataset contains an input text and a refer-
ence document, where a sentence (referred to as
the claim) of the input text is factually supported by
the reference. We create WAFER-INSERT, which
differs from WAFER in that the claim is deleted
from the input. The goal here is to derive the orig-
inal claim from the references and insert it back
into the text at the appropriate location. For the ref-
erence documents, we select the top three chunks
from the inline citation chunks that have the highest
scores, using results from the verification engine
introduced in Petroni et al. (2022).

FRUIT In addition to WAFER-INSERT, we in-
clude the FRUIT dataset (Logan IV et al., 2021),
a dataset collected by comparing two snapshots of
a Wikipedia article where one contains updated or
new information. The reference documents were
identified by searching for other Wikipedia articles
that provide evidence to support the update. How-
ever, because there is no certainty that the identified
evidentiary articles support the claim, the authors
of FRUIT created a gold set by employing human
annotation to filter out any new claims that are un-
supported. We include this gold set in EDITEVAL,
and only include reference documents if they actu-
ally appear in the output. Unlike WAFER-INSERT,
the target edit contains not only the updated infor-
mation but also the citation. For EDITEVAL, this
is for verification purposes only, and the citation is
removed when computing the metrics.

4 Metrics

The metrics we included in EDITEVAL are ones
that are (1) shown to have significant correlation
with human judgement for a task in EDITEVAL

and (2) commonly used to benchmark one of the
datasets in EDITEVAL. Below, we discuss some of
the main metrics. Appendix C describes these and
additional metrics in greater detail.

• EM (exact match) is the percentage of ex-
amples for which the performed edit exactly
matches any of the targets. EM-diff is a vari-
ant computed at the diff level.

• SARI Xu et al. (2016) is an n-gram based
metric that averages match scores for three op-
erations: adding, deleting, and keeping words.

• LENS (Maddela et al., 2022) is a recently pro-
posed model-based text simplification metric
that uses an adaptive ranking loss.

• GLEU (Napoles et al., 2015) is a variant
of BLEU frequently used for grammatical
error correction (Grundkiewicz et al., 2019;
Yuan and Briscoe, 2016; Chollampatt and Ng,
2018), where penalties are incurred only when
words are changed in the reference but not in
the output.

• ROUGE (Lin, 2004) is metric that mea-
sures n-gram overlap. UpdateROUGE (Lo-
gan IV et al., 2021), a simple modification
of ROUGE, computes ROUGE only on the
updated sentences rather than the full text.

• BERTScore (Zhang et al., 2019a) which is
based on using the cosine similarity between
the BERT embeddings of the candidate and
reference.

5 Baselines

For each baseline, we use greedy decoding, and
we do not perform any task-specific fine-tuning or
in-context learning. We evaluate on EDITEVAL

using the following baselines:

• GPT-3 (Brown et al., 2020) is a 175B param-
eter pretrained decoder-only model. We eval-
uate GPT-3 through OpenAI’s API.7

• InstructGPT (Ouyang et al., 2022) is a
variant of GPT-3 that was instruction-tuned.
We evaluate the text-davinci-001 version de-
scribed in (Ouyang et al., 2022) since, at the
time of writing, details about the training pro-
cess for text-davinci-002 were not publicly
available.

7https://beta.openai.com/
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• OPT (Zhang et al., 2022) is an open-source
replica of GPT-3. Like GPT-3, it is not fine-
tuned on any labeled data.

• T0 (Sanh et al., 2022) is a pretrained encoder-
decoder model, which has demonstrated better
performance than GPT-3 on several tasks de-
spite being much smaller.

• T0++ (Sanh et al., 2022) is similar to T0, but
trained on a few additional datasets from Su-
perGLUE (Wang et al., 2019).

• Tk-Instruct (Wang et al., 2022) is similar to
T0 and T0++ but instead fine-tuned on their
dataset, Natural Instructions v2, a collection
of instructions for more than 1,600 tasks, in-
cluding grammatical error correction and text
simplification.

• PEER (Schick et al., 2022) is a collaborative
language model initialized from the LM Adapt
variant of T5, and further fine-tuned on edit
histories from Wikipedia. We use the 3B and
11B PEER models that were shown to perform
the best in Schick et al. (2022).

6 Formatting

We evaluate these baselines on their general ca-
pability to accomplish each task when prompted
in natural language in a zero-shot fashion. Be-
cause there are a diverse set of ways in which to
instruct for each task, we manually construct a set
of 3–11 prompts in order to more robustly evaluate
performance. For each task prompt t and input
i, the model is given a formatted input following
the template: Task: t\nInput: i\nOutput: with
an additional field for references, should they be
required. Figure 2 shows an example of an input
including references. For tasks without references,
we exclude this field. Some slight modification to
this template were made. For example, Tk-Instruct
expects the prompt to be prefixed by the string
“Definition:” rather than “Task:”). For preprocess-
ing, we used the Natural Language Toolkit (NLTK)
package (Bird et al., 2009) for tokenizing the text.

1

Update 
information

Obama went on to win the general 
election against Republican John 
McCain and became the current 
President of the United States.

[0] Barack Obama | Barack 
Hussein Obama II is an American 
politician who served as the 44th 
President of the United States.

Obama went on to win the general 
election against Republican John 
McCain and became the 44th 
President of the United States 

Task:

Input:

Reference:

Output:

Figure 2: Example of inputs formatted when evaluating
the baseline models. Each input is evaluated with a set
of prompts that are determined by the task type.

7 Results

We summarize results in Table 2 with the afore-
mentioned baselines averaged over all datasets and
the breakdown for each dataset in Table 3. To vi-
sualize the variance, we show boxplots for each
dataset and model in Figure 3. We discuss these
observations in more detail below.

InstructGPT and PEER perform the best over-
all. In Table 2, we show the mean SARI scores
for each model averaged across all tasks using the
average, maximum, and minimum scores across
prompts. When using the average and minimum
across prompts (third and fifth column, respec-
tively) we see that InstructGPT performs the best
overall, but when using the maximum score across
prompts (fourth column), PEER-11 performs the
best. Table 3 enumerates the breakdown of the
third column according to each dataset. In gen-
eral, we see that InstructGPT achieves the highest
scores with the exception of the updating and neu-
tralization datasets, as well as ITR-F and ITR-L.
For these datasets, the PEER models clearly outper-
form InstructGPT by a large margin, despite being
nearly 60× smaller than InstructGPT and GPT-3.
The substantially smaller models (T0, T0++, and
Tk-Instruct) struggle the most overall, even falling
behind the copy baseline at times, except on ITR-L
where Tk-Instruct performs the best.
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Model Params Avg. Max Min CV

Tk 3B 28.2 30.1 26.1 4.65
T0 3B 26.6 29.3 24.5 6.03
T0++ 11B 28.4 30.3 26.7 5.13
PEER-3 3B 38.8 41.8 35.0 6.36
PEER-11 11B 39.1 42.1 35.6 5.75
OPT 175B 32.8 36.4 29.0 6.70
GPT-3 175B 32.8 35.8 29.4 6.74
InstructGPT 175B 39.6 41.3 37.4 3.60

Table 2: Mean SARI scores (other metrics shown in Ta-
ble C2) all tasks using the average (Avg.), the maximum
(Max), and the minimum (Min) across prompts. The
coefficient of variance (CV), computed as the standard
deviation across prompts normalized by the average,
is shown in the final column. Best values are in bold.
When using averages across prompts and using the min-
imum, InstructGPT performs the best, but PEER per-
forms the best when using the maximum across prompts.

Most baselines lag substantially behind the su-
pervised SOTA, especially in the task of updat-
ing and neutralization. We show the supervised
state-of-the-art results in the final row of Table 3,
which in almost all cases surpasses the performance
of the best baseline. The gap is largest for the
tasks of neutralization and updating (34–50% de-
crease from the supervised SOTA to the best base-
line scores), whereas for other tasks, this decrease
is only within 5–14%. It is conceivable that the dif-
ficulty with these two tasks is a consequence of the
comparatively fewer datasets and research devoted
to them compared to that of the more mainstream
NLP tasks, such as text simplification.

The most challenging tasks do not necessarily
have the highest variance across models. In ob-
serving Figure 3a, we see that the tasks which have
the largest variance across models (assessed using
the interquartile range or IQR) are fluency and up-
dating information. This is despite the fact that the
fluency datasets are arguably easier (i.e., many of
the models come close to the supervised scores)
than the updating datasets, exemplifying that diffi-
culty and robustness can be independent axes. JF-
LEG also appears to be easier than ITR-F (average
SARI of 45.1 versus 38.2), which is understand-
able since JFLEG sources from the TOEFL exam
(primarily simpler and conversational sentences),
while ITERATER sources technical sentences from
Wikipedia, ArXiv, and Wikinews. Likewise, Turk-
Corpus seems on average to be slightly easier than
ASSET, which is expected since it includes more
diverse simplifications than TurkCorpus.

(a) Scores for each dataset averaged across models. Datasets
which have the largest variance amongst the baselines are not
necessarily harder tasks.

(b) Scores for each model averaged across datasets. PEER has
the largest range in performance across datasets.

Figure 3: Boxplot of SARI scores for each dataset (a)
and model (b).

PEER has the highest total variance, but OPT
and GPT-3 are less robust to different prompts.
From Figure 3, we observe that the PEER models
have the largest variance in performance overall
(as measured by the larger IQR). If we compute
the standard deviation across prompts and normal-
ize by the mean (CV in Table 2), however, GPT-3
and OPT, have the highest average across datasets
(6.74% and 6.70%, respectively), whereas for the
3B and 11B PEER models, these values are smaller
(6.36% and 5.75%). This could be a consequence
of the fact that GPT-3 and OPT are not instruction-
tuned, whereas the remaining baselines are.

Optimizing prompts according to maximum per-
formance and according to robustness to differ-
ent models can be orthogonal objectives. Ide-
ally, we would like to create prompts that achieve
the highest performance using the best baseline,
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Fluency Clarity Coherence Para. Simplification Neutral. Updating
Model JFL ITR-F ITR-L ITR-O STS TRK AST WNC FRU WFI

Copy 26.7 / 40.5 32.3 / 86.0 29.5 / 62.9 31.3 / 77.2 21.1 26.3 20.7 31.9 / 0.0 29.8 / 0.0 33.6 / –

Tk 31.8 / 39.0 32.4 / 61.6 38.4 / 58.4 33.8 / 70.4 30.2 32.8 29.9 31.3 / 0.4 12.6 / 3.6 1.3 / 4.5
T0 42.0 / 38.8 24.6 / 34.9 32.6 / 30.2 22.2 / 21.6 34.3 34.4 32.3 22.3 / 0.0 14.2 / 9.6 5.1 / 16.3
T0++ 34.7 / 43.2 35.3 / 75.8 37.6 / 56.5 32.7 / 59.9 28.4 32.9 28.2 29.3 / 0.3 12.6 / 3.7 4.4 / 8.1
PEER-3 55.5 / 54.3 51.4 / 84.3 32.1 / 47.1 32.1 / 59.8 28.6 32.5 30.5 53.3 / 21.6 39.1 / 30.9 34.4 / 18.7
PEER-11 55.8 / 54.3 52.1 / 85.2 32.5 / 51.3 32.7 / 62.7 28.2 32.1 29.5 54.5 / 22.8 39.6 / 31.4 34.9 / 20.4
OPT 47.3 / 47.5 34.7 / 70.6 31.5 / 31.5 27.6 / 36.1 29.1 32.6 31.8 31.2 / 0.4 35.9 / 27.3 26.7 / 11.2
GPT-3 50.3 / 51.8 32.1 / 56.7 33.5 / 39.7 26.9 / 36.1 27.2 33.0 30.5 31.7 / 0.6 36.0 / 21.5 27.2 / 10.6
InsGPT 61.8 / 59.3 48.8 / 82.7 35.1 / 48.4 35.9 / 60.2 42.5 38.8 38.0 35.4 / 2.2 36.3 / 24.7 23.6 / 16.1

SotA – / 62.4 37.2 / – 46.2 / – 38.3 / – – 34.4 37.2 – / 45.8 – / 47.4 – / –

Table 3: Results for all datasets, averaged across prompts (max and min results in Table C2). The best results for
each dataset are shown in bold. Tk-Instruct and InstructGPT are shorthanded as Tk and InsGPT, respectively. The
first numbers for each task are SARI scores; additional metrics are GLEU for fluency, clarity, and coherence, EM
for neutralization, Update-R1 for updating. Supervised scores are from Ge et al. (2018) (JFLEG), Du et al. (2022)
(ITERATER), Martin et al. (2020) (TurkCorpus and ASSET), Pryzant et al. (2020) (WNC), and Logan IV et al.
(2021) (FRUIT), respectively.

but also perform reliably well for any model. In as-
sessing variance from Figure 4, we see that certain
prompts stand out as less robust to different models
relative to others. For example, for neutralization,
Prompts #1, 2, and 7 are less robust likely because
they use uncommon language such as “Remove
points of views” or “Neutralize this text”. Some of
the prompts which are less robust for simplification
(Prompts #4, 7) and paraphrasing (Prompts #4, 6)
are sometimes ones that are less specific such as
“Rewrite this text” versus “Rewrite this with differ-
ent wording”—in the case of the former, an em-
pirical assessment shows that the models seem to
more often copy the original text and make fewer
modifications. Unfortunately, choosing prompts
that achieve the maximum score does not always
entail prompts which are the most robust—Prompt
#5 for clarity achieves the maximum but has the
largest variance in performance or IQR. Some of
the tasks exhibit a great degree of outlier behavior
(coherence, paraphrasing, or neutralization), which
is either due to T0 performing exceedingly low or
InstructGPT/PEER performing exceedingly well.
Other tasks such as fluency and updating seem to
have prompts with a similar range of variance.

Commonly used metrics are not always well-
correlated. We measure the Pearson correlation
between each pair of metrics using evaluation
scores for all baselines, which is shown in Figure 5,
and find that many of the commonly used metrics
do not always correlate well with each other, a find-
ing echoed by prior works (Choshen and Abend,
2018; Alva-Manchego et al., 2021), which focuses

on the task of grammatical error correction. We
exclude PEER in this analysis since it shows ex-
ceedingly strong performance in some cases, and
we exclude the updating datasets since they are
of a very different nature from the other datasets.
We find that while families of variants like BLEU
and iBLEU as well as ROUGE and UpdateROUGE
show strong correlation within each respective set
(> 0.97), the two sets are inversely correlated with
one another (-0.29 to -0.1). ROUGE actually ap-
pears to be the metric that most conflicts with all
other metrics, whereas GLEU seems to be the met-
ric that is most in harmony with the rest (0.41–0.76).
Though SARI is not correlated with ROUGE, it is
the metric which shows the strongest correlation
with EM-Diff (0.83) and UpdateROUGE (0.7).

8 Discussion

We present EDITEVAL, a benchmark composed of
handcrafted, task-specific instructions for several
editing datasets across multiple domains. EDITE-
VAL is a means of evaluating models for these tasks
according to multiple popular metrics, all within
a single, unified tool. We show that while models
such as InstructGPT have impressive performance,
in general the baselines lag behind the supervised
state-of-the-art, particularly for the task of updat-
ing and neutralization. Our analysis of metrics
and prompts shows that several popular metrics are
not well-correlated, even conflicting at times, and
that small changes in the wording of a prompt can
lead to substantial changes in performance and ro-
bustness to different models. This suggests further
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Figure 4: Boxplot of SARI scores for each prompt averaged across models. The prompts which achieve the
maximum scores for each dataset (Table C2), are Prompts #6 and 11 (fluency), 4 (clarity), 2 (coherence), 8 and 10
(simplification), 3 (paraphrasing), 2 (neutralization) and 2 and 1 (updating). Certain prompts evoke more variation
across models due to factors such as using less frequently used language or being too unspecific.

Figure 5: Pearson correlation between metrics using
data for all datasets except WAFER and FRUIT and all
baselines except PEER. Different families of metrics
can have low correlation and even conflict, at times.

work is needed to develop models comprehensively
capable of executing editing tasks in addition to de-
veloping a standardized way of measuring editing
capabilities and systematically selecting prompts.
In releasing this work, we hope to bolster work in
which language models are utilized for text genera-
tion that is iterative, more controllable, collabora-
tive, and capable of revising and correcting text.
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A Domains

In EDITEVAL we strive to encompass datasets from
many different domains, with an emphasis on fac-
tual content. Below in Table A1, we enumerate
these domains.

Table A1: Number of targets provided (|T |) and the
domains covered by each dataset.

Dataset |T | Domains

ITERATER 1 Wikipedia, ArXiv, and Wikinews
JFLEG 4 TOEFL exam
WNC 1 Wikipedia
STS Benchmark 1 Wikipedia, Q&A, news forums,

videos, image descriptions
ASSET 10 Wikipedia
TurkCorpus 8 Wikipedia

WAFER 1 Wikipedia
FRUIT 1 Wikipedia

B Prompts

Below we enumerate the prompts used in EDITE-
VAL for each task. We also present Table C2 which
shows the max and min results across these prompts
as opposed to the average in Table 3.

Fluency
1. Fix grammar errors
2. Fix grammar or spelling mistakes
3. Fix grammar errors in this sentence
4. Fix all grammatical errors
5. Fix errors in this text
6. Update to remove grammar errors
7. Remove all grammatical errors from this text
8. Improve the grammar of this text
9. Grammar improvements

10. Remove grammar mistakes
11. Fix the grammar mistakes

Clarity
1. Make the text more formal, concise, readable

and understandable
2. Make the text more formal
3. Make the text more concise
4. Make the text more readable
5. Improve the readability of the text
6. Make the text more understandable
7. Make the text clearer
8. Make the text easier to understand
9. Improve the clarity of the text

Coherence
1. Make the text more cohesive, logically linked

and consistent as a whole

2. Make the text more cohesive
3. Improve the cohesiveness of the text
4. Make the text more logical
5. Make the text more consistent
6. Improve the consistency of the text
7. Make the text more understandable
8. Make the text clearer
9. Make the text easier to understand

10. Improve the coherency of the text

Neutralization
1. Remove POV
2. Neutralize this text
3. Make this more neutral
4. Make this text more neutral
5. Make this paragraph more neutral
6. Remove unsourced opinions from this text
7. Remove non-neutral points of view
8. Remove points of view
9. Make this text less biased

Paraphrasing
1. Paraphrase this sentence
2. Paraphrase
3. Paraphrase this paragraph.
4. Use different wording
5. Paraphrase this text
6. Rewrite this text
7. Rewrite this text with different wording
8. Rephrase this text
9. Reword this text

Simplification
1. Simplify this sentence
2. Make this simpler
3. Simplify
4. Make this easier to understand
5. Simplification
6. Change to simpler wording
7. Simplify this paragraph.
8. Use simpler wording
9. Simplify this text

10. Make this text less complex

Updating
1. Add missing information
2. Update the article
3. Update with new information
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C Metrics

In this section, we describe each metric included
in EDITEVAL in greater detail and our motivations
for including them. In the cases where more than
multiple valid targets, we follow convention and
take the maximum of the scores computed using
each target, since there can potentially be many
valid edits, and a prediction only needs to align
with one of the references.

EM and EM-Diff Exact match (EM) is the per-
centage of examples for which the performed edit
exactly matches any of the targets. EM-Diff is a
variant of EM that is computed on the diff level,
where diffs are obtained using Python’s difflib li-
brary. For a model output O, we compute EM-Diff
as follows:

|diff(I,R) ∩ diff(I,O)|
max(|diff(I,R)|, |diff(I,O)|)

SARI Introduced by Xu et al. (2016), SARI is an
n-gram based metric commonly used for measur-
ing simplification (Nisioi et al., 2017; Zhao et al.,
2018) and other editing tasks such as sentence fu-
sion (Malmi et al., 2019). It has been demonstrated
to correlate most closely with human judgement
for simplification compared to many other n-gram
based metrics (Xu et al., 2016). The metric mea-
sures how simplified a candidate system output is
relative to the original and to the simplification ref-
erences by rewarding words added, kept, or deleted
in both the target and the output. More specifically,
this is done by computing the arithmetic mean of
n-gram F1-scores for each of the three operations.
We utilize the EASSE (Alva-Manchego et al., 2019)
implementation of SARI, which addresses incon-
sistencies in the original implementation 8.

GLEU GLEU (Napoles et al., 2015) is another
variant of BLEU frequently used for grammatical
error correction (Grundkiewicz et al., 2019; Yuan
and Briscoe, 2016; Chollampatt and Ng, 2018).
The issue with using BLEU for minimal edits can
be attributed to the difference between analyzing
machine translation and editing tasks. In the former,
an untranslated word should always be penalized,
but in the editing setting, an unmodified word in
both the target and the output does not necessarily
need to be penalized. Unlike BLEU, GLEU is cus-
tomized to penalize n-grams changed in the targets

8https://github.com/feralvam/easse#differences-with-
original-sari-implementation

but left unchanged by the system output. Napoles
et al. (2015) not only demonstrated that GLEU cor-
relates well with human rankings of corrections,
but also that GLEU correlates much better than
BLEU does.

ROUGE and UpdateROUGE For the task of
updating or adding new information, we follow
Logan IV et al. (2021) and use ROUGE and Up-
dateROUGE (Logan IV et al., 2021). ROUGE (Lin,
2004) is a popular n-gram based metric that is
commonly used for evaluating summarization sys-
tems (Ren et al., 2016; Pasunuru and Bansal, 2018),
but is also used in other tasks such as improving flu-
ency (Kann et al., 2018) and simplification (Vander-
wende et al., 2006). ROUGE essentially measures
the overlap in n-grams. UpdateROUGE, a simple
modification of ROUGE, computes ROUGE on the
updated sentences rather than the full text. This
is intended for tasks such as updating, because a
majority of the target will remain unchanged. On
the other hand, when evaluating using ROUGE, a
system can often superficially achieve high scores
by simply copying the input.

BERTScore BERTScore (Zhang et al., 2019b) is
a versatile automatic metric that has been demon-
strated to correlate well with tasks such as ma-
chine translation, image captioning, and abstrac-
tive text compression (Zhang et al., 2019b). We
note, however, that some studies have demonstrated
the metric’s poor generalization ability to differ-
ent datasets (Unanue et al., 2021). We include
BERTScore in EDITEVAL for its broad applicabil-
ity and its popularity.

D Limitations

Our evaluation tool is by no means an exhaustive
measurement of editing capabilities. Firstly, there
are additional domains that could potentially be
added to EDITEVAL, such as books and blogs;
as it currently stands, EDITEVAL is heavily con-
structed from the domain of Wikipedia. Fortu-
nately, EDITEVAL’s framework is flexible to the ad-
dition of datasets, provided that it has an input and
target edit. In the same spirit, there are additional
editing tasks such as verifying facts, citing, and
reorganizing sentences/paragraphs which would be
valuable to include in EDITEVAL. While we recog-
nize these tasks as important to include in EDITE-
VAL, we consider these to be out of scope for the
work at hand. Finally, our results demonstrate that
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Fluency Clarity Coherence Para. Simplification Neutral. Updating
Model JFL ITR-F ITR-L ITR-O STS TRK AST WNC FRU WFI

Tk 32.9 / 41.6 36.0 / 77.6 39.5 / 63.3 35.7 / 77.1 33.1 34.9 32.6 33.8 / 1.3 12.9 / 4.1 1.3 / 5.0
T0 45.4 / 43.1 32.6 / 50.9 33.8 / 34.0 23.7 / 25.5 35.9 35.3 35.9 27.5 / 0.1 14.9 / 12.4 5.4 / 17.2
T0++ 36.7 / 43.9 37.2 / 82.0 38.6 / 61.6 36.0 / 75.8 30.7 33.9 33.3 32.1 / 0.6 12.8 / 3.7 4.6 / 8.5
PEER-3 59.3 / 57.7 54.5 / 86.3 34.0 / 60.6 33.8 / 74.1 34.6 36.4 35.5 57.4 / 29.3 40.2 / 33.6 34.7 / 20.2
PEER-11 60.6 / 59.4 55.4 / 87.0 34.4 / 61.4 34.5 / 75.8 33.1 35.7 33.9 59.0 / 30.9 40.8 / 33.4 35.2 / 21.4
OPT 53.5 / 53.9 41.0 / 78.5 35.6 / 44.4 34.4 / 56.9 31.1 34.7 35.3 34.9 / 0.9 35.9 / 28.1 27.0 / 12.3
GPT-3 52.6 / 54.2 39.1 / 79.2 35.6 / 45.8 29.9 / 42.9 29.4 35.5 35.9 34.9 / 1.1 36.3 / 21.6 28.2 / 11.2
InsGPT 62.7 / 60.4 51.0 / 85.0 36.5 / 52.6 37.6 / 68.8 45.2 40.2 40.9 37.2 / 3.8 36.6 / 25.2 26.0 / 17.3

Tk 30.3 / 35.9 27.9 / 42.1 36.8 / 49.9 32.2 / 63.4 28.6 30.6 26.1 27.9 / 0.0 12.3 / 3.4 1.2 / 4.1
T0 39.5 / 34.2 21.2 / 26.7 31.4 / 27.4 21.0 / 18.0 31.9 32.9 27.6 18.5 / 0.0 13.7 / 8.1 4.8 / 15.6
T0++ 33.0 / 42.2 33.1 / 62.3 36.8 / 52.6 29.3 / 45.8 25.5 31.9 25.4 27.4 / 0.2 12.5 / 3.7 3.9 / 7.5
PEER-3 50.2 / 49.8 45.4 / 77.2 30.5 / 36.7 31.1 / 47.3 23.2 29.1 25.4 44.4 / 13.5 37.0 / 26.5 34.1 / 16.3
PEER-11 49.8 / 46.7 45.9 / 82.5 31.4 / 43.3 31.9 / 47.9 24.3 29.4 25.7 45.5 / 15.7 37.5 / 27.3 34.7 / 19.0
OPT 40.7 / 41.0 29.7 / 55.5 27.8 / 22.1 22.9 / 24.6 26.1 30.3 26.2 25.0 / 0.0 35.8 / 26.6 26.5 / 9.8
GPT-3 43.6 / 46.7 27.8 / 41.3 32.2 / 35.8 24.4 / 28.8 25.3 29.3 22.6 26.0 / 0.2 35.6 / 21.2 26.1 / 10.0
InsGPT 59.2 / 56.2 44.7 / 77.4 34.1 / 44.3 33.4 / 53.0 40.2 37.0 35.4 32.4 / 0.7 35.9 / 24.4 22.2 / 15.3

Copy 26.7 / 40.5 32.3 / 86.0 29.5 / 62.9 31.3 / 77.2 21.1 26.3 20.7 31.9 / 0.0 29.8 / 0.0 33.6 / –
SotA – / 62.4 37.2 / – 46.2 / – 38.3 / – – 34.4 37.2 – / 45.8 – / 47.4 – / –

Table C2: Maximum (top half) and minimum (bottom half) scores across prompts for all downstream tasks
considered. The first numbers for each task are SARI scores; additional metrics are GLEU for fluency, clarity, and
coherence, EM for neutralization, Update-R1 for updating. The best results are highlighted in bold. Tk-Instruct and
InstructGPT are shorthanded as Tk and InsGPT, respectively.

many of the metrics give conflicting signal as to the
rankings of the baselines, indicating further work
is needed to identify better metrics for measuring
overall editing capacity.

E Broader Impact and Ethics

Before being deployed, this work was reviewed by
an internal board to ensure compliance with all li-
censing. We also verified that no datasets included
in EDITEVAL contains information that uniquely
identifies individual people. All code, results, and
a leaderboard are made publicly available. Our
benchmark is intended to help drive the develop-
ment of language models that can edit. Such sys-
tems may be able to carry out a wide variety of
text modifications and have a broad range of so-
cietal implications, such as enabling those with
limited access to educational resources to create
knowledge-intensive or professional articles (Redi
et al., 2020). EDITEVAL is not to be used for ill-
intended purposes, such as making adversarial text
modifications that introduce misleading or prob-
lematic content. Additionally, EDITEVAL inherits
biases inherent in its constituent datasets, and we
encourage further work to understand the biases
and limitations of the datasets used in EDITEVAL.
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Abstract

Language Models (LMs) excel in natural lan-
guage processing tasks for English but show
reduced performance in most other languages.
This problem is commonly tackled by continu-
ally pre-training and fine-tuning these models
for said languages. A significant issue in this
process is the limited vocabulary coverage in
the original model’s tokenizer, leading to inad-
equate representation of new languages and ne-
cessitating an expansion of the tokenizer. The
initialization of the embeddings corresponding
to new vocabulary items presents a further chal-
lenge. Current strategies require cross-lingual
embeddings and lack a solid theoretical foun-
dation as well as comparisons with strong base-
lines. In this paper, we first establish theoret-
ically that initializing within the convex hull
of existing embeddings is a good initialization,
followed by a novel but simple approach, Con-
strained Word2Vec (CW2V), which does not
require cross-lingual embeddings. Our study
evaluates different initialization methods for ex-
panding RoBERTa and LLaMA 2 across four
languages and five tasks. The results show that
CW2V performs equally well or even better
than more advanced techniques. Additionally,
simpler approaches like multivariate initializa-
tion perform on par with these advanced meth-
ods indicating that efficient large-scale multi-
lingual continued pretraining can be achieved
even with simpler initialization methods. We
release our code publicly.1

1 Introduction

Language models are adept at a wide spectrum
of natural language processing (NLP) tasks (Liu
et al., 2023; Chung et al., 2024; Chowdhery et al.,
2023; Wei et al., 2024; Goyal et al., 2023; Tou-
vron et al., 2023). However, the best-performing

*Equal contribution.
†Work done while the author was at A∗STAR, Singapore.
1https://github.com/AI4Bharat/VocabAdaptation_

LLM/tree/CW2V

language models work well for English but have
inferior capabilities in other languages. A com-
mon method to improve the capabilities of other
languages is to continually pre-train and finetune
the English model for other languages (Conneau
and Lample, 2019). This approach builds upon the
capabilities acquired through large-scale English
pre-training and focuses on aligning the English
and other language spaces, making efficient re-use
of compute and data resources (Cahyawijaya et al.,
2023; Zhang et al., 2023). One of the major chal-
lenges for LLM adaptation is the lack of vocabulary
coverage in the original model’s tokenizer for the
new language. This would mean the inability to
represent the new language if the vocabulary is to-
tally different or inefficient tokenization with high
fertility in the case of inadequate vocabulary repre-
sentation.

A solution is to expand the tokenizer to incor-
porate new vocabulary and then perform contin-
ual pre-training on monolingual data from the new
language to adapt the model to the new language
(Cui et al., 2023; Nguyen et al., 2023; Minixhofer
et al., 2022). In this scenario, an important ques-
tion is: How do we initialize the embeddings of
the new vocabulary items? Various methods have
been proposed in the literature for the initializa-
tion of the new token embeddings, from simple
random initialization (Antoun et al., 2020; Mar-
tin et al., 2020) to the mean of embeddings (Gee
et al., 2022) to sophisticated methods such as OFA
among others (Minixhofer et al., 2022; Dobler and
de Melo, 2023; Tran, 2020; Liu et al., 2024) that
learn the new embeddings as a function of existing
embeddings using external resources and tools like
cross-lingual word-vectors and bilingual dictionar-
ies. However, there is no theoretical basis for what
constitutes a good initialization. Furthermore, in
existing works, comparisons with simple, naive ini-
tialization methods across different model sizes are
missing.
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In this paper, we theoretically define and ana-
lyze the properties of a good initialization. We
prove that initializing embeddings of new vocabu-
lary embeddings to be in the convex hull of original
embeddings ensures that the greedy generation of
the existing language(s) is not impacted by the
new vocabulary items on initialization. Based on
these insights, we propose a simple learnable ini-
tialization approach which we dub as Constrained
Word2Vec (CW2V) which ensures initializations
in the convex hull without needing cross-lingual
embeddings. We conducted a comparative anal-
ysis of CW2V alongside 5 existing initialization
strategies including OFA on two models containing
varying parameters, namely RoBERTa (125M) and
LLaMa2 (7B), examining their impact through 5
downstream tasks across 4 languages. Our analysis
of various initialization methods demonstrates that
CW2V achieves better if not comparable perfor-
mance with the previous best methods. Addition-
ally, we find that simpler methods like multivariate
or mean initialization, which ensure new embed-
dings remain within the convex hull, are compara-
ble with more advanced approaches such as OFA.

2 Related Work

Multilingual Models: To create a multilingual
model for specific languages, one method is to train
the model from scratch on the target languages us-
ing MLM and CLM objectives (Workshop et al.,
2023; Conneau et al., 2020). However, this requires
significant computational resources and data. A
more efficient approach is to adapt an existing pre-
trained language model (PLM) (Devlin et al., 2019;
Touvron et al., 2023; Team, 2023) to the desired tar-
get language. There are two ways to adapt a PLM
to a new language. The first is to fully adapt the
model to the new language, replacing the source
tokenizer and focusing only on the new language’s
performance (Minixhofer et al., 2022; Artetxe et al.,
2020). The second is to keep the original language
support and add the new language, ensuring the
model still performs well on the source language
(Garcia et al., 2021; Liu et al., 2024). In this work,
we focus on extending the language support of the
PLM rather than replacing it. We do this by extend-
ing the source tokenizer, which requires effectively
initializing the model’s embedding layer and LM
head for the added tokens in the vocabulary.
Embedding Initialization Strategies: Previous
work has focused on different initialization strate-

Figure 1: Setup for Vocabulary Expansion. Source
model is shown in blue blocks, and expanded vocabulary
embeddings are represented in red blocks. Source model
parameters remain unchanged.

gies. Methods like FVT (Gee et al., 2022) and
Hewitt (2021) use the mean of source PLM em-
beddings, while WECHSEL (Minixhofer et al.,
2022), RAMEN (Tran, 2020), FOCUS (Dobler and
de Melo, 2023), and OFA (Liu et al., 2024) uti-
lize external cross-lingual word vectors and source
embeddings. However, these approaches rely on
static embeddings. In contrast, we propose initial-
ization strategy that learns new embeddings from
the source PLM model and doesn’t require static
embeddings.
Continual Pre-training: A good initialization
strategy provides a solid start for adapting a PLM
to a new language by effectively initializing the
new tokens in the embedding and LM head layers.
However, to fully adapt the extended model to the
new language, continued pre-training (CPT) (Wang
et al., 2022; Alabi et al., 2022; Zhao et al., 2023) is
essential. Therefore, we performed CPT on target
languages post initialization.

3 Methodology

We describe the core methodology in this work fol-
lowed by theoretical proofs of good initializations
which motivate our own initialization approach,
namely, Constrained Word2Vec.

3.1 Vocabulary Expansion

We adapt the same vocabulary expansion problem
formulation as Hewitt (2021). Let θ be the pa-
rameters of a pre-trained neural source language
model LM s

θ , and let Vs = {vs1, vs2, . . . , vsn} be the
vocabulary of LM s

θ . We will refer to Vs as the
source vocabulary henceforth. Let esi ∈ Rd be the
sub-word embedding for word i ∈ Vs. Let Es

denote the language modeling head’s (henceforth
LM head) embedding matrix of LM s

θ and this is
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our source embedding matrix. The probability of
occurrence of the next word wi given the previous
word sequence w1:i−1, pθ (wi | w1:i−1), is given
by

pθ (wi | w1:i−1) =
exp

(
h⊤i−1e

s
wi

)
∑

j∈Vs exp
(
h⊤i−1e

s
j

) ,

where the prefix hi−1 = ϕ (w1:i−1;LM
s
θ ) ∈ Rd is

the neural representation of the input using LM s
θ .

In vocabulary expansion, we add n′ new sub-
words /∈ Vs forming the target vocabulary Vt =
{vt1, vt2, . . . , vtn′}. This implies we need a new
word embedding etj for each j ∈ Vt comprising in
Et. The new language model LM t

θ′ has parame-
ters θ′ = θ ∪ {etj ; j ∈ Vt}. The output distribution
of LM t

θ′ given by pθ′ (wi | w1:i−1) is defined simi-
larly as pθ (wi | w1:i−1) but with the normalization
factor involving Vs ∪ Vt.

Our goal is to find initializations for Et such
that the extended model not only retains its previ-
ous behavior but also can lead to good downstream
performance for the languages corresponding to
the new vocabulary with minimal continual pre-
training. Retaining performance in English is par-
ticularly beneficial, as the knowledge embedded
in English models often supports performance in
other languages (Pires et al., 2019). Figure 1 gives
an overview of our approach. Note that in our
notations so far we have only mentioned the LM
head, but just as the LM head has an expansion
(Et

lmhead), the input embedding matrix also has an
expansion (Et

input). This is trivial if both matrices
are shared but in case they are not, we also need to
find initializations for the latter. Following Hewitt
(2021), we can use the same approach to initialize
Et

input as we do for Et
lmhead.

3.2 What is a ‘good’ embedding initialization?
As we are ensuring that the model parameters θ
remain unchanged at the initialization step, we can
safely say that for the same word sequence w1:i−1,
where each word in the sequence belongs to Vs, the
prefix hi−1 at the output layer remains the same.
Thus, the output word wi strictly depends on the
embeddings of the new words added to the vocabu-
lary, as they determine the new partition function
and the output probability distribution. The main
goal of our analysis is to identify the set of initial-
izations of new words that give us the same output
before and after expansion for the prefixes formed
by the original tokens. In other words, for the same

input word sequence w1:i−1, where wk ∈ Vs ∀ k ∈
[i − 1], if wi and w′

i represent the words pre-
dicted by language models LM s

θ and LM t
θ′ respec-

tively, i.e., wi = argmaxj∈Vs pθ (j | w1:i−1) and
w′
i = argmaxj∈Vs∪Vt pθ′ (j | w1:i−1), we need

wi = w′
i. Let et1, e

t
2, . . . , e

t
n′ ∈ Rd be the embed-

ding initializations for words in Vt. Therefore, a
good initialization is an initialization

{
etj ; j ∈ Vt

}

that ensures, for any prefix hi−1 ∈ Rd, the set of
prefixes formed by word sequences from the source
vocabulary, that is ′wi = w′

i.

3.3 Theorems
Theorem 1. : A good initialization preserves the
pre-expansion behavior.

Let es1, e
s
2, e

s
3, ..., e

s
n ∈ Rd be the embeddings

of words in Vs. Let et1, e
t
2, . . . , e

t
n′ ∈ Rd be the

embedding initializations for words in Vt. If

sup
k∈Vt

(hT etk) ≤ sup
k∈Vs

(hT esk) (1)

holds for all h ∈ Rd, then
{
etj ; j ∈ Vt

}
is a ‘good’

initialization.

Proof. Let h = hi−1 ∈ Rd be a prefix formed by
a word sequence w1:i−1, where wk ∈ Vs ∀ k ∈
[i − 1] . As condition 1 holds for all h ∈ Rd, we
can say that,

sup
k∈Vt

(hT etk) ≤ sup
k∈Vs

(hT esk)

=⇒ sup
k∈Vt

exp(hT etk) ≤ sup
k∈Vs

exp(hT esk)

=⇒ sup
k∈Vt

exp(hT etk)

Z ′ ≤ sup
k∈Vs

exp(hT esk)

Z ′

where, Z ′ =
∑

j∈Vs∪Vt exp
(
h⊤etj

)

is the new partition function, which is a positive
constant as prefix and all the embeddings are given.
We know that, exp(hT etk)

Z′ represents the probability
of occurrence of word corresponding to the embed-
ding etk at time step i. Thus, the inequality just
says that probability of occurrence of any word
from target vocabulary Vt is less than or equal to
probability of occurrence of a word from source vo-
cabulary. As the decoding at output layer is greedy,
the output word is going to come from source vo-
cabulary. We can guarantee that it remains the same
as pre-expansion model’s output word because the
prefix remains the same before and after expansion
as wk ∈ source vocabulary Vs ∀ k ∈ [i − 1] .
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Hence, as wi = w′
i and the embedding initializa-

tion
{
etj ; j ∈ Vt

}
is ‘good’.

Theorem 2. : An initialization in the convex hull
of source embeddings is good.

If y ∈ S, where S is the convex hull of
the embeddings es1, e

s
2, e

s
3, . . . , e

s
n, then (hT y) ≤

supk∈Vs(hT esk) for all h ∈ Rd. Moreover, if
eti ∈ S for all i ∈ Vt, then the initialization is

‘good’.

Proof. Given y ∈ S. Thus y can be written as
y =

∑
j∈Vs αje

s
j where

∑
j∈Vs αj = 1 and 0 ≤

wj ≤ 1 ∀ j ∈ Vs. Thus, ∀ h ∈ Rd,

hT y =
∑

j∈Vs

αjh
T esj

.
As 0 ≤ αj ≤ 1 ∀ j ∈ Vs,

(hT y) ≤ sup
k∈Vs

(hT esk)

Given eti ∈ S ∀ i ∈ Vt

=⇒ (hT eti) ≤ sup
k∈Vs

(hT esk) ∀ i ∈ Vt ∀ h ∈ Rd

=⇒ sup
k∈Vt

(hT etk) ≤ sup
k∈Vs

(hT esk) ∀ h ∈ Rd

Thus, from theorem 1 we can say that if eti ∈
S ∀ i ∈ Vt, then the initialization is good.

We have showed that as long as we initialize ev-
ery target embedding vector as a weighted average
of source embeddings, the model output remains
the same for the same prefix as long as it is obtained
from a word sequence formed only by source vo-
cabulary, thereby making it good. Table 5 verifies
this empirically. In Appendix B we provide some
additional theoretical analysis where we show a
weaker converse of Theorem 2, that any strongly
good initialization lies in the convex hull of source
embeddings.

3.4 Our Approach: Constrained Word2Vec

Having established that a initializing in the con-
vex hull of existing embeddings is good, we now
propose Constrained Word2Vec (CW2V), a novel
approach to learn these initializations. Specifically,
we constrain Et as WEs where

∑
j∈Vs Wij =

1 ∀ i ∈ Vt and Wij ≥ 0 ∀ j ∈ Vs, i ∈ Vt. Here,
Es ∈ R(|Vs|,d) is the source embedding matrix,

Et ∈ R(|Vt|,d) is the target embedding matrix and
W ∈ R(|Vt|,|Vs|) is the weight matrix that trans-
forms Es to Et while ensuring the target embed-
ding vectors reside inside the convex hull of the
source embedding vectors. Our goal is to learn W .

Let E t be the post-expansion embedding
matrix of size (|Vs ∪ Vt|, d). In other words,
E t = [Es;WEs] where ; indicates concatenation
along the vocabulary axis. By using E t as the
embedding matrix with W as the only learnable
parameters, we propose a mechanism similar to
Skip-gram (Mikolov et al., 2013) to obtain E t.
In many modern PLMs, such as LLaMA, the
input and output embedding layers are not tied,
necessitating separate weight matrices for the input
embedding and the LM head defined as Esinput =
[Es

input; softmax(Winput)E
s
input], EsLM−head =

[Es
LM−head; softmax(WLM−head)E

s
LM−head]T

with sizes (|Vs ∪ Vt|, d), (d, |Vs ∪ Vt|), respec-
tively. The softmax operation ensures that the
weights in each row add up to 1, thus assuring that
the target embedding vectors remain in the convex
hull of pre-expansion embeddings.

We set these embedding matrices E tinput and
E tLM−head up in the traditional Skip-gram architec-
ture (Mikolov et al., 2013) as the word and context
representation matrices. Similar to OFA (Liu et al.,
2024), in order to make the learning computation-
ally more efficient, we can also factorise Winput

and WLM−head and learn the resulting parameters.
This methodology can be extended to any PLM.
If both the embedding layers are tied for a PLM
(RoBERTa), we still learn two weight matrices and
choose either for initializing Et. To align target
language embeddings with English, we trained the
CW2V model on monolingual data from all lan-
guages and bilingual English-to-target dictionaries.

4 Experimental Setting

We now describe the models we focus on, the lan-
guages, downstream tasks and datasets, and imple-
mentation details.

4.1 Models

We use RoBERTa (Liu et al., 2019), an encoder
based architecture and LLaMA2-7B (Touvron et al.,
2023), a decoder based model and employ these
models as the source models for our multilingual
vocabulary expansion experiments.
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4.2 Tokenizers

We use the RoBERTa tokenizer as the source to-
kenizer for experiments with RoBERTa and the
LLaMA2 tokenizer as the source tokenizer for ex-
periments with LLaMA2. Since we are focus-
ing on multilingual transfer, we train a Senten-
cePiece (Kudo and Richardson, 2018) tokenizer
using textual data in target languages (German,
Russian, Hindi, Tamil) and merge the obtained to-
kenizer with LLaMA2’s tokenizer. The resulting
tokenizer has 57K subwords in its vocabulary, and
this merged tokenizer serves as the unified target
tokenizer for all of our experiments, even for ex-
periments with RoBERTa. We identify common
subwords using a ‘fuzzy’ search similar to FOCUS
(Dobler and de Melo, 2023) and OFA (Liu et al.,
2024). We report the fertility score of the target
tokenizer in all four target languages in Appendix
D. Vocabulary expansion significantly reduces the
fertilities for the languages considered.

4.3 Datasets and Languages

We extended the source model (English) to four tar-
get languages: Hindi, Tamil, Russian, and German.
For all training, the Hindi and Tamil datasets were
sourced from SANGRAHA (Khan et al., 2024),
while the Russian, German, and English datasets
were sourced from OSCAR (Ortiz Su’arez et al.,
2020). To train the multilingual tokenizer, we used
a monolingual dataset of 3 million sentences per
target language, sourced from the tokenizer train-
ing data used in IndicTrans2 (Gala et al., 2023). For
the constrained word2vec model training, we used
a monolingual corpus of 2 million tokens per target
language. Additionally, we incorporated bilingual
dictionary datasets: Hindi and Tamil from (Kano-
jia et al., 2018), German from url 2 processed by
(Bojar et al., 2014), and Russian from url 3. Each
expanded and initialized model underwent further
pre-training on a multilingual dataset of 2.5 billion
tokens, combining 500 million tokens per target
language and 500 million English tokens.

4.4 Baselines

OFA The One For All (OFA) Framework (Liu et
al., 2024) (Liu et al., 2024) uses multilingual static
word vectors to inject alignment knowledge into the

2https://nlp.stanford.edu/projects/nmt/data/
wmt14.en-de/dict.en-de

3https://github.com/Badestrand/
russian-dictionary

new subword embeddings. Regardless of the fac-
torization approach, OFA initializes all new target
embeddings using a weighted average of the source
vocabulary embeddings, making OFA a ‘strongly
good’ initialization.
Univariate Each target embedding is initialised by
drawing values from 1-D Gaussian distributions
parameterized by the mean and standard deviation
of the source embeddings for each dimension. This
was the primary baseline considered by OFA (Liu
et al., 2024).
Multivariate Every target embedding is sampled
from the multivariate gaussian distribution of em-
beddings whose mean and covariance come from
the original embeddings Es.
Mean Every target embedding is the average of
pre-expansion embeddings. Mean initialization is
used to initialize target vocabulary in FVT (Gee
et al., 2022) and Hewitt (2021). This is a ‘strongly’
good initialization as mean of original embeddings
belongs to the convex hull of original embeddings.
Random Every target embedding is randomly sam-
pled from the d−dimensional guassian distribution
N (0, 0.02I) where I is a d−dimensional identity
matrix.

4.5 Constrained Word2Vec Training

We trained the constrained word2vec model using
a similar setup to skip-gram (Mikolov et al., 2013)
training. The context window size was set to 10 and
negative sampling to 5. Additionally, we factorized
the Winput and WLM−head matrices, with a fac-
torized dimension of 1024. This factorization was
done to reduce the number of trainable parameters,
similar to OFA ((Liu et al., 2024)). Factorizing the
weight matrices in the constrained word2vec model
for RoBERTa reduced the number of trainable pa-
rameters from 758M to 59M, and for LLaMA2, it
reduced from 1660M to 118M.

Model Task Category Task Metric

RoBERTa
Sentence Classification XNLI Acc.

Question Answering QA F1

Token Classification NER F1

LLaMA2
Sentence Classification XNLI Acc.

Machine Translation FLORES CHRF

Question Answering QA F1

Sentence Summarisation XLSUM BLEURT

Table 1: A summary of the tasks, datasets and metrics.
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4.6 Downstream Tasks

We evaluated RoBERTa and LLaMA on various
tasks, as shown in Table 1. For XNLI, we used
XNLI (Conneau et al., 2018) for German, Rus-
sian, Hindi, and English, and IndicXNLI (Ag-
garwal et al., 2022) for Tamil. For NER, we
used WikiANN (Pan et al., 2017). For QA, we
used SQuAD (Rajpurkar et al., 2018) for Ger-
man, Russian, Hindi, and English, and IndicQA
(Doddapaneni et al., 2023) for Tamil. For Ma-
chine Translation, we used FLORES (Team et al.,
2022). RoBERTa MLM checkpoints were fine-
tuned on English and evaluated zero-shot on target
languages. LLaMA CLM checkpoints were evalu-
ated with 4-shot prompting. The metrics for each
task are also listed in Table 1.

5 Results

We now describe the results of our investigation,
where we first evaluate different initialization meth-
ods without continual pre-training or fine-tuning
for RoBERTa and LLaMA2. We follow this up
with results for continual pre-training and fine-
tuning for RoBERTa, and continual pre-training
and few-shot prompting for LLaMA2.

5.1 Impact of Initialization Methods

For the encoder-only RoBERTa model: Ta-
ble 2 presents the performance of the expanded
RoBERTa model initialized with Constrained
Word2Vec, alongside baseline models, across three
downstream tasks: XNLI, NER, and QA. The
expanded and initialized model was not continu-
ally pre-trained but was fine-tuned till convergence
on downstream task data. Firstly, looking at the
columns labeled en, we can see that CW2V is better
than any baseline for English, even OFA, indicat-
ing that it preserves the pre-expansion behavior of
RoBERTa better than any other methods. Next, the
scores under the avg columns indicate that CW2V
is competitive with other approaches, especially
OFA but tends to be slightly inferior. This means
that CW2V mildly sacrifices the performance on
other languages while strongly preserving the En-
glish performance.
For the decoder-only LLaMA2 model: Table 2
shows the performance of the expanded LLaMA2
model initialized with Constrained Word2Vec,
alongside baselines, on the following downstream
tasks: XNLI, Machine Translation, QA and XL-
SUM (summarization). Here as well, the expanded

and initialized model was not continually pre-
trained but was evaluated using few-shot prompting.
Different from the case of RoBERTa, the CW2V
model significantly outperforms the OFA model
across all tasks and languages despite not being
continually pre-trained. CW2V achieves higher
CHRF scores, averaged over all translation direc-
tions, in MT (17.02 En-X and 27.26 X-En) com-
pared to OFA’s 11.17 and 16.17, respectively. Sim-
ilarly, for XNLI, QA and XLSUM, we observe that
the average (avg column) performance over all lan-
guages for CW2V is vastly better than any other
approach. The English-only performance (en col-
umn) however is comparable across all approaches
with CW2V being only slightly better. This proves
that in decoder-only models while CW2V is as
good as any other approach for preserving the pre-
expansion English-only performance, it is substan-
tially better than other approaches for the new lan-
guages via vocabulary expansion.

5.2 Impact of Continual Pretraining

Here we show the compounding effects of contin-
ual pre-training and various initialization strategies
to understand whether initialization matters or not
when monolingual adaptation data exists.
For the encoder-only RoBERTa model: We eval-
uate the performance of expanded RoBERTa mod-
els initialized with Constrained Word2Vec (CW2V)
and other baseline methods with CPT. We evalu-
ate 15 checkpoints from one epoch of CPT (plus
the initial checkpoint prior to CPT) on 3 down-
stream tasks. The results are depicted in Figure 2.
Here, again, CW2V demonstrates comparable or
superior performance to OFA, especially towards
the latter stages of CPT. As illustrated in Figure 2,
CW2V quickly converges with OFA (within less
than 4 checkpoints) across all three tasks. Addi-
tionally, simpler baselines such as mean and mul-
tivariate also achieve comparable performance to
OFA and CW2V shortly thereafter (in NER and
QA, Multivariate catches up to CW2V within two
checkpoints), demonstrating strong performance.
This suggests that straightforward baselines like
multivariate can be as effective as sophisticated
methods such as Constrained Word2Vec and OFA.
Furthermore, our analysis consistently shows that
Univariate and Random initialization methods un-
derperform in comparison to CW2V, OFA, Multi-
variate4, and Mean. This highlights that Univariate

4Multivariate initialization has a high probability of re-
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RoBERTa LLaMA2

XNLI NER QA MT XNLI QA XLSUM

en avg en avg en avg En-X X-En en avg en avg en avg

CW2V 86.0 36.0 82.2 21.5 90.7 9.0 17.0 27.3 60.4 38.1 77.7 35.8 0.6 0.4
OFA 85.6 37.7 81.9 21.7 90.6 12.0 11.2 16.2 60.4 37.1 76.0 26.0 0.6 0.3
Multivariate 85.7 35.7 81.8 18.3 90.4 9.5 11.1 16.1 60.4 37.2 77.5 28.7 0.5 0.2
Univariate 85.6 36.6 82.0 22.0 90.7 10.3 11.1 16.0 60.4 37.2 77.4 28.7 0.5 0.3
Mean 85.5 36.0 81.5 20.3 90.5 8.8 11.1 16.2 60.5 37.2 77.4 28.7 0.5 0.3
Random 85.8 35.9 81.6 21.0 90.3 9.6 0.0 0.0 33.3 33.3 0.0 0.0 0.0 0.0

Table 2: Performance of the expanded RoBERTa and LLaMA2 models initialized with Constrained Word2Vec and
baselines on downstream tasks across 5 languages.

Figure 2: Evaluation of different initialization methods on expanded RoBERTa models using three multilingual
tasks (XNLI, NER, QA) at 15 CPT checkpoints. The plots show average performance across five languages.

and Random methods, despite being used as pri-
mary baselines in previous work, are inadequate
for comparison.
For the decoder-only LLaMA2 model: Sim-
ilarly, we observe the performance of the ex-
panded LLaMA2 models initialized with Con-
strained Word2Vec and the baselines. We evaluate
5 checkpoints from one epoch of CPT (plus the
initial checkpoint prior to CPT) on 4 downstream
tasks. The results are depicted in Figure 3. For
MT and QA, both generative tasks, on average,
CW2V is better if not comparable with OFA while
being consistently better than all other approaches.
We see that CW2V quickly surpasses OFA in 2-3
checkpoints. In the case of XLSUM, however, OFA
tends to be better during intermediate checkpoints
(1, 2, 3), but CW2V eventually performs just as
well afterwards. Once again, CW2V (and OFA) are
significantly better than other baselines.

XNLI is the only confounding task since no clear
trends can be observed over various CPT stages.
Furthermore, all models perform almost equally
poorly, indicating that neither vocabulary expan-

siding within the convex hull of the source embeddings (Ap-
pendix F)

sion nor CPT is sufficient to improve XNLI perfor-
mance. We suppose that fine-tuning on an XNLI
dataset may shed further light on this, but due to
limited compute, we did not pursue fine-tuning for
any task and hence leave it as future work. Overall,
CW2V is a highly effective initialization strategy
for CPT, particularly benefiting languages that we
aim to support more effectively through vocabulary
expansion.

5.3 Catastrophic Forgetting in English tasks

Here we reveal something concerning about the
inevitable negative effect of CPT on the pre-
expansion language (English). During continued
pre-training on monolingual datasets in both tar-
get and source languages, even with the source
language (English) constituting 20% of the total
dataset, we observed an initial drop in English per-
formance. Figure 4 shows the performance of the
expanded RoBERTa models at various CPT check-
points on only English tasks. Initially, performance
drops, after which it begins to improve with pro-
longed training without comprising performance
on non-english tasks. This suggests that adjusting
the model to learn new target language data tem-
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Figure 3: 4-shot XNLI, MT, QA, XLSUM evaluation of different initialization methods on expanded LLaMA2
models at 5 equidistant CPT checkpoints. MT plots show average performance across 4 languages, and XNLI, QA,
XLSUM plots show average performance across 5 languages.

Figure 4: Assessment of English performance for various initialization methods on expanded RoBERTa models
across three downstream tasks (XNLI, NER, QA) at 15 CPT checkpoints.

porarily disrupts the weights previously optimized
for English but prolonged training could potentially
further restore and enhance English performance.

6 Conclusion

In this work, we establish that effective embed-
ding initialization for an expanded vocabulary in
language models can be achieved within the con-
vex hull of source vocabulary embeddings. We

introduce a data-driven initialization method, Con-
strained Word2Vec (CW2V), which learns the tar-
get embeddings by constraining them in the con-
vex hull of the source embeddings. Our compari-
son of various initialization methods reveals that
Constrained Word2Vec performs on par with other
advanced techniques. Additionally, we find that
simple methods like Multivariate and Mean, which
ensure new embeddings lie within the convex hull
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of source embeddings, perform comparably well to
more complex approaches. This indicates that effi-
cient large-scale multilingual continued pretraining
can be possible even with simpler methods, pro-
vided they are good initialization strategies.
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A Limitations

In this work, we identify the following limitations:

• Due to limited computational resources, we
could not explore a variety of pre-trained mod-
els beyond RoBERTa and LLaMA2. However,
since most language models function simi-
larly, we expect our methods and findings to
be generally applicable.

• For LLaMA2 models, we only conduct few-
shot prompting for downstream task evalua-
tion due to resource constraints. Nonetheless,
based on our observations with RoBERTa,
fine-tuning on downstream tasks will likely
show that CW2V and OFA are only
marginally better than other approaches.

• Although we evaluated only five downstream
tasks, we cannot confirm that our observations
will apply to all types of tasks. This remains
an area for future research.

• We show experiments on four lan-
guages—Hindi, German, Russian, and
Tamil—due to limited computational re-
sources. However, as we have chosen
languages from different scripts, we expect
our methods and findings to be generally
applicable.

B Further Analysis

Theorem 3. : All strongly good initializations are
in the convex hull.

Let es1, e
s
2, e

s
3, ..., e

s
n ∈ Rd be the embeddings

of words in Vs. Let y ∈ Rd. If (hT y) ≤
supk∈Vs(hT esk) for all h ∈ Rd, then y ∈ S,
where S is the convex hull of the embeddings
es1, e

s
2, e

s
3, ..., e

s
n.

Proof. We prove this using contradiction. Say, y /∈
S and (hT y) ≤ supk∈Vs(hT esk) holds good for all
h ∈ Rd. Since, S is closed and convex and y /∈ S ,
there exists a hyperplane H that strictly separates
y from S. This hyperplane defines a half spaceH
containing S. Note thatH contains S and y /∈ H

Let b⃗ ∈ Rd be a point on the hyperplane H. Let
n⃗ ∈ Rd denote the normal to the hyperplane H.
We choose n⃗ in such a way that any point r⃗ ∈ S
satisfies,

(r⃗ − b⃗)T n⃗ ≤ 0

Thus, any embedding es ∈ {es1, es2, ..., esn} satis-
fies,

(es − b)T n⃗ ≤ 0 (2)

and any point q⃗ /∈ H satisfies,

(q⃗ − b⃗)T n⃗ ≥ 0

As y /∈ H,

(y − b⃗)T n⃗ ≥ 0 (3)

Equations 2 and 3 imply,

n⃗T es ≤ n⃗T y ∀ es ∈ {es1, es2, ..., esn} (4)

Thus, supk∈Vs(n⃗T esk) ≤ (n⃗T y) which contra-
dicts the statement that (hT y) ≤ supk∈Vs(hT esk)
holds good for all h ∈ Rd as it fails for h = n⃗.

Thus, if (hT y) ≤ supk∈Vs(hT esk) for all h ∈
Rd, then y ∈ S, where S is the convex hull of the
embeddings es1, e

s
2, e

s
3, ..., e

s
n.

Thus, from theorem 3 we can say that any
‘strongly good’ initialization must lie in the con-
vex hull of pre-expansion embeddings. But for an
initialization to be considered ‘good’, the output
word must remain unchanged for prefixes formed
by word sequences from the source vocabulary.
This implies that the condition 1 only needs to
be satisfied for a subset of Rd, rather than for all
h ∈ Rd. Thus, it is not necessary that the converse
of Theorem 2 to be true as we can have initial-
izations which are ‘good’ but not ‘strongly good’.
However, we can say that if an initialization is
‘strongly good’, embeddings must lie in the convex
hull of pre-expansion embeddings.

C Effect on Initialisation on Model
Output

Random initialization of new embeddings can re-
sult in a pre-trained language model assigning a
probability of 1 to new words and can degrade do-
main adaptation performance (Hewitt, 2021). Fig-
ure 5 shows the outputs of expanded LLaMA2 mod-
els for an English sentence prompt. Random ini-
tialization of expanded tokens results in gibberish,
while the other three methods produce outputs iden-
tical to the base LLaMA2 model, as they ensure
embeddings lie within the convex hull of source
embeddings.
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Figure 5: Expanded LLaMA2 Model Outputs for the
Prompt : “I don’t want to eat" for various initializations.

D Fertility Score

Fertility Score English Hindi Tamil Russian German
LLaMA2 Tokenizer 2.89 7.47 12.66 4.25 3.88
RoBERTa Tokenizer 2.87 10.85 28.80 9.89 4.42
Extended Tokenizer 2.87 2.83 2.83 3.74 3.88

Table 3: Fertility scores for the source and the extended
tokenizers on all the languages

Table 3 shows the fertility scores of the target
tokenizer with respect to source tokenizer on 5
languages considered.

E Tokenizer Coverage

Target Tokenizer

Copied Tokens Initialized Tokens Coverage

RoBERTa 22K 35K 38.5 %
LLaMA2 32K 25K 56.14 %

Table 4: : The number of subwords being initialized by
copying from the original embeddings from RoBERTa’s
and LLaMA’s tokenizers.

Table 4 shows the size of source vocabulary in
experiments with RoBERTa and LLaMA2. As the
new vocabulary is extended from LLaMA2, many
subword embeddings are directly copied when us-
ing LLaMA2 as the source model. We employed
a ‘fuzzy’ search similar to FOCUS (Dobler and
de Melo, 2023) to identify the common tokens be-
tween the target tokenizer and the RoBERTa tok-
enizer. This led to a 38.5 % coverage of tokens
leading us to a source vocabulary of size 22K for
experiments with RoBERTa.

F Do Multivariate and Univariate
initializations reside in the hull?

In multivariate initialization, we sample from a
multivariate Gaussian that considers correlations

across dimensions, unlike the univariate distribu-
tion. When dealing with strongly correlated di-
mensions (positive or negative), a multivariate ap-
proach proves advantageous. By considering the
correlations across dimensions, we can sample new
embeddings that are positioned more effectively
within the latent space of original embedding dis-
tribution. However, there is no straightforward
method to determine if embedding sampled from
either distribution lies within the hull. To ensure
that multivariate initialization remains within the
convex hull with a high confidence, we also scaled
the covariance matrix by a factor of 1e-5. In con-
trast, unscaled univariate initialization was used as
a baseline, aligning with previous studies (Liu et al.,
2024). (Hewitt, 2021) recommends employing mul-
tivariate initialization to incorporate noise. Notably,
as illustrated in Figure 2, multivariate initialization
significantly outperforms univariate initialization
and closely approaches the performance of OFA
in encoder-based models. However, a comprehen-
sive theoretical analysis is required to determine
if unscaled multivariate initialization has a higher
likelihood of being within the convex hull com-
pared to univariate initialization. This aspect is left
for future research, given the empirical observa-
tion that univariate initializations typically exhibits
lower performance compared to scaled multivariate
initialization.

G Continued Pretraining Details

All the expanded and initialized RoBERTa models
are trained on the same hyperparameters used in
OFA (Liu et al., 2024). Specifically, we employ
the MLM objective with a standard mask rate of
15%. We utilize the Adam optimizer (Kingma and
Ba, 2017) with parameters (β1 = 0.9, β2 = 0.999)
and ϵ = 1× 10−6. The initial learning rate is set to
5 × 10−5. The only deviation from our approach
compared to OFA is the batch size, which is fixed
at 32. Each batch consists of training samples con-
catenated up to the maximum sequence length of
512, randomly selected from all language-scripts
described in Section 4.3. We continue to pretrain
using the scripts adapted from HuggingFace5.

For LLaMa2, we used the standard LM objective
with a context length of 2048 subwords. We used
the Adam optimizer with linear warmup and decay
where the peak learning rate was 5 × 10−5 and
warmup was done till 10% of training steps. We

5https://github.com/huggingface/

96

https://github.com/huggingface/


trained for 1 epoch over our data saved checkpoints
every 20% of an epoch enabling us to study model
behavior against increasing training data.

H Complete Results for Each Task and
Language

Results for each task in all the languages across all
the checkpoints is given in figures 6, 7, 8, 9, 10, 11,
12
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Figure 6: XNLI evaluation of expanded RoBERTa models
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Figure 7: NER evaluation of expanded RoBERTa models
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Figure 8: QA evaluation of expanded RoBERTa models
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Figure 9: MT 4-shot evaluation of expanded LLaMA2 models
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Figure 10: XNLI 4-shot evaluation of expanded LLaMA2 models
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Figure 11: XLSUM 4-shot evaluation of expanded LLaMA2 models
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Figure 12: QA 4-shot evaluation of expanded LLaMA2 models
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Abstract

The development of Large Language Models
(LLMs) has brought impressive performances
on mitigation strategies against misinformation,
such as counterargument generation. However,
LLMs are still seriously hindered by outdated
knowledge and by their tendency to generate
hallucinated content. In order to circumvent
these issues, we propose a new task, namely,
Critical Questions Generation, consisting of
processing an argumentative text to generate
the critical questions (CQs) raised by it. In
argumentation theory CQs are tools designed
to lay bare the blind spots of an argument by
pointing at the information it could be miss-
ing. Thus, instead of trying to deploy LLMs to
produce knowledgeable and relevant counterar-
guments, we use them to question arguments,
without requiring any external knowledge. Re-
search on CQs Generation using LLMs requires
a reference dataset for large scale experimenta-
tion. Thus, in this work we investigate two com-
plementary methods to create such a resource:
(i) instantiating CQs templates as defined by
Walton’s argumentation theory and (ii), using
LLMs as CQs generators. By doing so, we
contribute with a procedure to establish what
is a valid CQ and conclude that, while LLMs
are reasonable CQ generators, they still have a
wide margin for improvement in this task.

1 Introduction

Natural Language Processing (NLP) applications
to deal with misinformation have become a popular
line of research in tasks such as fact verification
(Thorne et al., 2018), evidence retrieval (Soleimani
et al., 2020) or counterargument generation (Chung
et al., 2019; Chen et al., 2023). However, even
when deploying generative Large Language Mod-
els (LLMs), most applications face challenges re-
garding three issues: LLMs often lack the required
up-to-date knowledge for these tasks (Gao et al.,
2023), there is not always an agreement on what

is the truth (Chang et al., 2024), and LLMs them-
selves can produce hallucinations or rely on un-
faithful data, generating misinformation of their
own making (Xu et al., 2024; Lin et al., 2022).

Yet, instead of requiring the LLMs to output fac-
tual knowledge, could we use them to point at the
missing or potentially uninformed claims? In other
words, could we use LLMs to uncover the blind
spots in the argumentation? To open this line of
research, we ground our work on argumentation
theory, which has for centuries been studying dia-
logical exchanges of information. Specifically, we
look into argumentation schemes, a set of abstract
structures developed by systematically identifying
common patterns of argumentation and outlining
the defeasibility of these patterns. In these struc-
tures, the devices designed to find the blind spots
in the arguments are called critical questions.

Critical questions are the set of inquiries that
could be asked in order to judge if an argument is
acceptable or fallacious. Therefore, these questions
are designed to unmask the assumptions held by
the premises of the argument and attack its infer-
ence. In the theoretical framework developed by
Walton et al. (2008), argumentation schemes are
represented as templates depicting the premises,
the conclusion, and the critical questions of each
scheme. This framework is useful to promote criti-
cal thinking, since it allows uncovering fallacies by
answering questions. Figure 1 shows two examples
of argumentation schemes and their corresponding
critical questions (CQs). The first of these exam-
ples is an argument that links a cause (migration)
to an effect (unemployment). Therefore, the CQs
related to this argument ask about the strength of
this relation and the possibility of other causes also
having a role in the effect. The second example fits
the scheme of practical reasoning. That is, given a
goal, the argument defines an action to achieve it.
Here, the CQs ask about the compatibility of this
goal with others, the alternative actions to achiev-
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(a) Scheme – Argument from Cause to Effect
Premise: Generally, if people pour into the USA, then
Americans lose their jobs.
Premise: In the current situation, people are pouring into the
USA.
Conclusion: In the current situation, Americans lose their
jobs.

CQ: How strong is the generalisation that if people
pour into the USA then Americans will lose their jobs?
CQ: Are there other factors in this particular case that could be
interfering with the fact that Americans lose their jobs?

(b) Scheme – Practical Reasoning
Premise: There is the goal of making the economy fairer.
Premise: Raising the national minimum wage is a means to
realize the goal of making the economy fairer.
Conclusion: Therefore, raising the national minimum wage
ought to occur.

CQ: Are there other relevant goals that conflict with making
the economy fairer?
CQ: Are there alternative actions to raising the national mini-
mum wage to achieve making the economy fairer? If so, which
is the most efficient action?
CQ: Could raising the national minimum wage have conse-
quences that we should take into account? Is it practically
possible?

Figure 1: Arguments from the US2016 dataset (Visser et al., 2021), instantiated using the templates of argumentation
schemes and critical questions defined in Walton et al. (2008).

ing this goal, and the potential consequences of the
proposed action.

Previous work has proved the usefulness of CQs
for enhancing fallacy identification (Musi et al.,
2022), and for argumentative essays evaluation
(Song et al., 2014). But, to the extent of our knowl-
edge, there has not been any attempt to automate
the generation of CQs. In this work, we propose
the task of Critical Questions Generation: given an
argumentative text, the model is asked to generate
the necessary CQs to assess the acceptability of
the arguments in the text. In this setting, the argu-
mentative text is the input and the set of CQs is the
target output. As in other NLP tasks, such as ma-
chine translation or paraphrasing, the model is not
required to find new information, but to understand
and reformulate the input in a certain way.

A crucial requirement to investigate the auto-
matic generation of CQs is to have reference data
for experimentation. However, as far as we know,
there has not been any attempt to create such a re-
source. In order to address this shortcoming, in
this paper we investigate two methods for creat-
ing a dataset for the generation of CQs: (1) using
the sets of CQ templates defined in Walton et al.
(2008)’s theory (from now on, theory-CQs); and
(2) using LLMs to generate these CQs (from now
on, llm-CQs). While looking into these methods,
we attempt to answer the following research ques-
tions: (i) are current Large Language Models good
critical question generators? (ii) how can we op-
erationalize what is a valid critical question? (iii)
what is the optimal strategy to build a reference
dataset for large scale experimentation on the task
of Critical Questions Generation?

To answer these questions, we start by looking at
the theoretical sets of CQs and instantiating them
using a set of argumentative texts already anno-
tated with argumentation schemes (Visser et al.,
2021; Lawrence et al., 2018). As a second step, we
prompt two state-of-the-art LLMs to give us candi-
date CQs for these same argumentative texts, and
we design a procedure to evaluate their relevance
towards the texts and their validity as CQs. We
then compare the two methods and highlight the
main challenges faced by LLMs when generating
CQs. Summarizing, the main contributions of this
work are:

• We propose the task of Critical Questions
Generation and motivate it by relying on pre-
vious work.

• We use naturally-occurring dialogical data to
study how to generate critical questions using
the theory templates and LLMs.

• We operationalize how to define a valid criti-
cal question.

• We study the main challenges faced by LLMs
when generating critical questions.

In this work, we observe that questions gener-
ated using theory and questions generated using
LLMs are complementary: while theory-CQs are
mostly about relations between premises, llm-CQs
rather ask about evidences. Additionally, LLMs
introduce a new type of questions: those asking
about further definition of the terms used in the
arguments. Regarding the performance of current
LLMs, we observe that models struggle to output
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relevant CQs and output many non-critical ques-
tions. Therefore, we conclude that more advanced
training and prompting techniques should be used
and, to this end, reference data should be created
using both the theory and LLMs’ methods. All the
data and code in this project has been released.1

2 Previous Work

To contextualise this work, we discuss the rela-
tion between argumentation and misinformation,
introduce the nature of critical questions, and of-
fer related work on argumentation schemes from a
computational point of view.

2.1 Using argumentation to fight
misinformation

Misinformation has been tackled using many strate-
gies: from debunking strategies (e.g. fact-checking
propagated information) to pre-bunking (e.g. ex-
posing disinformation strategies to make citizens
resilient towards manipulation). However, recent
studies have shown that pre-bunking has a poten-
tially longer effect, since the learned skills are
not bound to specific contexts (Maertens et al.,
2021). Following this, digital applications have
been built to enhance citizens’ abilities to deal with
misinformation, such as the recognition of mis-
leading sources and headlines (Fakey,2 NewsWise
headlines quizz3), the identification of fake images
(Real or Photoshop quizz4), or the decision-making
processes of news rooms (BBCireporter,5 News-
Feed Defenders6).

However, these applications focus mostly on
dealing with fake information, while misinforma-
tion is often generated by drawing invalid rela-
tions between claims and the premises provided
to support these claims (Musi et al., 2023). In
this sense, more recent pre-bunking applications
have focused on techniques based on argumenta-
tion theory, which have the goal of evaluating the
connections between the available evidence and
the statement that it is trying to support (Lawrence

1https://github.com/hitz-zentroa/critical_
questions_generation

2https://fakey.osome.iu.edu/
3https://www.theguardian.com/newswise/2021/

feb/04/fake-or-real-headlines-quiz-newswise-2021
4https://landing.adobe.com/en/na/products/

creative-cloud/69308-real-or-photoshop/
5https://www.bbc.co.uk/news/resources/

idt-8760dd58-84f9-4c98-ade2-590562670096
6https://www.icivics.org/games/

newsfeed-defenders

et al., 2018; Visser et al., 2020; De Liddo et al.,
2021; Altay et al., 2022).

In this line of research, Musi et al. (2023) devel-
oped a chatbot that, following gamification princi-
ples, used a dialogical context to teach users how
to identify fallacies by being exposed to critical
questions. Users of this tool showed an overall
increased ability to identify fallacious arguments.
While the scenarios portrayed in Musi’s chatbot
are based on an annotated database of 1,500 fact-
checked news, latest NLP advances in LLMs could
be used to generate critical questions on unseen
arguments, therefore being able to use this tool to
deal with any upcoming domain.

Applications of language models in the fight
against misinformation have often been framed as
classification and information retrieval tasks (Mon-
toro Montarroso et al., 2023). In contrast, we pro-
pose to use LLMs as a tool for generating questions,
which enhances the relativistic conceptions of truth
of most critical thinking paradigms (Musi et al.,
2023), as opposed to the absolutist notions of truth
encouraged by using LLMs as question-answerers
and classifiers.

2.2 The nature of critical questions
Critical questions are an essential element of the
notion of argumentation schemes. Argumentation
schemes are “forms of arguments (structures of in-
ference) that represent structures of common types
of arguments used on everyday discourse” (Walton
et al., 2008). These arguments are defeasible, mean-
ing that their conclusions can be accepted only pro-
visionally while there is no evidence that defeats it.
Defeasible arguments are the most common argu-
ments in everyday discussions, and knowing what
to ask before accepting them is an important skill.

The predecessor of argumentation schemes were
topics (topoi in Aristotle’s Rhetoric), which were
conceived as warrants that back the logical infer-
ences drawn from premises to conclusions. Mod-
ern researchers have adapted them for use in com-
putational applications (Reed and Walton, 2001;
Macagno et al., 2017). Additionally, these tools
have become popular among critical thinking re-
searchers for their pedagogic usefulness.

In pedagogical terms, argumentation schemes
can be used “as a way of providing students with
additional structure and analytic tools with which
to analyze natural arguments and to evaluate them
critically” (Walton et al., 2008). In this approach,
critical questions function as memory devices: a
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way to recall the missing information in the argu-
ment.

Although the goals and usefulness of critical
questions have been extensively discussed, up to
our knowledge, there has not been any successful
attempt to operationalize what is and what is not a
valid critical question. Since our goal is to create
them automatically, setting this boundary becomes
a necessary first step.

Most definitions of critical questions are highly
linked to their function. Following this tradition,
it could be argued that a good critical question is
the one that fulfills its goal: pointing at reasons to
rebut the argument. Moreover, critical questions
can not only attack the acceptability of an argument
by defeating its conclusion, but also undercut it by
attacking the connection between the premises and
the given conclusion (Pollock, 1987). In Section 4,
we operationalize this definition of valid CQ, and
in Section 5, we implement it in the evaluation of
llm-CQs.

2.3 Argumentation Schemes in
Computational Argumentation

While no attempt exists to automatically generate
CQs, there has been some work on argumentation
schemes annotation and detection, which we will
be taking as a starting point.

One of the most ambitious works in argumenta-
tion from a computational point of view was the
Araucaria project, which created a database of ar-
guments annotated in Argument Markup Language
that included argumentation schemes (Reed et al.,
2008). Later, the Inference Anchoring Theory (IAT
Budzynska and Reed (2011)) became a popular
format for representing how arguments are cre-
ated in dialogical settings. IAT diagrams feature
locutions, propositions, dialogical relations, and
propositional relations. Recent work has also added
argumentation-scheme labels to IAT diagrams. The
available datasets annotated with IAT and schemes
are listed in Table 1.

Other datasets that are labeled with argumenta-
tion schemes although not in the IAT format are
the social media datasets from Jo et al. (2021),
which contain 1,924 examples of 2 argumenta-
tion schemes; and the Genetics Research Corpus,
which identifies argumentation schemes in scien-
tific claims from genetic research articles (Green,
2015). Lately, datasets with synthetic arguments
have been released (Kondo et al., 2021; Ruiz-Dolz
et al., 2024; Saha and Srihari, 2023). However, we

are interested in naturally-occurring arguments.
The task of automatically identifying argumen-

tation schemes was first attempted by Feng and
Hirst (2011) and Lawrence and Reed (2016), using
machine learning techniques. Later, Jo et al. (2021)
used logic and theory-informed mechanisms for
a similar task, and Kondo et al. (2021) used lan-
guage models, showing the difficulty of identifying
schemes (with 7 categories, their overall accuracy
with BERT (Devlin et al., 2019) was 27.5%).

In previous work, it has been observed that tasks
requiring complex reasoning remain a challenge for
LLMs (Xu et al., 2023; Gendron et al., 2024; Han
et al., 2022). Furthermore, Payandeh et al. (2023)
demonstrated that LLMs are easily convinced us-
ing logical fallacies, and Ruiz-Dolz and Lawrence
(2023) showed that LLMs fail when asked to detect
argumentative fallacies. The task of fallacy detec-
tion is highly related to our work (Sahai et al., 2021;
Goffredo et al., 2022; Alhindi et al., 2022; Helwe
et al., 2024). However, in this work we wish to
foster human-computer interaction and use LLMs
to raise the questions that would help a human un-
mask the fallacies of its caller.

So far, the most similar work to ours is Musi et al.
(2023), where they developed a chatbot that out-
putted critical questions from a database of possible
issues, and Song et al. (2014), where they found
that human annotations identifying the CQs present
in essay evaluations contributed significantly to pre-
dicting the grade. While their experiments tested
the usefulness of using CQs, none of these two
tried to generate them automatically.

3 Data

For the purpose of this work we have decided to
use a subset of the US2016 (Visser et al., 2021) and
the Moral Maze datasets (Lawrence et al., 2018),
which, as explained in the previous section, have
already been transcribed and annotated with argu-
mentation schemes. Both of these datasets are oral
debates, and they are structured as sequences of
interventions by different debaters.

In order to use these datasets, we have mapped
their labels to the argumentation schemes in Wal-
ton et al. (2008). Since the labels of both of these
datasets are based on Walton’s work, the mapping
has amounted to terminology matching. Given the
long list of argumentation schemes, we have de-
cided to work with the 18 most frequent schemes.
Annex A provides the mapping and the distribu-
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Name Paper Nº Args. Nº Schemes Original Format Domain
US2016 Visser et al. (2021) 413 60 Oral debate Politics
Moral Maze Lawrence et al. (2018) 79 32 Oral debate Politics
US2016reddit 19 4 Written social media Politics
EO_PC Lawrence and Reed (2015) 139 3 Written Not specified
Reg. Room Div. Konat et al. (2016) 227 7 Written social media Product Regulations
Legal 545 12 Written Legal

Table 1: Available data in IAT format with argumentation schemes. All the datasets are in English.

tion of argumentation schemes for each of the two
datasets.

Since both of these datasets have been annotated
as IAT diagrams, each argumentation scheme la-
bel links two or more propositions in the debate,
forming an argument.7 The debates are composed
of interventions, which we are going to use as our
argumentative texts. Each intervention can have
many annotated arguments (or none). After pre-
processing,8 we obtain 370 interventions (73 from
Moral Maze and 297 from US2016) of which 117
contain at least one argument (25 from Moral Maze
and 92 from US2016).

For the manual analysis of this work, we use
21 of the interventions, chosen to keep the label
distribution as similar as possible to the one in the
full datasets; 10 of these interventions come from
US2016 and 11 from Moral Maze. The distribution
of the 60 arguments contained in these 21 interven-
tions can be found in Annex B.

4 Our Method

In order to identify the challenges in the task of
Critical Questions Generation, there is an urgent
need for reference data. To explore how this data
should be created, we generate critical questions
both using the theory templates and LLMs.

To generate CQs based on Walton’s theory
(theory-CQs), we take each annotated argument
and instantiate the CQs associated to that argumen-
tation scheme (red-dotted box at the top of Figure
2). Regarding the generation of CQs with LLMs
(llm-CQs), we prompt two state-of-the-art LLMs
and we evaluate the relevance of the candidate CQs
towards the argumentative text (blue-dashed box at
the bottom of Figure 2). We then relate the llm-CQs
to the arguments of the text and to the theory-CQs

7For a comprehensive explanation of IAT diagrams see
Hautli-Janisz et al. (2022).

8We structure the data by intervention, splitting the very
long interventions, and merging the very short ones (for an
example, see the columns "Intervention" in Table 2 and Figure
3). The code on how to go from the IAT diagrams to our
dataset has been published on Github.

(green box), and assess the validity of the llm-CQs
that relate to an argument but do not correspond to
any of the existing theory-CQs (such as CQ 5 in
Figure 2). In the rest of the section, we describe in
detail each of these processes.

4.1 Generation using theory

The critical questions based on theory are defined
using the set of CQs in Walton et al. (2008). We
reformulate some of these questions to make them
sound more natural (the final set can be found in
Annex C). To transform these questions into tai-
lored CQs for each argument, we first manually
annotate the text needed to fill the gaps of the vari-
ables in the argumentation-schemes’ templates. For
each argument, the annotator sees the premises
and conclusion associated with the argumentation
scheme (i.e. the template), the propositions of the
argument, and the entire intervention in which the
argument occurred. For instance, to annotate ar-
gument a in Figure 1, the annotator saw the data
in Table 2, and was asked to write the text that is
needed to instantiate the scheme template. In this
case, < eventA > = "people are pouring into the
USA" and < eventB > = "Americans might lose
their jobs".

We used two annotators for this task, and
achieved an inter-annotator agreement (IAA) of
0.88 with a sample of 174 variables.9 In the end, 9
arguments were discarded by both annotators, as
they were not able to find the connection between
the propositions and the argumentation scheme that
had been given to its relation.

We then instantiated the CQs, substituting each
variable for the piece of text that had been anno-
tated. This step resulted in questions with grammat-
ical errors, which we post-edited manually, with
39.44% of the questions getting editions. We dis-
carded 10 of the questions for being meaningless.
Most common corrections consisted of modifying
verbs from infinitive to gerund forms and vice-

9The extended explanation of this annotation will be pub-
lished as guidelines.
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Figure 2: Outline of the steps taken in our approach. Starting from each intervention, we generate CQs using the
theory templates (red-dotted box) and the LLMs (blue-dashed box). In the green box, we relate the relevant llm-CQs
to the arguments of the intervention (if possible), and relate these llm-CQs to a theory-CQ (if possible).

Argument
Scheme Scheme Template Propositions Intervention

Argument
from

CauseToEffect

Generally, if < eventA >, then < eventB >.
In the current situation, < eventA >.
In the current situation, < eventB >.

"people are pouring
into the USA"

&
"Americans are losing

their jobs"

TRUMP: I want to make America great again
We are a nation that is seriously troubled

We’re losing our jobs
People are pouring into our country

The other day , we were deporting 800 people
perhaps they passed the wrong button

they pressed the wrong button
perhaps worse than that

it was corruption [...]

Table 2: Data seen by the annotator when defining the variables to fil the argumentation scheme templates.
Propositions and argumentation schemes come from the IAT annotations in the US2016 dataset (Visser et al., 2021).
The scheme template comes from Walton et al. (2008).

versa, or from singular to plural forms and vice-
versa, and removing double negations. This pro-
cess resulted in the generation of 129 theory-CQs
associated to 51 arguments, an average of 6.14 CQs
per intervention.

4.2 Generation using LLMs

Walton’s sets of critical questions are thought of as
starting points towards rebuttal strategies. However,
they do not intend to be an exhaustive list of the
potentially useful CQs for each scheme (Walton
and Godden, 2005).

For this reason, it is interesting to experiment
with LLMs to see if the models can generate ques-
tions that are valid CQs but are not included in
Walton’s templates. In this sense, our goal is to
have a list of valid CQs as exhaustive as possible
that could be used as reference data. However, llm-
CQs should be carefully curated. For this purpose,
we have designed a method to filter the candidate
llm-CQs and obtain a list of relevant and valid CQs.
This procedure will serve, at the same time, as an
evaluation of how good current LLMs are at gener-

ating CQs.
To this goal, we prompt two LLMs to generate

the CQs that each intervention may arise in a zero-
shot setting. We experiment with two different
prompts, one including the query and the interven-
tion,10 and one that also includes a definition of
critical questions.11 Then, the evaluation process
to filter the candidate llm-CQs has the following
three steps.

First, we manually review each of the candidate
CQs to detect those that are not relevant with re-
spect to the given argumentative text (i.e. the inter-
vention). We have detected three issues that make
the questions not relevant: (a) the introduction
of new concepts or topics – ideally LLMs should

10Prompt 1: List the critical questions that should be
asked regarding the arguments in the following paragraph:
< SPEAKER >: “< INTERV ENTION >”

11Prompt 2: Critical questions are the set of enquiries that
should be asked in order to judge if an argument is good or
fallacious by unmasking the assumptions held by the premises
of the argument. List the critical questions that should be
asked regarding the arguments in the following paragraph:
< SPEAKER >: “< INTERV ENTION >”
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generate CQs related to the content of the inter-
vention, not introducing new topics or concepts
that may carry the model’s biases; (b) bad reason-
ing, namely, questions critical towards positions
or claims the speaker does not hold; or (c) non-
specific critical questions that could be asked on
any argument and that do not take the intervention
into account.

Second, using the set of relevant llm-CQs, we
match each of these to one of the annotated argu-
ments (if possible), and then assess if the matched
CQs also exist in the set of theory-CQs of that argu-
ment (that means checking whether they are asking
about the same blind spot as any of the CQs gener-
ated in Section 4.1). This process leaves us with 4
types of llm-CQs: (i) the ones that are not relevant
(CQs 1, 4 and 6 in Figure 2), (ii) the ones that do
not match any of the annotated arguments (CQ 3 in
Figure 2), (iii) the ones that have a matching argu-
ment and a matching theory-CQ (CQ 2 in Figure 2),
and (iv) the ones that do have a matching argument
but NOT a matching theory-CQ (CQ 5 in Figure 2).
We are interested in further investigating this last
group, as these are the CQs that the theory did not
generate, but are potentially valid.12

Third, the last step to validate this group of LLM-
generated CQs consists in assessing their inferen-
tial relation to the arguments they have been as-
signed. That means asking whether it fulfills the
core function of CQs: unmasking a blind spot in
the argument. We operationalized this evaluation
by taking each argument and question pairs and
asking: "Can the answer to this question diminish
the acceptability of the argument?". The answer to
this question can only be yes or no.13 In a proof-
of-concept evaluation we achieved an IAA of 0.65
with two annotators.

5 Results

In order to generate the critical questions we use
two open state-of-the-art LLMs: Llama-2-13B and
Zephyr-13B (Touvron et al., 2023; Tunstall et al.,
2023). We employ the instruction-tuned chat ver-
sions of the models. For Zephyr, we use the param-
eters indicated for their chat version and the chat
templates used in training. For Llama-2, we use the

12In group (ii), there are also potentially valid questions but,
since we are not able to relate them to any of the annotated
arguments, we do not have a way to validate them. This set
can include both invalid questions or valid questions related
to non-annotated arguments.

13The guidelines of this evaluation will be published.

chat version released in July 2023. With the two
prompts, we obtain 495 LLM-generated candidate
CQs (llm-CQs). We now report the results of each
of the evaluation steps described in Section 4.2,
to later compare the llm-CQs to the theory-CQs,
showing the differences between the questions ob-
tained through each of these approaches.

5.1 Relevance with respect to the Intervention
The relevance issues found in the llm-CQs are re-
ported in Table 3. For all types of issues, Llama-2
works better than Zephyr. While in Llama-2 with
the Query prompt 80% of the CQs are relevant,
in Zephyr with the Query+Definition prompt the
relevance drops to 30%.

When using the prompt with just the query, for
both models, over 10% of the generated questions
ask about claims the speaker does not hold (i.e. bad
reasoning). Additionally, in Zephyr, 15% of the
questions introduce new concepts. We expected
that adding the definition of CQs to the prompt
would improve the performance of the models.
However, while bad reasoning issues are reduced
by half for both models, new concept issues do not
disappear (and even increase for Llama-2). Addi-
tionally, a new type of issue is introduced: non-
specific questions. These are candidate CQs that
are not specific to the text, but just general CQs
(e.g. "What assumptions is the argument mak-
ing?"). That is especially the case with Zephyr.
With this model, we also get a lot of outputs that are
not even questions (the ones classified as Other).

5.2 Relation of llm-CQs to Arguments and to
theory-CQs

In order to validate the 308 relevant LLM-
generated CQs, these need to be related to one
of the arguments in the intervention. In this step,
the llm-CQs are paired with the arguments of the
intervention that prompted them. As a result, 191
unique llm-CQs are associated to at least one of the
arguments, resulting in 50 out of the 51 arguments
having at least one associated llm-CQ. Since one
llm-CQ can be associated with many arguments,
and an argument can have multiple associated llm-
CQs, the total number of pairs of arguments and
llm-CQs is 294.

Regarding those questions that appeared both in
the llm-CQs and in the theory-CQs, we have found
36 unique llm-CQs that have a matching theory-
CQ. Since multiple llm-CQs can be associated to
one theory-CQ (if they have the same meaning),
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Model Prompt Relevant New
Concept

Bad
Reasoning Non-specific Other TOTAL

Zephyr Q-prompt 67.57% 14.86% 14.86% 0.0% 2.7% 74
Llama-2 Q-prompt 80.74% 4.44% 11.11% 2.96% 0.74% 135
Zephyr D+Q-prompt 29.46% 13.18% 7.75% 33.33% 16.28% 129
Llama-2 D+Q-prompt 70.7% 10.19% 6.37% 12.1% 0.64% 157
All All 308 50 46 66 25 495

Table 3: Relevance issues of the LLM-generated critical questions. By model and prompt. Q-prompt refers to the
prompt with only the query, and D+Q-prompt refers to the prompt that also has the definition of CQs. Each column
is one of the relevance issues described in Section 4.2.

we obtain 52 pairs of llm-CQs and theory-CQs.
In the end, this step has left us with 242 llm-CQs

that are associated to an argument but do not match
any of the theory-CQs of that argument.14

5.3 Inferential Validity of the llm-CQs

Having related each of the llm-CQs to an argument,
we can finally check the validity of each of these
critical questions by asking if the answer to the CQ
could diminish the acceptability of the argument.
We do this with the 242 llm-CQs that have an asso-
ciated argument but have no matching theory-CQ,
since we already know that llm-CQs that matched
a theory-CQs are valid critical questions.

This evaluation results in 64.05% of the relevant
and related llm-CQs being marked as valid (155
questions). The remaining 87 questions do not
focus on critical aspects of the argument, often,
these ask for additional information that could not
impact the acceptability of the argument.

After the filtering processes described, we have
been left with a dataset of 21 interventions asso-
ciated to three sets of valid CQs: (i) the theory-
CQs (129 in total), (ii) the llm-CQs that matched
a theory-CQ (52 in total), and (iii) the llm-CQs
that did not match a theory-CQ but were found to
be valid in Section 5.3 (155 in total). That means
that we have 207 valid llm-CQs in total (52 plus
155), 137 of which are unique. Therefore, in the
end, only 28% of the 495 candidate llm-CQs end
up being relevant and valid (for an example of an
intervention in the resulting dataset, see Figure 3).

5.4 Comparing the Approaches

At this point, it is interesting to study the differ-
ences between the sets of questions obtained in
each approach. To this goal, all the CQs have been
classified regarding the type of blind spot they are
trying to unmask. We find that, regarding theory-
CQs, the most common type of questions are those

14Note these are pairs of related llm-CQs and arguments.

asking about the relation between the premises and
the conclusion (27%), followed by questions about
the available evidence (24%), and questions about
possible exceptions (18%). In the case of llm-CQs,
asking about evidence is the most common type of
CQs (27%), followed by relations (21%) and po-
tential consequences of the premises (17%). Most
interestingly, we find that 16% of llm-CQs are ask-
ing for more specific definitions of the concepts
present in the argument. This kind of questions
are not contemplated at all in the theoretical sets
of questions, and both of our annotators consid-
ered them valid (the first llm-CQ in Figure 3 is
of this type). Finally, the few questions that are
generated with both approaches (theory and LLMs)
are mostly about consequences and evidence (see
Table 4).

Type t-CQs % llm-CQs % match
evidence 31 24.0 55 26.6 17
relation 35 27.1 43 20.8 10
conseq. 14 10.9 35 16.9 19

definition 0 0.0 34 16.4 0
other 6 4.7 20 9.7 0

alternative 6 4.7 7 3.4 0
exception 23 17.8 7 3.4 5

source 14 10.9 6 2.9 3
Total 129 207 52

Table 4: Types of questions in the final sets of theory-
CQ, valid llm-CQs, and matching CQs between the two
approaches. Amount and percentage. The matching
ones are also included in the counts of both approaches.

6 Concluding Remarks

In this work we have introduced and motivated the
task of Critical Questions Generation. Moreover,
we have studied how to generate valid critical ques-
tions with two goals in mind: (i) designing a proce-
dure to obtain reference data, and (ii) discovering
the main difficulties that state-of-the-art LLMs face
when generating valid critical questions.

Regarding the difficulties of the task, we have
found that current LLMs struggle to generate CQs
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MT: "Claire’s absolutely right about that. But then the problem is that that form of capitalism wasn’t generating
sufficient surpluses. And so therefore where did the money flow. It didn’t flow into those industrial activities, because in
the developed world that wasn’t making enough money."

(a) Intervention

- How strong is the generalisation that if that form of capitalism was
not making enough money in the developed world then the money did
not flow into those industrial activities?
- Are there other factors in this particular case that could have inter-
fered with the event of ‘the money did not flow into those industrial
activities’?
- How strong is the generalisation that if that form of capitalism wasn’t
generating sufficient surpluses then the money did not flow into indus-
trial activities?

(b) theory-CQs

- How is ‘sufficient surpluses’ defined, and how would one measure it?
- Is MT implying that current forms of capitalism are more successful
at generating profits and surpluses than the one being discussed? If
yes, why?
- What evidence is there to support the claim that the form of capital-
ism being used in the developed world was not generating sufficient
surpluses?
- Are there any alternative explanations for why the money did not
flow into industrial activities?

(c) llm-CQs

Figure 3: Example of an instance of the generated reference data. The intervention is from the Moral Maze dataset,
and the theory-CQs and the llm-CQs are the result of both of our generation methods.

strictly related to the text. On the one hand, they
tend to output CQs including new concepts not
present in the arguments. On the other hand, they
sometimes opt for generating unfiltered lists of very
general CQs, with no regard to the given argumen-
tative text. Reasoning is still an issue for these
models, and they sometimes struggle to understand
what claims are actually held by the given text. Fi-
nally, while 62% of the LLM-generated CQs did
not have any of these three issues (308 out of 495),
only 28% of the CQs initially generated by LLMs
were found to be valid in relation to one of the ar-
guments (137 out of 495), showing that there is a
big margin for improvement.

In relation to the goal of creating a reference
dataset, we have shown that the existing theoreti-
cal sets of critical questions do not account for all
the possible valid critical questions. In this sense,
our results show that only 25% of the valid llm-
CQs had been included in the theoretical sets (52
out of 207). For this reason, we propose using
both theory-CQs and llm-CQs to build the refer-
ence data for this task. Furthermore, we have also
observed that the type of questions generated by
LLMs differs from the ones created by theory, with
the LLMs approach generating many questions re-
lated to evidence, consequences and definitions.
This suggests that the two approaches (theory and
LLMs) are complementary.

While this work has been a first step towards the
task of Critical Questions Generation, our end goal
of automatically generating valid CQs is far from
solved. In future work, we will create a larger ref-
erence dataset including both theory and llm-CQs
to facilitate research on automatic CQs Generation.

Finally, it should be noted that we have not paid
any attention to LLM-generated questions that did
not match any of the annotated arguments. How-
ever, as some arguments might be missing from
the annotation (either because they were not in our
selected 18 argumentation schemes or because the
annotators missed them), some of these questions
might be valid CQs. This shows that our work
relies heavily on already annotated data with argu-
mentation schemes. And, while the datasets used
are reliable (Visser et al., 2021; Lawrence et al.,
2018), there is not a lot of quality data annotated
with argumentation schemes, which poses a limi-
tation on how much reference data can be created.
As far as we are aware, the only data available is
the one detailed in Table 1, which is all in English.
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Abstract
Large Language Models (LLMs) struggle with
providing current information due to the out-
dated pre-training data. Existing methods for
updating LLMs, such as knowledge editing and
continual fine-tuning, have significant draw-
backs in generalizability of new information
and the requirements on structured updating
corpus. We identify the core challenge behind
these drawbacks: the LM-logical discrepancy
featuring the difference between language mod-
eling probabilities and logical probabilities. To
evaluate and address the core challenge, we
propose a new task formulation of the infor-
mation updating task that only requires the
provision of an unstructured updating corpus
and evaluates the performance of information
updating on the generalizability to question-
answer pairs pertaining to the updating infor-
mation. We further propose a novel and effec-
tive pipeline approach for the task, highlighting
a self-prompting-based question-answer gen-
eration process and a associative distillation
methods to bridge the LM-logical discrepancy.
We develop two datasets for evaluation, one
sourced from news articles published in March
and April 20231, and the other from the Natu-
ral Questions benchmark. Experimental results
demonstrate the superiority of our approach,
significantly increasing the factual consistency
score (on a scale from 0 to 1) by up to 0.16. Fur-
thermore, our method effectively mitigates for-
getting utilizing a compact replay buffer with
only 2.3% of the training tokens.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in addressing diverse in-
formation needs, primarily owing to the extensive
range of information sources in their pre-training
corpora. Nevertheless, LLMs are incapable of pro-
viding up-to-date information absent from the pre-
training corpora. Therefore, effectively updating

1the latest available news by the time of dataset collection

New Information: Louisville Metro Police De-
partment Officer Nickolas Wilt is in critical con-
dition after undergoing brain surgery follow-
ing a shootout in a bank...

Q: What is the current state of Officer Wilt?

Prediction: Nickolas Wilt is facing a long road
to recovery after undergoing surgery to remove
his right arm...

Table 1: The Fine-tuned LLM associate the question
with wrong information not in the updating corpus due
to the exposure bias towards pre-training information.

language models with the most recent information
become an important research problem. However,
existing work on model updating including con-
tinual fine-tuning (Wei et al., 2022; Sanh et al.,
2022; Ouyang et al., 2022; Chung et al., 2022)
and knowledge editing (Zhu et al., 2020; Mitchell
et al., 2022a; De Cao et al., 2021; Hase et al., 2021;
Meng et al., 2022; Mitchell et al., 2022b; Meng
et al., 2023) demonstrate notable limitations in gen-
eralizability of new information and structurality
of updating corpus, which we address in this work.

Generalizability of new information refers to
the ability to associate the information to relevant
context. We provide an example in Table 1. We
expect an LLM updated to answer related questions
correctly, instead of associating the question with
the wrong information not in the updating corpus.
Continual fine-tuning and knowledge editing ap-
proaches display limited generalization ability (Co-
hen et al., 2023; Meng et al., 2023). Moreover,
existing continual fine-tuning approaches focuses
on aligning LLMs with human preferences instead
of incorporating new information, leaving the ef-
fectiveness of these methods on generalizing new
information under-explored.

Structurality of updating corpus is another signif-
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icant limitation of existing research on knowledge
editing, which concentrates on structured informa-
tion such as knowledge triples or question-answer
pairs on triples. Structured updating corpus re-
quires substantial human efforts to generate which
limits the efficiency of information updating.

Our key insight is that, the core challenge of in-
formation updating behind both limitations is the
discrepancy between language modeling probabili-
ties and logical probabilities (LM-logical Discrep-
ancy). To illustrate this discrepancy, consider two
token sequences X and Y ,

X = Tom is from New York.

Y = Tom is from US.
.

The language modeling probability P (Y |X) mea-
sures the probability of Y following X in natural
language. On the other hand, if we consider X,Y
as random variables of the occurrences of corre-
sponding events denoted by Xe, Y e, the logical
probability P (Y e|Xe) measures the probability of
Y happening when X happens. We can see that
P (Y e|Xe) = 1, yet P (Y |X) can be small since
these two sentences contain redundant information
and rarely co-occur as neighboring sentences.

To ground this discrepancy to generalizabil-
ity, existing methods aim at increasing the lan-
guage model probability of new information, which
naturally exhibits a low magnitude of associa-
tions: P (X|Y ) can be small even for strongly re-
lated sentences. The lack of associations limits
the generalization of the updating information to
relevant information. This discrepancy also ex-
plains the requirements on structurality. The usage
of structured information assumes that language
model probabilities of structured prompts, such
as P (New York|Where is Tom from?), is closer
to the logical probability P (Xe) compared with
unstructured language model probability P (X).

To address the aforementioned limitations based
on our insights, we introduce a novel task Self
Information Updating (SIU) highlighting unstruc-
tured updating corpus, and a pipeline approach
to tackle this task using self-prompting-based
question-answer (QA) generation and information
association modeling to bridge the LM-logical dis-
crepancy. The formulation of SIU is illustrated
in Figure 1. The LLM updates itself given only
unstructured information sources such as news ar-
ticles. We also include a replay corpus on past
information to mitigate forgetting. For evalua-
tion of generalizability, we propose to use QA

pairs querying either the updating information or
the past information, created by human or GPT-
4 (OpenAI, 2023). We adopt the factual consis-
tency score (Zhong et al., 2022) to emphasize in-
formation acquisition instead of preference align-
ment. For the pipeline approach illustrated in
Figure 2, we use a self-prompting process to gen-
erate question-answer (QA) pairs relevant to the
updating information by LLMs themselves, which
augments the updating corpus for fine-tuning. An
example of such pair is provided in Table 2. To
further improve the generalizability of updating,
we analyze the factual errors, exemplified in Ta-
ble 1, where fine-tuned LLMs mistakenly associ-
ating queries with pre-training information. Our
analysis suggests that this exposure bias against
new information originates from the LM-logical
discrepancy and can be mitigated by modeling an
information association term. Therefore, we pro-
pose a straightforward yet effective associative dis-
tillation method, which explicitly incorporates the
association term into the fine-tuning objective.

For experiments, we utilize an instruction-
finetuned model from LLaMA-7B as the base
model. We curate a corpus of news articles pub-
lished after March 2023 as the updating corpus. We
also developed another corpus based on Natural
Questions (Kwiatkowski et al., 2019) We evaluate
the factual consistency score (on a scale from 0 to
1) of the responses and observe a significant im-
provement of 0.16 over baselines that are prone to
the exposure bias. Additionally, we study the for-
getting problem under a continual learning setting
and discover that our approach maintains good per-
formance on past information using a replay corpus
containing only 2.3% of the past training data.

To summarize, our major contributions include:

• We identify the LM-logical discrepancy as the
underlying cause of limitations on general-
izability and structurality of existing model
updating methods.

• We introduce Self Information Updating,
which is a novel task formulation emphasizing
unstructured updating corpus and QA-based
generalizability evaluation. Our task formu-
lation addresses the limitations of existing re-
search on model updating.

• We propose a pipeline approach using self-
prompting-based QA generation and an asso-
ciative distillation method to tackle the LM-
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Figure 1: Illustration of the formulated information updating task.
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Figure 2: Overall self information updating pipeline. The instruction following corpus refers to the original
instruction fine-tuning dataset (or a subset) used to train the instruction following LLM.

logical discrepancy. Experimental results
demonstrate the effectiveness of our approach.

2 Task Formulation

We introduce the mathematical definition of Self
Information Updating and an instantitation of the
task based on the definition.

2.1 Problem Definition
Definition 2.1 (Self Information Updating). Given
an unstructured updating corpus T consists of
documents with new information unknown to a
language model A, the objective is to find an up-
dated language model A′ such that P (x|A′) ≡
P (x|A, T e) for arbitrary text sequence x ∈ X .

In auto-regressive language models, learning
P (x|A′) is equivalent to learning input-output map-
pings P (r|i,A′) for arbitrary pair of text sequences
(i, r) ∈ X 2. The above objective is equivalent to,

P (r|A′, i) ≡ P (r|A, i, T e), ∀(i, r) ∈ X 2. (1)

Our definition uses P (r|A, i, T e) instead of

P (r|A, i, T ) to facilitate updating of logical in-
stead of LM probabilities.

2.2 Task Instantiation

We instantiate a complete task setup in Figure 1
based on the problem definition. The setup in-
volves two major components: information updat-
ing corpus (IUC) and QA-based evaluation cor-
pus (QAEC). IUC contains an updating corpus T
of new information such as news articles, and a
replay corpus of past information to mitigate for-
getting such as samples from instruction-following
datasets. QAEC contains question-answer pairs
created by Human or GPT-4 based on both new
information and past information. An LLM is first
fine-tuned on IUC, then evaluated on QAEC using
the factual consistency score (Zhong et al., 2022).

3 Approach

We present our pipeline approach in Figure 2. We
highlight two important components to address the
LM-logical discrepancy: self prompting and as-
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sociative distillation. We first introduce the self
prompting. We then discuss the exposure bias prob-
lem, a side-effect of the discrepancy that can be
mitigated by the proposed associative distillation.

3.1 Self Prompting for Information Updating
The first key component is the self prompting,
which augments the updating corpus with QA pairs,
generated by the LLM being updated, which query
the new information in the updating corpus. This
step is motivated by the objective in Equation (1),
which demonstrates that learning the logical dis-
tribution for T e requires applying the information
to relevant text pairs beyond the memorization of
facts in T . Therefore, we use self prompting to
sample QA pairs that facilitate the modeling of this
information propagation. Further implementation
details can be found in Section 4.4 and Appendix F.

3.2 Exposure Bias for Continual Fine-tuning
We consider two continual fine-tuning objectives.

Definition 3.1 (Fact Fine-tuning). Fact fine-tuning
is defined as the continual fine-tuning on the updat-
ing corpus T ,

Lfact = − logP (T |A′). (2)

Definition 3.2 (Naïve Distillation). Naïve distilla-
tion fine-tunes on the sampled pairs {(i, r)}

Lnd = E(i,r)∼P (·|A,T e) − logP (r|A′, i). (3)

The losses for replay samples are ignored in the
above objectives. Due to the space limit, we ana-
lyze the Naïve distillation and leave the fact fine-
tuning discussion in Appendix C. Let C be the pre-
training corpus. We assume new information in
T is disjoint with past information in C. Mathe-
matically, the assumption states the independence
between logical random variables T e and Ce. Ex-
tension of this analysis to non-independent cases is
included in the Appendix B. The target probability
in Equation (3) can be written as,

P (r|i,A′) = P (r|i, T e,A′)P (T e|i,A′)

+ P (r|i, Ce,A′)P (Ce|i,A′),
(4)

We term P (Ze|i,A′) as information associa-
tion, where Z refers to the information, either C
or T . Information association connects the logical
variable Ze with a natural language variable pair
(i, r) by directing how optimizing language model-
ing probability P (r|i,A′) affects logical reasoning
P (r|i,Ze,A′). Since we perform the continual

fine-tuning of A′ from A pretrained on C, we hy-
pothesize the exposure bias towards past informa-
tion, i.e., P (Ce|i,A) > P (T e|i,A). Optimizing
P (r|i,A′) prioritizes updates to fit P (r|i, Ce),A′)
rather than P (r|i, T e,A′). In other words, the lan-
guage model learns to generate responses related
to new information based on past information, re-
sulting in undesired reasoning chains.

3.3 Associative Distillation
We present a straightforward yet effective solution
by incorporating information associations. The set
of fine-tuning QA pairs consists of updating pairs
ST and replay pairs SC. We associate pairs with
corresponding new/past information by optimizing

Lctx = − log
[
P (r|i,Ze,A′)P (Ze|i,A′)

]

≈ − log
[
P (Z, r|i,A′)

]
, (i, r) ∈ SZ ,

, (5)

where Z ∈ {T , C}. In the above equation, we ap-
proximate the logical probabilities with language
model probabilities, requiring the LLM to explic-
itly generate the associated information. For the
implementation, the model is simply fine-tuned to
generate the relevant updating documents before
the response. Since relevant pre-training informa-
tion is unavailable from pre-training corpus for
samples in SC , we include a placeholder prompt
that instructs the model to answer based on past
information. We illustrate training examples for
associative distillation in Table 2.

4 Experiments

4.1 Base Model for Experiments
We fine-tune a instruction-following model from
LLaMA-7B (Touvron et al., 2023) as the base
model. We combine the instruction-following data
from Alpaca2 and InstructionWild3. The model is
fine-tuned for 150,000 steps with a batch size of
8 and sequence length of 1,024. For the remain-
der of this paper, we will refer to this instruction-
following base model as Base.

4.2 Datasets
We develop two datasets, CNN News and NQ Val, to
evaluate the self information updating. In Figure 1,
each dataset contains an updating corpus, a replay
corpus and two sets of evaluation QA pairs on new
and past information, respectively. We use the same

2https://github.com/tatsu-lab/stanford_alpaca
3https://github.com/XueFuzhao/InstructionWild,

we only use the English subset.
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Methods Related to New Information Not Related to New Information

Naïve

Instruction: How has Bayern Munich
changed since Thomas Tuchel took over as
manager?

Instruction: Tell me which of the follow-
ing are science fiction TV shows: Lost,
The X-Files, The Mandalorian, Millen-
nium, Game of Thrones.

Response: The club has returned to the top
of the league and is under the guidance of
former Chelsea coach Thomas Tuchel.

Response: All except Game of Thrones
are classified as science fiction. Game of
Thrones is considered high fantasy.

Associative

Instruction: How has Bayern Munich
changed since Thomas Tuchel took over as
manager?

Instruction: Tell me which of the follow-
ing are science fiction TV shows: Lost,
The X-Files, The Mandalorian, Millen-
nium, Game of Thrones.

Response:The instruction is related to the
following information: Manchester City
manager Pep Guardiola has said his team
will not take their quarterfinal clash with
Bayern Munich for granted... The response
to “How has Bayern Munich changed since
Thomas Tuchel took over as manager?” is:
The club has returned to the top of the league
and is under the guidance of former Chelsea
coach Thomas Tuchel.

Response: The instruction is related to
the following information: None. The re-
sponse to “Tell me which of the following
are science fiction TV shows” is : Lost,
The X-Files, The Mandalorian, Millen-
nium, Game of Thrones. ANSWER: All
except Game of Thrones are classified as
science fiction. Game of Thrones is con-
sidered high fantasy.

Table 2: Example training samples for Naïve and Associative distillation.

replay corpus and past information evaluation set
for both datasets.

Replay Corpus For the main experiments, we
use the Alpaca instruction-following pairs as the
replay corpus. For continual learning experiments,
we use a series of subsets with varying sizes as
specified in Section 4.7.

Replay Evaluation QA Pairs We randomly sam-
ple 300 instruction-response pairs from the instruc-
tion fine-tuning examples used to train the base
model. We use GPT-4 to paraphrase the sampled
examples, because we aim to evaluate whether the
models acquired the information instead of simply
memorizing the training examples. The prompt is
presented in Appendix F.

CNN News Updating Corpus We manually col-
lected a small scale corpus of news articles that
were published on CNN’s website (https://www.
cnn.com/) during the months of March and April
2023. We randomly selected 50 news articles to
serve as our information updating corpus. Al-
though this dataset is moderately sized, experimen-
tal results demonstrate the challenges in effectively
acquiring and applying information from such a

small corpus due to the exposure bias problem.

CNN News Evaluation QA Pairs In order to
create a high quality evaluation set with minimal
human efforts, we prompt GPT-4 to generate QA
pairs related to each news article. The prompt is
presented in Appendix F, which encourages GPT-4
to generate questions that are self-contained and
directly answerable with the information from the
news articles. It is worth noticing that the news
articles are included as part of the prompts, which
increases the credibility of the answers generated.
The evaluation set contains 301 questions.

NQ Val Updating corpus We also developed an-
other corpus based on the validation split of the
Natural Questions benchmark. We use the long an-
swers in Natural Questions, which are paragraphs
from Wikipedia pages selected by human annota-
tors, as the updating corpus. Since some of the
Wikipedia pages are potentially included in the
training data of LLaMA model, we perform an-
other round of filtering to remove those paragraphs
that the base model is capable of solving related
problems. We provide the detailed filtering proce-
dure in Appendix E.
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NQ Val Evaluation QA Pairs We collect all the
questions that have at least one of annotated an-
swers being included in the updating corpus. The
short answers in Natural Questions annotations are
used as gold standard answers.

4.3 Evaluation Metrics

In order to evaluate whether the model has accu-
rately learned the information from the corpus T ,
we adopt the UniEval (Zhong et al., 2022) fac-
tual consistency score as the main evaluation met-
ric. This metric is computed by a neural evaluator
based on T5 (Raffel et al., 2020) between a pair of
model output and source document. We evaluate
two types of factual consistency.
Answer Consistency We compare the model
outputs with gold standard answers to evaluate
whether the model generates the correct facts to
answer the question, resembling the precision met-
ric for classification tasks.
Context Consistency. We compare the model out-
puts with the corresponding context: news articles
for CNN News and Wikipedia paragraphs for NQ
Val. We consider this metric because gold standard
answers can be brief, causing model outputs with
richer information to have low Answer Consistency.
This metric resembles the recall metric.
Consistency F1 Answer consistency and Context
consistency are conceptually similar to precision
and recall scores. Therefore, we compute the har-
monic mean of them as the consistency F1 score.

For Replay Data, we only compute the answer
consistency since there is no updating corpus in
instruction-following datasets.

4.4 Training Details

Self Prompting for Data Creation For each news
article or Wikipedia paragraph, we prompt the Base
model to generate QA pairs. We didn’t use the
same prompt for GPT-4 as in Section 4.2 to gener-
ate these pairs due to two reasons. Firstly, the
prompt is overly complex for a 7B instruction-
following model. Secondly, due to the limitation
on maximum token length on our computational
infrastructure which is capped at 1,024 tokens in-
cluding both the prompt and the generated out-
puts, simultaneously generating instructions with
responses can result in many truncated outputs. We
therefore prompt the Base model in two steps: only
questions are generated in the first step, and the
Base model is prompted to answer each generated

question in the second step. The prompts used are
presented in Appendix F.
Continual Fine-tuning As shown in Figure 2,
models are trained from multiple sources of data
in the information updating phase, including the
updating corpus, the replay corpus and the updat-
ing QA pairs. Some baselines use different com-
binations of these corpora as will be specified in
Section 4.5. During training, we sample examples
from multiple sources with equal probabilities.
Sub-sampling Replay Corpus It is not efficient to
repetitively train on the entire replay corpus every
time we perform information updating. In Sec-
tion 4.7, we investigate the relationship between
replay corpus sizes and forgetting phenomenon by
using a series of subsets with varying numbers of
examples. For the results reported in Section 4.6,
we use the full corpus.

4.5 Methods in Comparison

We consider the following methods:
Base: The Base model in Section 4.1. All the
following methods are further finetuned from this.
Fact: Fine-tuned on the updating corpus and the
replay corpus. This baseline measures the effec-
tiveness of Lfact in Equation (2).
Naïve: Fine-tuned on the updating QA pairs and
the replay corpus. This baseline measures the ef-
fectiveness of Lnd in Equation (3).
Fact+Naïve: Fine-tuned on all three corpora.
Associative: Our proposed approach.

4.6 Main Results

We summarize our main results on the CNN News
and the NQ Val in Table 3 and Table 4, re-
spectively. Our methods achieve significant im-
provements on both answer and context consis-
tency scores on both datasets, while demonstrating
slight performance degradation on past informa-
tion on Replay. Moreover, Fact+Naïve also demon-
strates improved factual consistency scores over
Fact Fine-tuning baselines by includeing the self-
prompted data. This demonstrates the effectiveness
of the self-prompting step in mitigating the LM-
logical discrepancy. Our approach still outperforms
Fact+Naïve, showing the superiority of explicit
modeling of information associations. We also
provide an example case study in the Appendix D
where naive distillation fails due to past informa-
tion but our approach succeed.
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Metric
New Information Updating Replay

Answer Context F1 Answer

Base 0.399 0.460 0.428 0.699
Fact 0.426±0.014 0.516±0.008 0.467±0.014 0.702± 0.014
Naïve 0.409±0.017 0.499±0.005 0.449±0.017 0.707± 0.012
Fact+Naïve 0.421±0.008 0.538±0.002 0.472±0.008 0.713±0.018

Associative 0.480±0.003 0.695±0.034 0.568±0.003 0.691±0.014

Table 3: Factual consistency scores on CNN News

Metric
New Information Updating Replay

Answer Context F1 Answer

Base 0.187 0.268 0.221 0.699
Fact 0.235±0.005 0.318±0.004 0.270±0.004 0.700±0.011
Naïve 0.228±0.003 0.337±0.006 0.272±0.003 0.699±0.007
Fact+Naïve 0.249±0.001 0.371±0.009 0.298±0.001 0.698±0.005

Associative 0.256±0.023 0.380± 0.013 0.306±0.023 0.691±0.051

Table 4: Factual consistency scores on NQ Val
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Figure 3: Forgetting of past information

4.7 Varying Number of Replay Examples

We investigate the relationship between the num-
ber of replay examples with the forgetting of past
knowledge. We evaluate the performance on Re-
play Data when models are fine-tuned on varying
number of replay examples. The result is shown
in Figure 3a. We use subsets of 0(no replay), 240,
1.2k, 2.4k, 4,8k, 12k and 14.4k replay examples.
Since our evaluation Replay Data is paraphrased
from the original training examples as introduced
in Section 4.2, we also compute the number of re-
play examples that overlap with the paraphrased

evaluation examples in these subsets: 0/240, 8/1.2k,
17/2.4k, 39/4.8k, 108/12k, 136/14.4k.

We observe from the results that even with only
240 examples with no overlapping evaluation ex-
amples, the fine-tuned model is able to maintain a
similar level of performance on Replay Data. Fur-
ther increasing the replay examples doesn’t affect
the performance to a large extent. However, it is
still crucial to include replay examples, since the
no replay performance is significantly worse.
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4.8 Continual Learning of Two Datasets
We also conduct another continual learning experi-
ments, where the model is updated using NQ Val
first, and then CNN News. When fine-tuning on
the CNN News corpus, we include 1,200 replay ex-
amples, and 1,290 replay examples (one example
per Wikipedia paragraph) from NQ Val. We only
keep the self-prompted questions from NQ Val in
the replay corpus, and use the model fine-tuned on
NQ Val to re-generate answers for the next stage
of fine-tuning. Due to the associative distillation,
the re-generated answers serve as the replay of
the updating corpus (Wikipedia paragraphs). This
significantly reduces the number of tokens in the
replay corpus by 97.7%, from 919,624 to 21,124.

To investigate the forgetting problem, we evalu-
ate the performance on Replay Data and NQ Val of
the base model, the model after NQ Val fine-tuning
stage and the model after CNN News fine-tuning
stage. The results are shown in Figure 3b. We ob-
serve only minor performance degradation on NQ
Val when keeping 2.3% of the training tokens.

5 Related Work

Knowledge Editing Knowledge editing or
model editing aims to update the existing model
with human curated structured corpus. Zhu et al.
(2020) studies the task of knowledge modification
and establishes a benchmark for pre-trained lan-
guage models , defining knowledge as subject-
object-relation triples. Mitchell et al. (2022a);
De Cao et al. (2021); Hase et al. (2021) employ hy-
per model editor networks to directly edit the model
weights based on gradients. Meng et al. (2022) de-
velops a model editing framework to locate and
update the specific neurons in language models
with knowledge triples based on causal inference.
Mitchell et al. (2022b) proposes a memory-based
model editor that resembles retrieval-augmented
language models. Meng et al. (2023) introduces
a massive editing approach to edit multiple triples
with one edit. Cohen et al. (2023) studies the gen-
eralization problem of knowledge editing based on
Ripple Effect. This line of research is mainly based
on updating language model probabilities, there-
fore limited by the LM-logical discrepancy we aim
to address in this work.

Instruction Fine-tuning Instruction fine-tuning
has been shown to enable zero-shot capabilities
for language models (Wei et al., 2022; Sanh et al.,
2022; Ouyang et al., 2022; Chung et al., 2022).

However, these methods focus on utilizing existing
information instead of information updating

Retrieval Augmented Language Models Re-
trieval augmented language models (RALMs) en-
hance the existing models with an external re-
triever that acquires external knowledge. Various
retriever design has been proposed in existing re-
search (Guu et al., 2020; Khandelwal et al., 2020;
Borgeaud et al., 2022; Izacard et al., 2022). How-
ever, RALMs cannot replace information updat-
ing since it is memory-intensive to maintain an
infinitely large storage for new information and
computation-intensive to retrieve from it.

6 Conclusions and Future Work

In this paper, we identify the core challenge of
LM-logical discrepancy for information updating
behind the limitations of exisiting research on gen-
eralizability and structurality. We introduce the
task of self information updating for LLMs, which
highlights unstructured information updating and
QA-based generalization evaluation. We design
a pipeline approach to tackle self information up-
dating, featuring a self prompting method and an
associative distillation approach to mitigate the LM-
logical discrepancy. The associative distillation is
proposed to solve the exposure bias problem which
prioritizes past information originating from the
discrepancy. Our proposed method significantly
improves factual consistency. Additionally, we
study the forgetting phenomenon under the con-
tinual learning setting and find that our proposed
method can maintain past knowledge by keeping a
small portion of the past data.

We envision three extensions for this work:

• Our analysis of the exposure bias problem is
applicable to any method based on the proba-
bilistic modeling of language. Therefore, our
approach can be combined with other knowl-
edge editing approaches to further improve
information updating.

• The exposure bias problem may also exist in
the pre-training stage due to the order in which
textual data is provided. A more in-depth
analysis of this phenomenon could lead to
improved strategies for language modeling.

• We conduct a continual learning experiment
of two stages in this work. We leave studies
on more updating stages as future work.
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7 Limitations

Our work has several limitations. Firstly, we only
experiment with a news corpus and a Wikipedia
corpus. Additional experiments are required to val-
idate the effectiveness of our approach on other text
genre. Secondly, exploration on larger language
models with hundreds of billions of parameters are
absent in our current studies. Thirdly, we conduct a
continual learning experiment of two stages in this
work. Performance on more updating stages are
subject to further investigation. Lastly, we only use
moderately sized updating corpus for evaluation.
Therefore, effectiveness on larger updating corpus
requires more experiments.
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A Computation Infrastructure and
Additional Training Details

We use Google TPU v3-8 for all the training spon-
sored by the Google TPU Researc Cloud program.

Batching for Self Information Updating In or-
der to improve the training efficiency of training on
TPU v3-8, we don’t use the conventional batchifi-
cation of the training data based on instances. In-
stead, we concatenate all the tokenized instruction-
response pairs into a single list of tokens, and
chunk the list into segments of batch_size × se-
quence_length. We run training on 3 random seeds
and report average performances. We derive our
training codebase from EasyLM4. We will release
our code and data after publication.

Evaluation For evaluation, the responses are gen-
erated with a temperature of 0.2 for all the methods,
which is picked from {0.1, 0.2, 0.5, 1.0} based on
the base model performance . We modify the code
from UniEval github repository5 with torch-xla6

to support running on TPUs. We evaluate our pro-
posed approach on the generated tokens after “The
response to {question} is:”.

Usage of GPT-4 We use snapshot of gpt-4-0314
for all prompting with GPT-4.

B Extension to Non-Independent New
and Past Information

Definition B.1 (Information in Text Corpus). The
information IS(T ) of the corpus T with respect
to another text corpusS is defined as the minimal
sufficient statistic of T e with respect to Se, such
that

P (x|T e) ≡ P (x|IS(T )), x ∈ S. (6)

Remark. Intuitively, IS(T) should consist of mini-
mal text pieces containing new information from T
such as “Manchester City’s manager is Pep Guardi-
ola”.

We can assume without the loss of generality
that IS(T) and IS(C) are independent. Otherwise
we can replace IS(T) with the conditional minimal
sufficient statistic of IS(T) given IS(C), which is

4https://github.com/young-geng/EasyLM
5https://github.com/maszhongming/UniEval
6https://github.com/pytorch/xla
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intuitively equivalent to removing the text pieces
consisting of existing information in C from T.
Therefore, we can do the same analysis on IS(T)
and IS(C) instead of T and C for non-independent
cases.

C Exposure Bias for Fact Fine-tuning

Fact fine-tuning optimizes

P (T |A′) =
∑

x∈X
P (T |xe,A′)P (xe|A′). (7)

A similar information-query association term
P (T |xe,A′) reveals how fact fine-tuning affects
probabilities of other information P (xe|A′). Ex-
posure bias undermines the quality of learned
P (T |xe,A′) and degrades the updating perfor-
mance.

D Case Study

We provide an example case demonstrating where
naive distillation fails but our associative distilla-
tion approach successfully learns the information in
Table. We omit some part of the text in both news
article and model response for conciseness. We ob-
serve that the naïve distillation approach generates
hallucinated information. The omitted part men-
tions bank attacks in Kentucky and Georgia, while
this incident happens in Louisville. This suggest
the baseline model utilizes existing information to
generate the response.

E Preparation Details of Natural
Questions

Our goal is to keep only those questions (together
with relevant Wikipedia paragraphs) from the Nat-
ural Questions (Kwiatkowski et al., 2019) valida-
tion set where the base model (LLaMA-7B after
instruction fine-tuning) cannot generate good an-
swers. The overall filtering process is:

Step 1. We first remove questions with "None"
answers in the Natural Questions validation set.

Step 2. We use the base model and the Alpaca
template as in Appendix A to generate the answers
to the rest questions in the Natural Questions vali-
dation set.

Step 3. We compute the factual consistency score
(ranging from 0 to 1) from UniEval (Zhong et al.,
2022) between the generated answer and gold stan-
dard short answers. When there are multiple short

answers, we use the maximum consistency score.
Those questions whose scores are lower than 0.5
are kept.

Step 4. We collect all the Wikipedia paragraphs
that are labeled as the long answer of any kept
questions in Step 2 as the information updating
corpus.

F A Comprehensive List of Prompts Used
in the Experiment

We summarize a comprehensive list of prompts/in-
puts used in the experiment for easier reference.
Some of these prompts are already covered in the
main text.

Instruction Finetuning We train the instruction-
following model following the template of Alpaca 7.
Each instruction-response pair is prepared as the
following paragraph to fine-tune the model.

Below is an instruction that describes a
task. Write a response that appropriately
completes the request.

### Instruction:
{instruction}

### Response:
{response}

The losses are only computed for the tokens in
responses. This template is also used for the
instruction-response pairs in the information up-
date training.

Self Instruction Generation This prompt is
given to the language model to be updated for self
data creation. This prompt instructs the model to
generate instructions from the information updat-
ing corpus.

Given the input below, generate at least 5
questions that are directly related to the
content of the input. Ensure that each
question you generate does not contain
coreferential words or pronouns (e.g.,
he, she, it, this, they, etc.). The ques-
tions should be clear, concise, and per-
tain specifically to details mentioned in
the input. {Context}

The {Context} slot is filled with each individual
news article from the information update corpus.

7https://github.com/tatsu-lab/stanford_alpaca
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Table 5: An examples case where baseline fails but associative distillation succeeds.

Fact in News Article: Louisville Metro Police Department Officer Nickolas Wilt is
in critical condition after undergoing brain surgery following a shootout in a bank
... Mayor Craig Greenberg visited Wilt in the hospital, saying that he had made it
through surgery and was in serious condition but in great hands...
Instruction: What is the current state of Officer Wilt and what kind of recovery does he face?

Naïve Associative

Response:Nickolas Wilt is facing a long
road to recovery after undergoing surgery
to remove his right arm which was injured
in the attack. He is currently in serious
condition in the hospital...

Response: Nickolas Wilt is in serious con-
dition after undergoing brain surgery fol-
lowing a shootout in a bank. He faces a
long road to recovery and is currently se-
dated...

Self Answer Generation This prompt is given
to the language model to be updated for self data
creation. This prompt instructs the model to gen-
erate responses for the instructions in the previous
step from the information updatingcorpus.

Answer the question based on the facts
from the input. If there is no relevant
information in the input, answer ’None’.
Question: {Instruction} {Context}

The {Context} slot is filled with each individual
news article from the information update corpus.
The {Instruction} is from the outputs of last step.
To ensure the generated instruction-response pairs
pertain to the corpus, we remove those pairs when
the response is None.

Fact Finetuning Training Data This is the in-
puts to train the Fact Fine-tuning baseline in the
main text. It is just the news articles.

{News Article}

Naïve Distillation This is the inputs to the train
the Naïve Distillation Baseline. Only losses on the
tokens after “Response” is used for training.

Below is an instruction that describes a
task. Write a response that appropriately
completes the request.

### Instruction:
{Instruction}

### Response:
{Response}

Here the {Instruction} and {Response} are paired
outputs from Self Instruction Generation and Self
Answer Generation.

Associative Distillation This is the inputs to the
train the Naïve Distillation Baseline. Only losses
on the tokens after “Response” is used for training.

Below is an instruction that describes a
task. Write a response that appropriately
completes the request.

### Instruction:
{Instruction}

### Response:
The instruction is related to the follow-
ing information: {News Article}. The
response to {Instruction} is: {Response}

Here the {Instruction} and {Response} are paired
outputs from Self Instruction Generation and Self
Answer Generation. {News Article} is the corre-
sponding news article from the information update
corpus. Note that for unrelated instructions, the
{News Article} is filled with “None”. We repeat
the instruction one more time to compensate for
the limited sequence length and reduce the possi-
bility of instructions being truncated. We think it
may not be necessary to repeat the instruction if
the computational resources supports sufficiently
long training sequences. Only losses on the tokens
after “Response” is used for training.

Evaluation Data Generation We generate CNN
News evaluation data using GPT-4. This prompt
is given to GPT-4 to generate instruction-response
pairs.

Generate some questions8 with answers
8In this work, we focus on instruction-response pairs in a

question-answering format
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related to facts from the following para-
graph. Make sure each question is self-
contained and specific enough for read-
ers to associate it with the information
provided in the paragraph, rather than
confusing it with other similar events.
Avoid using words such as "these", "this",
or "the event", "the movie" referring to
concepts not mentioned in the question.
Please generate in the format of "1. Ques-
tion: ... Answer: ..." {News Article}.

Because we strictly required the format of the gen-
eration in the last sentence, it is easy to parse the
output pairs.

Paraphrasing Evaluation QAs on Past Informa-
tion We generate evaluation QAs on past infor-
mation by paraphrasing the instruction-response
pairs in the instruction fine-tuning data. We use
GPT-4 to generate the paraphrases.

Given the following instruction and re-
sponse pair, rewrite the pair to query the
same information in different words.

Instruction: instruction

Response: response

G Post-processing of Self-Generated
Questions/Answers

We parse the questions by matching any content
following “Question (+. ):” or “Q(+. ):”. For self
answer generation, we simply take the entire gener-
ation as answers. However, we empirically observe
that language models may occasionally output ran-
dom meaningless chunks of characters. We filter
out such cases by removing answers containing
“words” with lengths larger than 30.

H Use of AI Assistant in Writing

Chat-GPT is used as a grammar-checker in the
writing of this paper.
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Abstract

We study attribute control in language models
through the method of Causal Average Treat-
ment Effect (Causal ATE). Existing methods
for the attribute control task in Language Mod-
els (LMs) check for the co-occurrence of words
in a sentence with the attribute of interest, and
control for them. However, spurious correla-
tion of the words with the attribute in the train-
ing dataset, can cause models to hallucinate
the presence of the attribute when presented
with the spurious correlate during inference.
We show that the simple perturbation-based
method of Causal ATE removes this unintended
effect. Specifically, we ground it in the prob-
lem of toxicity mitigation, where a significant
challenge lies in the inadvertent bias that often
emerges towards protected groups post detox-
ification. We show that this unintended bias
can be solved by the use of the Causal ATE
metric. We provide experimental validations
for our claims and release our code (anony-
mously) here: github.com/causalate-mitigates-
bias/causal-ate-mitigates-bias.

1 Introduction

Controllable text generation methods are often used
to guide the text generated by language models
(LMs) towards certain desirable attributes (Hu and
Li, 2021; Dathathri et al., 2019; Liu et al., 2021).
The goal herein is to generate sentences whose
attributes can be controlled (Prabhumoye et al.,
2020). Language models, which are pre-trained
only for next word prediction, cannot directly con-
trol for attributes in their outputs. On the other
hand, one may wish to alter words in the auto-
regressively produced sentences, either accentuat-
ing or mitigating the desired attributes. Attributes
such as sentiment, writing style, language preci-
sion, tone, and toxicity are key concerns for control
in language models, with particular emphasis on
toxicity mitigation due to its relevance in sensitive
contexts (Perez et al., 2020).

Figure 1: We plot the ATE score vs a regression based
classifier for toxicity across two datasets. ATE Scores
show a lower toxicity for protected groups.

Regularizers in the reward models are often
employed during training to alter the output sen-
tences towards certain desirable attributes (Hu et al.,
2017). Such regularization penalities (or rewards)
often rely on models trained on real-world datasets.
Such datasets contain spurious correlates – words
that correlate with certain attributes without nec-
essarily causing them (Nam et al., 2020; Udom-
charoenchaikit et al., 2022).

In the context of toxicity mitigation, prior works
show that detoxification methods inadvertently im-
pact language model outputs concerning marginal-
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ized groups (Welbl et al., 2021). Words such as
‘gay’ or ‘female’ are identified as being toxic, as
they co-occur with toxic text, and hence the LM
stops speaking about them (Xu et al., 2021).

This is called the unintended bias problem. In
this paper we provide experimental and theoretical
justifications for the use of causal ATE to mitigate
the unintended bias problem in text classification.
We prove theoretically that for spurious correlates,
the causal ATE score is upper-bounded. We also
show through extensive experiments on two popu-
lar toxicity classification datasets (Zampieri et al.,
2019a; Gao and Huang, 2017) that our method
shows experimental promise (See Figure 1).

We provide a full list of related works in Related
Works section 6.

1.1 Our Contributions:

1. We show theoretically that the Causal ATE score
of spurious correlates is less than 0.25 under mild
assumptions in Sections 2 and 3.

2. We provide a theoretical basis for the study
of the perturbation based Causal ATE method. We
show that it can be used alongside any classifier
towards improving it for false positive rates.

3. We provide experimental validation for our
claims by showing that causal ATE scores indeed
decrease the toxicity for spurious correlates to toxic
sentences in Section 4.

2 Notations and Methodology

Consider a sentence s, made up of tokens (words)
from some universe of words W . Let the list of all
sentences s in our dataset be denoted S. Let each
sentence s ∈ S be labelled with the presence or
absence of an attribute A. So the dataset, which
we can call D, consists of tuples (s,A(s)) for all
s ∈ S. Let the cardinality of the labelled dataset
be |D| = |S| = n.

From such a dataset, it is possible to construct
an attribute model that gives us an estimate of the
probability of attribute A, given a sentence s. i.e.
It is possible to construct a model Â(·) such that
Â(s) = P̂{A | s} for any given sentence s. Now
such a model may rely on the words in s. Let
s = {w1, . . . , wn}. We now define an attribute
model â(·) given a word as follows:

Definition 1 (Attribute model â(wi) for any word
wi ∈W ).

â(wi) :=
|{sentences s ∈ D containing wi s.t. A(s) = 1}|

|{sentences s ∈ D containing wi}|
(1)

=
n(A(s) = 1 | wi ∈ s)

n(s | wi ∈ s)
(2)

where n(·) denotes the cardinality of the set satis-
fying the properties.

Note that such a model is purely correlation
based, and can be seen as the proportion of sen-
tences containing an attribute amongst those con-
taining a particular word. i.e. it is an estimate of
the co-occurrence of attribute with the word. Based
on attribute model â(·) we can define an attribute
model Â(·) for any sentence s = {w1, . . . , wk} as
follows:
Definition 2 (Attribute model Â(s) for a sentence
s ∈W k).

Â(s = {w1, . . . , wk}) := max
wi∈s

â(wi) (3)

= max{â(w1), . . . , â(wk)} (4)

Note that such a model is conservative and labels a
sentence as having an attribute when any word in
the sentence has the attribute. For the purpose of
attributes such as toxicity, such an attribute model
is quite suitable.

2.1 Computation of ATE Score of a word with
respect to an attribute

Given a model representing the estimate of the
attribute A in a sentence s, denoted as P̂{A(s) =
1}, we can now define the ATE score. Note that the
Causal ATE score does not depend on the particular
model for the estimate P̂{A(s) = 1} – i.e. we can
use any estimator model.

If we denote fA(s) as the estimate of P{A(s) =
1} obtained from some model. We can then define
Causal ATE with respect to this estimate. If a sen-
tence s is made up of words {w1, . . . , wi, . . . , wk}.
For brevity, given a word wi, from a sentence s,
we may refer to the rest of the words in the sen-
tence as context ci. Consider a counter-factual
sentence s′ where (only) the ith word is changed:
{w1, . . . , , w

′
i, . . . , wk}. Such a word w′

i may be
the most probable token to replace wi, given the
rest of the sentence.

We now define a certain value that may be called
the Treatment Effect (TE), which computes the ef-
fect of replacement of wi with w′

i in sentence s, on
the attribute probability.
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Definition 3 (Treatment Effect (TE) of a word in
a sentence given replacement word). Let word wi

be replaced by word w′
i in a sentence s. Then:

TE(s, wi, w
′
i) = fA(s)− fA(s

′)

= fA({w1, . . . , wi, . . . , wk})
− fA({w1, . . . , w

′
i, . . . , wk}) (5)

The expectation now can be taken over the re-
placement words, given the context, and over all
contexts where the words appear.

Definition 4 (ATE of word wi given dataset D and
an attribute classifier f(·)).

ATE(wi) = E
s∈D|wi∈s

[
f(s)− E

w′
i∈W

[f(s′)]
]

(6)

where s′ is the sentence s where word wi is re-
placed by w′

i

This ATE score precisely indicates the interven-
tion effect of wi on the attribute probability of a sen-
tence. Notice that this score roughly corresponds to
the expected difference in attribute on replacement
of word.

Now say we compute the ATE scores for every
token w in our universe W in the manner given by
Equation 6. We can store all these scores in a large
lookup-table. Now, we are in a position to compute
an attribute score given a sentence.

2.2 Computation of Attribute Score for a
sentence

The causal ATE approach suggests that we can
build towards the ATE of a sentence given the ATE
scores of each of the words in the sentence recur-
sively. We illustrate this approach in Figure 2. First,
note that each word wt is stochastically generated
based on words w1, . . . , wt−1 in an auto-regressive
manner. If we denote {w1, . . . , wt−1} as st−1, then
we can say the distribution for wt, is generated from
st−1 and the structure of the language. To sample
from the probabilistic distribution, we may use an
exogenous variable such as Ut.

The attribute A(st−1) of a sentence up to t− 1
tokens, depends only on {w1, . . . , wt−1} ≡ st−1.
We now describe a model for computing attribute
A(st) from A(st−1) and ATE(wt). The larger En-
glish causal graph moderates influence of wt on
A(st) through the ATE score of the words. We con-
sider A(st) = max(A(st−1), ATE(wt)). This is
equivalent to

A∞(s = {w1, . . . , wn}) = max
i∈[n]

ATE(wi) (7)

More generally, we propose an attribute score
A(s) for this sentence given by A(s) =
∥{ATE(w1), . . . , ATE(wn)}∥p where ∥·∥p indicates
the Lp-norm of a vector. We can call these attribute
scores A(s) as the ATE scores of a sentence.

Figure 2: An Illustration of the Causal Graph used to
compute the attribute score of a sentence recursively.

3 Theory and Background

Now that we have laid the groundwork, we can
make proceed to make the central claims of this
work.

Lemma 1. Consider sentence s = {w1, . . . , wk}.
We will make two simple claims:

1. If ∄wi ∈ s such that ATE(wi) ≥ c, then,
A(s) < c.

2. If ∃wi ∈ s such that ATE(wi) ≥ c, then,
A(s) ≥ c.

This lemma is straightforward to prove from Defi-
nition 7.

We will now make a claim regarding the ATE
score of the given words themselves. Recall that
ci is the context for the word wi from a sentence
s. Given ci, wi is replaced by w′

i by a perturbation
model (through Masked Language Modelling).
Towards our proof, we will make two assumptions:
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Table 1: Description of Classifiers Used in Experiments

Sl. No. Model Description
1 Logistic Regression (LR) A linear classifier that predicts toxicity using logistic regression.
2 SVM Support Vector Machine with a linear kernel for text classification.
3 Gradient Boosting (GB) An ensemble model that combines weak learners for enhanced toxicity prediction.
4 Naive Bayes (NB) Multinomial Naive Bayes, a probabilistic model for text classification.
5 NN1Layer5 Neural network with 1 hidden layer of 5 neurons.
6 NN2Layer105 Neural network with 2 hidden layers (10 neurons and 5 neurons, respectively).
7 NN3Layer20105 Neural network with 3 hidden layers (20, 10, and 5 neurons, respectively).

Assumption 1. We make a mild assumption on this
replacement process: â(w′

i) < Â(ci). Grounding
this in the attribute of toxicity, we can say that the
replacement word is less toxic than the context.
This is probable if the replacement model has been
trained on a large enough corpus. See (Madhavan
et al., 2023) for empirical results showing this claim
to be true in practice.
Assumption 2. We make an assumption on the
dataset. A spurious correlate has a word with a
higher attribute score in the rest of the sentence for
sentences labelled as having the attribute. For ex-
ample, in the case of toxicity, a spurious correlate
like Muslim, has a more toxic word in the rest of
the sentence, when the sentence is labelled as toxic.
Given these assumptions, we have the following
theorem:

Theorem 1. Given Assumptions 1 and 2 for
a spurious correlate wi, ATE(wi) ≤ 0.25.

Proof. If we consider three numbers
{Â(ci), â(wi), â(w

′
i)}, there are six possible

orderings of this set. We can subsume these
orderings into two cases:

1. Â(ci) < â(w′
i).

2. Â(ci) ≥ â(w′
i).

Within these cases, we study the variation of
ATE(wi) with â(wi). We plot these in the Fig-
ure 3. Using a case-by-case analysis over these
possibilities, we prove the statement.

The full proof of the Theorem is provided in
Appendix A.

Based on Theorem A and Lemma 1, A(s) ≤ 0.25 if
each wi ∈ s is a spurious correlate, i.e. non-causal,
for attribute A.
In the following section we provide experimental
justification for our work through experimental re-
sults.

Figure 3: Graph of ATE score of a given word wi with
â(wi) given two cases

4 Experiments

In this section, we present experimental evidence
demonstrating the efficacy of the Causal Average
Treatment Effect (Causal ATE) method for mitigat-
ing unintended bias in text classification tasks. Our
experiments focus on toxicity detection, utilizing
two widely recognized datasets. The results pro-
vide both theoretical and practical support for the
utility of Causal ATE in addressing bias associated
with protected groups.

4.1 Datasets and Preprocessing

We conducted experiments using two well-known
datasets: the SemEval dataset (Zampieri et al.,
2019a) and the dataset from Gao et al. (Gao and
Huang, 2017). The SemEval dataset consists of
tweets annotated for offensive language, while the
Gao et al. dataset comprises user comments from
Yahoo! News articles labeled for hate speech and
harassment. These datasets were chosen for their
diverse and challenging nature, providing an ideal
testbed for evaluating bias mitigation in toxicity
classification tasks.

The data was preprocessed to clean the text
by removing special characters, URLs, and stop
words. We used the CountVectorizer from the
scikit-learn library to convert the textual data
into a Bag-of-Words representation, ensuring a
structured and uniform input for the classifiers.

133



Table 2: ATE Scores vs Classifier Predictions for different models by Protected Category for the Gao et al. Dataset

Group → African Black Female Gay

Model ↓ Pred ATE Diff Pred ATE Diff Pred ATE Diff Pred ATE Diff

LR 0.201 0.099 0.102 0.300 0.108 0.192 0.270 0.167 0.103 0.470 0.167 0.303
SVM 0.282 0.062 0.220 0.282 0.052 0.230 0.301 0.082 0.219 0.371 0.154 0.217
GB 0.225 0.052 0.173 0.335 0.071 0.264 0.225 0.000 0.225 0.653 0.204 0.449
NB 0.460 0.002 0.458 0.510 0.047 0.463 0.444 0.004 0.440 0.657 0.107 0.550
NN1Layer5 0.000 0.003 -0.003 0.000 0.059 -0.059 0.000 0.024 -0.024 1.000 0.197 0.803
NN2Layer105 0.000 0.000 0.000 0.000 0.096 -0.096 0.002 0.000 0.002 1.000 0.217 0.783
NN3Layer20105 0.000 0.160 -0.160 0.000 0.097 -0.097 0.000 0.000 0.000 0.993 0.165 0.828

Table 3: ATE Scores vs Classifier Predictions for different models by Protected Category for the Zampieri et al.
Dataset

Group→ African Black Female Gay

Model ↓ Pred ATE Diff Pred ATE Diff Pred ATE Diff Pred ATE Diff

LR 0.174 0.020 0.154 0.236 0.049 0.187 0.297 0.075 0.223 0.260 0.098 0.162
SVM 0.248 0.030 0.218 0.267 0.036 0.232 0.337 0.068 0.269 0.265 0.033 0.232
GB 0.269 0.020 0.249 0.269 0.013 0.256 0.269 0.008 0.261 0.269 0.003 0.266
NB 0.349 0.009 0.341 0.453 0.055 0.398 0.343 0.183 0.160 0.539 0.070 0.469
NN1Layer5 0.000 0.000 -0.000 0.000 0.052 -0.052 0.000 0.000 -0.000 0.000 0.114 -0.114
NN2Layer105 0.000 0.000 0.000 0.000 0.090 -0.090 0.000 0.170 -0.170 0.000 0.104 -0.104
NN3Layer20105 0.000 0.200 -0.200 0.000 0.126 -0.126 0.000 0.075 -0.075 0.000 0.046 -0.046

This vectorized representation was then used as
input for the various models described in the next
section.

4.2 Classifiers

We trained several classifiers to predict toxicity
in sentences. These classifiers span traditional ma-
chine learning models and modern neural networks,
allowing us to evaluate bias mitigation across a
range of approaches. Table 1 provides a summary
of the classifiers used in our experiments.

These models were implemented using the
scikit-learn library. For the neural networks,
we used the MLPClassifier with the lbfgs solver
and a maximum of 10,000 iterations to ensure con-
vergence during training.

4.3 Computation of ATE Scores

For each classifier, we computed the Causal ATE
scores for a set of bias-inducing words related
to protected groups, including "female", "black",
"gay", "hispanic", and "african". These scores were
calculated using a perturbation-based approach,
where we replaced specific words in a sentence
with alternatives generated by a masked language
model (roberta-base). The ATE score measures
the expected change in toxicity prediction when a
particular word is replaced, providing insight into
the causal effect of each word on the classifier’s

output.
This process enabled us to quantify the impact

of potentially bias-inducing terms, allowing for a
more nuanced understanding of how certain words
contribute to biased predictions. By analyzing
these ATE scores, we could identify instances
where the classifier was overly reliant on spuri-
ous correlations, thus flagging cases of unintended
bias.

4.4 Implementation and Runtime
Considerations

The implementation of the experiments was car-
ried out using scikit-learn for classifier training
and the transformers library for masked token
replacements using roberta-base. To ensure re-
producibility, all experiments were conducted with
a fixed random seed. The runtime for the entire
experiment, when the preprocessed data files were
available, was approximately 40 minutes on a sin-
gle CPU thread. The most computationally ex-
pensive tasks included training the classifiers and
generating the masked replacements for the ATE
computations.

The code for our experiments, including data
preprocessing, model training, and ATE computa-
tions, is available in our anonymous GitHub repos-
itory: github.com/causalate-mitigates-bias/causal-
ate-mitigates-bias.
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4.5 Discussion
From the results, we observe the following:
1. Reduction in Predicted Toxicity: The ATE
scores are consistently lower than the original pre-
dicted probabilities for most classifiers and pro-
tected categories. This indicates that the Causal
ATE method effectively reduces the unintended
bias towards these groups.
2. Classifier Performance Variance: Naive Bayes
(NB) shows the highest predicted probabilities and
substantial differences (Diff) across all categories,
suggesting a strong sensitivity to spurious correla-
tions. In contrast, Neural Network models often
exhibit lower predicted probabilities but sometimes
result in negative Diff values, indicating overcor-
rection or model underfitting.
3. Impact on Protected Categories: Categories
like “Gay” and “Black” show significant reduc-
tions in toxicity scores after applying the Causal
ATE method. This aligns with our objective of mit-
igating bias towards marginalized groups.
4. Consistency Across Datasets: Similar trends
are observed in both datasets, reinforcing the ro-
bustness of the Causal ATE approach in different
contexts.

4.6 Conclusion of Experiments
The experimental results validate our theoretical
claims that the Causal ATE method is an effective
approach to mitigate unintended bias in toxicity
classification tasks. By focusing on the causal im-
pact of words rather than their spurious correlations,
the method significantly reduces bias toward pro-
tected groups. Our experiments demonstrate that
this approach is robust across different classifiers
and datasets, offering a promising solution to bias
mitigation in language models.

5 Discussion

5.1 Causal ATE is Generalizable
While we our experimental results have pertained
to the use of Causal ATE as a metric for mitigating
bias in toxicity classification, our theoretical results
extend to any language attributes.

Figure 4 showcases different style attributes to
which such an analysis can be applied. We hope
that such causal approaches can be utilized for gen-
eral use cases such as style control using LLMs.

While the main sections in the paper consider the
attribute class of toxicity, we illustrate here that this
method can equally be used for various attribute

Figure 4: Illustration of word perturbation for identify-
ing important words with respect to an attribute.

classes thereby easily scalable and generalizable.
For instance, in the case of a style like formality,
changing ‘boss’ to ‘manager’ has changes the sen-
tence attribute to being more formal. Similarly, a
change from the word ‘terrific’ or ‘great’ to ‘ter-
rible’ in the context of a movie review, changes
the entire meaning of a sentence, and effectively
conveys a more negative sentiment.

Similarly, simple word changes can lead to the lan-
guage being more technical or polite. Figure 4
illustrates that causal ATE can be used across vari-
ous attributes for bias mitigation. The underlying
idea is that we can perturb particular words in their
context to check the change that they cause on the
desired attribute.

5.2 Importance of using a Causal Graph

Given estimates of the probability P{ai | s} for
attributes in text generated by a Language Model
(LM), the potential for fine-tuning the LM towards
specific attributes becomes apparent. However, nu-
merous challenges persist.
Firstly, attribute classifiers are prone to spurious
correlations. For instance, if a protected token like
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‘Muslim’ frequently appears in toxic sentences, the
attribute classifier detecting toxicity might penalize
the generation of the word ‘Muslim’. This brings
out in light that there is a trade-off between detox-
ification of LM and LM quality for text genera-
tion clearly detailed out in (Welbl et al., 2021).
LM avoids to generate sentences containing pro-
tected tokens leading to higher perplexity for texts
with these protected attrbiutes. Additionally, these
classifier models providing P ai | s estimates them-
selves may be LMs, resulting in slow training and
requiring substantial computational resources.
Utilizing a causal graph directly addresses these
challenges. It offer computational efficiency dur-
ing training and are immune to spurious corre-
lations, detecting interventional attribute distribu-
tions rather than conditional distributions through
counterfactual interventions. Moreover, we get
both flexibility and transparency regarding their ex-
act form, features unavailable with LM classifiers.

6 Related Works

In this section we will look at five related lines of
work: (a) Controlled generation (b) Unintended
Bias problem (c) Toxicity Mitigation (d) Toxicity
Detection (e) Causal Methods for Text

Controlled Generation can be broadly catego-
rized into fine-tuning methods (Krause et al., 2020),
data-based (Keskar et al., 2019; Gururangan et al.,
2020), decoding-time approaches using attribute
classifiers (Dathathri et al., 2019; Krause et al.,
2020) and causality based approaches (Madhavan
et al., 2023). Majority of these techniques were
tested on toxicity mitigation and sentiment con-
trol. The dependence of attribute regularizers on
probabilistic classifiers make them prone to such
spurious correlations (Kaddour et al., 2022; Feder
et al., 2022).
In the Unintended Bias problem LMs which are
detoxified inherit a tendency to be biased against
protected groups. LM quality is compromised due
to a detoxification side-effect (Welbl et al., 2021;
Xu et al., 2021). Some works address LM control
through improving datasets (Sap et al., 2019b). Un-
fortunately, this makes annotation and data curation
more expensive. As an alternative, there is growing
interest in training accurate models in presence of
biased data (Oren et al., 2019). Our work fits into
this framework.
In the context of Toxicity Mitigation, (Welbl et al.,
2021) highlight that detoxification methods have
unintended effects on marginalized groups. They

showcased that detoxification makes LMs more
brittle to distribution shift, affecting its robustness
in certain parts of language that contain mentions
of minority groups. Concretely, words such as “fe-
male” are identified as being toxic, as they co-occur
with toxic text, and hence the LM stops speaking
about them (Xu et al., 2021). This is called the unin-
tended bias problem. This unintended bias problem
can manifest as differences in performance of the
LM for different demographic groups.
Toxicity Detection Toxicity is a well studied prob-
lem in context of responsible and safe AI effort.
Hence, we foucs our experiments on toxicty miti-
gation in this study. Several works have also stud-
ied the angle from toxic text detection. Numer-
ous studies have explored toxic text detection, in-
cluding HATEBERT (Caselli et al., 2020), HATE-
CHECK (Röttger et al., 2020), and PERSPECTIVE

API (Lees et al., 2022). We employ the HATE-
BERT model for assessing local hatefulness and
utilize PERSPECTIVE API for third-party evalua-
tion, where we report the corresponding metrics.

Causal Methods for Text Spurious correlations
between protected groups and toxic text can be
identified is by understanding the causal structure.
(Feder et al., 2022) emphasizes on the connect be-
tween causality and NLP. Towards mitigation of
the bias problem (Madhavan et al., 2023) proposed
the use of Causal ATE as a regularization technique
and showed experimentally that it does indeed per-
form as intended.

In this paper, we probe the Causal ATE metric
theoretically, and prove that the Causal ATE metric
is less susceptible to false positives. An attribute
control method based on this metric would mitigate
unintended bias. We provide a theoretical basis
from which to understand the Causal ATE metric
and showcase that this causal technique provides
robustness across contexts for attribute control in
language models.

7 Conclusion

In conclusion, our work provides a theoretical jus-
tification for using the causality-based concepts
of counterfactuals, and ATE scores for controlled
text generation. We provide experimental results
that validate these claims. We show that the sim-
ple perturbation-based method of Causal ATE re-
moves the unintended bias effect through reduc-
tion of false positives, additionally making systems
more robust to biased data.
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8 Limitations

The limitations of our proposed framework are de-
scribed in detail in this section.
1. Owing to Pre-trained models: Third-party
hatespeech detectors such as HATEBERT tend to
overestimate the prevalence of toxicity in texts hav-
ing mentions of minority or protected groups due
to sampling bias, or just spurious correlations (Paz
et al., 2020; Waseem, 2016; Dhamala et al., 2021).
ATE computation though following causal mech-
anisms rely on these detectors for initial attribute
probability scores. Additionally, these models suf-
fer from low annotator agreement during dataset
annotation because of absence of concrete defining
hatespeech taxonomy (Sap et al., 2019a). Causal
nature of our approach tends to mitigates bias but
not completely eliminated the problem.
2. Owing to language and training corpus: We
showcase empirically the utility of our theoretical
claims in this study and conducted monolingual
experiments on English language which could be
further extended to other languages. Additionally,
training corpora used for training HATEBERT and
MLM model are known to contain curated data
from internet, where reliability and factual accuracy
is a known issue (Gehman et al., 2020). Hence,
we are limited by the distributions of our training
corpora in terms of what the model can learn and
infer.
3. Owing to distribution shift between datasets:
There are limitations that get introduced due to
change in vocabulary from training to test sets.
Sometimes, words which occur in test set are not in
ATE training set, we ignore such words but could
impact downstream perfomance of LLM if word
was important. In case of such a distribution shift
between the datasets, our model may not work as
expected.

9 Ethics Statement
Our paper addresses the crucial issue of bias and
toxicity in language models by using causal meth-
ods that involve several ethical concerns, that we
address herein:
1. Monolingual limitation : This work addresses
the problem of mitigation of toxicity in Language
models (LMs) for English language, even though
there more than 7000 languages globally (Joshi
et al., 2020) and future works should address more
generalizable and multilingual solutions so that
safety is promised for diverse set of speakers and
not limited to English speakers (Weidinger et al.,

2022)
2. No one fixed toxicity taxonomy: Literature sur-
vey highlights the fact that toxicity, hate and abuse
and other related concepts are loosely defined and
vary based on demographics and different social
groups (Paz et al., 2020; Yin and Zubiaga, 2021).
Henceforth, affecting the quality of hatespeech de-
tection systems (HATEBERT) used in this work.
These variations differences between cultural def-
initions of toxicity poses an ethical challenge (Ja-
cobs and Wallach, 2021; Welbl et al., 2021).
3. Third party classifiers for toxicity detection:
Reliance on the third party classifiers for toxic-
ity detection can itself beat the purpose of fair-
ness as these systems are reported to be biased
towards certain protected groups and overestimate
the prevelence of toxicity associated with them in
the texts (Davidson et al., 2019; Abid et al., 2021;
Hutchinson et al., 2020; Dixon et al., 2018; Sap
et al., 2019a). For most part, we take care of
these by using causal mechanisms but the ATE
computation still involves using a toxicity classifier
(HATEBERT) model.

10 Potential Risks

Any controlled generation method runs the runs the
risk of being reverse-engineered, and this becomes
even more crucial for detoxification techniques. In
order to amplify their ideologies, extremists or ter-
rorist groups could potentially subvert these models
by prompting them to generate extremist, offen-
sive and hateful content (McGuffie and Newhouse,
2020).
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A Proof of Theorem 1

Theorem. Given Assumptions 1 and 2, for wi which is a spurious correlate, ATE(wi) ≤ 0.25.

Proof. If we consider three numbers {Â(ci), â(wi), â(w
′
i)}, there are six possible orderings of this set.

We can subsume these orderings into two cases:

1. Â(ci) < â(w′
i).

2. Â(ci) ≥ â(w′
i).

Within these cases, we study the variation of ATE(wi) with â(wi). We plot these results in the Figure 5.

Figure 5: Graph of ATE score of a given word wi with â(wi) given two cases

Note that by Assumption 1, we have â(w′
i) ≤ Â(ci). Therefore, Case (2) in Figure 5 is sufficient for proof.

We have:

ATE(wi) = E
s∈D

E
w′

i∈s′

[
Â(s)− Â(s′)

]
(8)

=
n(A(s) = 1 | wi ∈ s)

n(s | wi ∈ s)
E

w′
i∈s′

[
Â(s)− Â(s′)

]

+
n(A(s) = 0 | wi ∈ s)

n(s | wi ∈ s)
E

w′
i∈s′

[Â(s)− Â(s′)] (9)

But by Assumption 2, in toxic sentences, Â(s) = Â(ci) ≥ â(w′
i). Therefore Ew′

i∈s′{Â(s)− Â(s′)} = 0.
Then:

ATE(wi) =
n(A(s) = 0 | wi ∈ s)

n(s | wi ∈ s)
E

w′
i∈s′

[Â(s)− Â(s′)] (10)

But Â(s)− Â(s′) is at most â(wi) as:
(1) if â(wi) ≤ Â(ci), then Â(s)− Â(s′) = 0
(2) otherwise Â(s)− Â(s′) = â(wi)− Â(s′) ≤ â(wi). Then:

ATE(wi) ≤
n(A(s) = 0 | wi ∈ s)

n(s | wi ∈ s)
â(wi) (11)

=
n(A(s) = 0 | wi ∈ s)

n(s | wi ∈ s)

n(A(s) = 1 | wi ∈ s)

n(s | wi ∈ s)

= p · (1− p) (12)

for some p ∈ [0, 1]. But p · (1− p) ≤ 0.25 ∀p ∈ [0, 1].

Based on Theorem A and Lemma 1, A(s) ≤ 0.25 if each wi ∈ s is a spurious correlate, i.e. non-causal,
for attribute A.
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B Experimental Results in Detail for Zampieri et al. and Gao et al. Datasets

In this section we provide the full set of results on our runs across models for the two datasets Gao and
Huang (2017) and Zampieri et al. (2019a). The plot in 6 illustrates the reduction in toxicity classification
by using ATE score on the Zampieri et al. (2019a) dataset for three types of classifiers.
We provide the full tabular results in Tables 4 and 5.

Figure 6: For the Zampieri et al. (2019a) dataset, we compute the mitigation of toxicity score using three different
classifiers, and the ATE scores computed using the respective classifiers. These show a reduction on toxicity for
protected groups across different models.

Table 4: Classifier Metrics by Protected Category for the Gao et al. Dataset

Group→ African Black Female Gay Hispanic

Model ↓ Pred ATE Diff Pred ATE Diff Pred ATE Diff Pred ATE Diff Pred ATE Diff

LR 0.201 0.099 0.102 0.300 0.108 0.192 0.270 0.167 0.103 0.470 0.167 0.303 0.166 0.011 0.155
SVM 0.282 0.062 0.220 0.282 0.052 0.230 0.301 0.082 0.219 0.371 0.154 0.217 0.246 0.057 0.189
GB 0.225 0.052 0.173 0.335 0.071 0.264 0.225 0.000 0.225 0.653 0.204 0.449 0.225 0.020 0.205
NB 0.460 0.002 0.458 0.510 0.047 0.463 0.444 0.004 0.440 0.657 0.107 0.550 0.615 0.000 0.615
NN1Layer 0.000 0.003 -0.003 0.000 0.059 -0.059 0.000 0.024 -0.024 1.000 0.197 0.803 0.000 0.000 0.000
NN2Layer 0.000 0.000 0.000 0.000 0.096 -0.096 0.002 0.000 0.002 1.000 0.217 0.783 0.000 0.000 0.000
NN3Layer 0.000 0.160 -0.160 0.000 0.097 -0.097 0.000 0.000 0.000 0.993 0.165 0.828 0.000 0.000 0.000

Table 5: Classifier Metrics by Protected Category for the Zampieri et al. Dataset

Group→ African Black Female Gay Hispanic

Model ↓ Pred ATE Diff Pred ATE Diff Pred ATE Diff Pred ATE Diff Pred ATE Diff

LR 0.174 0.020 0.154 0.236 0.049 0.187 0.297 0.075 0.223 0.260 0.098 0.162 0.161 0.143 0.018
SVM 0.248 0.030 0.218 0.267 0.036 0.232 0.337 0.068 0.269 0.265 0.033 0.232 0.275 0.119 0.156
GB 0.269 0.020 0.249 0.269 0.013 0.256 0.269 0.008 0.261 0.269 0.003 0.266 0.269 0.033 0.236
NB 0.349 0.009 0.341 0.453 0.055 0.398 0.343 0.183 0.160 0.539 0.070 0.469 0.287 0.000 0.287
NN1Layer5 0.000 0.000 -0.000 0.000 0.052 -0.052 0.000 0.000 -0.000 0.000 0.114 -0.114 0.000 0.000 0.000
NN2Layer105 0.000 0.000 0.000 0.000 0.090 -0.090 0.000 0.170 -0.170 0.000 0.104 -0.104 0.000 0.000 0.000
NN3Layer20105 0.000 0.200 -0.200 0.000 0.126 -0.126 0.000 0.075 -0.075 0.000 0.046 -0.046 0.000 0.000 0.000

Note: We note that the neural classifiers may have overfit on the Zampieri et al. (2019a) dataset due to
which the numbers are either close to 0 or 1.
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C Experimental Setup

C.1 Dataset Details
We conducted experiments on the publically available Zampieri (Zampieri et al., 2019b) and Gao (Gao
and Huang, 2017) datasets.

C.2 Hyper-parameters
Details in our GitHub repository: github.com/causalate-mitigates-bias/causal-ate-mitigates-bias

C.3 Result Statistics
Our run details are provided on the README.md file of our GitHub repository:
https://github.com/causalate-mitigates-bias/causal-ate-mitigates-bias/blob/main/README.md

C.4 Compute Resources
All our experiments were carried out using NVidia 1080 GPU Machines with Intel Core i7-7700K @
4.2GHz. Our experiments utilized approximately 100 CPU-hours and 10 GPU-hours.

C.5 Tools and packages
We list the tools used in our requirements.txt file of our GitHub repository: https://github.com/causalate-
mitigates-bias/causal-ate-mitigates-bias/blob/main/requirements.txt

C.6 Use of AI Assistants
We have used AI Assistants (GPT-4) to help format our charts as well as help create latex tables.
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Abstract

We study some Large Language Models to ex-
plore their deficiencies in resolving sense am-
biguities. In this connection, we evaluate their
performance on well-known word sense disam-
biguation datasets. Word Sense Disambigua-
tion (WSD) has been a long-standing NLP prob-
lem, which has given rise to many evaluation
datasets and models over the decades. Re-
cently the emergence of Large Language Mod-
els (LLM) raises much hope in improving accu-
racy. In this work, we evaluate word sense dis-
ambiguation capabilities of four LLMs: Ope-
nAI’s ChatGPT-3.5, Mistral’s 7b parameter
model, Meta’s Llama 70b, and Google’s Gem-
ini Pro. We evaluate many well-established
datasets containing a variety of texts and senses
on these. After observing the performances
of some datasets, we selectively study some
failure cases and identify the reasons for fail-
ures. We explore human judgments that would
correct these failures. Our findings suggest
that many failure cases are related to a lack of
world knowledge and the reasoning to amal-
gamate this knowledge rather than the lack of
linguistic knowledge. We categorize the judg-
ments so that the next generation of LLMs can
improve by incorporating deeper world knowl-
edge and reasoning. We conclude that word
sense disambiguation could serve as a guide for
probing the reasoning power of LLMs to mea-
sure their functional competency. We also list
the accuracy of these datasets. We find that on
many occasions, accuracy drops to below 70%,
which is much less than that of well-performing
existing models.

1 Introduction

Large Language Models have been shown to
achieve human-like linguistic competence. In vari-
ous linguistic tasks, their abilities have been doc-
umented (Kauf et al., 2023), (Akter et al., 2023).
However, conflating linguistic competence with
common-sense reasoning abilities has also been de-

cried among researchers. In one experiment (Zhang
et al., 2023), researchers report that language mod-
els still do not show evidence of cognitive abilities
on par with humans. Some studies (Mahowald
et al., 2024) make the competencies of language
models distinct: formal and functional linguistic
competence. Whereas formal linguistics compe-
tence manifests in forming coherent, fluent, and
syntactically correct texts, functional competence
is evidenced in identifying motives and formulat-
ing a strategy with world knowledge to decipher
the true intention of the writer. Though language
models excel in formal competence, they are not
known to perform at the human level on functional
competence.

Why is functional competence important in NLP
tasks? One answer could be functional competence
could enhance machine translation performance. In
transferring meaning from one language to another,
the senses must be interpreted. Many words have
more than one sense. Divining the sense of a word
requires formal as well as functional competence.
For example, consider the following sentence:

At first blush it seemed that what was
striking about him rested on the fact that
his dress was exotic, his person foreign.

We will consider two definitions of the word
person:

• Human being

• The physical body of a being seen as distinct
from the mind, character

The word person could be interpreted as a “hu-
man being” considering the surrounding collocat-
ing words. An alternative interpretation could be
“The physical body of a being seen as distinct
from the mind, character”, which is the correct
one. While the former interpretation is derived
by applying formal competence, which involves
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Figure 1: LLM is prompted with sense choices

analyzing the syntactic relations among a text’s
constituents, the latter definition can only be deter-
mined after considering the historical use of person.
Arriving at the latter meaning requires greater cog-
nitive deliberation and a broader understanding of
world knowledge. The inability to settle on the
proper meaning would result in suboptimal trans-
lations. That word sense disambiguation (WSD)
helps in machine translation has been documented
in much research (Nguyen et al., 2018), (Neale
et al., 2016), (Jin et al., 2023), (Rios Gonzales
et al., 2017), (Koehn, 2020).

Most well-performing WSD methods rely on su-
pervised machine learning. Using Artificial Neural
Networks have been shown to improve WSD per-
formance (Berend, 2020; Wang and Wang, 2020;
Yap et al., 2020; Kohli, 2021; Zhang et al., 2021;
Wang et al., 2021; Barba et al., 2021a; Mizuki
and Okazaki, 2023; Sainz et al., 2023). Exist-
ing datasets for evaluating WSD performance have
been a by-product of decades-long research, which
have been time-tested, some containing infrequent
use of senses. We intend to use these datasets for
our experiments.

In this study, Large Language Models (LLM)
are prompted with the examples of the datasets
described in Subsection 7.1 1. The responses are
matched and tallied to summarize overall perfor-
mance (Figure 1).

In summary, our contribution is as follows:
we share some insights into why, in some WSD
cases, LLMs fail by highlighting certain functional
deficiencies, and we present findings that WSD
datasets could be repurposed to gauge the reason-
ing power of LLMs.

The remaining sections are organized as follows:
Sections 2, 3, and 4 discuss the similarities and
differences between LLMs and humans. Sections
5, 6, 7, and 8 provide detailed descriptions of our
experiments.

1The experiment could be reproduced with the code avail-
able at Functional Competence of LLMs

2 Linguistic Regularities and Formal
Linguistic Competence

Formal linguistic competence manifests in speak-
ers’ ability to use regularities in a language.
Whether or not a verb precedes an object as in
“Hurricane Milton lashed at the Florida west coast”
is an example of such regularities. These regular-
ities are syntactical. Some relate to subject-verb
agreement: “Millions of citizens, some on their
vacations, are expected to cast their ballots.” Here
are is the proper auxiliary verb instead of is.

Some regularities are morphological, based on
the mechanism of word formation: in "unbreak
my heart, uncry these tears", the verbs have been
formed by adding “un” (Aronoff and Fudeman,
2022). "Mongolian" is formed by transforming
"Mongol" by adding "ian" (Kiparsky, 1982).

It has been shown that LLMs capture these lin-
guistic patterns rivaling humans (Linzen and Ba-
roni, 2021).

3 Divergence between LLMs and Humans

Whereas LLM’s human-like processing of lan-
guage has been documented, some research papers
highlight certain deficiencies compared to humans
in reasoning tasks. Take for example a theory of
mind task and its alteration (Ullman, 2023):

Original task: Here is a bag filled with
popcorn. There is no chocolate in the bag.
Yet, the label on the bag says “chocolate”
and not “popcorn.” Sam finds the bag.
She had never seen the bag before. She
cannot see what is inside the bag. She
reads the label.

Altered task: Here is a bag filled with
popcorn. There is no chocolate in the bag.
The bag is made of transparent plastic,
so you can see what is inside. Yet, the
label on the bag says ’chocolate’ and not
’popcorn.’ Sam finds the bag. She had
never seen the bag before. Sam reads the
label.

GPT3.5 was prompted with predicting the fol-
lowing:

She believes that the bag is full of __,

The machine got the answer right in the original
task (chocolate), but not in the altered version.
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Given LLM’s excellent linguistic ability and yet-
unproven performance on reasoning at the human
level, researchers are apt to classify the LLM capa-
bilities into two: formal and functional competen-
cies. This motivation comes from observing brain
activities. The language network in the human
brain is quite distinct from the day-to-day reason-
ing center as revealed in fMRI scans (Mahowald
et al., 2024). In other words, linguistic abilities
should be separately considered from the world
knowledge.

4 Word Sense Disambiguation and
Functional Competence

In evaluating the WSD performance of the LLMs
we find that some difficult disambiguation tasks
that machines fail to perform, rely on having world
knowledge in addition to linguistic knowledge. We
categorize these with examples. To the best of our
knowledge, these categories have not been previ-
ously documented. Some are related to historical,
old English, cultural, geographical, trade relational,
religious, satiric/figurative use of languages, and
spatial knowledge.

As an example consider the following sentence:

The discovery of the mines of America
... does not seem to have had any very
sensible effect upon the prices of things
in England.

There are eight different senses for the target
word sensible, of which we are listing just two:

• Sense#1: Perceptible by the senses.

• Sense#2: Easily perceived; appreciable.

Sense#1 is a false choice. To detect the correct
choice Sense#2, one must reason with knowledge
involving history, trade relations, and possibly ge-
ography. Here is our analysis of why Sense#2 is
the correct choice:

Historically America and England have been
closely related in terms of commerce. Close rela-
tion implies some effect of events in one country
on another. It is common knowledge that any effect
should be perceivable/appreciable. The writer is
informing of no effect, which is counter-intuitive;
but that is what writers do – provide surprising in-
formation. To disambiguate, knowledge of trade
relations, and possibly geography is needed. And,
of course, good reasoning.
We provide a taxonomy of failure cases in tables 1.
More can be found in the Appendix.

Figure 2: Determining a sense of pine based on a collo-
cating word

5 Background on Word Sense
Disambiguation Evaluation

Many words in the English language are ambigu-
ous, having more than one sense. In WordNet
(Miller et al., 1990), a popular word-sense inven-
tory, plant has four senses as noun and six senses
as verb Table 2.

One simple way to disambiguate a word is to
use a lexicon, such as a dictionary, which provides
definitions of senses. These definitions are com-
pared with the definitions of context words (the
words surrounding the target word). The definition
containing the maximum match would, hopefully,
point to the correct sense of the word (Lesk, 1986).
For example, in Figure 2, sense#1 of both the
words point to a match.

However, definitions in dictionaries tend to be
succinct. Thus, although this context-matching
method is straightforward, it does not address in-
stances where the context words share no com-
mon terms with the definitions. As a result, re-
searchers considered relations between words and
their affinity with each other so that even though
dictionary definitions of context do not overlap,
the relation between them could be used to infer
their co-occurrence. With this in mind, gathering
statistics from the corpus gained traction. Some
statistics were related to the Verb-Object relational
preference (Resnik, 1997), whereas some statistics
concern parts of speech, positions of words, mor-
phology, the dependency structure of the sentence,
and the like. Figure 3 depicts the workings of one
such model.

These models have made use of various ma-
chine learning methods. Evaluating these models
requires a common test set, which, over the years,
has brought to fruition several. In this section, we
will describe some of the evaluation procedures.
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Table 1: Failure cases - Part I

WKR Example text Remarks
Category Sub Category
1. Old English At first blush it seemed that what was

striking about him rested on the fact
that his dress was exotic, his person
foreign.

“person” refers to a use in 14th-
century English. The correct choice:
The physical body of a being seen as
distinct from the mind, character

2. Cultural
2.1 Current cul-
tural

Any wrestler who will piledrive
Lawler and injure him like he did me
gets five thousand dollars from me!

“piledrive” refers to a maneuver
used in professional wrestling.
The correct choice: To use the
piledriver move.

2.2 Social norm/ hi-
erarchy

Still, the folio Ben looks to publish
will be well beyond the purse of most
scholars, let alone a groundling

“groundling” refers to relatively unini-
tiated compared with the profession-
als. The correct choice: A person of
uncultivated or uncultured taste.

3. Metaphor Egg crates are a much less satisfactory
model for schools.

“Egg crates” is being used to
refer to a closed environment.
The correct choice: A self-contained
class that has no collaboration or
interaction with any other class, and
which is the sole responsibility of a
single teacher.

4. Grammati-
cal/ Linguistic

4.1 Verb-object,
Syntactical

Whosoever will read the story of this
war will find himself much staggered.

“staggered” is being used as a pas-
sive form. Knowledge of verb-object
affinity containing the notion that a
person can be staggered could help.
The correct choice: To cause to doubt
and waver; to make to hesitate;

4.2 Subject-verb;
selectional prefer-
ence

He is a young fellow, not long out of
adolescence, who faunches to set the
world on fire but isn’t sure how to go
about it.

“faunches” can be disambiguated
using the selectional preference
((Resnik, 1996))/subject-verb affinity.
The correct choice: To desire; to
yearn; to covet.

4.3 Adjective-noun
relation knowledge

The beautiful Akee ("Blighia sapida"),
originally brought from the West Coast
of Africa by slave ships, is now a com-
mon tree in the West Indies, and I no-
ticed several fine specimens in Belize.

“Akee” is a tree implied by the com-
mon use of the adjective ‘beautiful’
to modify a noun (tree), also by the
accompanying scientific name for the
species. The correct choice: A tropi-
cal evergreen tree, (noshow=1), re-
lated to the lychee and longan.

WKR Column: Type of World Knowledge Required. The target word is bolded. The correct choice (last column) is the

definition corresponding to the gold key.
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Table 2: Partial enumeration of senses for plant in Word-
Net

Sense ID Definition
sense#1 buildings in an industry
sense#2 a living organism
sense#3 an actor .. in the audience..
sense#4 something planted secretly..

(a) Senses for Plant/Noun in WordNet.

Sense ID Definition
sense#1 put seeds .. into the ground
sense#2 ..set securely
sense#3 ..lay the groundwork for..
sense#4 place into a river

(b) Senses for Plant/Verb in WordNet.

Figure 3: Creating a model for inference

5.1 WSD Evaluation
Researchers have traditionally used datasets that
contain some text and a target word that needs to be
disambiguated. The datasets also include senses for
the ambiguous words. A gold sense key is provided.
The evaluation task consists of presenting a model
with some context and inquiring about the model
to output the sense key that it deems appropriate to
capture the correct sense given the context (Figure
4).

Figure 4: Gold key is provided and matched with the
model’s prediction

Some popular datasets, such as (Fellbaum and
Miller, 1998), have been around for decades. Table
3 provides a list of the datasets.

Since the 1980s, various training methods have
been proposed. Most methods train a model us-
ing statistical (Zhong and Ng, 2010) and/or neural
methods (Wang and Wang, 2020) exploiting the dis-
tribution of words and relationships. The datasets

Table 3: Some popular datasets used for WSD evalua-
tion

Dataset Year Number of
Name Since Annotations
Senseval-2 2001 2,282
Senseval-3 2004 1,850
SemEval-07 2007 455
SemEval-13 2013 1,664
SemEval-15 2015 1,022
SemCor 1994 226,040
OMSTI 2015 1,000,000
Coarse-20 2020 80,000
NUS WSD Corpus 2009 3,854
WiC (Word-in-Context) 2019 5,000
Eurosense Multilingual 2017 15,441,667
FEWS 2021 90,000

Table 4: Performance comparison of notable models.
1: (Blevins and Zettlemoyer, 2020), 2: (Loureiro and
Jorge, 2019), 3: (Zhong and Ng, 2010)

Model Method Accuracy
1 Transformer fine-tuning 80%
2 Transformer with WordNet Graph 75.4%
3 Support Vector Machines 72%

typically provide some training data. In addition,
some knowledge about words and their definitions
is often gleaned from external lexicons such as
WordNet (Miller et al., 1990).

The accuracy of the best-performing models hov-
ers around 80% (Blevins and Zettlemoyer, 2020).
Table 4 shows the performance of some notable
models evaluated on Semeval and Senseval datasets
(Raganato et al., 2017).

5.2 Large Language Models

With the emergence of Transformer models such as
(Devlin et al., 2018; Liu et al., 2019), and the rise in
computation power to process massive amounts of
text, Large Language Models (LLMs) have gained
human-like capabilities. Researchers report these
models, such as (Team et al., 2023; Jiang et al.,
2023; OpenAI, 2022; Achiam et al., 2023; Touvron
et al., 2023), perform well on a vast array of natu-
ral language processing tasks (Akter et al., 2023),
for example, on Knowledge-based QA, Reasoning
and Machine Translation, even though the models
have not been purposely trained to perform these
tasks. This raises hopes for the linguistic commu-
nity that the long-standing problem of WSD would
benefit from the LLM’s superlative language and
reasoning power (Senel et al., 2022). Some re-
search shed light on the inherent notion of sense in
LLMs (Wiedemann et al., 2019).

Several studies report that a closely associated
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task, machine translation, has benefited from these
models. For example, (Lee et al., 2023) reports that
LLMs display some capabilities that go beyond the
literal translation of words, which is much needed
when handling idiomatic expressions.

LLMs are also being explored for tasks that re-
quire reasoning and planning (Zhao et al., 2024),
(Savarimuthu et al., 2024), and augur some emerg-
ing abilities (Wei et al., 2022). However, many
researchers report that much is still lacking in the
reasoning power of LLMs (Li et al., 2024), (Kass-
ner et al., 2023), (Liu et al., 2023), (Hao et al.,
2023), (Sap et al., 2022), (Ji et al., 2023).

With these deficiencies in mind, researchers have
proposed many methods for improving the reason-
ing power of LLMs. (Wu et al., 2024) proposes an
evaluation framework for measuring LLM’s reason-
ing capabilities. (Hao et al., 2023) proposes a rea-
soning framework by priming LLMs with prompt-
ing. (Mialon et al., 2023) and (Ye et al., 2022)
highlight augmentation techniques with external
knowledge to enhance LLMs to reason. (Wu et al.,
2023) emphasizes the interpretability of LLMs in-
tending to improve their inference capabilities.

Some research, such as that conducted by (Sap
et al., 2022), questions the basic formulation of
LLMs by examining their learning processes and
contrasting them with human learning, all within
the framework of Theory of Mind (Premack and
Woodruff, 1978). Additionally, researchers like
(Kim et al., 2022) highlight the issue of LLMs be-
ing overexposed to their training corpora, which
appears to hinder their ability to generalize effec-
tively.

As for WSD, Senel et al. (2022) reports that
LLMs could benefit from learning complex infer-
ence and deep understanding that is often required
for disambiguating words.

6 Methodology

We test the Word Sense Disambiguation capability
of some LLMs. Our choice of methodology for
WSD research is influenced by established knowl-
edge about the pitfalls of existing corpus and sense
definitions.

6.1 Common Issues in WSD Evaluation

1. Same Domain Bias
2. MFS vs LFS
3. Context As a Clue
4. One Sense per Discourse

5. Coarse vs Fine-grained Senses
6. Homonyms vs Polysemous words

1. Same Domain Bias: Same domain bias is
observed when a WSD model is trained and tested
on the same domain or similar domains of text
(Escudero et al., 2000). Oftentimes, the accuracy
drops when an out-of-domain text’s disambiguation
is performed.

Also, LLMs are commonly trained on a masked
word prediction objective, which is to reduce the
following loss function, where w is the withheld
word and context is the surrounding words (Devlin
et al., 2018), (Levine et al., 2019) –

LLM = − log p(w|context) (1)

In both cases, what is learned by the machine de-
pends much on the corpus content.

2. MFS vs LFS: Researchers distinguish between
the Most Frequent Sense (MFS) vs Lesser Frequent
Senses (LFS) of words. Table 5 lists two senses of
appreciate/VERB available in WordNet.

Table 5: Two senses of appreciate. Sense#1 is the MFS,
whereas Sense#2 is the LFS.

Sense#1: recognize with gratitude
Example usage: We must appreciate the
kindness she showed towards us
Sense#2: increase the value of
Example usage: The Germans want to
appreciate the Deutsche Mark

In addition, natural language words follow a Zip-
fian distribution: most words are often used and
re-used, whereas, some words are rarely used (Flo-
rence, 1950). Similarly, the most frequent senses
of a word number are as much as 80%. In fact,
defaulting to the MFS of a word gives a good base-
line performance, which has been difficult to beat
in the pre-neural era. Our work places a substan-
tial focus on the LFS usages and in particular on
rare senses by incorporating datasets meant for rare
sense disambiguation.

3. Context As a Clue: WSD evaluations are
based on treating the context words as the domi-
nant clue. Although not explicitly mentioned in the
literature, it is assumed that the linguistic features
that the context provides act as the primary deter-
minant of a sense. We investigate how much this
assumption holds.

4. One Sense per Discourse: In naturally occur-
ring texts, repeated uses of a word tend to employ
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the same sense (Gale et al., 1992). The word viral
in medical journals would repeatedly use the sense
“relating to or caused by a virus”; medical texts
would scarcely use if at all, the sense “circulated
rapidly and widely from one internet user to an-
other”. This necessitates testing a WSD model on
diverse texts, meaning diverse datasets.

5. Coarse vs Fine-grained Senses: Some sense
inventories such as WordNet contain senses that
are so fine that it is difficult to tell two senses apart.
In fact, various studies have found that annotators
often disagreed on a sense (Table 6). WordNet was
created as a psychometric aid (Miller, 1990), which
requires fine distinctions of senses. In ordinary con-
versations, humans do not employ such distinctions.
Therefore, a proper evaluation of WSD must factor
in other sense inventories that are less fine-grained
(Ide and Wilks, 2006).

Table 6: Two senses of rush. It is hard to tell the differ-
ence between the two.

Sense#1: move fast
Example usage: He rushed down the hall to
receive his guests
Sense#2: act or move at high speed
Example usage: We have to rush!; hurry–it’s
late!

6. Homonyms vs Polysemous words: Homonyms
are words that sound alike but stand for different
or unrelated things. The senses of the word bank
in the “a river bank”, and “withdraw money from
the bank” are not related. Polysemous words, on
the other hand, are related. For example, the word
grasp in the following sentences has related but
slightly different meanings: “to grasp a pencil”,
“to grasp the summary”. It has been observed that
homonyms generally score higher than polysemous
words in terms of disambiguation accuracy. There-
fore, the datasets must contain a fair distribution of
the two kinds of ambiguous words.

6.2 Choice of Datasets
We test four LLMs, which serve as representatives
of LLMs, on some test data available on the pop-
ular datasets mentioned in Table 3. The choice of
datasets chosen has been based on a few criteria:

The data set –

a) must be well cited
b) must contain context and target
c) must provide gold keys
d) must provide variation

e) must be validated by humans
f) must contain a mixture of homonyms
and polysemous words

6.3 Procedure for Collecting Results
We prompt the model with context and choices
culled from the datasets, and record the response to
compare with gold keys (Figure 1). We then tally
the results.

6.4 Baselines
Having gone through the existing literature, we
select the best-performing models for WSD tasks
for comparison in Table 7. In some cases, the au-
thors of a dataset have provided their benchmarks,
which we include. To our knowledge, (Barba
et al., 2021b) is the best-performing model on
WSD. However, Blevins and Zettlemoyer (2020) is
a well-performing model known for its strong per-
formance in few-shot and zero-shot settings. This
we mention in Table 4.

6.5 Setting up LLMs
We prepare the LLMs for generating appropriate
responses by setting some parameters such as "ex-
pert" mode, "non-verbose" mode, and "safe" mode.
The responses sometimes were found to contain
some spurious content. We sanitized the output to
collect the response. It took several iterations to ar-
rive at a proper mechanism to capture the response.

6.6 Four LLMs
We experiment on four recent models. These
models are recognized for their good performance
across various NLP tasks such as Commonsense
Reasoning, World Knowledge, and Reading Com-
prehension (Akter et al., 2023). We opt to choose a
mix of open-source and proprietary models. Each
model is subtly different in how they were trained.

Here are brief descriptions of these models:

6.6.1 ChatGPT-3.5
OpenAI’s ChatGPT-3.5 is demonstrated to per-
form effectively on NLP tasks (Brown et al., 2020).
Since it is a close-sourced model, the model pa-
rameters could not be ascertained. However, we
experiment with it because of its popularity.

6.6.2 Mistral
We experimented on Mistral 7B, which has 7 bil-
lion parameters and is open-source. This model
outperforms other open-source models. The Mis-
tral model uses a Sliding Window Attention, which
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is particularly suited for long text (Beltagy et al.,
2020), a feature must desired in disambiguation.

6.6.3 Llama

We experiment with the Llama 70 billion param-
eter model, which is open-sourced. We conduct
experiments on it because it has been developed
using open and accessible data. It also possesses
comparable performance with the state-of-the-art
(Touvron et al., 2023).

6.6.4 Gemini Pro

Gemini Pro is Google’s latest language model. On
various benchmark tests, it shows state-of-the-art
performance (Team et al., 2023). Since it is a close-
sourced model, the model parameters could not be
ascertained.

7 Experimentation

The datasets we use in our experiments contain a
variety of sense keys: some use their self-conceived
sense keys extracted from popular text sources such
as Wikipedia and Wiktionary. Some use WordNet
sense keys. Still, others could be found using some
other lexicon’s keys, for example, BabelNet (Nav-
igli and Ponzetto, 2012). Not all datasets present
WSD as a classification task. For example, Word
in Context (WIC) dataset (Pilehvar and Camacho-
Collados, 2018) presents each evaluation sample
as a simple true or false by giving two sentences,
probing the LLM to verify whether the two sen-
tences carry the same meaning of the target word
(Figure 5a and Figure 5b).

(a) WSD posed as confirming whether the two sentences
carry the same meaning for a target word (WIC dataset)

(b) Most datasets pose WSD as a classification task where
a sense key is given as the class

Figure 5: WSD is posed differently in datasets

Data sets are in different formats: some in XML
format while others in simple texts. Some datasets
contain the sense keys, whereas others refer to
senses from external sense inventories. After ex-
tracting the sentences and collecting definitions of
senses suitable for prompting, we prepare prompts
similar to Figure 1.

7.1 Datasets Considered
a. Eurosense Multilingual WSD Dataset (Bovi
et al., 2017)
This dataset is the largest. It also contains multi-
lingual content. However, the dataset lacks proper
human evaluation – random samples reveal that it
has 67.7% inter-annotator agreement. We do not
include this dataset in our experiments.

b. NUS WSD Corpus (Dahlmeier et al., 2009)
This dataset only contains prepositions as the target
of disambiguation. Since it does not provide other
parts of speeches, we do not include this in our
experiments.

c. Unified framework (Raganato et al., 2017)
This dataset contains a collection of datasets that
researchers have been using since the 1990s. Since
some of the most prominent research cites this
dataset as a benchmark, we include this.

d. WiC (Word-in-Context) Dataset (Pilehvar and
Camacho-Collados, 2018)
This dataset poses a WSD task in a novel way – that
of contrasting two sentences to decide on the same-
ness of senses in the target word usage. We surmise
that this test would be a good test on LLM to eval-
uate reasoning. Moreover, this dataset has been
carefully created using VerbNet (Schuler, 2005),
producing verb words as targets of disambiguation.
Since Wiktionary has been used to collect data,
human evaluation was factored in. Therefore, we
include this in our experiments.

e. CoarseWSD-20 (Loureiro et al., 2021)
This dataset has been collected from Wikipedia.
Authors report that random samples prove over
90% of the tags are accurate by validating with
human annotators. We include this dataset in our
experiments.

f. FEWS dataset (Blevins et al., 2021)
This dataset has been created based on the notion
of WSD’s poor performance on rare senses. In fact,
it has been reported that humans outperform the
best baseline models on this dataset. The dataset
has been created from examples and definitions in
Wiktionary, which is human-created. We include
this in our experiments.
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Table 7: Accuracy (%) found in our experiments. The COMPARISON column gives the accuracies obtained by
some well-performing models: Sl. 1-5: (Barba et al., 2021b), Sl. 6: (Pilehvar and Camacho-Collados, 2018), Sl. 7:
(Loureiro et al., 2021), Sl. 8: (Blevins et al., 2021). IAA Column: Inter-Annotator Agreement. *: for Verbs and
Nouns, respectively.

Sl. Dataset OpenAI Mistral Llama Gemini COMPARISON IAA
1 Senseval-2 65.7 65.0 61.0 71.1 82.3 -
2 Senseval-3 61.5 58.8 54.5 70.0 79.9 72.5
3 Semeval-2007 58.4 55.7 49.1 65.4 77.4 72,86*

4 Semeval-2013 70.1 65.9 66.5 74.1 83.2 -
5 Semeval-2015 67.3 64.1 63.0 72.9 85.2 68
6 WiC (Word-in-Context) 59.4 61.6 55.1 65.8 58.0 80
7 CoarseWSD-20 84.1 61.6 33.8 93.9 95.0 -
8 FEWS few-shots 63.0 63.7 60.7 71.0 66.4 80.2

zero-shot 59.0 58.7 56.7 65.0 -

Table 8: Pricing per a million tokens. * Llama was
accessed through replicate.com.

Language Model Input Output
ChatGPT $0.5 $1.5
Mistral $4.0 $12.0
Llama* $0.65 $2.75
Gemini Pro $0.35 $1.05

7.2 Results

We test nine datasets on each of the four LLMs.
Each language model is prompted with a sentence
and told to disambiguate a target word. The re-
sponse of the language model is observed and
recorded. Table 7 shows the accuracy found by
comparing it with the gold sense key.

8 Discussion

Given that the LLMs have not been fine-tuned, it is
understandable from the test results that accuracy is
comparable to the state-of-the-art models on WSD.
Sometimes a language model fails to accurately
identify a sense due to its lack of spatial knowledge;
other times it fails because it seems not to be able
to put the text in historical context; still other times
the lack of application of humans’ social relation
is to be the reason for failure.

Many disambiguation cases require knowledge
from different avenues: political, spatial, cultural,
historical, and the like. Many researchers would
sometimes club these missing pieces as common-
sense knowledge. While investigating the failure
cases, we prompted the LLMs to test their world
knowledge. We discovered that by using differ-
ent prompts, it can be confirmed that the LLMs
appear to possess much of this knowledge. How-
ever, the failure arises when these models do not
leverage knowledge across multiple dimensions to
integrate it effectively. Much research in the av-

enue of reasoning is needed to further advancement
of Artificial General Intelligence, which concurs
with some research findings (Chen et al., 2023).

We stop short of calling our results a benchmark
since not all LLMs we considered are open-source
and the technology is continuously evolving as a
result of which it will be difficult to compare across
generations of LLMs.

9 Conclusion

In this research, we demonstrate that WSD involves
not just the knowledge of language but world
knowledge and the capability of piecing together
facts from multiple sources — in other words, func-
tional competence. Our findings also suggest that
WSD could be used to verify the reasoning power
of LLMs. WSD datasets are aplenty, and some
have been human-validated. We conclude that it
is worth paying heed to improving the WSD ca-
pabilities of LLMs and using these datasets in a
novel way to probe. We also release a taxonomy of
failure cases requiring world knowledge for WSD,
which could further research in this direction.
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A Appendix: A Taxonomy of the Failure
Cases

Table 1 and 9 show a categorization of primary
world knowledge required to decide on a sense.
Reference sentences are given as examples.

B Appendix: Details of the Prompts

In Table 10, 11, 12, and 13 we list the prompts used
to query the language models.
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Table 9: Failure cases - Part II

WKR Example text Remarks
Category Sub Category
5. Common-
sense

5.1. Knowledge of
Geography, Trade
relations, Reason-
ing

The discovery of the mines of Amer-
ica ... does not seem to have had any
very sensible effect upon the prices of
things in England.

“sensible” is being used to provide
counter-intuitive information against
the expectation that America’s affairs
could have a perceivable impact on
that of England. The correct choice:
Easily perceived; appreciable

5.2. Sub-
ject/Domain
knowledge

The iron content of these growth habits
varies as follows: plates and rosettes
honeycomb cabbagehead.

“cabbagehead” is being used to re-
fer to a composition of minerals.
The correct choice: A roughly spher-
ical aggregation of a mineral

6. Satire his lordship was out of humor. That
was the way Chollacombe described
as knaggy an old gager as ever Charles
had had the ill-fortune to serve.

“fortune” carries a sense of inevitabil-
ity. The correct choice: Destiny, espe-
cially favorable

7. Figurative One ambassador sent word to the
duke’s son that his visit should be re-
taliated.

“retaliated” is being used to mean a
reciprocal action. The correct choice:
To repay or requite by an act of the
same kind.

8. Religious
writing

How impertinent that grief was which
served no end!

“impertinent” is found in a reli-
gious text where the word car-
ries the meaning of lack of pa-
tience. The correct choice: insolent,
ill-mannered

9. World
knowledge

Dr. Bertrand tells us that the first pa-
tient he ever magnetized, being at-
tacked by a disease of a hysterical char-
acter, became subject to convulsions
of so long duration and so violent in
character, that he had never, in all his
practice, seen the like ...

“magnetized” is being used to allevi-
ate hysteria. The correct choice: To
hypnotize using mesmerism

WKR Column: Type of World Knowledge Required. The target word is bolded. The correct choice (last column) is the

definition corresponding to the gold key.
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Table 10: Prompts for GPT-3.5-Turbo-0125. We use the same prompt template for both 0-shot and few-shot test
splits for the FEWS dataset. Also, we explicitly instruct the model not to provide any explanations to prevent it
from generating verbose texts.

Dataset Name Prompt
Unified Framework Which of the following senses is correct for the word [TGT] in the following

text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

Do not provide explanations. Just output the choice.
CoarseWSD-20 Which of the following sense choices is correct for the word [TGT] in the

following text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

Do not provide explanations.
WiC Is the sense of [TGT] same in the following two sentences, say Yes or No:

sentence1: [SEN 1]
sentence2: [SEN 2]
Please do not provide explanations.

FEWS Which of the following senses is correct for the word [TGT] in the following
text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

Print a choice. Do not provide explanations. Just output the choice.
Acronyms:
SENSEDEFN: Sense definition;
SEN: Sentence;
TGT: Target word to be disambiguated;
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Table 11: Prompts for Mistral 7B. We use the same prompt template for both 0-shot and few-shot test splits for the
FEWS dataset. Also, we explicitly instruct the model not to provide any explanations to prevent it from generating
verbose texts.

Dataset Name Prompt
Unified Framework Which of the following senses is correct for the word [TGT] in the following

text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

Do not provide explanations.
CoarseWSD-20 Which of the following sense choices is correct for the word [TGT] in the

following text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

Do not provide explanations.
WiC Is the sense of [TGT] same in the following two sentences, say Yes or No:

sentence1: [SEN 1]
sentence2: [SEN 2]
Please do not provide explanations.

FEWS Which of the following senses is correct for the word [TGT] in the following
text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

Print a choice. Do not provide explanations.
Acronyms:
SENSEDEFN: Sense definition;
SEN: Sentence;
TGT: Target word to be disambiguated;

158



Table 12: Prompts for Llama-2-70b-chat. We use the same prompt template for both 0-shot and few-shot test splits
for the FEWS dataset. Also, we explicitly instruct the model not to provide any explanations to prevent it from
generating verbose texts.

Dataset Name Prompt
Unified Framework Which of the following senses is correct for the word [TGT] in the following

text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

Do not provide explanations. Just output the choice.
CoarseWSD-20 Which of the following sense choices is correct for the word [TGT] in the

following text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

Do not provide explanations.
WiC Is the sense of [TGT] same in the following two sentences, say Yes or No:

sentence1: [SEN 1]
sentence2: [SEN 2]
Please do not provide explanations.

FEWS Which of the following senses is correct for the word [TGT] in the following
text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

Print a choice. Do not provide explanations. Just output the choice.
Acronyms:
SENSEDEFN: Sense definition;
SEN: Sentence;
TGT: Target word to be disambiguated;
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Table 13: Prompts for Gemini Pro. We use the same prompt template for both 0-shot and few-shot test splits for the
FEWS dataset.

Dataset Name Prompt
Unified Framework Which of the following senses is correct for the word [TGT] in the following

text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

CoarseWSD-20 Which of the following sense choices is correct for the word [TGT] in the
following text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

WiC Is the sense of [TGT] same in the following two sentences, say Yes or No:
sentence1: [SEN 1]
sentence2: [SEN 2]

FEWS Which of the following senses is correct for the word [TGT] in the following
text: [SEN]

I) [SENSEDEF 1]

II) [SENSEDEF 2]

III) [SENSEDEF 3]

Acronyms:
SENSEDEFN: Sense definition;
SEN: Sentence;
TGT: Target word to be disambiguated;
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Abstract
Stories are central for interpreting experiences,
communicating, and influencing each other
via films, medical, media, and other narra-
tives. Quantifying the similarity between sto-
ries has numerous applications including detect-
ing IP infringement, detecting hallucinations,
search/recommendation engines, and guiding
human-AI collaborations. Despite this, tradi-
tional NLP text similarity metrics are limited
to short text distance metrics like n-gram over-
laps and embeddings. Larger texts require pre-
processing with significant information loss
through paraphrasing or multi-step decomposi-
tion. This paper introduces AIStorySimilarity,
a novel benchmark to measure the semantic dis-
tance between long-text stories based on core
structural elements drawn from narrative the-
ory and script writing. Based on four narrative
elements (characters, plot, setting, and themes)
as well 31 sub-features within these, we use
a SOTA LLM (gpt-3.5-turbo) to extract and
evaluate the semantic similarity of a diverse
set of major Hollywood movies. In addition,
we compare human evaluation with story simi-
larity scores computed three ways: extracting
elements from film scripts before evaluation
(Elements), directly evaluating entire scripts
(Scripts), and extracting narrative elements
from the parametric memory of SOTA LLMs
without any provided scripts (GenAI). To the
best of our knowledge, AIStorySimilarity is
the first benchmark to measure long-text story
similarity using a comprehensive approach to
narrative theory. All code, data, and plot image
files are available at https://github.com/
jon-chun/AIStorySimiliarity.

1 Introduction

Stories and narrative are universally used by hu-
mans to communicate, interpret, store, and react
to the world around them (Boyd, 2017) (Schreiner
et al., 2017). When organized within a narrative
framework, information can be more readily under-
stood, stored, and recalled (Zdanovic et al., 2022).

Beyond traditional fiction, researchers are now ap-
plying narrative theory to enhance medicine (Coret
et al., 2018), law (Jiang et al., 2024b), business
(Rees, 2020), and national identity rhetoric (Sweet
and McCue-Enser, 2010). Narratives show im-
mense potential for emotional persuasion (Lehnen,
2016) and, when used in combination with emo-
tionally intelligent AI (Broekens et al., 2023), are
classified as high risk by the EU AI Act (EU (Par-
liament) - and Jaume Duch Guillot, 2023).

A number of traditional NLP subtasks relate to
stories and narratives, both for analysis and gener-
ation. Analysis is typically restricted to short-text
lengths from approximately one sentence to several
paragraphs at most (e.g. MoverScore, BERTScore,
QAEval). NLP tasks include identifying sentiment,
topics, characters, dialog, and events. Long texts
can be analyzed with a sequential sliding-window
of short-text substrings. This enables the extraction
of distributed narrative elements from long texts
including character social networks (Bost and La-
batut, 2019), event timelines (Zhong and Cambria,
2023) or plot related information like diachronic-
emotional arcs (Chun 2018) and narrative crux
points (Elkins 2022).

Most traditional NLP techniques like sentiment
classification, NER, and POS limit story analysis to
relatively short texts. However, the introduction of
the Transformer architecture (Vaswani et al., 2017)
and rapid progress in LLM performance since the
launch of ChatGPT (OpenAI, 2022) has revolution-
ized NLP. While smaller traditional models like
BERT and BART can still be competitive for struc-
tured narrow tasks like NER (Paper with Code,
2024a) and POS (Papers with Code, 2024b), LLMs
generally dominate the NLP leaderboards (Guo
et al., 2023). More importantly, trained on tril-
lions of tokens of language, LLMs have acquired a
fluency, coherence, common-sense reasoning, ex-
pressiveness, and creativity with natural language
that enable new, more complex and open-ended
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NLP tasks like human-level story generation (Xie
et al., 2023) and analysis (Chun and Elkins 2023).

However, there are serious limitations to trying
to understand long-text stories by using short-text
NLP techniques over a sequence of sentences or
paragraphs. Authors, readers, and IP lawyers gener-
ally evaluate stories at higher levels of abstractions
that escape short-text decomposition techniques
or suffer information loss in the process. Power-
ful narrative elements like character arcs, themes
and complex plot devices are often latent, implied,
and disseminated throughout the text and require a
global unified perspective to identify, extract, and
analyze. Narrative theory and screenwriting con-
ventions provide conceptual frameworks for de-
scribing and capturing these essential structural
elements inherent in stories.

Film studies, Narratology (Berhe et al., 2022)
and script writing best practices (Mckee, 1997; Sny-
der, 2005; Truby, 2007) decompose narrative struc-
tures and elements into different narrative elements.
Characters including relationships and motivations.
Plot is the sequence of events in the story. Set-
tings involve not only time and place, but other
aspects like culture. Themes are central ideas and
messages. Character arcs track the transformation
of characters over the course of the story in re-
sponse to events. Dialog collectively is the spoken
words and interactions that reveal personality, re-
lationships and advance the plot. Classification of
narrative elements are flexible. A simpler frame-
work could combine character, character arc and
dialog into one broader concept of character. Ar-
guably least intuitive, themes are the big ideas and
messages that provide deeper meaning, emotional
connection and purpose like good vs evil, life finds
a way, or love endures.

A variety of NLG subfields try to leverage hal-
lucination as a creativity control in story genera-
tion (Chieh-Yang et al., 2023), creative writing (Ip-
polito et al., 2022), and screenwriting (Mirowski
et al., 2022). Text generation (CTG) is focused
on controlling the creative process including more
precisely directing the degree and type of halluci-
nations (Zhang et al., 2022). This could enhance
human-AI interactions from better human-AI cre-
ativity collaboration to more engaging chatbots.

A relatively recent and small set of researchers
have begun focusing on the positive value LLM
hallucinations can bring in the form of creativity
or ‘confabulation’ (Sui et al., 2024). This growing
perspective warrants a survey of hallucination from

a creative perspective (Jiang et al., 2024a), and new
applications are being identified like contrastive
dataset generation (Yao et al., 2023). The all rely
upon upon semantic distance metrics.

The use case of quantifying intellectual property
infringement of copyrighted works illustrates the
concept of narrative ‘similarity’. IP infringement
upon written work like movie script involves two
tests of ‘substantial similarity’. The intrinsic test
is an analysis of identifiable properties like charac-
ter, plot points, and themes. The extrinsic test is a
more subjective analysis of whether an “ordinary
person” would recognize such similarities (Helfing,
2020). Unlike the high-profile NYTimes-OpenAI
lawsuit claiming perfect word-for-word reproduc-
tions (Pope, 2024), most infringement cases have
historically fallen in this gray zone of ‘substan-
tial similarity’. Many more cases may arise either
accidentally or intentionally as generative AI be-
comes a mainstream content creation- and creative
collaboration-tool. There is therefore a pressing
need to formalize a semantic similarity metric for
narratives. The main contributions of this paper
are:

· AIStorySimilarity, the first narrative semantic
similarity benchmark using a scoring rubric based
on formal narrative structural elements. · Evalua-
tion of three common comparison methodologies to
measure the similarity between test and reference
film narratives on a) parametric memory [GenAI],
b) extracted narrative elements [Elements] and c)
unprocessed scripts [Scripts]

· A benchmark with broad application for detect-
ing IP infringement of copyrighted works, film/nov-
el/narrative search and recommendation engines,
detecting hallucinations, and guiding creativity
with extensive reporting for human-in-the-loop ex-
plainability and verification.

2 Related Work

SemEval22 Task 8 evaluated the semantic distances
between news stories in order to move to more
complex semantic metrics. Many entrants used
text representations like TF-IDF derived from tra-
ditional low-level syntax features (Jobanputra and
Rodríguez, 2022), but others used features based on
higher-level abstractions like narrative schemas and
writing style (Chen et al., 2022). However, many
of NLG evaluations using high-level abstractions
like empathy and style (Shen et al., 2024) and the
narrative theory of Labov and Waletzky (Levi et al.,
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2022) focus on creating novel annotated training
datasets (Chaturvedi et al., 2018). The 6th An-
nual Workshop on Narrative Extraction from Text
(Campos et al., 2023) survey papers provide a con-
temporaneous overview of some of the more recent
approaches to extracting narrative elements from
text (Zhu et al., 2023).

Beyond AI text generation, SOTA LLMs like
GPT3.5 and GPT4o are increasingly used as prox-
ies for human evaluators in open-ended, reference-
free NLG tasks (Li et al., 2024). They provide bene-
fits of speed, scalability, and cost savings alongside
increasingly human-level or better performance
(Hada et al., 2023; Ke et al., 2024; Wang et al.,
2023). This LLM-as-judge trend (Thakur et al.,
2024) is evident in various NLP tasks, such as
evaluating the quality of generated stories, assess-
ing the effectiveness of adversarial attacks, and
grading the comprehensibility of disordered speech
transcriptions (Chiang and yi Lee, 2023; Tomanek
et al., 2024). For instance, the MT-Bench frame-
work demonstrates a strong 80% agreement be-
tween LLM evaluations and human judgments in
assessing model performance (Zheng et al., 2023).

For semantic text similarity, LLMs are shown to
be more aligned with humans than any other metric
(Aynetdinov and Akbik, 2024). However, precau-
tions must be taken to avoid biases like a model’s
preference for evaluating its own generated con-
tent (Chhun et al., 2024). Moreover, challenges
remain in areas of trust and safety (Reiter, 2024)
and problems exist with human evaluations them-
selves (Elangovan et al., 2024; Gao et al., 2024).
Despite these limitations (Bavaresco et al., 2024),
LLMs show promise in augmenting and even re-
placing certain types of human evaluations given
continual advances in AI.

At higher levels of abstraction, a variety of re-
search areas relate to text similarity. This includes
subfields that rely upon structural elements for auto-
matic story generation (ASG) or for automated es-
say scoring (AES). Traditionally, these fields have
used a combination of human evaluators, human-
annotated references, and more general NLP met-
rics like coherence (Guan et al., 2021). In addi-
tion, more formal structural approaches generate
or evaluate more diffuse global features like nar-
rative frameworks (Wang et al., 2022), readabil-
ity (coherence, fluency, simplicity), and adequacy
(faithfulness, informativeness) (Hu et al., 2024).
Emphasis on story similarity between reference
and test works relate to plagiarism detection, intel-

lectual property infringement, movie recommen-
dation and search engines, hallucination detection
(Huang et al., 2023; Ye et al., 2023) and measuring
creativity in derivative works. AIStorySimilarity
leverages an abstract structural approach using nar-
rative theory with similarity metrics using SOTA
LLMs.

3 Methods

3.1 Dataset

To provide a reference to assess the accuracy of
similarity scores and relative rankings, a human
expert selected a dataset of 9 popular Hollywood
films they ranked as shown in Table 1. “Raiders
of the Lost Arc”, a 1981 summer hit, was selected
as the reference film and 8 other test films were
selected in order of decreasing similarity. This in-
cluded a. the 1984 and 1989 Indiana Jones sequel
films, b. three other adventure genre films with his-
torical artifact themes, and c. three very different
non-adventure genre films (romantic drama, black
comedy, and musical). All scripts are ingested
as plain text complete with character name, dia-
log, scene headings, action, and other annotations
where available (see ./data/film_scripts_txt).

Sim. Genre Name Year Rank
ref Adventure Raiders of the

Lost Ark
1981 -

1 Sequel #1 Indiana Jones
and the Temple
of Doom

1984 2

2 Sequel #2 Indiana Jone
and the Last
Crusade

1989 2

3 Adventure National
Treasure

2004 10

4 Adventure Laura Croft
Tomb Raider

2001 14

5 Adventure The Mummy 1999 8
6 Romantic

Drama
Titanic 1997 7

7 Black
Comedy

Office Space 1999 133

8 Musical La La Land 2016 83

Table 1: Films similar to Raiders of the Lost Ark

Most films were selected by popularity as mea-
sured by box office gross (The-Numbers.com,
2024), critical reviews (Tomatoes, 2024) and/or
pop culture influence (e.g. Tomb Raider video
game tie-ins). These criteria ensure most films are
well represented in LLM training datasets that in-
clude Wikipedia, movie scripts, and movie review
websites. The least popular film, Office Space, was
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included to be used as a stress test check against
hallucination as described in section 3.5.

3.2 Comparison Methods and Narrative
Source

Figure 1: Three Comparison Methods

Each of the 8 test films was compared to the
reference film to evaluate the semantic differences
using one of three different techniques as shown
in Figure 1. First [GenAI]: the SOTA LLM was
only provided the names of the reference and test
films and asked to evaluate similarity based upon
knowledge of both films from parametric memory
using the narrative scoring rubric. Second [Ele-
ments]: narrative elements and sub-features were
extracted from full-text movie scripts and extracts
were evaluated for similarity using the narrative
scoring rubric. Third[Script]: full-text scripts of
both the reference and test films were evaluated for
similarity without providing the narrative scoring
rubric.

Figure 2: Narrative Similarity Rubric

Similarity comparison methods 1 (Elements) and
2 (GenAI) asked the SOTA LLM-as-judge to pro-
vide detailed similarity scores and explanations
based on the narrative rubric shown in Figure 2.
The extra step to extract and compare individual

elements in method 2 Elements was akin to an
explicit chain of prompts focusing on a two-step
evaluation process. The relative performance of
method 1 using only the extracted concise sum-
maries of narrative elements provided an advantage
over providing the entire scripts either explicitly
(via method 3 Scripts) or implicitly (via method
2 GenAI). Evaluation method 3 (Scripts) was to
see how well just providing raw film scripts and
relying upon the SOTA LLM to come up with its
own similarity evaluation metrics performed. That
is, are the SOTA LLMs so capable they need no
explicit scoring rubric to perform well?

The four major narrative elements in the scor-
ing rubric consist of 6-10 sub-features as shown
in Figure 2. Preliminary tests showed noticeable
improvements when decomposing narrative into
coherent and focused individual elements over just
one large prompt combining all elements and sub-
features. The four elements can also be ranked
by an approximate order of complexity: Setting
(facts), Plot (categorized and properly sequenced
events), Character (facts, inferences, and analysis),
and Themes (fuzzy categorizations, prioritization,
and close readings that require the most abstract
thinking and understanding of pragmatics).

The characters narrative element stands out
because it contains the most disparate features
in terms of type and analysis required. Name,
role, backstory, and even strengths/weaknesses are
largely factual. Psychology, beliefs and motiva-
tions add potentially complex interpretations of
characters that are informed not only by descrip-
tions, dialog, and actions but also by constructing
mental models of internal personalities and drives
that are informed by contextual clues, themes, and
more abstract and interrelated sub-features and text.
Finally, social dynamics and character arcs add the
dimension of time and more interrelated aspects
of text and narrative. It’s not uncommon for di-
alog, social dynamics, and arc to be considered
separate from characters, but we wanted relatively
balanced elements while tracking these character-
related topics. Dialog was sufficiently complex and
difficult to concisely/comprehensively parameter-
ize as a metric that it was left off in this iteration.
Initial tests showed it added significant complex-
ity, prompt task distraction, and resulted in lower
signal/noise similarity scoring.

164



3.3 Models and API

Preliminary testing showed little to no difference
between OpenAI gpt-4o and gpt-3.5-turbo, so
GPT3.5 was selected as our SOTA LLM used to
evaluate similarity for all three scoring methods.
It was also used to extract narrative elements in
the pre-processing stage for the second comparison
method [Elements]. To check against hallucina-
tions, two leading SOTA commercial models at the
time of this paper, Claude 3.5 Sonnet and GPT4o,
were used to validate factual accuracy as described
below. In addition, these two SOTA models were
used to provide a naive baseline similarity ranking
for all 8 test films with a single prompt (without
scripts or a narrative rubric).

Each API call was de novo with no memory or
personal history. All OpenAI playground and chat
UI interactions had personalization memory dis-
abled and each was submitted afresh after every
response to the previous prompt. Prompts were
injected with a unique randomized string to avoid
possible server-side caching when repeatedly sam-
pling with the same prompt to collect sample sets
of n = 30. Finally, inference hyperparameters
were set as temperature = 0.7, top_p = 0.5, and re-
sponse_format = ‘json_object’. Initial exploratory
analysis of temperature values = 0.1, 0.3, and 0.5
did not produce similarity score distributions with
informative statistical spread values (e.g. IQR and
std) to gauge confidence levels.

3.4 Prompts

Prompts were created to evaluate the semantic
similarity between the reference film and 8 test
films. The rubric to score overall similarity in Fig-
ure 2. is based on 4 main narrative elements and
31 sub-features. Narrative elements include char-
acters, plot, setting and themes with excellent re-
sults which each have between 6-10 sub-features
as shown. The common anatomy of all prompts is
shown in Figure 3 using the ‘plot’ element. The full
text of these four principal prompts can be found
in Appendix A.

Two variations of this set of 4 prompts were cre-
ated: one for evaluation and one for extractions
(used only for method 2 Elements). The evalua-
tion prompt asked the LLM to estimate a similarity
score (0-100) for each narrative element ‘overall’
and similarity scores for each of the associated sub-
features in Figure 2. LLMs were prompted to pro-
vide an open-end ‘reason’ to justify each similarity

Figure 3: Prompt Template

score.
Eight extractions and comparisons were made to

measure the similarity between the reference film
and 8 test films. Extractions were run once for all
four elements across all 8 reference-test compar-
isons (32 API calls). Evaluations of story similarity
were run 30 times for each 4 narrative elements
across all 8 reference-test comparisons for a total
of 960 API calls. The cl100k_base tokenizer used
by GPT3.5 and GPT4, request token counts varied
by comparison method, approximately 1250 for
GenAI and 2200 for Elements. Scripts were con-
verted to plain text and attached along with scoring
prompts for the Script method.

4 Results

4.1 Overview

The oversized Table 2 in Appendix B compares
narrative semantic similarity between the reference
film ’Raiders of the Lost Ark’ and eight other films.
Horizontally, a human expert ordered films left
to right from most to least similar in groups of a.
two sequels (light yellow), b. three other adven-
ture genre films (medium yellow), and c. three
different genre films (dark yellow). Ordering films
within each group is based upon the expert’s multi-
ple viewing and intimate familiarity of narrative ele-
ments. For example, As a epic disaster film, Titanic
shares dramatic elements with the adventure genre.
The black comedy shares constant sublimated ten-
sion and conflict with adventure films. Finally,
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the relatively emotional and generally light-hearted
nature of song-and-dance musical was judged the
least similar. Human similarity is simply the rank
ordering of similarity distance between each film
and the reference film in the row labeled ’Human
Similarity-Title’.

In three groupings vertically, AIStorySimilar-
ity’s three similarity methods (Elements, GenAI,
Scripts) of AIStorySimilarity are compared 1.
Across each row, LLM-as-a-judge similarity scores
for each method overall as well as broken out by
the four constituent narrative elements (character,
plot, setting, themes) are listed.

Individual cells give similarity scores (0-100)
between the reference film ’Raiders of the Lost
Ark’ and the film atop each column. The row in-
dicates which combination of ’Similarity Method’
and ’Narrative Element’ the score corresponds to
using the AIStorySimilarity rubric in Appendix A.
The similarity score in each cell is based on the
mean of 30 samples. Because the Script method
proved to be the least reliable, only one film was
analyzed from each of the three groups of films
(sequels, adventures, and non-adventures) to verify
general alignment with human evaluation.

The colored cells in Table 2 highlight the exact
points of major differences between human and
LLM-as-a-judge similarity ranking using the AIS-
torySimiliary rubric. These three types of errors
are color-coded as follows:

• Red cells indicate similarity scores below hu-
man expert ranking

• Green cells indicate scores above human rank-
ing

• Orange cells count as errors to penalize the
excessive use of ties

The row of blue cells reflect the overall similarity
scores for Elements characters were 80.00 across
all models and n=30 iterations. All other Element
values appeared correct and well distributed as did
characters similarity scores for GenAI and Scripts.
Several prompt variations were used to try to cor-
rect this, but no OpenAI API response changed this
value. We note this anomaly here for completeness
and as a point for future investigations.

Surprisingly, the similarity scores least aligned
with the human expert are those produced by first
extracting all the elements before doing a compari-
son using method 1 Elements in Table 2. As seen

in the similarity plots, this extraction step removes
all contextual script information, which results in
less nuanced and more narrowly clustered scores.
This narrowing of values, combined with both the
inevitable information loss in extraction and the
inherent noise in natural language descriptions, re-
sults in 37.5% total ranking errors compared to
human expert ranking. The gaps between different
similarity values are dramatically narrowed using
the Elements method extraction. Despite numerous
misorderings, the magnitude of score differences
are relatively small compared to the other two meth-
ods.

In contrast, GenAI method similarity scores
across all four narrative elements and 8 test films
only had 2/32 or 6.25% total errors in ranking. Us-
ing a stricter definition of error to mean any mis-
ordering to compensate for the reduced test set of
only 3 films, the Script method had an approxi-
mately equivalent total ranking error rate is 2/12 or
17%.

Based upon overall results in section 4.1, we
remove the Elements method from further con-
sideration and focus on comparing the similarity
scores from the remaining two methods: GenAI
and Scripts. All eight test films’ similarity scores
are shown in radar charts for both these methods
in Figure 4 and Figure 5 respectively. The spokes
represent similarity scores for the four narrative
elements with the top vertical spoke represents the
overall similarity scores.

Despite the better alignment with human experts
for this test case, the GenAI method is not a univer-
sal solution for measuring story similarity. Notably,
GenAI depends upon stories being evaluated that
are well represented in the training dataset and para-
metric memory. Where this is not true (e.g. de novo
generated narratives or recently released films after
the training date cutoff), the other two methods are
required. The choice between the Elements and the
Scripts methods involves a series of trade-offs be-
tween stability, control, privacy, cost, performance,
local edge applications, and other lesser factors.

High-res vector image files of all plots and fig-
ures are directly available in the subdirectory at
https://github.com/jon-chun/AIStorySimiliarity/
data/.

4.2 Comparing Similarity Scores
Results for GenAI in Figure 4 show a nice grada-
tion in similarity score across the test films with
“Raiders of the Lost Ark”. The eight films gener-
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Figure 4: Full GenAI Similarity Scores

ally cluster by similarity in three groupings already
noted: two sequels (largest polygons), three unre-
lated adventure genre films, and the three unrelated
genres (smallest polygons). Plot is the most similar
narrative element across all films, perhaps due to
the near ubiquitous strong hero’s journey in Holly-
wood films targeted at mass audiences. In contrast,
Themes reflect the greatest diversity with the low-
est similarity scores. This aligns with the earlier
idea that Themes is the most abstract, subjective,
and artistically unconstrained of the four narrative
elements. Most importantly, we get a nice spread
along the ‘noon’ overall similarity axis demonstrat-
ing AIStorySimilarity to make both coarse- and
fine-grained distinctions between very similar (se-
quels), similar (adventure), and dissimilar (non-
adventure) films.

Figure 5: Sampled Script Similarity Scores

Using SOTA LLMs as a judge, the Script method
does a relatively good job in similarity scoring
when presented with clearly different films as
shown in Figure 5. In this case, both the refer-
ence and test film scripts were fed into GPT3.5

with no rubric and with only minimal prompting
to estimate impromptu similarity scores (0-100).
Figure 5 shows a clear distinction between a se-
quel and adventure film vs a non-adventure film.
However, there is poor discrimination between the
sequel and adventure film. This suggests that min-
imalist prompting without an explicit evaluation
rubric (e.g. AIStorySimialrity) may be limited to
distinguishing between fewer and more distinct
films

4.3 Comparing Rankings

The three bar charts in Figure 6 through Figure 8
visualize all 3 methods AIStorySimilarity uses to
compute overall similarity scores. As mentioned
in section 4.1, the Elements method first decom-
poses film scripts into distinct narrative elements
before scoring. This appears to remove rich con-
textual information required to draw sharp distinc-
tions. This lowers discrimination power resulting
in more ranking errors. In contrast, both gener-
ating elements from parametric memory (GenAI)
and manually providing copies of scripts (Scripts)
result in smoother gradations between films and
sharp boundaries between the 3 categories of test
films.

Figure 6: Full Elements Overall Similarity Scores

Figure 7: Full GenAI Overall Similarity Scores
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Figure 8: Sampled Scripts Overall Similarity Scores

5 Conclusion

AIStorySimilarity presents a novel story similarity
metric and benchmark based upon narratology and
best practices in screenplay writing. This bench-
mark overcomes limitations with traditional text
and story similarity metrics and has many poten-
tial real-world applications including search/recom-
mendation engines, IP infringement detection, and
guided creative AI-collaboration. Three compar-
isons methods are tested and evaluated including
1. preprocessing scripts to extract concise narra-
tive elements (Elements), 2. using LLM parametric
memory with a narrative rubric (GenAI), and 3.
providing full-text scripts with a narrative rubric
(Scripts). For these famous Hollywood films, the
GenAI method proved most aligned with the hu-
man expert. However, the other two methods (Ele-
ments and Scripts) may be required for narratives
that do not exist in parametric memory or are sub-
ject to other practical constraints like cost and pri-
vacy. In our test dataset, results demonstrate SOTA
LLMs have a good innate sense of popular Hol-
lywood films, narrative theory, and can produce
results in strong alignment with human experts.

6 Limitations

Three major limitations of this study are the size/-
diversity of the film test dataset, the number/size of
LLMs tested, and the types of narrative under study.
This paper introduced and tested a simplified set of
eight test films with clear degrees of similarity to
the reference film. With the utility of AIStorySimi-
larity thus demonstrated, the method should next
be stress tested with a much larger and diverse set
of test films.

Our current test set did not have enough data or
diversity to explore in close detail how our method-
ology evaluates similarity for semantically very dif-
ferent films or how it distinguishes between a much
broader set of genres, or how it categorizes genres

and edge cases that are difficult to classify. For
example, some genres like musicals and comedies
frequently blend aspects of other genres like adven-
ture and romance. Additionally, non-conventional
film styles, such as art house, postmodern, and ab-
surdist cinema, are less suited to this approach due
to their often fragmented narratives, experimental
techniques, and resistance to traditional storytelling
conventions.

The strong performance of the commercial
SOTA models (GPT3.5, GPT4o and Claude 3.5
Sonnet), raises questions how well small open
LLMs can perform under the demands and com-
plexity of interpreting more abstract narrative ele-
ments and structures. Finally, measuring the narra-
tive distance for different forms of narratives like
those in medical histories, and financial reporting
will require customizing the scoring rubric.

This paper limited itself to a focused study of
prototypical Hollywood big-budget films across
several genres based upon textual scripts. The au-
thor is currently expanding this work to work with
stories that are multimodal (e.g. video/image, mu-
sic, and voice) as well as from different cultures
and semantic representations.
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A Appendix A: Prompt to Compare Narrative Element of Characters

###REFERENCE_ELEMENT
{ r e f e r e n c e _ e l e m e n t }

####TEST_ELEMENT :
{ t e s t _ e l e m e n t }

###PERSONA:
You a r e a world −famous n a r r a t o l o g i s t and s u c c e s s f u l f i l m s c r i p t w r i t e r

.

###ELEMENT_FEATURES
Name : F u l l name of c h a r a c t e r
Role : C l a r i f i e s t h e c h a r a c t e r ' s f u n c t i o n w i t h i n t h e s t o r y , whe the r

t h e y a r e d r i v i n g t h e a c t i o n , s u p p o r t i n g t h e p r o t a g o n i s t , o r
c r e a t i n g o b s t a c l e s .

B a c k s t o r y : Th i s a t t r i b u t e h e l p s t o u n d e r s t a n d t h e f o r m a t i v e
e x p e r i e n c e s t h a t shaped each c h a r a c t e r , p r o v i d i n g i n s i g h t s i n t o
t h e i r m o t i v a t i o n s and b e h a v i o r s .

S t r e n g t h s : H i g h l i g h t s u n i que a b i l i t i e s and p r o f i c i e n c i e s ,
d i s t i n g u i s h i n g c h a r a c t e r s by t h e i r s p e c i f i c t a l e n t s and e x p e r t i s e .

Weaknesses : Humanizes c h a r a c t e r s by r e v e a l i n g v u l n e r a b i l i t i e s and
p e r s o n a l c h a l l e n g e s , making them more r e l a t a b l e and m u l t i −
d i m e n s i o n a l .

Psycho logy : Uses p e r s o n a l i t y a s s e s s m e n t s , such as t h e Big 5 OCEAN (
Openness , C o n s c i e n t i o u s n e s s , E x t r o v e r s i o n , A g r e e a b l e n e s s ,
N e u r o t i c i s m ) model , t o o f f e r d e e p e r i n s i g h t i n t o c h a r a c t e r t r a i t s .

B e l i e f s : O f f e r s a window i n t o t h e e t h i c a l and mora l framework g u i d i n g
each c h a r a c t e r ' s d e c i s i o n s , c r u c i a l f o r u n d e r s t a n d i n g t h e i r

a c t i o n s i n mora l di lemmas .
M o t i v a t i o n s : D e s c r i b e s what d r i v e s t h e c h a r a c t e r t o a c t , i n c l u d i n g

d e s i r e s , f e a r s , and g o a l s .
Soc i a lDynamics : E x p l o r e s t h e n a t u r e o f i n t e r a c t i o n s between

c h a r a c t e r s , which can be p i v o t a l i n c h a r a c t e r deve lopmen t and p l o t
p r o g r e s s i o n .

Arc : Summarizes how t h e c h a r a c t e r changes o r grows f o r b e t t e r o r
worse ove r t h e s t o r y i n r e s p o n s e t o e v e n t s , d e c i s i o n s , and a c t i o n s

t a k e n

###INSTRUCTIONS :
You a r e a world −famous n a r r a t o l o g i s t and s u c c e s s f u l f i l m s c r i p t w r i t e r
so p r e c i s e l y and c a r e f u l l y t h i n k s t e p by s t e p t o
COMPARE t h e s i m i l a r i t i e s be tween t h e a t t a c h e d ###TEST_ELEMENT and t h e

b a s e l i n e ###REFERENCE_ELEMENT
u s i n g ###ELEMENT_FEATURES t h e n
r e s p o n d s wi th e s t i m a t e d s i m i l a r i t y s c o r e s between (0 −100) f o r t h e

s i m i l a r i t y o f each o f t h e FEATURES
as w e l l a s an ' o v e r a l l ' s i m i l a r i t y s c o r e
ONLY use i n f o r m a t i o n p r o v i d e d HERE,
DO NOT USE i n f o r m a t i o n from your memory .
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Re tu rn your r e s p o n s e i n JSON form f o l l o w i n g t h i s ###TEMPLATE as
d e m o n s t r a t e d i n t h e ###EXAMPLE below

###TEMPLATE

{
" o v e r a l l " : {

" s i m i l a r i t y " : i n t e g e r r a n g e ( 0 , 1 0 0 ) ,
" r e a s o n i n g " : s t r i n g l e n ( 1 0 0 , 2 0 0 )

} ,
" b a c k s t o r y " : {

" s i m i l a r i t y " : i n t e g e r r a n g e ( 0 , 1 0 0 ) ,
" r e a s o n i n g " : s t r i n g l e n ( 1 0 0 , 2 0 0 )

} ,
" s t r e n g t h s " : {

" s i m i l a r i t y " : i n t e g e r r a n g e ( 0 , 1 0 0 ) ,
" r e a s o n i n g " : s t r i n g l e n ( 1 0 0 , 2 0 0 )

} ,
" weakness " : {

" s i m i l a r i t y " : i n t e g e r r a n g e ( 0 , 1 0 0 ) ,
" r e a s o n i n g " : s t r i n g l e n ( 1 0 0 , 2 0 0 )

} ,
" p s y c h o l o g y " : {

" s i m i l a r i t y " : i n t e g e r r a n g e ( 0 , 1 0 0 ) ,
" r e a s o n i n g " : s t r i n g l e n ( 1 0 0 , 2 0 0 )

} ,
" b e l i e f s " : {

" s i m i l a r i t y " : i n t e g e r r a n g e ( 0 , 1 0 0 ) ,
" r e a s o n i n g " : s t r i n g l e n ( 1 0 0 , 2 0 0 )

} ,
" m o t i v a t i o n s " : {

" s i m i l a r i t y " : i n t e g e r r a n g e ( 0 , 1 0 0 ) ,
" r e a s o n i n g " : s t r i n g l e n ( 1 0 0 , 2 0 0 )

} ,
" s o c i a l _ d y n a m i c s " : {

" s i m i l a r i t y " : i n t e g e r r a n g e ( 0 , 1 0 0 ) ,
" r e a s o n i n g " : s t r i n g l e n ( 1 0 0 , 2 0 0 )

} ,
" a r c " : {

" s i m i l a r i t y " : i n t e g e r r a n g e ( 0 , 1 0 0 ) ,
" r e a s o n i n g " : s t r i n g l e n ( 1 0 0 , 2 0 0 )

}
}

###EXAMPLE:

{
" r o l e " : {

" s i m i l a r i t y " : 90 ,
" r e a s o n i n g " : " Both a r e p r o t a g o n i s t s who d r i v e t h e a c t i o n i n

p u r s u i t o f h i s t o r i c a l t r e a s u r e s . They l e a d q u e s t s and f a c e
a d v e r s i t i e s w h i l e s e e k i n g v a l u a b l e a r t i f a c t s . The main

173



d i f f e r e n c e i s t h a t I n d i a n a J o n e s has a more e s t a b l i s h e d
background as an a r c h a e o l o g i s t and p r o f e s s o r . "

} ,
" b a c k s t o r y " : {

" s i m i l a r i t y " : 75 ,
" r e a s o n i n g " : " Both c h a r a c t e r s have backg rounds t i e d t o

h i s t o r i c a l p u r s u i t s . However , I n d i a n a Jones ' b a c k s t o r y i s
more f o c u s e d on p e r s o n a l e x p e r i e n c e s s h a p i n g h i s e t h i c a l
s t a n c e , w h i l e Gates ' i s d e e p l y r o o t e d i n f a m i l y l e g a c y and

t r a d i t i o n . "
} ,
" s t r e n g t h s " : {

" s i m i l a r i t y " : 85 ,
" r e a s o n i n g " : " Both c h a r a c t e r s s h a r e i n t e l l i g e n c e ,

r e s o u r c e f u l n e s s , and deep h i s t o r i c a l knowledge . I n d i a n a
J o n e s has a d d i t i o n a l combat and s u r v i v a l s k i l l s , w h i l e
Gates ' s t r e n g t h s a r e more a c a d e m i c a l l y f o c u s e d . "

} ,
" weaknesses " : {

" s i m i l a r i t y " : 70 ,
" r e a s o n i n g " : " Both have weaknesses t h a t can l e a d t o r e c k l e s s

b e h a v i o r . I n d i a n a ' s i m p u l s i v e n e s s and f e a r o f s n a k e s a r e
more s p e c i f i c , w h i l e Gates ' o b s e s s i o n wi th t r e a s u r e i s
more d i r e c t l y t i e d t o h i s m o t i v a t i o n s . "

} ,
" p s y c h o l o g y " : {

" s i m i l a r i t y " : 85 ,
" r e a s o n i n g " : " They s h a r e h igh openness , c o n s c i e n t i o u s n e s s ,

and r e l a t i v e l y low n e u r o t i c i s m . The main d i f f e r e n c e s a r e
i n e x t r o v e r s i o n ( I n d i a n a h i g h e r ) and a g r e e a b l e n e s s ( Ga tes
h i g h e r ) . "

} ,
" b e l i e f s " : {

" s i m i l a r i t y " : 90 ,
" r e a s o n i n g " : " Both s t r o n g l y v a l u e h i s t o r y , p r e s e r v a t i o n , and

p r o t e c t i n g a r t i f a c t s from e x p l o i t a t i o n . Ga te s has an
a d d i t i o n a l emphas i s on f a m i l i a l du ty . "

} ,
" m o t i v a t i o n s " : {

" s i m i l a r i t y " : 80 ,
" r e a s o n i n g " : " Both a r e d r i v e n by a d e s i r e t o p r e s e r v e h i s t o r y

and f u l f i l l p e r s o n a l q u e s t s . Gates ' m o t i v a t i o n i s more
f o c u s e d on f a m i l y l egacy , w h i l e I n d i a n a ' s i n c l u d e s a
t h i r s t f o r a d v e n t u r e and l i v i n g up t o h i s f a t h e r ' s l e g a c y
. "

} ,
" s o c i a l _ d y n a m i c s " : {

" s i m i l a r i t y " : 75 ,
" r e a s o n i n g " : " Both form a l l i a n c e s and f a c e a d v e r s a r i e s .

I n d i a n a ' s r e l a t i o n s h i p s a r e more complex , e s p e c i a l l y wi th
h i s f a t h e r and r o m a n t i c i n t e r e s t s . Gates ' dynamics f o c u s
more on h i s team and main a n t a g o n i s t . "
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} ,
" a r c " : {

" s i m i l a r i t y " : 85 ,
" r e a s o n i n g " : " Both c h a r a c t e r s e v o l v e t o u n d e r s t a n d d e e p e r

v a l u e s beyond t h e i r i n i t i a l q u e s t s . I n d i a n a ' s a r c f o c u s e s
on h i s r e l a t i o n s h i p wi th h i s f a t h e r , w h i l e Gates '
e m p h a s i z e s v a l u i n g r e l a t i o n s h i p s and h e r i t a g e more b r o a d l y
. "

}
}
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B Appendix B: Complete Similarity Results

Human Similarity-Title 1-Temple 2-Last 3-Tomb 4-The 5-National 6-Titanic 7-Office 8-La La
of Doom Crusade Raider Mummy Treasure Space Land

Similarity Narrative 1984 1989 Adventure Adventure Adventure Drama- Black Musical
Method Element Sequel Sequel Romance Comedy
Elements Overall 70.96 (2) 73.05 (1) 66.84 (6) 69.34 (4) 68.86 (5) 69.85 (3) 62.94 (8) 63.38 (7)

Characters 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00
Plot 72.50 (4) 71.62 (5) 70.00 (7) 77.06 (1) 76.62 (2) 70.88 (6) 70.00 (8) 73.53 (3)
Setting 58.82 (3) 70.00 (1) 40.00 60.29 (2) 40.00 57.65 (4) 40.00 40.00

(tie 5-8) (tie 5-8) (tie 5-8) (tie 5-8)
Themes 72.50 (3) 70.59 (5) 77.35 (2) 60.00 (tie 78.82 (1) 70.88 (4) 61.76 60.00 (tie

6-8) (tie 6-8) 6-8)
GenAI Overall 75.22 (2) 77.46 (1) 71.58 (3) 69.61 (4) 60.76 (5) 51.03 (6) 42.69 (7) 41.56 (8)

Characters 87.06 (2) 90.79 (1) 81.58 (3) 67.67 (5) 70.45 (4) 53.15 (8) 56.67 (7) 63.61 (6)
Plot 79.73 (3) 84.82 (1) 83.03 (2) 75.03 (5) 75.82 (4) 67.42 (6) 64.06 (7) 61.64 (8)
Setting 72.64 (3) 79.70 (1) 55.21 (4) 76.52 (2) 30.18 (6) 50.88 (5) 27.55 (7) 17.09 (8)
Themes 61.45 (3) 54.55 (5) 66.48 (2) 59.21 (4) 66.58 (1) 32.67 (6) 22.48 (8) 23.91 (7)

Scripts Overall 81.75 (1) 79.75 (2) 44.50 (3)
Characters 86.00 (1) 84.00 (2) 49.00 (3)
Plot 81.00 (1) 78.00 (2) 46.00 (3)
Setting 78.00 (1) 74.00 (2) 34.00 (3)
Themes 82.00 (2) 83.00 (1) 49.00 (3)

Table 2: AIStorySimilarity Scores for Narrative Similarity to ’Raiders of the Lost Ark (1981)’
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C Appendix C: Script Dataset Statistics

Film Name Characters Words Sentences Vocabulary Size Reading Level
Raiders of the Lost Ark (1981) 160,278 29,870 2,847 4,730 104
Indiana Jones and the Temple of Doom
(1984)

190,111 34,230 2,926 5,142 103

Indiana Jones and the Last Crusade (1989) 137,750 26,181 2,957 4,523 112
Titanic (1997) 246,677 46,028 4,564 6,824 112
The Mummy (1999) 157,912 27,759 3,127 4,571 110
Office Space (1999) 64,777 12,838 1,661 2,037 118
Lara Croft Tomb Raider (2001) 158,941 28,546 2,479 5,678 106
National Treasure (2004) 169,878 31,030 3,485 5,113 119
La-La-Land (2016) 104,568 20,520 2,416 3,626 114

Table 3: Simplified Scripts Dataset Statistics
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Abstract

Structural priming is a widely used psycholin-
guistic paradigm to study human sentence
representations. In this work we introduce
SPAWN, a cognitively motivated parser that
can generate quantitative priming predictions
from contemporary theories in syntax which
assume a lexicalized grammar. By generating
and testing priming predictions from compet-
ing theoretical accounts, we can infer which
assumptions from syntactic theory are useful
for characterizing the representations humans
build when processing sentences. As a case
study, we use SPAWN to generate priming
predictions from two theories (Whiz-Deletion
and Participial-Phase) which make different as-
sumptions about the structure of English rel-
ative clauses. By modulating the reanalysis
mechanism that the parser uses and strength
of the parser’s prior knowledge, we generated
nine sets of predictions from each of the two
theories. Then, we tested these predictions
using a novel web-based comprehension-to-
production priming paradigm. We found that
while the some of the predictions from the
Participial-Phase theory aligned with human
behavior, none of the predictions from the the
Whiz-Deletion theory did, thus suggesting that
the Participial-Phase theory might better char-
acterize human relative clause representations.

1 Introduction

Structural priming (Branigan and Pickering, 2017)
is a widely used paradigm in psycholinguistics to
study the structural representations that people con-
struct when processing sentences. In this paradigm,
researchers measure the extent to which the produc-
tion or processing of target sentences is facilitated
(or primed) by preceding prime sentences, and then
use the pattern of priming behavior to draw infer-
ences about the representations people construct.
For example, consider a target sentence like (1).

(1) The boy threw the ball to the dog.

Prior work (Branigan et al., 1995) found that tar-
gets like (1) were produced more often, and were
processed more rapidly, when they were preceded
by primes like (2), that have the same structure,
than when they were preceded by primes like (3),
which, while describing the same transfer event as
(2), have a different structure.

(2) The lawyer sent the letter to the client.
(3) The lawyer sent the client the letter.

From this result, Branigan et al. inferred that partic-
ipants’ mental representation of (1) is more similar
to that of (2) than of (3).

Branigan and Pickering (2017) propose that by
carefully studying which sentences prime each
other we can build a theory of human structural
representations. Building such a theory requires us
to generate hypotheses about the particular prime-
target pairs that would be most informative to com-
pare. Insights from theoretical syntax, a field that
has spent decades studying the structure of sen-
tences, can help constrain this hypothesis space
(Gaston et al., 2017): if two theories generate dif-
ferent priming predictions, the theory whose pre-
diction better aligns with human behavior better
characterizes the representations humans build. In
this work we introduce a new parser, the Serial
Parser in ACT-R With Null elements (SPAWN),
that can generate quantitative priming predictions
from theories in syntax.

SPAWN is a cognitively motivated parser in
which the parsing decisions are driven by the com-
putational principles proposed by a general pur-
pose cognitive architecture, Adaptive Control of
Thought-Rational (ACT-R; Anderson et al., 2004).
Thus, SPAWN not only describes the computations
underlying human parsing, but also specifies the
cognitive processes involved. This level of spec-
ification makes it possible to explain why, given
a grammar, some sentence A is primed more by
sentence B compared to C, which in turn is use-

178



ful for generating quantitative behavioral priming
predictions from syntactic theories.

Existing algorithmic models of parsing with this
level of specification (Lewis and Vasishth, 2005)
are limited in their ability to model assumptions
from theories that use more contemporary frame-
works like Minimalism for two reasons: First, they
assume a disconnect between lexical and gram-
matical knowledge, which is inconsistent with the
lexicalized grammar formalisms these frameworks
adopt; Second, the models do not specify mech-
anisms to handle null (or covert) lexical items,
which are essential components of several contem-
porary syntactic theories. SPAWN bridges this gap
by adopting a lexicalized grammar formalism and
specifying an explicit mechanism for null items.

As a case study, we use SPAWN to study the
mental representations of sentences with relative
clauses (RCs) such as (4) and (5).

(4) The cat examined by the doctor was skittish.
(5) The cat which was examined by the doctor was

skittish.

We generate priming predictions from two compet-
ing syntactic theories: Whiz-Deletion (Chomsky,
1965), which assumes that the structure of (4) is
identical to the structure of (5), but that the words
“which” and “was” are covert; and Participial-Phase
(Harwood, 2018) which assumes that (4) and (5)
have different structures. We describe these theo-
ries in more detail in § 4. We generate nine sets of
predictions from the two theories by modulating
two factors: First, the strength of prior knowledge
(model exposed to 0, 100 or 1000 sentences before
the experiment); Second, the reanalysis mechanism
(model goes back to the beginning of the sentence,
or model uses one of two entropy-based measures
to select a word to go back to). Then, we compare
the predictions from these two theories to empirical
human data we collected using a novel web-based
comprehension-to-production priming paradigm.

We found that the predictions from the Whiz-
Deletion never aligned with the qualitative pattern
of human priming behavior, whereas under some
assumptions about the underlying reanalysis mech-
anism and strength of prior knowledge, predictions
from the Participial-Phase theory did align with
the qualitative empirical pattern. These results sug-
gest that the Participial-Phase account better char-
acterizes human sentence representations. More
broadly, this case study highlights how SPAWN
can be used to adjudicate between competing the-

Does the model specify
algorithms underlying
sentence processing or

production?

Processing difficulty during parsing
(Hale 2001, Joshi 1990, De Santo 2021)

Priming (Chang et al 2006, Snider 2008,
Malhotra 2009, Prasad et al 2019)

Is the model designed to
account for  psycholinguistic

phenomena?

Symbolic and neural
network parsers

Can the model account for
sentence processing?

ACT-R model of priming in
production (Reitter et al 2011)

Can the model handle a
range of linguistic

phenomena and theoretical
assumptions?

ACT-R left corner parsing
with unlexicalized grammars 
(Lewis and Vasishth 2005)

SPAWN

Yes No

Yes No

Yes No

NoYes

Figure 1: How is SPAWN different from other models?

oretical assumptions: the quantitative behavioral
predictions SPAWN generates can clarify how dif-
ferences in assumptions about sentence structure or
parsing mechanisms might translate into testable
behavioral differences (if at all).

2 Background

2.1 The ACT-R framework

ACT-R is a cognitive architecture designed to ex-
plain cognition through a small set of general com-
putational principles and mechanisms that are rel-
evant to a wide range of tasks and domains. One
such mechanism which is particularly relevant in
SPAWN is the retrieval of information from mem-
ory. The specific computational principles and al-
gorithms that guide retrieval in ACT-R are outlined
in § 3.2.1. Crucially, since ACT-R is intended to
be a general purpose cognitive mechanism, most of
the hyperparameters involved in this algorithm are
already fixed based on data from a wide range of
experimental paradigms and cognitive phenomena.
This restricts the degrees of freedom and constrains
the space of predictions that can be generated from
any given theory.

2.2 Prior models of parsing

In most existing symbolic and neural-network
based parsers, parsing decisions are not driven by
specific cognitive principles such as the ones pro-
posed by ACT-R. Therefore, generating predictions
about observable human behavior (e.g., reading
times) from these parsers requires making some ad-
ditional linking hypotheses. Most prior hypotheses
that link parsing decisions to human behavior have
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focused on notions of processing effort, such as
the number of parse states explored (Hale, 2011),
the maximum number of items on the stack at any
given point (Joshi, 1990), or the maximum amount
of time a node stays in memory (De Santo, 2021).
These hypotheses cannot be used to generate prim-
ing predictions because they do not specify a mech-
anism by which a prime sentence might facilitate
the processing of a target sentence.

One notable exception is the ACT-R based left-
corner repair parser proposed by Lewis and Va-
sishth (2005), in which parsing decisions are made
based on the activation of different chunks in the
memory (such as words or grammar rules). The ac-
tivation of chunks in this model can capture notions
of both processing difficulty and priming. However,
this model assumes a strong dissociation between
the grammar and the lexicon and therefore cannot
be adopted directly to generate predictions from
lexicalized grammar formalisms such as Minimal-
ist Grammar (Stabler, 1996), Combinatorial gram-
mar (Steedman, 1988), Lexical-Functional Gram-
mar (Kaplan and Bresnan, 1981) or Head-Driven
Phrase Structure Grammar (Pollard and Sag, 1994).
SPAWN is an ACT-R parser that models the link
between the grammar and the lexicon can therefore
generate predictions from lexicalized grammars.

2.3 Prior models of priming

While several models of priming have been pro-
posed, as we illustrate in Figure 1, none of them
can be used to adjudicate between contemporary
syntactic theories. Many models of priming that
model sentence processing either do not explic-
itly model syntactic structure (Chang et al., 2006;
Malhotra, 2009; Prasad et al., 2019; Sinclair et al.,
2022) or do not explicitly implement the mecha-
nisms that result in priming (Snider, 2008). Reit-
ter et al. (2011) proposed an ACT-R based model
of priming that does explicitly implement prim-
ing mechanisms and, unlike Lewis and Vasishth’s
ACT-R model, also assumes a strong link between
lexical and grammatical knowledge, and is thus
consistent with contemporary lexicalized grammar
formalisms. However, this model can only generate
sentences given a semantic description, and there-
fore can only be used to model sentence production
and not sentence processing. We bridge this gap
with SPAWN.

3 Model description

SPAWN uses the three components of ACT-R that
are relevant for parsing: declarative memory,
which contains information about lexical and syn-
tactic categories (cf. Reitter et al., 2011); proce-
dural memory, which contains the algorithm for
retrieving syntactic categories from memory and
combining them together; and buffers, which store
the words the parser has encountered so far, the
syntactic categories retrieved for those words and
the current parse state.1 We describe the two mem-
ory components below (§ 3.1, § 3.2), as well as the
mechanisms for learning and priming (§ 3.3, § 3.4).

3.1 Declarative memory (the grammar)

Declarative memory in SPAWN consists of two
types of chunks (sets of attribute-value pairs): syn-
tax chunks and lexical chunks (see § A.3 for the
entire list of syntax and lexical chunks we use in
this work).

Lexical chunks Each lexical chunk stores a word
in the vocabulary along with the set of syntactic cat-
egories that the word could be associated with. For
example, the lexical chunk for “examined” encodes
that it can be either be associated with the transitive
verb category or the past participle category.

Syntax chunks Each syntax chunk stores the con-
straints on the contexts in which a category can
occur. For example, the transitive verb category
encodes that it needs to have a determiner phrase
category on its left and right. We use the Combina-
torial Categorial Grammar (CCG; Steedman, 1988)
formalism to express such constraints.2

3.2 Procedural memory (the parser)

SPAWN parses sentences incrementally, one word
at a time. As schematized in Figure 2, processing
each word involves four steps: retrieval, reanalysis,
integration and null-prediction.

3.2.1 Retrieval
When processing a word wi in a sentence s, the
parser retrieves the category with the highest ac-
tivation from the set Ci of all possible categories
that wi can be associated with. The activation Aijs

1https://github.com/grushaprasad/spawn
2The CCG notation to encode the “transitive verb” category

is (TP\DP)/DP; the forward slash indicates the words needs
to combine with a DP on the right and the forward slash that it
needs to combine with DP on the left. TP is the category that
results from this combination.
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Figure 2: Steps involved in processing each word. Pro-
cess is repeated till all words are assigned a category.

for any category cij ∈ Ci is given by Equation 1,
where Bij is the base-level activation, Lij is the
activation wi spreads to cij , Iijs is the inhibition
from the buffer to the cij when processing sentence
s, and ϵ is noise sampled from Normal(0, σ).

Aijs = Bij + Lij − Iijs + ϵ (1)

Base-level activation This activation for a cate-
gory is high if the category has been retrieved re-
cently and/or frequently. It is given by Equation 2,
where k is the total number of times the model has
encountered cij , Tijk is the time taken to process
all the words since the model’s k-th encounter of
cij , and d is a decay parameter.

Bij = log
K∑

k=1

T−d
ijk (2)

The time to process a word wl is given by Equa-
tion 3, where N is the number of chunks retrieved
when processing wl, Aln the activation of the n-th
chunk the model retrieved when processing wl

(computed using Equation 1), F a latency factor
and f a latency exponent.

tl =
N∑

n=1

Fe−(fAln) (3)

Thus, Tijk in Equation 2 is tk + tk+1 + . . . ti.

Lexical activation The context independent acti-
vation a word wi spreads to a category cij is given
in Equation 4, where M is the maximum activation
that any word can spread.

Lij = M × P (cij | wi) (4)
Inhibition The inhibition for cij takes into ac-
count how often cij was retrieved for wi but was
later discarded during reanalysis when processing

a sentence s. It increases if cij was discarded often
and/or recently, and is given by Equation 5 where
Z indicates the total number of times cij was dis-
carded when processing wi in the current sentence,
Tijsz indicates the time since the z-th time cij was
discarded in sentence s, and d is the decay factor.

Iijs = log
Z∑

z=1

T−d
ijsz

(5)

The hyperparameters used in the equations
above — d, F , f , M — are set based on prior
ACT-R models (§ 5.3; § D).

3.2.2 Integration
Integrating a retrieved syntactic category cij in-
volves combining cij with the current parse state
P ; this combination is determined by the CCG
composition process (Steedman 1996; § B.1). If
no successful combination is possible, then the
retrieved category cannot be integrated into the
current parse state; the parser then needs to either
retrieve another category for the word, or, if no
unexplored categories remain, trigger a reanalysis.

3.2.3 Reanalysis
When a reanalysis gets triggered at wi, the parser
selects an index z to regress to, where z < i. The
method used to select z is a hyperparameter with
two settings: first-word regression (go back to
the first word every time) and entropy-weighted
regression (sample z from 1 . . . i weighted by the
parser’s uncertainty at each index). Once the parser
selects z, it discards all of the categories retrieved
for wz . . . , wi−1, wi, and resets the parse state to
what it was at wz . The parser keeps track of the
categories that were discarded when processing
each word in a sentence s, and uses this to compute
the inhibition for each category using Equation 5.

Calculating uncertainty To calculate uncer-
tainty at index x in entropy-weighted regression,
we computed the activation of each category cjx
associated with wx by adding together Bxj and
Lxj (§ 3.2.1). Then, we converted these activation
values into probabilities with the softmax function
(temperature 1 or 10), and finally computed the
entropy from these probabilities.

“Give-up” mechanism Despite inhibiting previ-
ously discarded categories, the parser could still
get stuck in a loop retrieving the same (incorrect)
category cij every time it is processing wi if cij has
a very high base-level or lexical activation. To pre-
vent an infinite loop, we implemented a “give-up”
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mechanism, where after x iterations, the model ig-
nores the base-level and lexical activation and uses
only inhibition and noise to compute activation of
cij . Setting x to 100 or 1000 resulted in nearly
identical results (§ D).

3.2.4 Null or covert element prediction

Null or covert elements in sentences add additional
uncertainty to the parsing process. To illustrate this,
let us consider an example that is unrelated to our
experimental setup, but illustrates the uncertainty
in a theory-independent way. Given a prefix “The
cat examined the doctor and the doctor ...” con-
sider the following continuations; * indicates the
continuation is ungrammatical.

(6) ... examined the cat.

(7) ... NULLexamined the cat.

(8) * ... NULLexamined examined the cat.

The covert NULLexamined can only occur if its overt
counterpart is absent. Therefore, after parsing the
prefix, a serial parser has to predict whether the
upcoming word in the sentence is covert or overt.
If it expects the next word to be overt “examined”,
the parser should not retrieve any null elements.
On the other hand, if it expects the next word to
be covert NULLexamined, it needs to retrieve this
category and integrate it with the current parse state
before processing the remainder of the sentence.

We model this decision in SPAWN in the same
way that we model other uncertainty: pick the op-
tion Niks with the highest activation, where i is
the current word, and k ∈ {x1, x2 . . . xp, not-null},
where x1, ..., xp are the types of null elements that
can come after the current parse state. The activa-
tion for Niks is given by Equation 6:

Niks = Lik − Iiks + ϵ (6)

Lik and Iiks are the same as in Equations 4
and 5. As in Equation 1, ϵ is noise sampled from
Normal(0, σ). We do not include base-level activa-
tion for the null categories in this computation, be-
cause the base-level activation for the not-null cate-
gory would be extremely high (most sentences in
the corpus do not have null elements) and would re-
sult in the null categories never being retrieved. We
also assume that only certain parse states can be fol-
lowed by null elements (§ B.2): if the parser tried
to insert null elements after every word, it would re-
sult in an exponential increase in the search space.

3.3 Updating activations (“learning”)

Learning in SPAWN occurs by updating the counts
of syntactic categories, which in turn are used to
compute base-level and lexical activations (Equa-
tions 2, 4). These counts are updated at the end of
processing each sentence based on the final set of
categories and null-elements that were retrieved.

3.4 Emergence of priming in SPAWN

Priming in SPAWN emerges as a consequence of
parsing and learning. There are two factors that
can result in priming: an increase in the activa-
tion of relevant categories and an increase in the
probability of reanalysis.

Increased activation When a word in the target
sentence is ambiguous between two categories X
and Y , if the parser retrieved X in a preceding
prime sentence, that increases its base and lexi-
cal activation relative to Y , which makes X more
likely to be retrieved in the target as well.

Increased reanalysis When a word in the target
sentence is ambiguous between two categories X
and Y , and Y has higher base and lexical activa-
tion, then the parser is more likely to retrieve Y
initially. If a sequence of parsing decisions causes
the parser to reanalyze the word, then the probabil-
ity of the parser eventually retrieving X increases:
the inhibition to Y during reanalysis decreases the
difference in activation between X and Y .

4 A case study: Evaluating competing
theories of reduced relative clauses

We use SPAWN to generate and test priming pre-
dictions for two competing syntactic theories of rel-
ative clauses that differ in their assumptions about
how the structure of sentences like (9) is related to
the structure of sentences like (10) and (11).

(9) The cat examined by the doctor was skittish.
(Reduced passive RC; RRC)

(10)The cat who was examined by the doctor was
skittish. (Full passive RC; FRC)

(11)The cat being examined by the doctor was skit-
tish. (Reduced progressive RC; ProgRRC)

Under the Whiz-Deletion account of RCs (Chom-
sky, 1965), the sub-tree corresponding to any RC,
whether reduced or not, is headed by the same
node: a complementizer phrase (CP). In full RCs,
the lexical content in this phrase (the wh-word and
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auxiliary “was”) is overt, whereas in reduced RCs
this lexical content is covert. By contrast, under
the Participial-Phase account (Harwood, 2018),
while full RCs are headed by CPs, reduced pas-
sive and progressive RCs, are headed by Voice
Phrase (VoiceP) and Progressive Phrase (ProgP)
respectively. Consequently, the Participial-Phrase
account, unlike the Whiz-Deletion account, does
not assume the presence of a covert wh-word and
auxiliary in reduced passive and progressive RCs.
See § A.1 for trees that illustrate these differences.

Implementing the two theories We implement
two versions of SPAWN, a Whiz-Deletion version
and a Participial-Phase version. The procedural
memory (parsing mechanism) is identical across
both versions. There are two main differences in
the declarative memory (grammar) across the ver-
sions. First, they differ in the categories that nouns
can be associated with: in the Whiz-Deletion ver-
sion, all nouns modified by RCs have the category
NP/CP (i.e., a noun looking to combine with a
CP on its right), whereas in the Participial-Phase
version, nouns modified by FRCs, RRCs and Pro-
gRRCs are associated with different categories
(NP/CP, NP/VoiceP and NP/ProgP respectively).
Second, the versions have different null lexical
items: the Whiz-Deletion version has lexical items
for a null subject Wh-word, a null finite auxiliary
and a null progressive auxiliary, all of which are
absent in the Participial-Phase version (see § A.2).

5 Methods

5.1 Experimental paradigm
We used a comprehension-to-production priming
paradigm to evaluate the two theories. In each
experimental trial, human participants or SPAWN
models were presented with three primes with the
same structure, followed by an ambiguous partial
prompt such as (15) that could be completed ei-
ther with or without a reduced RC. We used four
prime types: three prime types with RCs (one each
for RRC, FRC and ProgRRC), as well as control
primes without RCs, such as (12)–(14).

(12) The dog chased the boy and ran away.
(13) The monkey chased the hatter and stole a hat.
(14) The dentist chased her son and panted.
(15) The thief chased ___

Estimating priming effects We estimated prim-
ing effects by measuring the proportion of RRC tar-
get parses in the different priming conditions (see

§ 5.2 and § 5.3 for details on how these parses were
measured in humans and models). Concretely, we
estimated P (RRC parse | target, primes) by fitting
Bayesian mixed-effects logistic regression model
with the following three predictors (specified us-
ing Helmert contrasts) as fixed effects: All RCs vs.
AMV, ProgRRC and FRC vs. RRC, and ProgRRC
vs. FRC. We used a weakly informative prior and
a maximal random effects structure (see § E for
further details).

Materials When creating our stimuli, we picked
24 target verbs that can give rise to a temporary
ambiguity as in (15) which can either be resolved
with either a main verb or reduced RC continuation.
We created four items per verb and four versions
of each item. The four versions of one of the items
for the verb “chased” are illustrated below.

(16) The dog chased by the boy ran away.
(17) The dog who was chased by the boy ran away.
(18) The dog being chased by the boy ran away.
(19) The dog chased the boy and ran away.

From these materials we created counterbalanced
lists: in each list, three items occurred as primes;
the fourth was cut at the verb to generate the target.

5.2 Experiment with human participants
Participants We recruited 769 US-based par-
ticipants from Prolific, of whom 765 were self-
reported native speakers of English. We compen-
sated them with 8.35 USD.

Design We developed a web-based version of the
comprehension-to-production priming paradigm
used by Pickering and Branigan (1998). In the
original paradigm, participants were given incom-
plete sentences in a booklet and asked to complete
them. Since participants can be less attentive on
web-based platforms than in the lab, we modified
the paradigm to ensure that participants had to fully
read the prime sentences. On the prime trials, par-
ticipants were presented with a sentence, and asked
to re-type that sentence from memory on the next
screen. They could not progress until they typed
in the sentence perfectly, and could not copy-paste
the sentence, but could go back to re-read the sen-
tence as often as they liked. On the target trials,
participants were presented with the partial prompt
on the screen, and asked to re-type the prompt and
complete it on the next screen. They could not
progress until they typed in the prompt perfectly
and entered at least one more word. We did not
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automatically verify participants’ productions, but
in practice almost all participants generated gram-
matical completions with real words.

Measuring the proportion of RRC parses We
used regular expressions (§ F) to classify all target
completions into two categories (RRC vs. non-
RRC) and specified RRC completions as “success”
in our Bayesian logistic regression model.

5.3 Experiment with SPAWN models
We generated predictions from 18 types of mod-
els which varied along 3 dimensions: the gram-
mar (Whiz-Deletion vs. Participial-Phase; § 4,
A.2), the reanalysis implementation (First-word
regression and Entropy-Weighted reanalysis with
temperature 1 or 10; § 3.2.3), and the number
of training sentences (0, 100 or 1000 sentences).
For each model type, we created 1280 model in-
stances, which, as we describe below, share some
hyperparameters and differ in others.

Model hyperparameters The following hyper-
parameters are fixed across all model instances:
decay (d in Equations 2, 5), latency exponent (f
in Equation 3), and maximum activation (M in
Equation 4). The following hyperparameters dif-
fer for each model instance: latency factor (F in
Equation 3), and the noise parameter (σ in § 3.2.1).

The values for d, f , and M as well as
the sampling distributions for F and σ were
were taken from Vasishth and Engelmann (2021)
(see § D for more details). We sampled σ
from Normal(0.35, 1), because when sigma
was sampled from Vasishth and Engelmann’s
Uniform(0.2, 0.5), some models never retrieved
syntactic categories with low base-level activation.
However, there were no qualitative differences in
results between the two distributions (see § D)

Training data To set initial base-level and lexical
activations of the models prior to the experiment,
we trained the models on 0, 100, or 1000 sentences
and updated the activations at the end of each sen-
tence as described in § 3.3. These small numbers
are consistent with prior work which assumes that
participants start experiments with very weak pri-
ors (Delaney-Busch et al., 2019; Fine et al., 2010).

We used templates3 to generate a dataset of
10000 sentences in which the relative frequency
of different types of RC sentences mirrored corpus

3https://github.com/grushaprasad/
spawn/blob/main/create_training_dat.py

statistics from Roland et al. (2007); for example,
only 1% of the training sentences contained an
RRC (see § C for details about the distribution of
sentence types). For each model instance, we sam-
pled the training sentences from this dataset. Given
the low probability of RRCs, many model instances
never encountered these in their training data, and
as such started with a base-level activation of 0 for
RRCs.

Design We presented each model instance with
the stimuli from the human experiment. On a prime
trial, the model parsed the sentence and updated the
base-level and lexical activations based on the final
set of retrieved categories. On a target trial, the
model parsed the partial prompt and we recorded
the resulting parse state; the model was constrained
to end with only one of two partial states: DP/PP
(RRC parse) or TP/DP (active parse).

Measuring the proportion of RRC parses We
specified the DP/PP state as “success” in our
Bayesian logistic regression model; unlike with
humans, we do not need target completions to infer
the parse the model assigned to the target.

6 Results

Participant/model exclusion Most participants
(77%) never generated a single RRC target com-
pletion. Similarly most models (median of 67%
across the 18 model types) never generated a single
RRC parse state. Since the goal of this work is to
find differences in the proportion of RRC parses be-
tween the primes, we only included in our analyses
and plots the participants or models that generated
at least one RRC completion or parse state.

Human priming behavior In the human exper-
iment, we observed that the proportion of target
RRC parses was highest when the target was pre-
ceded by RRC primes with the same structure, and
lowest when preceded by AMV primes which did
not have any relative clauses. The proportion of
target RRC parses in other two priming conditions,
ProgRRC and FRC, were equivalent relative to
each other, lower than with RRC primes, and higher
than with AMV primes. (Figure 4). See § E.3 for
statistical analyses.

Whiz-Deletion vs. Humans In the Whiz-
Deletion models, processing ProgRRC sentences
involves the retrieval of the same null complemen-
tizer as in RRC sentences, whereas processing FRC
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Figure 4: Empirical probability of RRC parse from the
posterior distribution of the Bayesian logistic regression
model. Error bars reflect 95% credible intervals.

sentences does not (§ B.3). Consequently, these
models predicted that the proportion of target RRC
parses was greater with ProgRRC primes than with
FRC primes (Figure 3), a pattern that does not
align with the qualitative priming pattern observed
in humans. Additionally, the magnitude of priming
effects in the RRC condition were also generally
smaller than what was observed in humans (Fig-
ure 3, bottom panel). These results together suggest
that the Whiz-Deletion account of RRCs, at least
the way we operationalized it, is not consistent with
the representations humans build.

Participial-Phase vs. Humans In the Participial-
Phase models, unlike in their Whiz-Deletion coun-
terparts, processing ProgRRC, FRC, or AMV
primes does not involve retrieving any categories
that are shared with RRC sentences. However, the

categories retrieved for ProgRRC and FRC but not
AMV primes, increase the probability of reanalysis
when processing the ambiguous target sentences
(§ B.3). This reanalysis, as discussed in § 3.4, in
turn increases the probability of the model eventu-
ally assigning an RRC parse to the target, especially
if the models’ prior preference for AMV parses
is relatively weak. Consequently, these models,
particularly when they were trained on 0 and 100
sentences, predicted a graded effect which aligned
with the qualitative priming pattern observed in
humans: the proportion of target RRC parses was
highest with RRC primes, followed by ProgRRC
and FRC primes, and lowest with AMV primes.
The models trained on 1000 sentences could not
capture this qualitative pattern because they gener-
ated very few RRC sentences across the board. This
suggests, in line with prior work (Delaney-Busch
et al., 2019; Fine et al., 2010), that when modeling
the production or processing of extremely infre-
quent structures (like RRCs), assuming weak prior
knowledge might be necessary.

Of the models that captured the qualitative pat-
terns, the models with first-word regression better
captured the magnitude of the empirical priming
effects (Figure 3). Taken together, these results
suggest that, depending on the assumptions we
make about reanalysis and strength of prior belief,
the Participial-Phase account of RRCs, unlike the
Whiz-Deletion account, can be consistent with the
representations humans build.
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7 Discussion

In this work we introduced a cognitively motivated
parser, SPAWN, which can be used to generate
quantitative behavioral predictions from contem-
porary syntactic theories that are based on lexi-
calized grammar formalisms. SPAWN makes it
possible to evaluate what theoretical differences
(if any) result in differing sentence processing pre-
dictions. As a case study, we used SPAWN to
generate predictions from two competing theories
of reduced relative clauses (Whiz-Deletion and
Participial-Phase) while modulating the reanaly-
sis mechanism and the number of training exam-
ples. We compared the predictions from these dif-
ferent versions of the SPAWN model to human
behavior from a large-scale (N=769) web-based
comprehension-to-production priming experiment.

We found that the predictions of the Whiz-
Deletion SPAWN models did not capture the quali-
tative human priming behavior for any of the model
types. In contrast, many of the Participial-Phase
SPAWN models captured the qualitative patterns,
with the models that best captured the magnitude
of the empirical effects being ones with weak prior
knowledge, that reprocesses the sentence from the
beginning whenever reanalysis is triggered. Taken
together, these results suggest that the Participial-
Phase account of reduced relative clauses captures
the structural representations people construct bet-
ter than the Whiz-Deletion account.

Future work This work tentatively suggests that
first-word regression might better model human
processing than entropy-weighted regression. This
observation needs to be more robustly validated
with other empirical phenomena (e.g., priming in
PO/DO sentences). Additionally, some of the pars-
ing mechanisms SPAWN implements, such as for
reanalysis or predicting null elements, are likely
too simplistic to account for human sentence pro-
cessing more generally (see § G). Future work can
tweak these mechanisms and evaluate the modi-
fied models against processing benchmarks like
the SAP Benchmark (Huang et al., 2024) which
have more fine-grained measurements (e.g., read-
ing time per word) across a range of psycholin-
guistic phenomena. Since the time taken for any
of the parsing steps is measured in milliseconds
by default in ACT-R, SPAWN can already gener-
ate quantitative predictions about the time taken
to read or reprocess specific words in sentences,

and therefore can be used with self-paced reading
and eye-tracking datasets. Finally, future work can
also use this paradigm to evaluate other competing
syntactic theories.

Conclusion We proposed a cognitively plausible
parser that can be used to generate quantitative be-
havioral predictions from syntactic theories. Using
English reduced relative clauses as a case study,
we demonstrated how this model can be used to
adjudicate between competing syntactic theories
and parsing mechanisms.
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A Details about the two theories of reduced relative clauses and how they are
implemented in the declarative memory

A.1 Syntax trees
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Figure 5: Syntax tree for “The cat being examined by the doctor...”. The words in red are unvoiced in the Whiz-
Deletion account. The tree for “The cat examined by the doctor ...” is nearly identical but without the ProgP. In
Participial-Phase VoiceP is the sister of cat; in Whiz-Deletion vP is the sister of was.
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A.2 Differences in syntactic categories between the two theories

Category Example sentence Whiz-Deletion Participial-Phase

Noun “The cat which was examined by... ” NP/CP NP/CP
(“cat”) “The cat examined by ... ” NP/CP NP/VoiceP

“The cat being examined by ... ” NP/CP NP/ProgP

Null wh subject “The cat NULLwh NULLpass examined by...” CP/(TP\DP) MISSING
Null finite auxiliary (TP\DP)/VoiceP MISSING
Null progressive auxiliary ‘The cat NULLwh NULLprog being examined by...” (TP\DP)/ProgP MISSING

When the noun in the Whiz-Deletion version combines with the null Wh subject and null finite or
progressive auxiliary, it results in the same parse state as the Participial-Phase noun categories for RRC
and ProgRRC: NP/VoiceP and NP/ProgP. We also explored an alternative implementation of the Whiz-
Deletion account where instead of having three NULL categories — NULLWh, NULLpass and NULLprog —
we had only two categories NULLWhpass (CP/VoiceP) and NULLWhprog (CP/ProgP). This implementation
resulted in nearly identical results (§ 6)

Note, both accounts have the same categories for the null wh-word in RCs which modify objects
of clauses like “The cat the doctor examined was skittish”: Null Complementizer (Object RCs) in the
following table.

A.3 Syntactic categories shared by the two theories

Category label Example words CCG rules

Determiner the, a , an, some, his, her, many, a-lot-of DP/NP
Determiner Phrase something, everyone, non-violence, popularity DP
Noun Phrase dragon, media, palace, mission, trance, tax-fraud NP
Preposition on, to, into, by, at, in, down PP/DP
Transitive verb (active) accompanied, admired, betrayed, solved, forged (TP\DP)/DP
Transitive verb (passive) accompanied, admired, betrayed, solved, forged VoiceP/PP
Transitive verb (location object) arrived, staggered, marched, participated (TP\DP)/PP
Intransitive verb sang, cackled, complained, started-trending TP\DP
Complementizer (Subject RC) who CP/(TP\DP)
Complementizer (Object RC) who CP/(((TP\DP)/DP)/DP)
Null Complementizer (Object RC) NULLWh CP/(((TP\DP)/DP)/DP)
Prog being ProgP/VoiceP
Auxiliary (followed by adjective) was, were (TP\DP)/(NP/NP)
Auxiliary (finite) was (TP\DP)/VoiceP
Auxiliary (progressive) was (TP\DP)/ProgP
Adjective unreliable, competent, well-known, signature, radical NP/NP
Adverb rapidly, diligently, in-surprise, sullenly, wistfully TP\TP
Conjunction and (TP/(TP\DP))\TP
EOS . end\TP

Table 1: Categories present in the declarative memory in both Whiz-Deletion and Participial-Phase versions of
SPAWN. In the syntax chunks, the category labels are the keys, and the CCG rules the attributes. In the lexical
chunks, the words are the keys, and the category labels the attributes. The entire vocabulary can be found in the
create_declmem.py file in the Github repository.

189



B SPAWN parsing details

B.1 CCG combination and type-raising rules

Rule name Parser state form Tag form Composed form

Forward composition DP/NP NP DP
Backward composition DP TP\DP TP
Forward harmonic composition DP/VoiceP VoiceP/PP DP/PP
Backward harmonic composition TP\DP eos\TP eos\DP
Forward crossed composition CP/TP TP\DP CP\DP
Backward crossed composition TP/VoiceP eos\TP eos/VoiceP

Table 2: Examples of all the six possible CCG composition rules being applied when parsing sentences in the
training set.

We have just one type-raising rule: DP can get type-raised to TP/(TP\DP). This lets the subject DP in a
sentence combine with a transitive verb — (TP\DP)/DP — before the transitive verb combines with the
object DP.

The parser starts by sequentially trying to apply each of the six composition rules, stopping once
a successful combination is found. If no successful combination is found, then the parser tries to the
type-raising rule and then sequentially apply all six composition rules.

B.2 Categories that can be followed by null elements
In the Whiz-Deletion grammar the NP/CP category, and the CP/(TP\DP) can be followed by null elements,
whereas in the Participial-Phase grammar, only the the NP/CP category can be followed by a null element
(to account for object reduced RCs like “The cat the doctor examined was skittish”).

B.3 Analysis of example sentences with our grammar

Old Parse state Word Correct category Rule New parse state

NULL the DP/NP Initialize DP/NP
DP/NP cat NP/VoiceP Forward Harmonic Composition DP/VoiceP
DP/VoiceP examined VoiceP/PP Forward Harmonic Composition DP/PP
DP/PP by PP/DP Forward Harmonic Composition DP/DP
DP/DP the DP/NP Forward Harmonic Composition DP/NP
DP/NP doctor NP Forward Composition DP
DP liked (TP\DP)/DP Type raise DP
TP/(TP\DP) Forward Harmonic composition TP/DP
TP/DP the DP/NP Forward Harmonic composition TP/NP
TP/NP girl NP Forward Harmonic composition TP
TP EOS end\TP Backward composition end

Table 3: CCG analysis for a reduced RC sentence under the Participial-Phase grammar. The rows in gray are the
same across all RC types.
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Old Parse state Word Correct category Rule New parse state

NULL the DP/NP Initialize DP/NP
DP/NP cat NP/CP Forward Harmonic Composition DP/CP
DP/CP NULLwh CP/(TP\DP) Forward Harmonic Composition DP/(TP\DP)
DP/(TP\DP) NULLpass (TP\DP)/VoiceP Forward Harmonic Composition DP/VoiceP
DP/VoiceP examined VoiceP/PP Forward Harmonic Composition DP/PP
DP/PP by PP/DP Forward Harmonic Composition DP/DP
DP/DP the DP/NP Forward Harmonic Composition DP/NP
DP/NP doctor NP Forward Composition DP
DP liked (TP\DP)/DP Type raise DP
TP/(TP\DP) Forward Harmonic composition TP/DP
TP/DP the DP/NP Forward Harmonic composition TP/NP
TP/NP girl NP Forward Harmonic composition TP
TP EOS end\TP Backward composition end

Table 4: CCG analysis for a reduced RC sentence under the Whiz-Deletion grammar. The rows in gray are the same
across all RC types. We experimented with an alternative version where NULLWh and NULLpass were combined
into one category. This resulted in qualitatively similar results.

Old Parse state Word Correct category Rule New parse state

NULL the DP/NP Initialize DP/NP
DP/NP cat NP/ProgP Forward Harmonic Composition DP/ProgP
DP/ProgP being ProgP/VoiceP Forward Harmonic Composition DP/VoiceP
DP/VoiceP examined VoiceP/PP Forward Harmonic Composition DP/PP
DP/PP by PP/DP Forward Harmonic Composition DP/DP
DP/DP the DP/NP Forward Harmonic Composition DP/NP
DP/NP doctor NP Forward Composition DP
DP liked (TP\DP)/DP Type raise DP
TP/(TP\DP) Forward Harmonic composition TP/DP
TP/DP the DP/NP Forward Harmonic composition TP/NP
TP/NP girl NP Forward Harmonic composition TP
TP EOS end\TP Backward composition end

Table 5: CCG analysis for a reduced progressive RC sentence under the Participial-Phase grammar. The rows in
gray are the same across all RC types.

Old Parse state Word Correct category Rule New parse state

NULL the DP/NP Initialize DP/NP
DP/NP cat NP/CP Forward Harmonic Composition DP/CP
DP/CP NULLwh CP/(TP\DP) Forward Harmonic Composition DP/(TP\DP)
DP/(TP\DP) NULLprog (TP\DP)/ProgP Forward Harmonic Composition DP/VoiceP
DP/ProgP being ProgP/VoiceP Forward Harmonic Composition DP/VoiceP
DP/VoiceP examined VoiceP/PP Forward Harmonic Composition DP/PP
DP/PP by PP/DP Forward Harmonic Composition DP/DP
DP/DP the DP/NP Forward Harmonic Composition DP/NP
DP/NP doctor NP Forward Composition DP
DP liked (TP\DP)/DP Type raise DP
TP/(TP\DP) Forward Harmonic composition TP/DP
TP/DP the DP/NP Forward Harmonic composition TP/NP
TP/NP girl NP Forward Harmonic composition TP
TP EOS end\TP Backward composition end

Table 6: CCG analysis for a reduced RC sentence under the Whiz-Deletion grammar. The rows in gray are the same
across all RC types. We experimented with an alternative version where NULLWh and NULLpass were combined
into one category. This resulted in qualitatively similar results.
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Old Parse state Word Correct category Rule New parse state

NULL the DP/NP Initialize DP/NP
DP/NP cat NP/CP Forward Harmonic Composition DP/CP
DP/CP which CP/(TP\DP) Forward Harmonic Composition DP/(TP\DP)
DP/(TP\DP) was (TP\DP)/VoiceP Forward Harmonic Composition DP/VoiceP
DP/VoiceP examined VoiceP/PP Forward Harmonic Composition DP/PP
DP/PP by PP/DP Forward Harmonic Composition DP/DP
DP/DP the DP/NP Forward Harmonic Composition DP/NP
DP/NP doctor NP Forward Composition DP
DP liked (TP\DP)/DP Type raise DP
TP/(TP\DP) Forward Harmonic composition TP/DP
TP/DP the DP/NP Forward Harmonic composition TP/NP
TP/NP girl NP Forward Harmonic composition TP
TP EOS end\TP Backward composition end

Table 7: CCG analysis for a full passive RC sentence under the Whiz-Deletion and Participial-Phase grammar.The
rows in gray are the same across all RC types.

Old Parse state Word Correct category Rule New parse state

NULL the DP/NP Initialize DP/NP
DP/NP cat NP Forward Composition DP
DP examined (TP\DP)/DP Type raise DP
TP/(TP\DP) Forward Harmonic Composition TP/DP
TP/DP the DP/NP Forward Harmonic Composition TP/NP
TP/NP doctor NP Forward Composition TP
TP and (TP/(TP\DP))\TP) Backward composition TP/(TP\DP)
(TP/(TP\DP))\TP) liked (TP\DP)/DP Forward Harmonic composition TP/DP
TP/DP the DP/NP Forward Harmonic composition TP/NP
TP/NP girl NP Forward Harmonic composition TP
TP EOS end\TP Backward composition end

Table 8: CCG analysis for an active main verb sentence with verb coordination under the Whiz-Deletion and
Participial-Phase grammar.

C Details about the training dataset
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Structure Prob Example

Subject RC 0.016 The defendant who examined the lawyer ...
Full object RC 0.002 The defendant who the lawyer examined ...
Reduced object RC 0.005 The defendant the lawyer examined ...
Full passive RC 0.002 The defendant who was examined by the lawyer ...
Reduced passive RC 0.011 The defendant examined by the lawyer ...
Full progressive RC 0.0002 The defendant who was being examined by the lawyer ...
Reduced progressive RC 0.005 The defendant being examined by the lawyer ...

Transitive NP object 0.321 The examined the lawyer.
Transitive PP object 0.080 The defendant went to the store.
Intransitive 0.240 The defendant sang (joyfully).
Copular 0.240 The defendant was happy.

Coordination 0.080 The defendant examined the lawyer and went to the store.
The defendant was happy and sang joyfully.
The defendant went to the store and sang and was happy and examined the lawyer.

Table 9: The relative frequencies for all RCs, except the Progressive RCs, was taken from (Roland et al., 2007).
Since progressive RCs were absent from this corpus study, we approximated their probabilities informally using
google n-grams: for a range of different verbs, full RCs with almost never showed up in google n-gram viewer, but
progressive RCs occasionally did. So we set the probability of progressive RCs to be twice that of full RCs. Since
reduced RCs were much more frequent than their full counterparts, we assigned 95% of the probability mass of
progressive RCs to the reduced version, and the remaining five to the full version. Since the exact frequencies of
non-RC sentences is unlikely to be relevant for our experimental set up, we just included a few types of non-RC
sentences without trying to match their frequencies with corpus statistics.

D Exploring model hyperpameters

Hyperparameter Equation or Section Value(s) Reason

Decay (d) Eqn 2, Eqn 5 0.5 Vasishth and Engelmann (2021)
Latency exponent (f ) Eqn 3 1 Vasishth and Engelmann (2021)
Maximum actiation (M ) 1.5 Eqn 4 Vasishth and Engelmann (2021)

Latency factor (F ) Eqn 3 Beta(2, 6) Vasishth and Engelmann (2021)
SD of noise distribution (σ) § 3.2.1 Uniform(0.2, 0.5) Vasishth and Engelmann (2021)

Normal(0.35, 1) Add more noise to retrieve passive.

# Training sentences § 5.3 0, 100, 1000 >1000 resulted in almost no passive retrieval.
Give up § 3.2.3 100, 1000 >1000 too much time; 100,1000 same behavior.
Reanalysis index (z) § 3.2.3 1 Always go back to first word.

Entropy weighted sample; SM temp: 1 Emphasize differences in activation.
Entropy weighted sample; SM temp: 10 Make differences in activation more uniform.

Random seed (s) Between 1 to 1280 Affects training order, random sampling.

Table 10: Hyperparameters above the double line are ACT-R parameters. Hyperparameters below the double line
are SPAWN specific hyperparameters. Only F , σ and s differ across the 1280 model instances.
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Figure 6: P(RRC | prime, target) averaged across 1280 model instances as estimated with raw proportions (dark) and
from the posterior distribution of Bayesian models (light). Since fitting Bayesian models is very time consuming,
these models were fit only for the subset of results reported in the main text (Figure 3). Error bars represent 95%
standard error (standard deviation of proportions divided by

√
n) for proportions and 95% Credible Intervals for the

Bayesian models. Missing values indicate that no passive responses were generated.
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E Details about statistical models

E.1 Model specification

To generate quantitative predictions about the predicted proportion of passive responses while taking into
consideration the model-instance wise and item wise variation, we fit Bayesian mixed effects logistic
regression models. We used a Helmert contrast coding scheme with the following predictors, which let us
evaluate if the mean log odds ratio of the ProgRRC and FRC conditions are equal to each other and to the
mean log odds ratio of the RRC condition.

• C1: Compare the mean log odds ratio of the AMV condition with the mean log odds ratio of all the
RC conditions combined.

• C2: Compare the mean log odds ratio of the RRC condition with the mean log odds ratio of all
ProgRRC and FRC conditions combined.

• C3: Compare the mean log odds ratio of the ProgRRC condition to the mean log odds ratio of the
FRC condition.

We fit the maximal model by including all by-participant and by-item random intercepts and slopes. In
the case of the predicted data, participant IDs were replaced by model instance IDs.

Passive ∼ c1 + c2 + c3+

(1 + c1 + c2 + c3 | item)+

(1 + c1 + c2 + c3 | participant or model-instance)

E.2 Priors

We fit the models using the following weakly informative prior.

Intercept ∼ Normal(−4.595, 1.5)
Fixed effects ∼ Normal(0, 2)

SD for random effects ∼ Normal(0, 5)

This prior assumes that the log odds ratio between priming conditions is most likely to be 0 (i.e. no
priming effect) and unlikely to be greater than 4 or less than -4. This assumption is based on a meta-
analysis of priming in production studies (Mahowald et al., 2016) where the log odds ratio between the
prime conditions was not greater than 4 in any of the constructions they considered.

E.3 Statistical inferences for empirical human data

As discussed in the main text, we observed the following qualitative pattern in the proportion of target
RRC parses when preceded by different primes: RRC > ProgRRC = FRC > AMV. To ensure that this
pattern was statistically valid, we computed Bayes Factors for all of our predictors using the bayestestR
package (Makowski et al., 2019). We adopt the Bayes Factor scale from Jeffreys (1998) to draw inferences:
values greater than 3 and 10 provide moderate and strong evidence for the alternative model, whereas
values lower than 0.3 and 0.1 provide moderate and strong evidence for the null model. Therefore, the
following Bayes Factor values for our predictors would support the qualitative pattern:

1. AMV vs. all RCs (C1): > 3

2. RRC vs. [ProgRRC and FRC] (C2): > 3

3. ProgRRC vs. FRC (C3): < 0.3
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Predictor Estimate 95% CI Bayes Factor

AMV vs. all RCs (C1) -4.18 [-5.72, -3.04] 7.71e+08
RRC vs. [ProgRRC and FRC] (C2) 0.96 [0.62, 1.31] 9.91e+03
ProgRRC vs. FRC (C3) 0.21 [-0.18,0.60] 0.178

Table 11: Bayesian Logistic regression model estimates and Bayes Factors for the human experiment.

E.4 Statistical inferences for predicted data
From the posteriors of the Bayesian models, we computed 95% credible intervals for P(RRC | prime,
target) for each prime condition for the human data, and for each of our model types. If the credible
intervals for predicted priming effect from a model do not overlap with the empirical priming effects,
we infer that the model cannot account for human behavior. Such an inference is valid because credible
intervals, unlike the frequentist confidence intervals, reflect our confidence about the distribution of the
actual effects (so 95% credible interval means that we are 95% sure that the true effect falls within this
interval).

F Regular expressions to detect passive responses in the human experiment

We used a three step process to detect passive responses in the human experiment. First, we started with
the following regular expression:

^(\\w+\\s+){3}by

This expression looks for sentences in which the fourth word of the sentence is “by” — all of our target
prefixes had only three words (Determiner Noun Verb).

Next we used the following regular expression to detect completions where the fourth word is “by”, but
the completion is not passive:

by \\w+(\\s+\\w+){0,1}(\\.)*$

This expression returns TRUE if the word “by” is followed by just one or two words such as “The thief
chased by the dog” or “the thief chased by me”.

Finally, we tagged completions as being passive RRC completion if they matched the first expression
and not the second.
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G Limitations

Here we discuss some of the simplifying design decisions we made in SPAWN as a starting point, and
their limitations.

Storing discarded categories As discussed in § 3.2.3, when the parser is regressing to some previous
word wz , it discards all of the categories retrieved from wz . . . , wi−1, wi. In the current implementation,
SPAWN stores all instances of the discarded categories and uses this to compute inhibition. While storing
all instances of the discarded categories is convenient, it is not cognitively plausible. Future work can
examine other ways of computing inhibition that relies on summaries of discarded categories, instead of
storing all of the instances, and investigate if using summaries results in different priming behavior.

Constraining partial parse states With our Whiz-Deletion grammar and our current implementation
of null element prediction, the model could parse the partial sentence “The cat examined” and end up
with an ungrammatical partial parse — i.e., a parse that cannot result in a grammatical continuation — as
illustrated below.

Old Parse state Word Retrieved category Rule New parse state

NULL the DP/NP Initialize DP/NP
DP/NP cat NP/CP Forward Harmonic Composition DP/CP
DP/CP NULLwh CP/(TP\DP) Forward Harmonic Composition DP/(TP\DP)
DP/VoiceP examined (TP\DP)/DP Forward Harmonic Composition DP/DP

This is not a problem in full sentences because this parse state is inconsistent with later words in the
sentence, and the model will be forced to re-analyze. However, since our partial target prompts have no
additional words, the model could end up with an ungrammatical parse, which is something we assumed
would not happen with our human participants. Therefore, we constrained the model such that if it
generated a partial state that was not DP/PP or TP/DP, it would be forced to reanalyze. While this is a
convenient method to ensure that the model does not end up with an ungrammatical parse, it is unclear
if this method accurately models how humans process the partial prompt. Future work can state more
explicitly how humans parse the partial sentence such that they are always able to generate grammatical
continuations, and then implement this in SPAWN.
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Abstract

Abstractive summarization models learned
with token-level maximum likelihood estima-
tion suffer from exposure bias, that the condi-
tion for predicting the next token is discrepant
during training and inference. Existing solu-
tions bridge this gap by learning to estimate
semantic or lexical qualities of a candidate sum-
mary from the global view, namely global learn-
ing (GL), yet ignore maintaining rational triplet-
relations among document, reference summary,
and candidate summaries, e.g., the candidate
and reference summaries should have a similar
faithfulness degree judging by a source docu-
ment. In this paper, we propose an iterative
autoregressive summarization paradigm - IAR-
Sum, which fuses the learning of triplet rela-
tions into a GL framework and further enhances
summarization performance. Specifically, IAR-
Sum develops a dual-encoder network to enable
the simultaneous input of a document and its
candidate (or reference) summary. On this ba-
sis, it learns to 1) model the relative semantics
defined over tuples (candidate, document) and
(reference, document) respectively and balance
them; 2) reduce lexical differences between
candidate and reference summaries. Further-
more, IARSum iteratively reprocesses a gen-
erated candidate at inference time to ground
higher quality. We conduct extensive exper-
iments on two widely used datasets to test
our method, and IARSum shows the new or
matched state-of-the-art on diverse metrics.

1 Introduction

Abstractive summarization is a classical natural
language generation (NLG) task, which aims to
rewrite a long document into a shorter version, re-
taining only the salient information (Kumar and
Chakkaravarthy, 2023; Xie et al., 2023). In re-
cent years, the advancement of pre-trained lan-
guage models (PLMs) (Lewis et al., 2020; Zhang

*Corresponding author.
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Figure 1: Graphicalization of triplet relations among a
document, the reference summary, and a candidate sum-
mary, where each point of the triangle△SRC presents
source document (S), reference summary (R), and can-
didate summary (C), respectively. Upper right: Tradi-
tional GL methods only consider the edge RC and deem
it the semantic or lexical gaps between the points R and
C, which they learn to minimize. Lower right: SeqCo
further considers S and regards each edge as a semantic
gap to be minimized. Left: We extend traditional GL
methods by treating the side edge SR (SC) as a relative
semantics metric, and we highlight the balance of edges
SR and SC.

et al., 2020a) founded on large-scale corpora
boosted abstractive summarization significantly,
and sequence-to-sequence (Seq2Seq) learning has
shown promising results in almost all scenarios.
It commonly learns an autoregressive PLM with
maximum likelihood estimation (MLE), and the
teacher-forcing algorithm (Goyal et al., 2016) is
together used to ensure training efficiency and sta-
bility. However, such a model predicts each token
in a summary based on the gold pre-context during
training but on its preceding outputs at inference,
causing a training-inference discrepancy - exposure
bias (Bengio et al., 2015; Goodman et al., 2020),
which heavily limits summarization performance.

Since exposure bias happens on the token level,
existing solutions train models to maximize the
global similarity between candidate and reference
summaries, namely global learning (GL). Rein-
forcement and contrastive learning in summariza-
tion are the most used GL technologies. For exam-
ple, in reinforcement learning based GOLD (Pang
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and He, 2021) and RLEF (Roit et al., 2023), a
summarization model is rewarded depending on
the quality of candidate summaries it produces,
with the reference as the standard. Similarly, con-
trastive learning methods (Liu et al., 2022; Xie
et al., 2023; Zhang et al., 2022) compare candidate
summaries with the reference and assign the one
closer to the reference a higher probability, and
vice versa. On the one hand, all these methods
measure candidate-reference similarities without
considering the source document conditions. Fur-
thermore, their measurement stands on only the se-
mantic or lexical aspect rather than comprehensive
perspectives, resulting in biased learning objectives.
SeqCo (Xu et al., 2022) aims to minimize the se-
mantic discrepancies among a source document,
its reference, and candidate summaries. Still, it
is powerless to learn lexical perception and shows
undesirable summarization results.

To address these problems, we highlight rational
relations within the triplet (document, candidate
summary, reference summary) in abstractive sum-
marization. Take the geometrical triplet in Figure 1
for intuitive perception. Traditional GL methods
view the edge RC as lexical or semantic gaps be-
tween candidate and reference summaries, aiming
to draw points R and close as possible. Similarly,
SeqCo considers from the semantics perspective
and further aims to condense the triangle△SRC
into a single point (draw all three points S, R, and
C as close as possible). In this work, we base on
the traditional GL assumption and further treat side
edges SR and SC as relative semantics metrics be-
tween the document and summaries. We propose
to balance the edges SR and SC while minimiz-
ing the edge RC. Our inspiration is that an ideal
model should generate candidate summaries sim-
ilar to the reference on both semantic and lexical
aspects (Sul and Choi, 2023). In particular, the lim-
itations of GL-based methods, which tend to yield
summaries with unsatisfactory relative semantics,
such as faithfulness and abstractiveness (Dixit et al.,
2023) measured by the source document, can be
effectively fixed by balancing the two side edges
of△SRC.

According to the above insights, we pro-
pose an iterative autoregressive summarization
paradigm (IARSum), which facilitates learning
the mentioned triplet relations with a standard
GL framework to enhance summarization perfor-
mance. Specifically, IARSum generates a summary
through a series of iterations, during which the

model re-inputs and reprocesses the previously gen-
erated summary in each iteration to get improved
versions. This encourages assessing summaries’
quality from a global view and effectively prevents
exposure bias. We build IARSum on a double
encoder-decoder network following Transformer
architecture to fulfill the desired properties. It uses
two serial encoders to encode the document and re-
input summaries, respectively, and uses the second
encoder’s outputs to model summary-document se-
mantics. To learn the IARSum model aware of
triplet relations, we reward the model to get similar
outputs from the second encoder when provided
with candidate and reference summaries as input,
respectively. We also reward the model once a can-
didate achieves higher lexical overlap with the ref-
erence after reprocessing. Furthermore, we adopt
an offline mini-risk training strategy that enforces
the model to maximize the mentioned rewards. In
inference, a trained IARSum model can adaptively
refine the generated summaries in sequential itera-
tions for increased quality.

In summary, we make three-fold contributions.
First, we explore rational relations within the triplet
(source document, reference summary, candidate
summary) in summarization and propose to bal-
ance the relative semantics over tuples (candidate,
document) and (reference, document) while reduc-
ing the lexical differences within (candidate, ref-
erence). Second, we propose IARSum, a novel
summarization paradigm that facilitates learning
our suggested triplet relations with a GL framework
to boost summaries’ quality. Finally, we conduct
extensive experiments on two public datasets to test
our methods. Results show that IARSum matches
or outperforms previous state-of-the-art (SOTA)
approaches in generating high-quality summaries
measured by multiple metrics. Furthermore, we
transfer IARSum to few-shot settings and show its
superior robustness.

2 Related Work and Background

2.1 Abstractive Summarization
Summarization is always modeled as a Seq2Seq
generation task, creating function f that is condi-
tioned on a source document X to output a target
summary Y :

Y ← f(X) (1)

For the abstractive paradigm, existing approaches
commonly learn an autoregressive language model
with parameter θ to fit f and approximate the
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conditional probability P(Y |X) token by token.
Maximum likelihood estimation (MLE) is the
most used learning schema. It aims to maxi-
mize the probability that the model predicts gold
reference, following independent and identically
distributed conditions, i.e., maxθ Pθ(Y |X) =
maxθ

∏l
t=1 Pθ(yt|Y<t, X), where l denotes the

length of reference and Y<t refers to sub-sequence
{y1, y2, · · · , yt−1}.

During training, the teacher-forcing mechanism
(Goyal et al., 2016) is adopted, which conditions
on exact pre-context to predict a target token and
minimizes the following negative log-likelihood
(NLL) loss:

Lnll(θ) = −
l∑

t=1

log Pθ(yt|Y<t, X) (2)

Though this encourages stable MLE learning, such
a trained model depends heavily on accurate predic-
tion. Intuitively, it learns to sample the next token at
timestep t from the distribution P(·|Y<t, X), while
the case at inference is to sample from P(·|Y ′

<t, X),
where Y ′

<t denotes the previous generation. This
gap between training and inference is the so-called
exposure bias, causing errors accumulation during
inference, especially once any improper token is
generated in early steps.

2.2 Global Learning
Reinforcement learning (RL) rewards a model with
sequence-level feedback, depending on varying
evaluation metrics. Most works (Tan, 2023; Roit
et al., 2023) are based on on-policy learning (Paulus
et al., 2018), where a model generates a sampled
candidate and a greedily searched candidate during
training. It requires high computational costs and
tends to get stuck in a zero-reward region. As a
result, MLE loss is used as an assistant. Richard
et al. (Pang and He, 2021) proposed an off-policy
learning method that uses reference summary as a
demonstrator. Although it averts zero rewards, the
exploring ability is reduced.

Traditional contrastive learning (CTL) uses pos-
itive and negative sample pairs to train a model
to distinguish real data labels. For example,
CLIFF (Cao and Wang, 2021) builds sample pairs
by the back-translation and improves the faithful-
ness and factuality of the generated summaries.
In recent years, ranking-based learning originated
from the standard CTL and has shown advanced
performance in abstractive summarization. Liu et

al. (Liu and Liu, 2021) first propose a two-stage
framework that trains a RoBERTa (Liu et al., 2019)
to rank the candidates generated by BART at first.
BRIO (Liu et al., 2022) makes a further optimiza-
tion, trains BART itself as an evaluation tool, and
ranks the conditional probability of candidates.
Later, a lot of improved BRIO variants (Xie et al.,
2023; Zhao et al., 2023; Zhang et al., 2022) were
proposed in succession. Despite performing sur-
prisingly, such methods only focus on maximizing
the candidate-reference similarity without consid-
ering the source document effects. Noting this
point, SeqCo (Xu et al., 2022) contrasts semantics
among source documents, candidates, and refer-
ences. However, SeqCo assumed irrational triplet
relations and suffered unstable optimization caused
by online learning, the main reason for undesirable
performance.

3 Method

In this section, we describe the details of our pro-
posed methods. We introduce the iterative autore-
gressive text generation paradigm in Section 3.1,
describe the IARSum model architecture in Sec-
tion 3.2, and illustrate the offline global learning
strategy in Section 3.3.

3.1 Iterative Autoregressive Generation

The standard autoregressive (AR) text generation
illustrated in Figure 2 (a) is widely known as a
unidirectional process, where a text is generated
sequentially token by token. The major limitation
is that each token is predicted depending on its pre-
context. As a result, a wrongly generated token
may mislead the later content and make the gen-
erated text entirely deviate from the target due to
error accumulation. Calibrating the predicted token
distributions on a global view (global learning) is
effective in addressing this problem. However, it
is hard to involve the source document conditions,
i.e., the semantic relations between the document
and summaries, in calibration. We propose an iter-
ative autoregressive generation paradigm (IAR) to
break these limitations.

As demonstrated in Figure 2, IAR models the
generation of target text in the Seq2Seq task as
a text-level Markov Chain, where the state transi-
tions from a draft to more refined results. Taking
abstractive summarization as an example, at the
i-th iteration, IARSum samples a candidate sum-
mary Y i−1 from the previous iteration’s outputs,
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estimates its quality, and produces a new one Y i.
This process repeats until the maximum number of
iterations N is reached, which formally presents
as:

P(Y |X) = P
(
Y 0|X

)
P
(
Y N |Y 0, X

)

= P
(
Y 0|X

) N∏

i=1

P
(
Y i|Y i−1, X

) (3)

where Y 0 ∼ P(·|X), Y i ∼ P(·|X,Y i−1), and
Y N = Y .

3.2 Model Architecture
We implement IARSum with a Transformer-based
encoder-decoder model shown in Figure 3. It has
two encoders with bidirectional attention and one
decoder with unidirectional attention. To speed
up convergence, we start our model with a single-
encoder Transformer with pre-trained parameters
θ and share initial parameters between the two en-
coders.

The architecture of IARSum is very similar to
GSum (Dou et al., 2021). However, encoders of
GSum are independent and connect to the decoder
orderly by cross-attention layers (i.e., parallel en-
coders). IARSum instead adapts serial encoders,
where the second encoder relies on the output of the
first to feature the input content, similar to a Trans-
former decoder without a sequence mask. Besides,
GSum uses the second encoder to encode guidance

words, while IARSum’s second encoder is used to
encode the candidate summary. Mathematically,
IARSum models the following token distributions
during the first and later iterations, respectively:

Pθ(y
0
t |X) = σ(Dθ(E

1
θ (X), y0

<t))

Pθ(y
i
t|Y i−1, X) = σ(Dθ(E

2
θ (E

1
θ (X), Y i−1), yi

<t))
(4)

where E1
θ , E

2
θ are the first and second encoders,

and Dθ is the decoder. σ(·) is softmax function.

3.3 Learning Objective

According to our intention proposing IAR in Sec-
tion 3.1, we learn an IARSum model for mainly
two objectives. One is to maximize the lexical
similarity between candidate and reference sum-
maries, and the other one involves matching the
relative semantics of candidates with that of the ref-
erence, taking the document as the standard. Both
objectives can be attended within a multi-rewards
learning framework.
Semantics Rewards. The recent study (Dreyer
et al., 2023) pointed out that a summary should be
logically entailed in the source document to ensure
faithfulness. On the other hand, researchers also ob-
served that humans write summaries with hallucina-
tory words to keep abstractiveness (Maynez et al.,
2020) despite contradicting summary-document en-
tailment. Note that faithfulness and abstractiveness
are perceived on the source document basis. To
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bypass their contradictions, we uniformly refer to
such perceptions as relative semantics and model
them with a neural function S(·, ·). Intuitively, an
ideal candidate summary should be at a similar
level of relative semantics compared with the ref-
erence, and their differences in this attribute are
quantitatively observed:

Ms(X,Y, Y i) = ⟨S(X,Y ),S(X,Y i)⟩ (5)

where ⟨·, ·⟩ is a distance function, such as Eu-
clidean distance. Furthermore, we will reward the
model according to the gain of semantics rewards
between two adjacent iterations:

Rs(Y
i, Y i−1) = Ms(X,Y, Y i)−Ms(X,Y, Y i−1)

(6)
Lexical Rewards. From the lexical view, we en-
courage a candidate, after reprocessing, to contain
more tokens overlapped with the reference. To this
end, we reward the model using the lexical rewards:

Rl(Y
i, Y i−1) =

|({Y i} − {Y i−1}) ∩ {Y }|
|{Y }| (7)

where {·} denotes a token set and | · | means the set
size.
Learning Objective. Finally, we mix the two types
of rewards with a balance coefficient ξ ∈ (0, 1):

R(Y i) = ξRs(Y
i, Y i−1) + (1− ξ)Rl(Y

i, Y i−1)
(8)

and the overall learning objective for IARSum is
unified to maximize the following expected re-
wards:

N∑

i=1

max
θ

EY i∼Pθ(·|Y i−1,X)[R(Y i, Y i−1)]. (9)

3.4 Training
As we learn IARSum to maximize the expected
rewards, the infinite sampling space makes the ex-
pectation in Eq.9 untraceable. Predominant studies
commonly use the Monte Carlo approach to ad-
dress this problem, which approximates the real
distribution with empirical samples. We follow this
idea and adopt a minimum-risk training (Shen et al.,
2016) strategy. At each iteration i, we sample k
candidates Y i

(1), · · · , Y i
(k) from Pθ(·|Y i−1, X) us-

ing beam-search (Vijayakumar et al., 2016), and
the model is trained to minimize an expected risk
loss:

Ler(θ) = −
k∑

t=1

R(Y i
(t))

Pθ(Y
i
(t)|Y i−1, X)

∑k
t=1 Pθ(Y

i
(t)|Y i−1, X)

(10)

Figure 3: IARSum model’s dual-encoder architecture.

Semantic Relation Modeling. Another challenge
we encounter is the implementation of function
S. Given a document-summary pair (X,Y ), we
average the output of the IARSum second encoder
to feature their semantic relations:

S(X,Y ; θ) = MeanPool(E2
θ (E

1
θ (X), Y ))

(11)
This approach is parameter-efficient. However,
dynamically learned parameters θ cause the ob-
servation of S to vary sharply as training pro-
gresses. Drawing from (Zhang et al., 2022) lessons,
we introduce momentum-based parameterization
to remove this risk. Concretely, we build ζ-
parameterized S(·, ·; ζ), which is initialized by θ
and updated with the moving average:

ζ ← µζ + (1− µ)θ (12)

where µ is a momentum coefficient to coordinate
the synchronization rate of two types of parameters.
Based on this, Eq.5 is reformulated as:

Ms(X,Y, Y i) = −∥S(X,Y ; ζ)− S(X,Y i; ζ)∥
(13)

Offline Learning. We use offline samples during
training to save the computational costs of gener-
ating candidates. A pre-trained model is first fine-
tuned with MLE and proceeds to generate k candi-
date summaries for every document in the training
set. Each candidate, coupled with the source docu-
ment, forms a {X,Y i−1} pair used for the model
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training. Note that the generated candidates share
varying semantic and lexical qualities, and the ones
closer to the reference standard simulate the drafts
that have been reprocessed more times. This nature
facilitates the training to focus on only one iter-
ation without considering the multi-turn rewards.
Moreover, training the model to maximize expected
rewards alone is unguaranteed to generate fluent
language. Following (Liu et al., 2022; Zhao et al.,
2023), we add a regularization term in Eq.9, and
the overall loss function is then:

L(θ) = Lnll(θ) + λLer(θ) (14)

4 Experiments

4.1 Datasets

Two public open-domain datasets are used to eval-
uate our method. CNN/DM (Hermann et al., 2015;
Nallapati et al., 2016) is a well-known news sum-
marization dataset with the associated highlights
as summaries. XSum (Narayan et al., 2018) is
an extremely abstractive dataset also in the news
domain that contains a one-sentence summary for
each article from BBC.

4.2 Comparison Methods

BART (Lewis et al., 2020) is a pre-trained Trans-
former model with a denoising objective widely
used for abstractive summarization. PEGA-
SUS (Zhang et al., 2020a) is another widely used
pre-trained model with gap sentence generation
and masked language modeling pre-training ob-
jectives. GSum (Dou et al., 2021) is an abstrac-
tive summarization model guided by extraction re-
sults with an identical double-encoder architecture
as ours. GOLD (Pang and He, 2021) is an off-
policy reinforcement learning method using the
reference summary as a demonstrator. SeqCo (Xu
et al., 2022) is a contrastive learning method that
enforces the semantic similarity between reference
and candidate. BRIO (Liu et al., 2022) is a con-
trastive learning method that assigns probability
mass to candidate summaries according to their
quality. SimMCS (Xie et al., 2023) is a multi-level
contrastive learning method improved from BRIO
and achieved state-of-the-art on both CNN/DM and
XSum. SLiC (Zhao et al., 2023) is essentially a
variant of BRIO, calibrating PEGASUS with types
of contrastive losses. MoCa (Zhang et al., 2022) is
improved from BRIO, introducing online candidate
sampling.

Table 1: Automatic evaluation results on CNN/DM test
set. †: results from our reproduction. The best results
are in bold. The previous best results are highlighted
with underline. R-1/2/L: ROUGE-1/2/L F1 scores. BS:
BERTScore. BaS: BARTScore-F .

Model R-1 R-2 R-L BS BaS

BART 44.16 21.28 40.90 87.95 -3.91
PEGASUS 44.17 21.47 41.11 85.07† -3.80†

GSum 45.94 22.32 42.48 - -
GOLD 45.40 22.01 42.25 - -
SeqCo 45.02 21.80 41.75 - -
BRIO 47.78 23.55 44.57 89.14† -3.62†

SimMCS 48.16 24.08 44.65 89.20 -3.58
SLiC 47.97 24.18 44.88 - -
MoCa 48.88 24.94 45.76 - -

IARSum 48.96 25.14 45.93 89.32 -3.25

Table 2: Automatic evaluation results on XSum test set.

Model R-1 R-2 R-L BS BaS

BART 45.14 22.27 37.25 89.63† -3.64†

PEGASUS 47.21 24.56 39.25 89.68 -3.89
GSum 45.40 21.89 36.67 - -
GOLD 45.85 22.58 37.65 - -
SeqCo 45.65 22.41 37.04 - -
BRIO 49.07 25.59 40.40 89.10† -3.79†

SimMCS 49.39 25.73 40.49 90.23 -3.77
SLiC 49.77 27.09 42.08 - -
MoCa 49.32 25.91 41.47 - -

IARSum 49.42 27.20 42.50 92.13 -3.61

4.3 Implementation Details

In the following experiments, we use BART as the
backbone and start our model from the public fine-
tuned versions bart-large-cnn1 (on CNN/DM) or
bart-large-xsum2 (on XSum). As for hyperparam-
eters, we set ξ = 0.5, µ = 0.5, and λ = 100. We
train our model on 4 NVIDIA RTX 4090 GPUs for
100K steps with a batch size of 16. The AdamW op-
timizer (Loshchilov and Hutter, 2019) with a noam
learning rate schedule is used. The initial learning
rate lr is 2e-3, and its value is updated following
lr∗ = lr · min(S−0.5,S × W−1.5), whereW de-
notes the warmup steps, is set to 3,000, and S accu-
mulates the current number of learning rate updates.
The beam width k held for beam search decoding
(Vijayakumar et al., 2016) is set to 16. The default
number of iterations N is set to 3. Following con-
ventions, we use ROUGE-F1 scores (Lin, 2004)
to evaluate the lexical overlap between the model-
generated summary and the reference. Also, we use
BERTScore (Zhang et al., 2020b) and BARTScore-
F (Yuan et al., 2021) to evaluate their semantic
similarity.

1https://huggingface.co/facebook/bart-large-cnn
2https://huggingface.co/facebook/bart-large-xsum
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Table 3: Ablation study results on CNN/DM. i: the num-
ber of revision iterations. Dist.: Levenshtein distance.
w/o: without.

Model Iteration R-1 R-2 R-L Dist.

IARSum

i=1 46.19 22.27 43.69 0.60
i=2 47.69 23.92 44.68 0.03
i=3 48.96 25.14 45.93 0.01
i=4 48.71 24.12 44.89 0.01
i=5 48.74 24.12 44.91 0.01

-w/o Ler

i=1 44.16 21.28 40.90 0.62
i=2 45.28 22.63 40.96 0.59
i=3 44.68 21.32 40.57 0.58
i=4 44.30 22.38 41.34 0.59
i=5 44.78 21.06 40.00 0.59

4.4 Main Results

We have the following observations from the auto-
matic evaluation results in Table 1 and Table 2. 1)
IARSum outperforms the backbone models by a
large margin on both datasets, revealing the superi-
ority of our learning scheme over the traditional su-
pervised fine-tuning after pre-training. 2) IARSum
also shows superiorities over the similar double-
encoder Transformer - GSum. On the one hand,
GSum needs an additional system to predict guid-
ance signals. Besides, it suffers a severe training-
inference discrepancy beyond exposure bias as the
quality of guidance in training differs from in in-
ference. In contrast, our IARSum requires no ad-
ditional systems, and the model behaves identi-
cally during both training and inference. 3) Taking
ROUGE as the measurement, IARSum achieves
new SOTA on CNN/DM and matches the currently
best performance on XSum. Moreover, IARSum
demonstrates the best BERTScore and BARTScore
on both datasets. We note that BRIO, SLiC, and
our IARSum employ a similar training schema,
which can be consolidated as the formulation in
Eq. 14. IARSum stands out from the other two by
emphasizing effective reprocessings after one-time
summarization, which is the main reason for its
superior performance.

4.5 Ablation Study

Our IARSum optimizes the backbone models
mainly with global learning and iterative autore-
gressive generation. We conduct ablation studies
to validate the effectiveness of these two strategies
and list the experimental results in Table 3.

The Effectiveness of Global Learning. Note
that IARSumi=1 -w/o Ler represents a variant of
our method that lacks the global learning proce-
dure and involves no reprocesses after generating
a draft summary (i.e., the backbone model trained

with MLE). In contrast, IARSumi=1 means our
method drops further iterations once it has gener-
ated a summary. IARSumi=1 performs better when
trained with Ler. We attribute the reason to the
effectiveness of global learning in reducing expo-
sure bias. Also, once giving up further iterations,
our method only differs from RL-based GOLD and
CTL-based BRIO regarding global learning objec-
tives. IARSumi=1 show better ROUGE scores than
the two counterparts, indicating that learning with
our defined triplet relations effectively enhances
the current learning schema in abstractive summa-
rization.

The Effectiveness of Iterations. To explore the
effectiveness of the IAR generation paradigm, we
adopt the normalized Levenshtein distance (Lev-
enshtein et al., 1966) as an additional metric apart
from ROUGE scores:

Dist(Y, Y i) =
1

N

∑ Distance(Y, Y i)

max(|Y |, |Y i|) , (15)

where Distance(·, ·) denotes Levenshtein distance.
Twofold insights can be drawn from Table 3.
Firstly, we see from the lower part of the Table
that the IAR with more iterations is useless with-
out global learning. Secondly, the iterations per-
formed in IARSum are only effective within a lim-
ited number of times. According to the Levenshtein
distance, the impacts of iterations are hard to dis-
tinguish more than three times, and the generated
summaries’ quality even worsens. However, from
another aspect, this finding also indicates that our
method has a determined direction of good sum-
maries within finite steps.

4.6 Case Study
To intuitively assess the quality of the IARSum gen-
erated summaries, we sample two cases from the
CNN/DM test set and compare different systems’
output in Table 4. The typical pattern of exposure
bias can be found in the summaries generated by
BART, i.e., if the model generates inappropriate
content at the initial phase, this tends to cause a
deviation of the subsequent information to ensure
the coherence of a whole text. During each iter-
ation, IARSum encodes the previously generated
summary with bidirectional attention. This allows
the model to modify potentially inappropriate to-
kens after understanding an entire summary and
comparing it with the source document. We find
in Table 4 that this mechanism also contributes to
reducing hallucinatory facts. Moreover, benefiting
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Table 4: Case study on CNN/DM. Content in blue is unfaithful or irrelevant to the reference. The draft is produced
by IARSumi=0, and we use red to mark the keywords (vs. the source document) it omits. After being reprocessed,
the factuality and abstractiveness of the draft are improved.

System Summary

Case 1

Reference RBS has racked up £50billion in losses since it was bailed out by taxpayers. State-back giant warned that it faces ’another tough year’ to
come. Lurched to a £446million loss for the first three months of the year.

BART
state-backed giant lurched to a £446million loss for the first three months of the year. Comes after RBS was forced to put aside
£856million to cover lawsuits and fines still being decided. It includes an extra £334million for its part in rigging the foreign exchange
market with other banks.

IARSumi=1

RBS has racked up £50billion in losses since it was bailed out by taxpayers. The state-backed giant lurched to a £446million loss for the
first three months of the year. It warned that it faces another ’tough year’ in a statement last night. The bank was forced to put aside
£856million to cover lawsuits and fines.

IARSumi=2
Since receiving a bailout from taxpayers, RBS has racked up £50 billion in losses. The state-backed giant has issued a warning, stating
that it anticipates facing another tough year. It reported a loss of £446 million for the first quarter of this year.

Case 2

Reference Hungarian national Evelin Mezei, 12, has been found safe and well. She had gone missing from the Stratford area in London last night.
Evelin had been seen on CCTV footage with an unknown man.

BART Evelin Mezei, a 12-year-old Hungarian national, was spotted with the man at around 10.30pm yesterday. She was last seen by her mother
in East London, Scotland Yard said. But the youngster, who came to the UK six months ago, was traced this morning.

IARSumi=1
Evelin Mezei, 12, went missing in Stratford, London, last night. She was seen on CCTV footage with an unknown man on a city street.
The Hungarian national was found safe and well this morning. Her mother was last seen with the man’s mother.

IARSumi=2
Evelin Mezei, a 12-year-old Hungarian girl who went missing from the Stratford area in London last night, has been found safe and well.
CCTV footage showed Evelin with an unknown man before her disappearance.

from our proposed lexical reward, the model can
generate novel tokens absent in the previous sum-
mary during reprocessing. It helps to improve the
abstractiveness of the generated summary, which
is emphasized in abstractive summarization. We’ll
further discuss this point in section 5.
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Figure 4: Novel n-grams on CNN/DM (left) and XSum
(right) datasets.

5 More Analyses

Abstractiveness. In our learning framework, we
measure the increment of novel words using lexis
rewards Rl. The case study approves the effective-
ness of this strategy from a textual aspect. Here, we
further understand the abstractiveness of IARSum-
generated summaries through a quantitative analy-
sis. According to previous works (Xie et al., 2023)
and (Liu et al., 2022), we rate the percentage of
novel n-grams that appear in the generated sum-
mary but not in the source document in Figure 4.
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Figure 5: Few-shot performance comparison. ROUGE-
Avg (the average of R-1, R-2, and R-L F1 scores) scores
are reported.

We find that our IARSum can generate more novel
n-grams than the baseline and reference, regard-
less of whether on moderately or extremely ab-
stractive summarizations. Recalling the automatic
evaluation and case study results, we assert that
the summaries generated by IARSum closely re-
semble human written summaries in terms of both
abstractiveness and semantic aspects.

Few-shot Performance. Based on the findings
in our ablation study, we consider that the IAR gen-
eration mechanism introduced in IARSum makes
the model more sensitive to the candidate’s qual-
ity and can improve flawed candidates within a
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finite number of iterations. Therefore, we conduct
experiments in few-shot settings to confirm our as-
sumptions. Following previous studies, we train
IARSum on CNN/DM by varying the number of
training samples from 10 to 10,000 and compare
IARSum with the baseline BART and the RL-based
GOLD to make the results convincing. According
to Figure 5a, IARSum shows a remarkable few-
shot learning ability. IARSum goes ahead more
over the baseline as the training samples increase.

6 Conclusion

In this paper, we focus on improving the existing
approaches that alleviate exposure bias suffered in
abstractive summarization. Specifically, we intro-
duce a novel iterative autoregressive summarization
paradigm, IARSum. It models the generation of
an abstract summary as a series of transitions of
intermediate results, ranging from coarse to refined
quality. IARSum also enables learning rational
relations among a document, the reference sum-
mary, and candidate summaries under a standard
GL framework. Extensive comparison experiments
revealed the effectiveness and advancement of our
method.
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A Limitations

Although we pioneer present an iterative autore-
gressive summarization (IAR) mechanism, which
suffers little prior bias since it relies on no metrics
to measure document-summary semantic or lexical
similarity, performing IAR requires a dual-encoder
Transformer architecture. This setting is intuitively
incompatible with nowadays decoder-only large
pretrained Transformer models. On the one hand,
this work confirmed the effectiveness of using the
IAR mechanism to improve abstractive summariza-
tion, also, it left further work for us to adapt the
mechanism for large language models.

B More Analyses

B.1 Varying the Beam Width.

Note that the global learning objective of IAR-
Sum is to maximize the expected rewards calcu-
lated over the candidate summaries sampled from
Pθ(·|Y i−1, X). There is a gap between the learning
objective and our training implementation. During
training, we are inspired by the Monte Carlo (MC)
algorithm and use k candidates to represent the in-
finite searching space. Intuitively, a larger beam
width (k) used in beam search is more adequate
to approximate the expected distribution and, in
turn, better summarization performance. To vali-
date this assumption, we train our model on both
datasets and use different beam widths of 4, 8, 16,
32, and 64 to sample candidates. Figure 6 displays
the ROUGE-Avg score of each resulting version.
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Unsurprisingly, increasing the beam width can in-
deed boost the model’s performance. However, the
ROUGE score improvement reduces once the k
is over 16. We set k to 16 to save computational
costs.

B.2 The Decide of λ Value.
To find an optimal weight coefficient λ that in-
tegrates the global learning objective into the
token-level MLE, we perform a grid search in
{0.1, 1, 10, 100, 200}. The search process is vi-
sualized in Figure 7. Notably, the performance
of IARSum with varying λ shows a similar trend
on both datasets. It is observed that a too-small
weight suppresses global learning efficacy. On the
contrary, once λ reaches the magnitude above one
hundred, varying its value makes inconspicuous ef-
fects. We finally set λ to 100 without distinguishing
datasets.
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Abstract

Extracting adverse reactions to medications or
treatments is a crucial activity in the biomedi-
cal domain. The task involves identifying men-
tions of drugs and their adverse effects/events
in raw text, which is challenging due to the un-
structured nature of clinical narratives. In this
paper, we propose TpT-ADE, a novel joint two-
phase transformer model combined with natu-
ral language processing (NLP) techniques, to
identify adverse events (AEs) caused by drugs.
In the first phase of TpT-ADE, entities are ex-
tracted and are grounded with their standard
terms using the Unified Medical Language Sys-
tem (UMLS) knowledge base. In the second
phase, entity and relation classification is per-
formed to determine the presence of a relation-
ship between the drug and AE pairs. TpT-ADE
also identifies the intensity of AE entities by
constructing a parts-of-speech (POS) embed-
ding model. Unlike previous approaches that
use complex classifiers, TpT-ADE employs a
shallow neural network and yet outperforms the
state-of-the-art methods on the standard ADE
corpus.

1 Introduction

Adverse Drug Event (ADE) is a negative or harmful
patient outcome that seems to be associated with a
medication or drug. Analyzing the adverse events
(AEs) helps a practitioner to identify susceptible
patients who may be at risk due to a particular drug.
ADE extraction has several uses: pharmaceutical
companies can identify the sections of the popula-
tion that were adversely impacted by the drug. For
governments and regulatory authorities, ADE infor-
mation is the key to monitoring the performance of
drugs already in the market and identifying any ad-
verse effects that have not appeared during clinical
trials.

Generally, ADEs are reported in an unstruc-
tured manner and are to be extracted from various
sources like clinical narratives, medical journals,

formal systems that report ADEs, etc. In some
cases, the patients may report adverse events in
social media posts, like “I got rashes on my back
today after taking two tablets of amoxicillin yester-
day”. In this post, “rashes” is the adverse effect
(AE) that could be caused by the drug “amoxi-
cillin”. Identifying the drugs and adverse events
and finding relations between them from such un-
structured text is quite challenging due to the com-
plex nature of the text containing multiple drugs
and adverse events. We illustrate with an example
below to understand the complexity of such texts.
The text in red color is the AE and the text in blue
is the drug name.

Example — “Atypical ventricular tachycardiaAE
torsade pointesAE induced by amiodaroneDrug: ar-
rhythmiaAE previously induced by quinidineDrug
and disopyramideDrug.”

Following are the drug, AE relations that could
be extracted from the above example:
disopyramideDrug,quinidineDrug → arrhythmiaAE

amiodaroneDrug → Atypical ventricular tachycar-
diaAE, torsade de pointesAE

ADE extraction is a two-step process. The first
step is identifying the mentions of the drugs and
the AEs from raw text. This is similar to the task of
named entity recognition. In the second step, each
< drug,AE > pair is examined for ADE relation,
which can be cast as a classification problem.

Some methods (Dandala et al., 2017; Unanue
et al., 2017) train separate models for the two steps
of ADE extraction. In contrast to these works, (El-
Allaly et al., 2022; Ma et al., 2022; Wadden et al.,
2019; Bekoulis et al., 2018b; Zhou et al., 2017)
proposed joint methods for ADE extraction that
perform better in both recognizing the entities and
ADE extraction tasks. A major drawback of the for-
mer approach is that if the first step of identification
of drugs and AEs entities is incorrect, then the ADE
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extraction will also be incorrect, thereby resulting
in poor performance due to the error propagation.
Also, the joint models have been proven to be effec-
tive in performing many related tasks such as part-
of-speech tagging and parsing (Zhang and Clark,
2008), keyword extraction using joint modeling of
local and global context (Liang et al., 2021), en-
tity extraction and classification (Eberts and Ulges,
2019), entity and coreference extraction (Hajishirzi
et al., 2013; Durrett and Klein, 2014), and many
more.

In this paper, we introduce TpT-ADE, a joint
two-phase model for ADE extraction from clinical
texts by fine-tuning BERT (Devlin et al., 2018). In
the first phase, TpT-ADE identifies and standard-
izes mentions of entities such as drugs and adverse
effects against the Unified Medical Language Sys-
tem (UMLS)1. This ensures uniformity in naming
across different mentions. The second phase uses
this processed text to jointly extract entities and
classify relations.

Our model employs a robust span-based extrac-
tion method, which can extract entities consisting
of multiple successive tokens. That is, TpT-ADE
is able to extract overlapping entities. Our ap-
proach can also detect the intensity of an adverse
event, distinguishing between terms like "fever",
"severe fever", and "mild fever". Unlike previous
works that rely on complex relational classifiers,
TpT-ADE uses a shallow neural network and yet
achieves higher F1-score on the standard ADE cor-
pus (Gurulingappa et al., 2012).

2 Related Work

In this section, we discuss the related works in
ADE extraction. We first discuss the pipeline based
approaches that extract ADEs by training separate
models for entity extraction and relation extraction
tasks. Then, we discuss the joint methods that fol-
low an end-to-end approach to extract ADEs. Un-
der the joint models, we discuss the related works
that are BiLSTMs based, Graph Convolutional Net-
works based and Span-based models.

The pipeline based approaches (Dai et al., 2020;
Wei et al., 2020; Dandala et al., 2017) are designed
to complete one subtask and then go ahead with the
next subtask. In the case of ADE extraction, the
output from the entity extraction model is passed as
the input for the relation extraction task. Both the
models are trained separately with different loss

1https://www.nlm.nih.gov/research/umls/index.html

functions. (Wei et al., 2020; Xu et al., 2017; Dan-
dala et al., 2017) use BiLSTM based models for
ADE extraction. (Wei et al., 2020) employs the
same BiLSTM based classifiers for both entity and
relation extraction. Other works train two different
classifiers for the two tasks. (Alfattni et al., 2021;
Dai et al., 2020) employ a hybrid approach by com-
bining feature based machine learning classifiers
and neural networks.

Identifying negative entities is a crucial step for
extracting ADEs. Negative entities are those that
are not drugs or adverse effects. Towards this,
(Wei et al., 2020) proposed an Attention based
Bi-LSTM model that reduced the number of nega-
tive instances, helping to overcome the imbalance
class problem. Their method could also handle the
discontinous entitiess. More recently, (He et al.,
2022) proposed an LSTM based adaptive knowl-
edge distillation model. The authors used BERT
to adaptively distill the knowledge to the LSTM
model. Other recent works proposed in this regard
are (Wang et al., 2022; He et al., 2023; Liu et al.,
2023).

Joint entity and relation extraction methods (Bek-
oulis et al., 2018a,b; Ma et al., 2022; Eberts and
Ulges, 2019; Wadden et al., 2019) have been re-
cently proposed to capture the dependency between
the two tasks in ADE extraction. (Bekoulis et al.,
2018a,b) utilize character and Word2Vec embed-
dings to represent their input. Then, they use BiL-
STM model combined with conditional random
field (CRF) model to jointly extract entities and
their relations.

(Wang and Lu, 2020; Wang et al., 2021; Yan
et al., 2021; Ma et al., 2022) cast the ADE ex-
traction problem as a table-filling problem. These
methods construct a table that jointly represents
the entities and relations and each element in the
table depicts the presence of a relation between en-
tities. Then, the relation triples are extracted from
the filled table. (Yan et al., 2021) constructed a
partition filter network to learn the feature represen-
tations that can classify entities and the relations.
Then, the relation triples extracted by following a
table-filling approach. Similarly, (Ma et al., 2022)
proposed a table-filling method that learns con-
textualized representations to compute entity men-
tions and capture long-range dependencies. For
relation extraction, a tensor dot product is used to
predict the relation labels. However, these table-
filling methods are computationally expensive due
to building and deconding these tables for relation
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triples (Chen et al., 2024).
Span-based methods (Luan et al., 2019; Wadden

et al., 2019; Eberts and Ulges, 2019; Wan et al.,
2023) have shown remarkable performance in ob-
taining contextualized representations. In contrast
to works that follow the BIO (beginning, inside,
outside)/BILOU (beginning, inside, last, outside,
unit)/BIES(Begin, Inside, End, Single) (Zheng
et al., 2017; Zhou et al., 2017), span-based ap-
proach can identify the overlapping entities. In
our work, we follow a span-based approach and
combine BERT (Devlin et al., 2018) with POS em-
bedding model. In contrast to the previous works,
we follow a two phase joint modelling approach
that standardizes the entity mentions in the input
text with their representative terms. In addition,
unlike the above works that use complex classfiers,
we use a shallow neural network for ADE extrac-
tion.

3 Methodology

In this section, we detail the two phases of TpT-
ADE model and training it. In the first phase Phase
I, we extract the entities and represent them with
their standard medical terms. In Section 4, we
show the effectiveness of this step. The second
phase, Phase II utilizes this processed text for ADE
extraction.

3.1 Phase I: Entity Extraction

In this phase, we perform entity mention extrac-
tion or recognition and find the most representative
term for each entity mention in the raw clinical text
corpus. The architecture for entity recognition is
shown in Figure 1. Towards this, we propose a span
based BERT model. BERT learns word represen-
tations from input text by considering both the left
and right contexts. We first tokenize the input sen-
tences into a sequence of tokens T using a subword
tokenization algorithm called Byte-Pair Encoding
(BPE) (Sennrich et al., 2015). BPE tokenizes the
input sentences in such a way that the most com-
mon words are represented in the vocabulary as
a single token. The infrequent words are divided
into commonly occurring subwords. For example,
the infrequent word townhall can be divided into
frequently occurring town and hall. Thus, BPE
can be used by BERT to map out of vocabulary
words and limit the vocabulary size. BPE tokens
extracted from each input sentence are passed to
the BERT model to obtain an embedding sequence

as follows:

(c, e1, e2, ...en) = BERT (T ) (1)

The first token c in BERT is the classifier token
(cls), shown in Figure 1, that captures the overall
input sentence context. We then construct spans
considering all the token subsequences. For in-
stance, the token sequence carbamazepine toxicity
symptoms can result into token subsequences or
spans like carbamazepine, carbamazepine toxicity,
etc. The span based approach ensures we search all
the possible combinations, is more robust, and is
expected to extract the entity that may be composed
of multiple successive tokens.

We treat the entity mention extraction problem as
a classification problem where each span is classi-
fied into one of three categories, namely, Drug, AE
or None by the Entity Classifier in Figure 1. None
means the span is neither Drug or AE and these are
filtered out. Initially, a pre-trained BERT model is
utilized and adjusted to the clinical domain to ex-
plore the information in the clinical text documents.
The model is then fine-tuned for classifying the
spans into the aforementioned three categories. We
fine-tune the pre-trained BERT model by adding
a task-specific layer on top of it and training the
whole model end-to-end with a suitable loss func-
tion. This is detailed in Section 3.3.

Let si = (e1, e2, ..., ek) be a span consisting of
k token subsequences. The BERT embeddings of
the token subsequences are combined using max-
pooling and the span embedding of span si is rep-
resented as follows:

ssi = max-pooling(e1, e2, ..., ek)⊕ c (2)

where ⊕ denotes concatenation. We note that
any span longer than ten tokens are filtered out to
limit the cost of entity classification.

The raw clinical text is collected from varied
sources and hence the same drug or AE entities
could be mentioned with different names. For
instance, consider the following two texts from our
dataset:

Example 1 — After gastric-outlet obstruction
was recognized in several infants who received
prostaglandin E1, we studied the association
between the drug and this complication
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Figure 1: Entity and Relation Extraction

Example 2 — The clinical symptoms of gastric mu-
cosa foveolar hyperplasia due to long-term PGE1
therapy simulate hypertrophic pyloric stenosis

In the above two examples, the drug references
“prosta- glandin E1” and “PGE1” refer to the same
drug, whose standard UMLS name is given by
Metamap5 as “alprostadil”. As the next step in this
phase, we replace the entities with their most repre-
sentative terms. We will observe in Section 4.3 that
standardising the entity mentions with their repre-
sentative terms improves the overall performance
of TpT-ADE.

In this phase of TpT-ADE, we also identify the
intensity of the AEs caused by drugs as discussed
in Section 1. Specific modifiers which precede the
identified entity may need to be added to the entity
itself. For example, entity fever is distinguished
from the entity severe fever as both are different
AEs. The same holds true for many modifiers like
“Severe”, “Reversible”, “Paradoxical”, “Unusual”,

5https://lhncbc.nlm.nih.gov/ii/tools/MetaMap.html

“Chronic”, etc. Towards this we identify the adjec-
tives of the entities using spaCy6. SpaCy is NLP
library used for generating POS tags of tokens in a
given input sentence. We used ScispaCy (Neumann
et al., 2019) trained with en_core_sci_sm that pro-
cesses clinical or biomedical text. The POS embed-
ding matrix is trained to obtain the representation
of POS tags. Adjectives specifying the entities are
then concatenated with the BERT embeddings. In
Section 4.3, we demonstrate that the performance
of the model improves when POS tag embeddings
are included. Finally, the POS tag embeddings and
the BERT embeddings are concatenated to obtain
the following entity representation.

xsi = ssi ⊕ psi (3)

where psi is POS tag embeddings that specify the
intensity of span si.

Next, the softmax classifier given below is used
to obtain a posterior for each entity category, i.e.,

6https://spacy.io/
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drug, AE and none. The output of this phase of our
model is the processed clinical text.

Y si = softmax(W si · xsi + bsi) (4)

3.2 Phase II: ADE Extraction

In this phase, we jointly extract entities and per-
form relation classification using the processed text
from Phase I as shown in Figure 1. The text is
tokenized using BPE tokenizer and the fused span
embeddings are constructed using BERT model for
entity classification. Max-pooling fusion function
is used as it performed the best. The spans hav-
ing a length of more than ten tokens are filtered
as too longer spans are highly unlikely to repre-
sent entities. The entities classified into none class
are filtered out. Let E be the set of entity spans
classified as either Drug or AE.

The next step of this phase is relationship clas-
sification. The relationship classifier takes each
pair of fused BERT span embedding from entity
spans in E × E and checks the presence of a re-
lation between them. Let fsi be the fused BERT
embedding of the entity span si = (e1, e2, ..., ek),
which is calculated as follows:

fsi = max-pooling(e1, e2, ..., ek) (5)

To understand the presence of a relation, it is impor-
tant to understand the context. One way to obtain
the context is the classifier token c from the embed-
ding span representation, as discussed above. How-
ever, the context c would not be precise and could
represent multiple relations for longer sentences.
Thus, we derive the relationship context between
entity spans localized to their direct surrounding en-
tities. Let si and sj be two entity spans considered
to check the presence of a relation. The relation
context crel(si, sj) is derived from the fused BERT
embedding of the span ranging from the end of si
entity to the beginning of the sj entity. For obtain-
ing crel(si, sj), we found the max-pooling function
performing the best. In case the entities are next to
each other or overlapping, we set crel(si, sj) = 0.

Another consideration for relationship classifica-
tion between two entities could be asymmetrical.
That is, si could indicate drug and sj could be AE,
or vice versa. Therefore, we need to consider both
(si, sj) and (sj , si) for relationship classification.
Hence, we have the following two representations
as input to the relation classifier.

Rel(xsi,→sj ) = fsi ⊕ crel(si, sj)⊕ fsj

Rel(xsj ,→si) = fsj ⊕ crel(sj , si)⊕ fsi
(6)

These two inputs are passed to a shallow sin-
gle layer relationship classifier with a threshold α.
A high response in the sigmoid layer indicates the
presence of relationship between si and sj . We con-
sider that the relationship exists based on threshold
value α; any relation with score ≥ α is considered
as related and assumed no relationship otherwise.

3.3 Training TpT-ADE Model

In this section, we detail the process to learn the pa-
rameters W si , bsi ,W r, and br, thereby fine-tuning
our BERT model in this process. Our model
consists of two phases, and these parameters are
learned in a supervised manner. That is, the entities
and relations are labeled in our dataset. For both
phases, training is done in batches. We draw pos-
itive and negative samples for each batch for the
classifiers in both phases. We detail the positive
and negative sample selection and loss functions
for both phases below.

For entity classification, all the labeled entities in
the ground truth dataset are taken as positive sam-
ples. Let this set be Eg. We take a fixed number
of negative samples Ene in each batch. We illus-
trate the selection of positive and negative samples
for entity classification with an example. In the
given sentence: “Nine azotemicAE patients who
developed a blood coagulation disordersAE asso-
ciated with the use of either cephalosporinsDrug
or moxalactamDrug antibiotics are reported.” the
ones marked as Drug or AE constitute the positive
samples. Negative samples such as associatedDrug
and reportedAE are randomly selected.

For training the relationship classifier, we use
all ground truth relationships as positive samples.
Instead of randomly selecting negative samples, we
devise a method to select only the strong negative
samples Enr drawn from the entity pairs Eg × Eg
that were not labeled as any relation. For exam-
ple, the positive samples in the above example
are (cephalosporins, blood coagulation disorders)
and (moxalactam, blood coagulation disorders),
then the unlabelled relations like (cephalosporins,
azotemic), (moxalactam, azotemic) are taken as
negative samples. Such strong negative samples
instead of random pairs of entities help to improve
the performance of the model.
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In the first phase, the model learns parameters
W si , bsi used for entity recognition. Using the
training set with annotated entities, the loss func-
tion for the first phase, L1, is defined as the entity
classifier’s cross-entropy loss over entity classes
Drug, AE, none. The joint loss function for entity
classification and relation classification in the sec-
ond phase is defined by combining the losses from
both the classifiers as follows:

L2 = Le + Lr (7)

where Le is the entity classifier cross-entropy loss
over all the three entity classes and Lr is the binary
entropy loss averaged over batches’ samples.

4 Evaluation

In this section, we present the evaluation of TpT-
ADE and compare it with the state-of-the-art
(SOTA) methods. We first start by describing our
dataset. Next, we present the evaluation results of
our model against the SOTA methods. Lastly, we
perform ablation studies with various variants of
our model and show the effectiveness of various
components of our model.

4.1 Experimental Setup

We use the ADE corpus dataset (Gurulingappa
et al., 2012) to train and evaluate our model. It
contains 5,063 drugs, 5,776 adverse effects and
6,821 relations between them, extracted from 4,272
unique samples.

Table 1: Dataset Statistics

Statistics Train Val Test
Drugs 3646 922 495
AEs 4151 1062 563
Relations 4877 1285 659
Documents 3076 769 427

To evaluate our model, we divided the dataset
into training, validation and test sets, as shown in
Table 1. Our model TpT-ADE is trained on the
training set. We conduct 10-fold cross-validation
on the validation set, and the evaluation is per-
formed on the test set.

We used BERTBASE
7 transformer with 768 di-

mensional embeddings and 110M parameters, pre-
trained with 3 billion plus English words. In our
experiments, we use Adam Optimizer with learning

7https://huggingface.co/bert-base-cased

rate of 0.00005, weight decay of 0.01, lr warmup
of 0.1, batch size of 2. The number of negative
samples in both entity and relation classification,
Ene and Enr are set to 80 per document. We run
the model for 30 epochs with the relation classifier
threshold set to 0.04. We obtained the best results
with these parameter values. The BERT model
weights are updated during the training process.

We evaluate our model for both entity extraction
and relationship classification. If the predicted span
of an entity and its type, that is, either Drug or AE
are found exactly matching with the ground truth
data, then the entity is considered to be correctly
predicted. For relationships, both entities of the
relationship must be correctly predicted as given in
the ground truth. As in previous works (Bekoulis
et al., 2018b; Eberts and Ulges, 2019), we use pre-
cision, recall and F1 scores averaged over folds as
performance metrics to evaluate our model.

4.2 Baseline Methods

To evaluate the effectiveness of our TpT-ADE
model in both entity and relationship classification,
we compare its performance with the state-of-the-
art methods listed below.

1. Joint CNN Model (Li et al., 2016): This
method uses transition-based feed-forward
CNN to perform greedy transition-based de-
coding and jointly performs ADE extraction.

2. Joint BiLSTM-RNN Model (Li et al., 2017):
This method uses a BiLSTM-RNN model to
learn the representations of entities and their
contexts from the input text. Then, another
BiLSTM-RNN model is built to learn the rela-
tions between the entities based on the shortest
dependency path between them.

3. Joint Multi-head Selection Model (Bekoulis
et al., 2018b): This method uses character and
Word2Vec embeddings to represent the input
text. Then BiLSTM-CRF model is trained to
extract entities and ADEs.

4. SpERT (Eberts and Ulges, 2019): This
method uses span based BERT models for
extracting entities and adverse relations.

5. TablERT-CNN (Ma et al., 2022): This BERT
based method extracts ADEs by casting ADE
extraction as a table-labelling problem. Two-
dimensional CNN is used to encode the local
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dependencies between the cells and predict
the their labels.

6. SMAN (Wan et al., 2023): This span based
approach constructs a multi-model attention
network to capture the interactions between
the spans and model information such as to-
kens and labels. The context and span position
information is extracted simultaneously.

4.2.1 Results
Table 2 shows the performance on both entity and
relation extraction tasks on the test set. The ta-
ble shows some missing values as these numbers
weren’t reported by the corresponding SOTA meth-
ods. For entity extraction task (NER), our model
achieved an F1-score of 91.17%, which is 1.47%
higher than the TablERT-CNN and 0.22% over
SMAN. In addition, our model shows a significant
improvement of 4.58% over the popular state-of-
the-art model SpERT and 1.57% over the SMAN
method in the case of ADE extraction (RE). Un-
like all these baseline methods, our model finds
the most representative clinical term of each en-
tity mention. This step makes the training process
of our model’s first phase more robust, thereby
improving the performance of the ADE relation ex-
traction in the second phase. Thus, on the unseen
test data, even if the input text entity is called by any
other alias phrase name, it can still be detected and
mapped to its most representative name. We per-
formed error analysis on our model and observed
that it gives the least number of false-negatives
in both NER and RE tasks. One reason for this
could be that TpT-ADE can identify complex and
ambiguous entities.

Qualitative analysis shows that TpT-ADE is able
to correctly identify Ventricular tachycardiaAE
and ArrhythmiaAE referring to the same AE. Also,
the abbreviation V-tach or VT is correctly recog-
nized as ventricular tachycardia. In addition, the in-
teractions between the AE torsade pointesAE and
drugs amiodaroneDrug, quinidineDrug and disopy-
ramideDrug were extracted by our model, unlike the
previous models that were able to extract only the
interaction between torsade pointesAE and amio-
darone.

Compared to (Eberts and Ulges, 2019) (SpERT)
and (Wan et al., 2023), which also uses a span
based model, our model shows improved perfor-
mance on both the NER and RE tasks. Span based
approach to extract entities thus is more effective

than to use BILOU/BIS labels as in (Bekoulis et al.,
2018b; Li et al., 2017) (Joint Multi-head Selection,
Joint BiLSTM-RNN Model). We also note that the
input text also contains the intensity of the AEs that
can be identified by our model in contrast to the
baseline methods. Specifically, the ADE dataset
contains 148 of such instances. In addition, un-
like most of the baseline methods, our span based
model detects the entity phrases that might contain
overlapping entities. Specifically, the ADE dataset
contains 120 of such overlapping instances.

4.3 Ablation Studies
In this section, we perform experiments on vari-
ants of our model and hyperparameters settings to
demonstrate their impact on our model.
Effectiveness of Entity Standardization — In
this study, we analyze the effectiveness of finding
the representative term for each entity mention in
the raw input text. We illustrate with an example
from our dataset. The entities common skin rashes,
rashes, skin eruptions, cutaneous eruptions, all re-
fer to the same adverse effect. The representative
term for all of them is Exanthema. Our model was
trained using the training set that contains rashes,
skin eruptions. The test set contains cutaneous
eruptions that was correctly mapped to its repre-
sentative term Exanthema. From Table 3, it can
be observed that the F1-score of W/O Entity Stan-
dardization (removing entity standardization from
TpT-ADE) drops a little by 0.87% in the case of
NER task and significantly decreases (3.02%) in
the case of RE task when compared to our TpT-
ADE model.

Effectiveness of Entity Intensity Identification
— We also investigate the effectiveness of enrich-
ing the BERT embeddings of the entities with the
POS tag embeddings that provide the intensity in-
formation. For this purpose, we compare our TpT-
ADE model with W/O Entity Intensity Identifica-
tion model (without the POS embedding matrix) as
shown in Table 3. It can be observed that there is
a decrease in the performance of both the tasks in
W/O Entity Intensity Identification ( 1% for NER
and more than 2% for RE) compared to our Tpt-
ADE model. Therefore, this shows the importance
of linguistic information obtained by training the
POS embedding matrix.

Effectiveness of Relation Context — Here, we
examine the effect of using relation context in the
ADE extraction phase detailed in Section 3.2 in-
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NER RE

Method Precision Recall F1-score Precision Recall F1-score

Joint CNN 79.50 79.60 79.50 64.00 62.90 63.40
Joint BiLSTM-RNN 82.70 86.70 84.60 67.50 75.80 71.40
Joint Multi-head Selection 84.72 88.16 86.40 72.10 77.24 74.58
SpERT 89.26 89.26 89.25 78.09 80.43 79.24
TablERT-CNN - - 89.7 - - 80.5
SMAN - - 90.95 - - 82.25
TpT-ADE 89.24 93.2 91.17 81.91 85.83 83.82

Table 2: Comparison of TpT-ADE with the baseline methods results(%)

NER RE

Method Precision Recall F1-score Precision Recall F1-score

TpT-ADE 89.24 93.2 91.17 81.91 85.83 83.82
w/o Entity Standardization 88.71 91.95 90.30 78.44 83.35 80.82
w/o Entity Intensity Identification 88.74 91.63 90.16 79.86 83.61 81.69
Classifier Token Context - - - 73.5 80.22 76.71
Weak Random Sampling - - - 76.39 81.7 78.96

Table 3: Ablation studies results (%). w/o indicates the specific module is removed from TpT-ADE.

stead of using the classifier context, which uses a
special token to capture the meaning of the entire
sentence. The relation context particularly extracts
the context from the part of the sentence that de-
picts the presence of a relationship between the
entities the most. From Table 3, we can see that the
performance of the TpT-ADE model, which uses
the relation context in ADE extraction phase (RE
task) achieves an F1-score of 83.82%, while the
Classifier Token Context (CTC) model performs
poorly with F1-score of 76.7%. Moreover, the pre-
cision drops by 8.41% as compared to TpT-ADE.
Thus, this shows that training the model with rela-
tion context is better in ADE extraction.

Effectiveness of Negative Sampling — We also
examine the effectiveness of choosing strong nega-
tive samples in the ADE extraction phase against
using random negative samples. Negative samples
are randomly drawn, and the entity pairs do not
match with any ground truth relation pairs. Unlike
choosing strong negative samples from the entity
candidate set E , these weak samples are randomly
drawn. From Table 3, it can be observed that the
performance of the Weak Random Sampling model
drops by almost 5% (F1-score) compared to our
TpT-ADE model. We performed another experi-
ment wherein the weak negative samples are drawn

from the set without filtering the entities that be-
long to none class. In this case, the F1-score fur-
ther dropped by 7.2% compared to our TpT-ADE
model.

Figure 2: Negative Sampling Analysis

In our model, we chose the number of negative
samples in case of both entity extraction and re-
lation extraction (Ene = Enr) as 80 per sentence
in the input sentence. As shown in Figure 2, if
Ene = Enr < 5, the F1-score reaches to 68.2%
and 53.7% for entity extraction and relation ex-
traction, respectively. As the values of Ene and
Enr increases, the model performs better. We ob-
serve that when Ene = Enr > 80, the perfor-
mance of the model stagnates. Hence, we chose
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Ene = Enr = 80.

5 Conclusion

In this paper, we proposed TpT-ADE, a two-phase
transformer based model to improve the efficiency
of ADE extraction from raw clinical text. Through
various experiments, we have shown that finding
the representative terms for the entities in the input
text and combining the trained BERT embeddings
with the POS tag embeddings of the modifier words
of the entities to identify their intensities yield bet-
ter results. In addition, using a simple shallow neu-
ral network and a strong negative sampling method
in our model, showed considerable improvements
over prior works.
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Abstract

The effect of surprisal on processing difficulty
has been a central topic of investigation in psy-
cholinguistics. Here, we use eyetracking data
to examine three language processing regimes
that are common in daily life but have not been
addressed with respect to this question: infor-
mation seeking, repeated processing, and the
combination of the two. Using standard regime-
agnostic surprisal estimates we find that the pre-
diction of surprisal theory regarding the pres-
ence of a linear effect of surprisal on process-
ing times, extends to these regimes. However,
when using surprisal estimates from regime-
specific contexts that match the contexts and
tasks given to humans, we find that in informa-
tion seeking, such estimates do not improve the
predictive power of processing times compared
to standard surprisals. Further, regime-specific
contexts yield near zero surprisal estimates with
no predictive power for processing times in re-
peated reading. These findings point to mis-
alignments of task and memory representations
between humans and current language models,
and question the extent to which such models
can be used for estimating cognitively relevant
quantities. We further discuss theoretical chal-
lenges posed by these results.1

1 Introduction

A key question in psycholinguistics concerns the
cognitive processes that underlie the real-time in-
tegration of new linguistic material with previ-
ously processed linguistic context. A central frame-
work for examining this question is surprisal theory
(Hale, 2001; Levy, 2008). This theory ties word
processing cost to the word’s surprisal, and predicts
a linear relation between surprisal and processing
difficulty. Due to its theoretical implications (see
Shain et al. (2024b) for an extended discussion),

1Code is available at https://github.com/lacclab/surprisal-
non-ordinary-reading.

multiple studies have tested this prediction em-
pirically with different behavioral methodologies
(e.g. eyetracking and self paced reading), corpora
(among others, Dundee (Kennedy et al., 2003), Nat-
ural Stories (Futrell et al., 2021), MECO (Siegel-
man et al., 2022) and CELER (Berzak et al., 2022)),
language models, and languages (Smith and Levy,
2013; Goodkind and Bicknell, 2018; Wilcox et al.,
2020; Brothers and Kuperberg, 2021; Berzak and
Levy, 2023; Wilcox et al., 2023; Shain et al., 2024b;
Hoover et al., 2023; Xu et al., 2023). All these stud-
ies found significant surprisal effects on processing
times. With the exception of Hoover et al. (2023)
and Xu et al. (2023) who obtained evidence for
superlinear effects, these studies found a linear re-
lation between surprisal and processing times.

However, thus far this relation has been exam-
ined only in one reading regime, which can be
referred to as ordinary reading. This regime pre-
supposes that the comprehender did not have prior,
or at least recent, exposure to the linguistic mate-
rial. It further assumes that they have no specific
goals beyond general comprehension of this mate-
rial. These assumptions do not hold in many daily
situations, where language comprehenders often
have specific goals with respect to the linguistic in-
put, process the same input multiple times, or both.
This limits the generality of the conclusions that
can be drawn from prior studies.

In this work, we examine the effect of surprisal
on reading times in English L1 in three common,
but understudied language processing regimes: (1)
information seeking, (2) repeated processing, and
(3) the combination of the two. Prior work on infor-
mation seeking (Hahn and Keller, 2023; Shubi and
Berzak, 2023) and repeated reading (Hyönä and
Niemi, 1990; Raney and Rayner, 1995; Meiri and
Berzak, 2024) has shown substantial differences in
eye movement patterns in these regimes compared
to ordinary reading, and the extent to which the pre-
dictions of surprisal theory hold in these regimes is
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currently unknown.
We analyze and compare the functional form and

predictive power of two types of contexts, standard
regime-agnostic contexts that capture the general
predictability of a word, and regime-specific con-
texts which include the task in information seeking
and a prior appearance of the linguistic content
in repeated reading. We examine two main hy-
potheses stemming from surprisal theory. (1) The
presence and functional form of surprisal effects
for standard surprisal estimates should extend non-
ordinary reading regimes. (2) Surprisal estimates
from regime-specific contexts should yield higher
predictive power for processing times in the respec-
tive regimes compared to regime-agnostic contexts,
due to a more accurate representation of the con-
text and the processing goals, which should lead to
better alignment with subjective word probabilities.

Our main results are the following:

1. Regime-agnostic contexts yield robust lin-
ear surprisal effects in information seeking,
repeated reading and their combination, al-
beit with lower predictive power compared to
ordinary reading.

2. Regime-specific contexts that better match
the contexts and tasks given to humans, do not
improve the predictive power of surprisal for
reading times compared to standard regime-
agnostic contexts.

(a) In information seeking, providing the
information seeking task in the context
does not improve model predictive power
for reading times.

(b) In repeated processing, providing models
with a prior appearance of the linguistic
material leads to in-context memoriza-
tion, with surprisal values that are close
to zero and no predictive power for read-
ing times.

2 Related Work

The first studies to empirically examine the relation
between surprisal and reading times were Smith
and Levy (2008, 2013). They used broad coverage
eyetracking and self-paced reading data for English,
and found evidence for a linear relation. Following
this work, several studies obtained similar results
using additional corpora, languages and different
methodologies for curve fitting and testing linearity,
including Goodkind and Bicknell (2018), Wilcox

et al. (2020), Shain et al. (2024b) and Wilcox et al.
(2023). Hoover et al. (2023) and Xu et al. (2023)
obtained evidence for superlinearity. Brothers and
Kuperberg (2021) found a linear relation in word
probability using a controlled self-paced reading
experiment and cloze estimates of word probabili-
ties. Re-analysis of this data with language model
probabilities resulted in a linear relation in surprisal
(Shain et al., 2024a). Our study continues this line
of work and extends it to different reading regimes.

Both information seeking and repeated reading
have received limited attention in psycholinguistics.
Work that examined information seeking (Hahn
and Keller, 2023; Shubi and Berzak, 2023) found
substantial differences in eye movement patterns
compared to ordinary reading. The differences
were shown to be driven by the division to task-
relevant and task-irrelevant information. Different
eye movement behavior was also found in repeated
reading, where among others, shorter reading times
and longer saccades were observed (Hyönä and
Niemi, 1990; Raney and Rayner, 1995). While
the presence and magnitude of surprisal effects
in information seeking and repeated reading was
previously established (Shubi and Berzak, 2023;
Meiri and Berzak, 2024), their functional form and
predictive power are yet to be determined.

Multiple studies have pointed out divergences be-
tween surprisal estimates and human next word ex-
pectations (Smith and Levy, 2011; Jacobs and Mc-
Carthy, 2020; Ettinger, 2020; Eisape et al., 2020),
as well as an inverse relationship between the qual-
ity of recent language models (as measured by
perplexity) and their fit to reading times (Oh and
Schuler, 2022; Shain et al., 2024b). Closest to our
work is Vaidya et al. (2023), who found that in a
repeated reading cloze task, language models have
substantially higher next word prediction accuracy
compared to humans. They further identified “in-
duction heads”, which are attention heads that rec-
ognize repeated token sequences and increase the
probability of the previously observed continua-
tion (Elhage et al., 2021), as a core contributor to
this behavior in language models. Our findings for
repeated reading are in line with these results.

3 Data

We use OneStop, an extended version of the dataset
by Malmaud et al. (2020), with eye movements
from 360 English L1 readers, recorded with an
Eyelink 1000+ eyetracker (SR Research). The ex-
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periment was conducted under an institutional IRB
protocol, and all the participants provided written
consent before participating in the study. The tex-
tual materials are taken from OneStopQA (Berzak
et al., 2020) and comprise 30 articles from the
Guardian with 4-7 paragraphs (162 paragraphs in
total). Each paragraph in OneStopQA is accom-
panied by three reading comprehension questions.
The textual span in the paragraph which contains
the essential information for answering the ques-
tion correctly, called the critical span, is manually
annotated in each paragraph for each question.

An experimental trial consists of reading a single
paragraph on a page, followed by answering one
reading comprehension question on a new page
without the ability to go back to the paragraph.
Ordinary reading vs information seeking 180
participants are in an ordinary reading regime in
which they see the question only after having read
the paragraph. The remaining 180 participants are
in an information-seeking regime in which the ques-
tion (but not the answers) is presented prior to read-
ing the paragraph.
First vs repeated reading Each participant reads
10 articles in a random presentation order, followed
by two articles that are presented for a second time
with identical text but with a different question
for each paragraph. The article in position 11 is
a repeated presentation of the article in position
10. The article in position 12 is a repeated pre-
sentation of one of the articles in positions 1–9.
Thus, OneStop contains both consecutive and non-
consecutive repeated reading at the article level.2

OneStop has 2,532,799 data points (i.e. word
tokens over which eyetracking data was collected).
We exclude words that were not fixated, words
with a total reading time greater than 3,000 ms,
words that start or end a paragraph, words with
punctuation, and surprisal values greater than 20
bits. After these filtering steps, we remain with
1,157,609 data points: 541,875 in ordinary read-
ing, 474,674 in first reading information seeking,
82,357 in repeated ordinary reading, and 58,703 in
repeated reading information seeking.

4 Methodology

We examine four different reading regimes that
take advantage of the experimental manipulations
in OneStop and reflect different types of interac-

2Note that for articles 10 and 11, there are 3-6 intervening
paragraphs between the two readings of a paragraph.

tions with the text. The first is ordinary reading
during the first presentation of the text. This regime
corresponds to the standard experimental setup in
reading studies. Additionally, new to this work, we
examine information seeking during first reading,
and both ordinary reading and information seeking
during repeated text presentation.

We estimate the functional form of the relation
between surprisal and reading times using Gener-
alized Additive Models (GAMs, Hastie and Tib-
shirani, 1986), which can fit non-linear relations
between predictors and responses. We predict word
reading times from surprisal and two control vari-
ables that were shown to be predictive of reading
times above and beyond surprisal: word frequency
and word length (Kliegl et al., 2004; Clifton Jr et al.,
2016). To account for spillover effects (Rayner,
1998), our models also include the surprisal, fre-
quency and length of the previous word.

Following prior work (e.g. Wilcox et al., 2023)
our primary reading time measure is first pass
Gaze Duration; the time from first entering a word
to first leaving it during first pass reading. This
measure is associated with the processing difficulty
of a word given left-only context and is thus espe-
cially suitable for benchmarking against surprisal.
In the Appendix, we examine additional measures:
Gaze Duration and Total Fixation Duration. For
completeness, we also provide results for first pass
First Fixation duration and First Fixation duration,
which tend to have small surprisal effects and are
associated with lexical processing (Clifton Jr et al.,
2007; Berzak and Levy, 2023). Definitions of all
the measures are in section 1 in the Appendix.

Surprisal, defined as − log p(wi|w<i), where wi

is the current word and w<i is the preceding con-
text, is estimated using a language model (see Sec-
tion 4.3). The language models we use provide a
distribution over sub-words (tokens). We therefore
sum the sub-word probabilities to obtain the word’s
probability. Frequency is defined as − log p(wi),
using word counts from Wordfreq (Speer et al.,
2018). Word length is measured in number of char-
acters.

We define three models of interest:3

• Baseline model which predicts reading times
of the current word from the control variables
frequency and length and their interaction us-

3All the models were fitted using mgcv (v1.9.1) gam (Wood,
2004) function with cubic splines (“cr”). The models do not
include random effects due to convergence issues.
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ing tensor product terms te.4

• Linear model which includes the baseline
model terms and linear terms for the surprisal
of the current and the previous words.5

• Non-linear model which includes the base-
line model terms and smooth terms s for the
surprisal of the current and previous words.6

4.1 Analysis 1: GAM Visualization

In this analysis, we visualize the relationship be-
tween surprisal and reading times using the linear
and non-linear models. If the less constrained non-
linear fit is visually similar to the linear fit, this
would provide initial evidence for a linear relation
between surprisal and reading times. To this end,
we fit each of the two models on the reading time
data of each of the four reading regimes, and pre-
dict reading times for surprisal values in the range
of 0-20 in 0.1 increments. We note that differently
from some of the prior work that used similar meth-
ods (Smith and Levy, 2013; Wilcox et al., 2020,
2023), we do not average reading times across par-
ticipants before fitting the models.

4.2 Analysis 2: Predictive Power

Complementary to analysis 1, we measure the in-
crease in model log-likelihood relative to the base-
line model, which includes only the control vari-
ables frequency and length, without surprisal, for
both the linear and the non-linear models. A statis-
tically significant difference in the predictive power
of the non-linear and linear models would provide
evidence against linearity. Following prior work
(e.g. Wilcox et al., 2020; Oh and Schuler, 2022;
Wilcox et al., 2023), we measure predictive power
for data point i using delta log-likelihood:

∆LLi = logLtarget(RTi|xtarget)

− logLbaseline(RTi|xbaseline)

where RTi is the reading measure of a single par-
ticipant over a word, xbaseline are the control pre-
dictors and xtarget are the target predictors, which

4Model formula in R:
RT ∼ te(freq, len) + te(freq_prev, len_prev)

5Model formula in R: RT ∼ surp + surp_prev +
te(freq, len) + te(freq_prev, len_prev)

6Model formula in R:
RT ∼ s(surp, k = 6) + s(surp_prev, k = 6)
+ te(freq, len) + te(freq_prev, len_prev). The value for
k is chosen based on prior work (Wilcox et al., 2023).

include the control predictors and surprisal. LM is
the likelihood under the model M:

LM (RTi|x) = fnorm(RTi|µ = R̂Ti, σ
2 = σ2

RT )

where R̂Ti is the RT prediction of the model M
given the predictor set x, σ2

RT is the standard devi-
ation of the residuals of the fitted GAM model M
and fnorm is the Gaussian density function.

We examine ∆LL, the per-word mean of ∆LLi.
To reduce the risk of overfitting, we measure ∆LL
on held-out data, using 10-fold cross-validation.
A positive ∆LL indicates that the addition of sur-
prisal terms increases the predictive power of the
GAM model. We then compare the ∆LL of the
linear and non-linear GAM models. If there is
no significant difference between the two, we do
not reject the null hypothesis of a linear relation
between surprisal and reading times. Following
Wilcox et al. (2023), we test the significance of the
differences in the ∆LL of the two models using a
paired permutation test.

4.3 Language Models and Surprisal
Estimation

An important methodological consideration for our
study is the choice of the language model. Our
selection criteria for the language model is predic-
tive power, as measured by ∆LL. We measure the
predictive power of 30 publicly available language
models on the OneStop reading time data, and se-
lect the model with the highest predictive power
across the four reading regimes.

We examine models from the GPT-2 (Radford
et al., 2019), GPT-J (Wang and Komatsuzaki,
2021), GPT-Neo (Black et al., 2021), Pythia (Bi-
derman et al., 2023), OPT (Zhang et al., 2022),
Mistral (Jiang et al., 2023), Gemma (Thomas et al.,
2024) and Llama-2 (Hugo et al., 2023) families,
ranging from 70 million to 70 billion parameters.
We note that this list includes GPT-2-small, which
was used in prior work for similar analyses (Oh and
Schuler, 2022; Shain et al., 2024b). Figure A1 in
the Appendix presents model predictive power as
a function of the model’s log perplexity measured
on the 30 articles of OneStopQA. This comparison
yields Pythia-70m as the model with the highest
predictive power.7 Our main analyses therefore use
surprisal estimates from this model. To test the

7We note that this figure replicates the results of Oh and
Schuler (2022) regarding the relation between perplexity and
predictive power for recent language models, and extends
them to non-ordinary reading regimes.
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(a) GAM fits for the relation between surprisal and reading
times, with bootstrapped 95% confidence intervals. Top left of
each plot, the statistical significance of the s and linear terms
of the current word’s surprisal. At the bottom of each plot: a
density plot of surprisal values.

(b) ∆LL means with 95% confidence intervals on held-out
data using 10-fold cross validation. Above each confidence
interval: the statistical significance of a permutation test that
checks if the ∆LL is different from zero. Top left of each plot:
the statistical significance of a permutation test for a difference
between the ∆LL of the linear and non-linear models.

Figure 1: (a) GAM fits and (b) ∆LL for first pass Gaze Duration and Pythia-70m surprisals with standard context,
using the linear and non-linear models. ‘***’ p < 0.001, ‘**’ p < 0.01. ‘*’ p < 0.05, ‘(.)’ p ≥ 0.05. Key results:
(a) Approximately linear curves for the non-linear models. (b) No statistically significant differences in the ∆LL
of the linear and non-linear models, with the exception of information seeking in first reading. Smaller ∆LL in
information seeking and repeated reading compared to first reading - ordinary reading for both models.

robustness of the results to the choice of language
model, in the Appendix we present additional anal-
yses with the remaining 29 models.

Recently, Pimentel and Meister (2024) and Oh
and Schuler (2024) pointed out inaccuracies in the
surprisal estimates of models that are based on a
beginning-of-word marking tokenizer, such as the
Pythia and GPT families. Pimentel and Meister
(2024) further propose a modification in the com-
putation of surprisals in such models. While we
use the default surprisal values in the results re-
ported below, we have verified that highly similar
results are obtained with the estimation method of
Pimentel and Meister (2024).

4.4 Contexts

A cardinal manipulation in our study concerns the
context w<i that is provided to the language model
for estimating the probability of the current word
wi. We examine three approaches for constructing
this context.

• Standard Context: In the first, regime-
agnostic approach, which we take in Section

5, the context consists of the words preceding
the current word in the paragraph.

• Regime Context: In the second, regime-
specific approach, in Section 6, the context
depends on the reading regime in that it in-
cludes the preceding question in information
seeking and the paragraph in repeated reading.

• Prompting + Regime Context: An additional
variant of the Regime Context in Section 6
further includes textual prompts that emulate
the instructions given to humans.

5 Surprisal from Standard Context

In our first set of analyses, we follow prior work
on ordinary first reading, as well as information
seeking and repeated reading (Shubi and Berzak,
2023; Meiri and Berzak, 2024), and use standard,
reading regime-agnostic surprisal estimates, which
are obtained by conditioning the model on the prior
textual material in the paragraph.
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5.1 GAM Visualization

Figure 1a presents the GAM surprisal curves for
the linear and non-linear models. Visual inspec-
tion suggests that the non-linear model approxi-
mately tracks the linear fit. We further note that
consistently with the findings of Shubi and Berzak
(2023) and Meiri and Berzak (2024), surprisal ef-
fects, which can be inferred from the slope of the
curves, are smaller in information seeking com-
pared to ordinary reading, and smaller in repeated
reading compared to first reading.

Figure A2a in the Appendix suggests that the re-
sults largely hold across different language models,
although some of the models with the lowest per-
plexity also yield sublinear fits. Figure A3a in the
Appendix examines additional reading measures
for Pythia-70m, with linear fits for Gaze Duration
and Total Fixation duration, and mixed results for
first pass First Fixation and First Fixation where
we observe sublinear curves in first reading. Over-
all, most curves of the non-linear models appear to
approximate their linear counterparts.

In information seeking, Shubi and Berzak (2023)
have shown different eye movement patterns
within and outside task critical information (the
critical span). In repeated reading, Meiri and
Berzak (2024) also showed differences between
eye movements in consecutive (article 11) and non-
consecutive (article 12) repeated article presenta-
tion. Figure A4 in the Appendix shows that linear-
ity for first pass Gaze Duration holds both within
and outside the critical span in information seeking,
and also both with and without intervening articles
during repeated reading.

5.2 Predictive Power

While visual inspection provides initial evidence
for the linearity of reading times in surprisal across
reading regimes, we further test this hypothesis by
comparing the predictive power of the non-linear
model relative to that of the linear model. Figure
1b presents the ∆LL of the linear and non-linear
models for first pass Gaze Duration across the four
reading regimes. We find that in three of the four
regimes, there is no significant difference between
the ∆LL of the two models. In information seek-
ing - first reading, the difference is significant at
p < 0.05. These results largely support our conclu-
sion from the visual inspection of the GAM curves,
that the surprisal - reading times relation is linear in
all four regimes. We further note, that in line with

the effect sizes, the predictive power of standard
surprisal estimates is smaller in information seek-
ing compared to ordinary reading, and smaller in re-
peated reading compared to first reading (p < 0.05
in all cases using a paired permutation test).

Figure A2b in the Appendix presents the results
for first pass Gaze duration across different lan-
guage models, suggesting that they are robust to
the language model choice. Figure A3b in the Ap-
pendix presents additional reading measures and
further shows that the results mostly extend to Gaze
Duration and Total Fixation Duration, while mixed
results are obtained for First Fixation measures,
with larger ∆LL for the non-linear model in ordi-
nary reading and information seeking during first
reading. Figure A4 shows that the linearity of first
pass Gaze Duration in surprisal holds both within
and outside the critical span in information seek-
ing, as well as for consecutive and non-consecutive
article repeated reading. Overall, our analysis of
∆LL favors a linear relation between surprisal and
reading times across all four reading regimes.

6 Surprisal from Regime-Specific Context

Thus far, we used surprisal estimates based on the
textual context in the paragraph. However, this
context does not fully capture the reading task con-
ditioning in the human data. Human participants
in the first reading – information seeking regime
receive a question prior to reading the paragraph.
In repeated ordinary reading they have already read
that paragraph. In repeated reading during infor-
mation seeking they have previously read the para-
graph and received a question prior to both the first
and the second reading of the paragraph. These
manipulations can alter linguistic expectations and
were previously shown to influence reading times
(Hyönä and Niemi, 1990; Malmaud et al., 2020;
Shubi and Berzak, 2023; Meiri and Berzak, 2024).
Furthermore, human participants receive explicit in-
structions regarding the different trial components
in the reading experiment.

In the remainder of this work, we compare our
results using standard surprisal estimates to sur-
prisal estimates based on context types that more
closely match the textual contexts and instructions
presented to humans in each of the reading regimes.
Our analyses focus on the following questions re-
garding the three regimes that are not ordinary first
reading. (1) Do the linear surprisal effects persist
under regime-conditioned surprisal estimates? (2)
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Regime Standard
Context

Regime
Context Description Prompting +

Regime Context Prompt Text

First reading
Ordinary reading

P P The preceding words in the paragraph. Prompt1 + P Prompt1: "You will now read a paragraph."

First reading
Information seeking

P Q + P The question followed by the
preceding words in the paragraph.

Prompt1 + Q + P Prompt1: "You will now be given a question
about a paragraph followed by the paragraph.
You will need to answer the question."

Repeated reading
Ordinary reading

P P + P The entire paragraph followed by the
preceding words in the same paragraph.

Prompt1 + P +
Prompt2 + P

Prompt1: "You will now read a paragraph."
Prompt2: "You will now read the same paragraph
again."

Repeated reading
Information seeking

P Q’ + P +
Q + P

The question for the first reading,
followed by the paragraph, the question
for the second reading and the preceding
words in the same paragraph.

Prompt1 + Q’ + P +
Prompt2 + Q + P

Prompt1: "You will now be given a question
about a paragraph followed by the paragraph.
You will need to answer the question."
Prompt2: "You will now read the same paragraph
again with a different question before the
paragraph. You will need to answer the question.”

Table 1: Standard and regime-specific contexts provided to language models. Q and Q’ for two different questions,
and P for paragraph. The prompts are similar to those presented to human participants in the reading experiment.

(a) GAM fits for the relation between surprisal and reading
times across context types. Slowdown effects in ms for first
pass Gaze Duration as a function of surprisal, with bootstrapped
95% confidence intervals. Top left of each plot, the significance
of the s and linear terms of the current word’s surprisal. At
the bottom of each plot: a density plot of surprisal values. Key
results for the Regime Context and Prompt + Regime Context:
(a) in first reading - information seeking, approximately linear
curves for the non-linear model. (b) In the two repeated reading
conditions, surprisals are close to zero with no surprisal effect.

(b) ∆LL means with 95% confidence intervals on held-out
data using 10-fold cross validation. Above each confidence
interval: the statistical significance of a permutation test that
checks if the ∆LL is different from zero. Top left of each
plot: significance of a permutation test for a difference between
the ∆LL of the linear and non-linear models. Key results for
Regime Context and Prompt + Regime Context: (1) In first
reading - information seeking, no significant differences in the
∆LL of the linear and non-linear models, and no increase in
∆LLs compared to the Standard Context. (2) In both repeated
reading regimes, ∆LLs are lower compared to the Standard
Context and in most cases not significantly above zero.

Figure 2: Comparison of GAM fits and ∆LL for first pass Gaze Duration with surprisal estimates of Pythia-70m
from different context types. ‘***’ p < 0.001, ‘**’ p < 0.01. ‘*’ p < 0.05, ‘(.)’ p ≥ 0.05.

Do regime-conditioned surprisals lead to better pre-
dictive power for human reading times?

To address these questions, in addition to the
standard context used in Section 5, we examine
three regime-specific contexts that correspond to
each of the three reading regimes that involve in-
formation seeking and repeated reading. To further

enhance the similarity to the experimental setup
in the human data, we also examine a variant of
the regime contexts in which the model addition-
ally receives prompts that emulate the reading in-
structions received by human participants. The
prompts convey the same content provided in the
instructions to human participants in the eyetrack-
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ing experiment, but are not a verbatim copy, as the
original instructions further contain details relevant
only for the eyetracking experiment, such as the
text triggering targets and button presses associ-
ated with each part of the trial. The regime-specific
contexts and prompts are presented in Table 1.

We note that although these contexts include the
essential components of each reading regime, they
do not fully match the eyetracking experiment as
they do not include intervening textual material be-
tween first and second presentations of a paragraph.
This is because the context window of our models
is too small to include the text of a full experimen-
tal session. To partially address this limitation, in
Table A1 in the Appendix we present a prompting
scheme for article-level analysis for articles 10 and
11. We use this scheme with the Pythia-70m model,
for which we employ a sliding window mechanism
with an overlap size that ensures that each para-
graph’s first appearance is fully included in the
context window of its repeated appearance.

6.1 GAM Visualization
In figure 2a we present GAM visualizations for
the linear and non-linear models. We compare sur-
prisals from conditioning on the standard paragraph
context P to surprisals from reading regime con-
texts: Q+P for first reading - information seeking,
P+P for repeated reading - ordinary reading, and
Q’+P+Q+P for repeated reading - information seek-
ing. We further present results for regime contexts
with prompting.

For first reading - information seeking, surprisals
from both regime-specific contexts yield linear
curves. However, a very different outcome is ob-
served in the repeated reading regimes. In these
regimes, there is a collapse of the surprisals to
values that are close to zero and null effects of
surprisal on reading times. Thus, we obtain two
different behaviors for information seeking and
repeated reading. While the addition of the infor-
mation seeking task does not substantially alter the
predictive power of the model, conditioning twice
on the paragraph leads to surprisals that no longer
maintain a significant relation to reading times.

6.2 Predictive Power
In figure 2b we compare the ∆LL of the linear
and non-linear models across standard and regime-
specific surprisals with and without prompting. In
first reading - information seeking, the regime con-
text and the prompt + regime context provide weak

evidence against linearity (p = 0.04 and p = 0.01
respectively). Crucially, regime conditioning and
prompting do not improve predictive power in this
regime; the ∆LL of the regime context is not sig-
nificantly higher compared to the standard context
(p = 0.25 linear; p = 0.27 non-linear, using a
paired permutation test). Adding prompting yields
similar outcomes compared to the standard context
(p = 0.22 linear; p = 0.08 non-linear).

In the repeated reading regimes we observe a
different pattern. Importantly, the regime contexts
in the ordinary reading condition lead to a decrease
in the ∆LL compared to the standard context in
both the linear (p = 0.001) and non-linear cases
(p = 0.009). A similar pattern is observed when
adding prompting, with p = 0.001 for the linear
model and p = 0.038 for the non-linear model.
The regime contexts in the information seeking
condition exhibit the same pattern of ∆LL de-
crease compared to the standard context, which
is significant both without prompting (p = 0.017
linear; p = 0.004 non-linear) and with prompting
(p = 0.091 linear; p = 0.027 non-linear). Further-
more, in nearly all cases the regime context ∆LL
is not significantly above zero, suggesting that the
corresponding surprisal estimates have no predic-
tive power with respect to reading times. Taken
together with the GAM visualizations in Figure 2a,
we conclude that the examined language models
are misaligned with human reading patterns in re-
peated reading, and do not provide useful surprisal
estimates when conditioned for repeated reading.

These results are consistent across all the models
examined, and specifically for the larger models,
which could a-priori be expected to be more sensi-
tive to context conditioning and prompting. In the
Appendix, we present these results for GPT-2-small
in Figure A5 and for the largest Llama and Mistral
models, Llama 70b in Figure A6 and Mistral In-
struct v0.3 7b in Figure A7. Furthermore, Figure
A8 in the Appendix suggests that they generalize
to repeated reading with intervening paragraphs be-
tween the two paragraph presentations for articles
10 and 11.

7 Discussion and Conclusion

Surprisal theory predicts a linear relationship be-
tween surprisal and word processing times. This
prediction found support in studies with ordinary
reading, but was not previously examined in in-
formation seeking and repeated reading. We find
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evidence that with standard surprisal estimates, the
prediction of surprisal theory for a linear effect of
surprisal on reading times holds in these regimes.
We further find that the effect size and predictive
power of standard surprisal estimates diminish in
information seeking and repeated reading.

Our attempt to improve language model predic-
tive power with regime-specific contexts yields two
primary findings. First, we observe that regime-
specific surprisal estimates in first reading - infor-
mation seeking do not improve the fit to human
reading times. A more severe case of estimation
collapse is observed in repeated reading, where we
find near zero surprisal estimates with no predictive
power for reading times, likely due to in-context
memorization.

These findings highlight two different types of
misalignment between language models and hu-
mans. Information seeking demonstrates a mis-
alignment in the representation of task information.
Repeated reading suggests very different memory
and retrieval abilities in humans and current lan-
guage models. These misalignments question not
only the suitability of current language models as
cognitive models of human language processing,
but also the psycholinguistic relevance of quantities
extracted from such models.

We entertain two possible explanations for the
discrepancies in the real-time processing and mem-
ory mechanisms of humans and language models.
The first explanation is that this mismatch stems
from architectural and/or training aspects of current
language models. If this is indeed the case, they
can be potentially alleviated or even completely
resolved with architectural or training procedure
changes to said models; it is well possible that fu-
ture architectures will better capture task relevant
information, or handle repeated text in ways that
are more commensurate with human processing.

The second explanation poses a challenge to lan-
guage processing theory, and in particular to the
view of surprisal as a “causal bottleneck” for ob-
served behavior (Levy, 2008). According to this
view, whatever the underlying linguistic process-
ing mechanisms and representations may be, their
effect on processing times is mediated through sur-
prisal. Although better representation of the con-
text should yield better estimates of subjective sur-
prisals and thus better reflect processing times, we
do not observe this in practice.

One could alternatively argue that factors that
come into play in non-ordinary processing regimes

and affect reading times either cannot or should not
be encoded in surprisals. Surprisal theory accounts
only for processing difficulty, while reading times
may reflect additional factors of cognitive state,
which do not directly speak to processing difficulty
(e.g. one may skim through portions of the text
because they are less relevant for the comprehen-
der goals, not because they are easier to process).
Future empirical and theoretical work is required
to make further progress on these questions.

8 Limitations

Our work has multiple limitations. Due to the lack
of eyetracking data for information seeking and
repeated reading in other languages, we address
only English. The readers are adult native speakers
in the age range of 18–52. Additional data collec-
tion in other languages, ages and participant groups
are needed to establish the generality of the con-
clusions. The experimental design is further con-
strained to one variant of each reading regime, leav-
ing many other variants unaddressed. For example,
an experimental trial consists of a single paragraph.
In daily interactions with text, information seeking
can be over both shorter and longer textual units. In
repeated reading, consecutive reading is at the arti-
cle level with intervening paragraphs, and doesn’t
cover immediate repeated reading which involves
working memory. In non-consecutive reading, we
have at most 10 intervening articles. In both cases,
repeated reading can occur more than once.

Further limitations concern the language models
used. The context window of the models available
with our computing resources is not sufficient to
address non-consecutive article repeated reading,
which requires storing up to 12 articles at once
in the context provided to the model. Additional
work with large context windows is required to
fully address the repeated reading experimental
design in the eyetracking data.

We use the term ordinary reading to refer to a
first reading for comprehension. However, follow-
ing Huettig and Ferreira (2023) we acknowledge
that this term is not without faults. Relatedly, while
reading comprehension questions are essential for
encouraging attentive reading, their presence after
each paragraph may lower the ecological validity of
the data, especially in the ordinary reading regime.
Reading in a lab setting may further limit the appli-
cability of the results to daily reading situations.
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Abstract

Hierarchical text classification (HTC) is the
task of assigning labels to a text within a struc-
tured space organized as a hierarchy. Recent
works treat HTC as a conventional multilabel
classification problem, therefore evaluating it
as such. We instead propose to evaluate mod-
els based on specifically designed hierarchical
metrics and we demonstrate the intricacy of
metric choice and prediction inference method.
We introduce a new challenging dataset and we
evaluate recent sophisticated models against a
range of simple but strong baselines, includ-
ing a new theoretically motivated loss. Finally,
we show that those baselines are very often
competitive with the latest models. This high-
lights the importance of carefully considering
the evaluation methodology when proposing
new methods for HTC. Code implementation
and dataset are available at https://github.
com/RomanPlaud/revisitingHTC.

1 Introduction

Text classification is a long-studied problem that
may involve various types of label sets. In par-
ticular, Hierarchical Text Classification (HTC) in-
cludes labels that exhibit a hierarchical structure
with parent-child relationships. The structure that
emerges from these relationships is either a tree
(Kowsari et al., 2018; Lewis et al., 2004; Lyubinets
et al., 2018; Aly et al., 2019; Sandhaus, 2008) or a
Directed Acyclic Graph (DAG) (Bertinetto et al.,
2020). Each input text then comes with a set of
labels that form one or more paths in the hierarchy.
A first crucial challenge in HTC lies in accurately
evaluating model performance. This requires met-
rics that are sensitive to the severity of prediction
errors, penalizing mistakes with larger distances
within the hierarchy tree. While pioneering ef-
forts have been made by Kiritchenko et al. (2006),
Silla and Freitas (2011), Kosmopoulos et al. (2014)
and Amigo and Delgado (2022), evaluation in the

Figure 1: Extract of the taxonomy of our new dataset
Hierarchical WikiVitals. Each colored path is the set of
labels of the same color.

context of hierarchical classification remains an
ongoing research area.

There is a substantial body of literature ad-
dressing HTC. The most recent methods produce
text representations which are hierarchy-aware, as
they integrate information about the label hierar-
chy (Song et al., 2023; Zhou et al., 2020; Deng
et al., 2021; Wang et al., 2022b,a; Jiang et al.,
2022; Chen et al., 2021; Zhu et al., 2023, 2024;
Yu et al., 2023). However, we believe that the eval-
uation of these models has been insufficiently in-
vestigated: in those works, the task is evaluated as
standard multi-label classification. Here, we plan
to explore what this implies; especially, looking
at how predictions are inferred from an estimated
probability distribution – which we consider an
under-addressed challenge. We provide new in-
sights, emphasizing the intricacy of inference and
evaluation, which cannot be considered separately.
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To complete this investigation, we introduce a new
English benchmark dataset, Hierarchical WikiVi-
tals (HWV), which we intend to be significantly
more challenging than the usual HTC benchmarks
in English (see Figure 1 for an extract of the taxon-
omy). We experiment within our proposed frame-
work, verifying the performance of recent models
against simpler methods, among which loss func-
tions (Bertinetto et al., 2020; Vaswani et al., 2022;
Zhang et al., 2021) we design to be able to integrate
hierarchical information, based on the conditional
softmax. Overall, our contributions are:

1. We propose to quantitatively evaluate HTC
methods based on specifically designed hierar-
chical metrics and with a rigorous methodology.

2. We present Hierarchical WikiVitals, a novel
high-quality HTC dataset, extracted from
Wikipedia. Equipped with a deep and complex
hierarchy, it provides a harder challenge.

3. We conduct extensive experiments on three pop-
ular HTC datasets and HWV, introducing a
novel loss function. When combined with a
BERT model, this approach achieves competi-
tive results against recent advanced models.

Our results show that state-of-the-art models do not
necessarily encode hierarchical information well,
and are surpassed by our simpler loss on HWV.

Problem definition

Hierarchical Text classification (HTC) is a subtask
of text classification which consists of assigning
to an input text x ∈ X a set of labels Y ⊂ Y ,
where the label space Y exhibits parent-child re-
lationships. We call hierarchy the directed graph
H = (Y, E), where E ⊂ Y2 is the set of edges,
which goes from a parent to its children. We re-
strain our study to the case whereH is a tree. We
follow the notations of Valmadre (2022) and call
r ∈ Y the unique root node and L the set of leaf
nodes. For a node y ∈ Y\{r} we denote π(y) its
unique parent, C(y) ⊂ Y the set of its children and
A(y) the set of its ancestors (defined inclusively).

A label set Y of an input x cannot be arbitrary:
if y ∈ Y then, due to the parent relations, we
necessarily observe that A(y) ⊂ Y . An even more
restrictive framework is the single-path leaf labels
setting, where Y = A(l) for a given l ∈ L (Y is a
single path and reaches a leaf).

We study methods mapping an input text x to a
conditional distribution P(·|x) over Y , whose esti-

mation is denoted P̂(·|x). Lastly, what we call in-
ference rule is the way of producing a set of binary
predictions from a probability distribution. For ex-
ample predictions can be obtained by thresholding
P̂(·|x) to τ as follows : Ŷτ = {y ∈ Y, P̂(y|x) >
τ}.

2 Related Work

2.1 Hierarchical Text Classification

Hierarchical classification problems, including the
particular case of HTC, are typically dealt with
through either a local approach or a global one. We
refer to the original definition made by Silla and
Freitas (2011) according to which the difference be-
tween the two categories lies in the training phase.
Indeed, local methods imply training a collection
of specialized classifiers, e.g. one for each node,
for each parent node or even one for each level;
and during its training each classifier is unaware
of the holistic structure of the hierarchy (Zangari
et al., 2024). While often computationally costly,
it has proven to be effective to capture crucial lo-
cal information. Along those lines, Banerjee et al.
(2019) propose to link the parameters of a parent
classifier and those of its children, following the
idea of transferring knowledge from parent nodes
to their descendants (Shimura et al., 2018; Huang
et al., 2019; Wehrmann et al., 2018). Conversely,
global methods involve a unique model that directly
incorporates the whole hierarchical information in
their predictions. There exist very different types
of global approaches, from which we can draw two
broad categories: losses incorporating hierarchical
penalties and hierarchy-aware models.
Hierarchical penalties. The idea of these meth-
ods is generally to use a standard binary cross-
entropy (BCE), and add penalization terms that
incorporate hierarchical information. Gopal and
Yang (2013) and Zhang et al. (2021) propose regu-
larization based on hypernymy, either acting on the
parameter space or the outputted probability space,
while Vaswani et al. (2022) introduce an enhanced
BCE loss, named CHAMP, which penalizes false
positives based on their distance to the ground truth
in the hierarchy tree.
Hierarchy-aware models. To incorporate the
structural constraints of the hierarchy into predic-
tion, Mao et al. (2019) propose a reinforcement
learning approach, while Aly et al. (2019) intro-
duce an architecture based on capsule networks.
However, recent works have achieved state-of-the-
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art results by combining a text encoder with a struc-
ture encoder applied to the label hierarchy. This
concept was first introduced by Zhou et al. (2020),
who utilized graph convolution networks as the
hierarchy encoder. Building on this foundational
work, Jiang et al. (2022) and Wang et al. (2024)
developed methods to better incorporate local hier-
archy information. Wang et al. (2022a) proposed
a contrastive learning approach, while Zhu et al.
(2023) designed a method to encode hierarchy with
the guidance of structural entropy. Zhu et al. (2024)
combined both of these ideas. These developments
follow earlier works on the same concept (Chen
et al., 2020; Zhang et al., 2022; Deng et al., 2021;
Chen et al., 2021; Wang et al., 2021). It is impor-
tant to note that these models are typically trained
with a BCE loss or one of its penalized versions
(Zhang et al., 2021).

2.2 Hierarchical prediction

Making a prediction in HTC involves two seem-
ingly irreconcilable difficulties: one has to decide
between making independent predictions, which
may lead to coherence issues (e.g., predicting a
child without predicting its parent), or employing
a top-down inference approach, which may cause
error propagation issues (Yang and Cardie, 2013;
Song et al., 2012). Recent hierarchy-aware models
predominantly operate within the former frame-
work, training and evaluating the model as a simple
multi-label classifier, at the price of ignoring poten-
tially badly structured predictions. In this work, we
will experiment with both approaches.

2.3 Hierarchical classification evaluation

Evaluation in the context of hierarchical classifi-
cation is a long-studied problem (Kosmopoulos
et al., 2014; Amigo and Delgado, 2022; Costa et al.,
2007) from which arise multiple questions. First,
diverse setups exist, implying different assump-
tions on the labeling structure: while we previously
introduced the single-path leaf label framework,
multi-path hierarchies exist, or even inputs with
only non-leaf labels. It is therefore important to
design metrics that are agnostic to the hierarchi-
cal classification framework. Then, a hierarchical
metric must indeed be hierarchical. This means it
should take into account the severity of an error
based on the known hierarchy: intuitively, predict-
ing a Bulldog instead of a Terrier should be less
penalized than predicting a Unicorn instead of a
Terrier. Amigo and Delgado (2022) identify a set

of properties an evaluation metric should possess
for hierarchical classification, and classifies them
in a taxonomy of metrics differentiating between
multi-label metrics (label-based, example-based,
ranking-metrics) and hierarchical metrics (pair-
based, set-based). We heavily rely on this seminal
work when it comes to choose which metric to
use to evaluate different methods. Finally, the in-
ference rule should be chosen in accordance with
the metric. The bayesian decision theory literature
(Berger, 1985) aims at finding an optimal rule given
the metric of interest. However, little consideration
was given to this issue in the context of hierarchi-
cal classification and ad hoc and non-statistically
grounded inference methodology are often chosen:
for example, recent HTC literature mostly performs
inference through thresholding the estimated prob-
ability distribution with τ = 0.5. We can think of
other inference methodology, based on top-down
or bottom-up inference rules. It is then crucial
to find metrics that either come with a properly
grounded prediction rule, or do not depend on
an inference methodology but rather account for
the whole probability distribution, which implies
evaluating at different operating points. In the next
part, we will re-introduce metrics in the light of the
three listed requirements.

3 Evaluation metrics

The aforementioned inference rule used in recent
HTC literature corresponds to a classical multi-
label evaluation methodology: computing a F1-
score (micro and macro) with τ = 0.5. In what
follows, we show that this thresholding scheme is
suboptimal and we introduce the metrics we use in
our experiments. We will then motivate the use of
an inference-free evaluation methodology.

3.1 Multi-label metrics

There is a large array of methods for multi-label
evaluation; Wu and Zhou (2016), through unifying
notations, proposed a set of 11 different metrics.
Among them, we keep the micro and macro F1-
score computed upon scores obtained through a
0.5 threshold, as it is generally done in HTC lit-
erature. We add a simple metric corresponding to
the fraction of misclassified labels: the Hamming
Loss, which we also couple to a 0.5 thresholding
inference rule.1

1This optimal inference holds in case of label indepen-
dence (Dembczyński et al., 2012) which is not the case here.
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3.2 Hierarchical metrics

We introduce hF1-score which we identify to be
relevant to our evaluation framework. We note that
a prediction is coherent if z ∈ Ŷ ⇒ A(z) ⊂ Ŷ .

Hierarchical F1-score. Introduced by Kir-
itchenko et al. (2006), this set-based measure con-
sists in augmenting Ŷ with all its ancestors as fol-
lows :

Ŷ aug = ∪
ŷ∈Ŷ
A(ŷ) (1)

And to compute the hierarchical precision, recall
and F1-score are as follows :

hP(Y, Ŷ) =

∣∣∣Ŷ aug ∩ Y
∣∣∣

∣∣∣Ŷ aug
∣∣∣

hR(Y, Ŷ) =

∣∣∣Ŷ aug ∩ Y
∣∣∣

|Y |

hF1(Y, Ŷ) =
2 · hP(Y, Ŷ) · hR(Y, Ŷ)

hP(Y, Ŷ) + hR(Y, Ŷ)

It is a simple extension of the F1-score to hierarchi-
cal classification. In the multi-label setting, there
are several methods of aggregation to compute a
global F1-score2. We define here a per-instance
hF1-score as per Kosmopoulos et al. (2014) which
is then averaged over all inputs (referred as sam-
ples setting). In its very first introduction, it was
defined in a micro fashion by Kiritchenko et al.
(2006) (see Appendix C.2 Plaud et al. (2024) for
full definitions).

Proposition 1 In micro and samples settings, if
every prediction Ŷ is coherent, then hF1 and F1
are strictly equal.

Motivations. Hierarchical F1-score considers an
ancestor overlap between ground truth and pre-
dicted labels therefore accounting for mistake
severity and is also agnostic to the hierarchi-
cal classification framework. Moreover, Propo-
sition 1 (whose proof is detailed in Appendix C.2
Plaud et al. (2024)) draws a link between example-
based multi-label metrics and set-based hierarchi-
cal metrics proving that it was therefore relevant to
employ the micro F1-score as it is done in recent lit-
erature, as long as predictions are coherent. Finally,
hF1-score incorporates all desirable hierarchical
properties as listed by Amigo and Delgado (2022),
except that it does not completely capture the speci-
ficity (i.e the level of uncertainty left by predicting
a given node).

2See for example the Scikit-learn documentation.

Figure 2: Example of a conditional distribution esti-
mation over a simple hierarchy and corresponding pre-
dicted nodes (in blue) for different thresholds (0.3 on
the left, 0.5 on the right).

Other hierarchical metrics. As explained in pre-
vious section, hF1-score is imperfect as it assumes
an equivalence between depth and specificity. To
solve this issue, Valmadre (2022) has proposed
an information-based hierarchical F1-score, intro-
duced in Appendix A (Plaud et al., 2024). There
also exist constrained versions of multi-label F1-
scores (Yu et al., 2022; Ji et al., 2023) which ac-
count for coherence issues: a correct prediction for
a label node is valid only if all its ancestor nodes
are correct predictions.
Although these metrics might seem pertinent, we
have chosen not to utilize them, as they do not
globally influence the ranking of methods when
compared to their standard metric counterparts.
We thoroughly detail our reasons in Appendix A
(Plaud et al., 2024). An important number of
context-dependent hierarchical metrics were also
introduced (Sun and Lim, 2001; Bi and Kwok,
2015), which we will not discuss here as we aim for
agnosticism to the hierarchical classification con-
text.

3.3 Inference methodology
In this section, we begin by motivating our argu-
ment against the practice of using a BCE-based loss
and τ = 0.5 to produce predictions. While this cor-
responds to minimizing the multilabel Hamming
loss in case of label independence (Dembczyński
et al., 2012), there is to the best of our knowledge
no evidence of the optimality of such a predictor
in a hierarchical setting. Rather, tools such as risk
minimization can provide a way to obtain a statisti-
cally grounded inference methodology optimizing
the chosen metric, from an estimation of P(·|x), ob-
tained by a model for a given x. In particular, it is
possible to show that the optimal threshold for the
F1-scores depends on P(·|x); we detail the proof
in Appendix C.1.2 (Plaud et al., 2024). Though, a
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simple counter-example is enough to invalidate the
choice of 0.5: such an example is depicted in Fig-
ure 2. It shows a coherent and exhaustive probabil-
ity distribution P(·|x), for a given x. Thresholding
to 0.5 would lead to predict {1}, while a simple
computation, detailed in Appendix C.1 (Plaud et al.,
2024), gives:

E[hF1(Y, {1})|X = x] = 0.5

E[hF1(Y, {1, 5})|X = x] = 0.55

which shows that in a single path leaf label setting
it is strictly better to predict {1, 5} when aiming
at maximizing the hF1-score. With Proposition 1
in mind, this simple example shows theoretically
the sub-optimality of the current state-of-the-
art models inference methodology. As the opti-
mal threshold is unknown, we need to design an
evaluation framework which does not depend on
an ad-hoc inference rule to avoid introducing non
statistically grounded methods. Following recom-
mendations given by Valmadre (2022), we hence
do away with inference rules and we construct
precision-recall curves for hF1 by browsing all pos-
sible thresholds. From these curves, we compute
the Area Under Curve (AUC).

4 Simple conditional loss-based methods

As a counterpart to the existing state-of-the-art con-
sisting mainly of BCE-based approaches, we intro-
duce several loss-based methods that incorporates
local information, all relying on estimating condi-
tional probabilities.

4.1 Conditional softmax cross-entropy
As outlined in Problem Definition, we focus on
methods that, given an input text x, produce an esti-
mated distribution P̂(·|x) over Y . We propose here
to associate a modern text encoder to the condi-
tional softmax (Redmon and Farhadi, 2017), which
inherently incorporates the hierarchy structure by
producing a hierarchy-coherent probability distri-
bution, and coupling it with a cross-entropy loss.
We detail in this section the modeling and training
associated with it. Let us consider an input text x
with its corresponding label set Y ; a text encoder
is first used to produce an embedded representation
hx ∈ Rd of x.
Conditional softmax. The conditional softmax
first maps hx to sx ∈ R|Y| through a standard lin-
ear mapping:

sx = Whx + b (2)

where W ∈ R|Y|×d and b ∈ R|Y|. Then, a softmax
is applied to each brotherhood as follows:

P̂(y|x, π(y)) = exp s
[y]
x∑

z∈C(π(y))
exp s

[z]
x

(3)

We recall that π(y) denotes the parent node of node
y, and C(π(y)) represents the set of children of
π(y), which includes y. The term s

[y]
x refers to the

entry of sx associated with node y.
Hence, the logits sx are used to model the condi-
tional probability of a node given its parent. For
example, this could represent the probability of an
instance x to belong to the class Bulldog, condi-
tioned on it being a Dog.
Cross-entropy. The contribution to the loss of the
pair (x, Y ) is given by a standard leaf nodes cross-
entropy (as if we were in a standard monolabel
multiclass classification problem over leaf nodes).
With our modelisation it can further be decomposed
as:

lCSoft(x, Y ) = − log P̂(yleaf|x)
= −

∑

y∈Y
log P̂(y|x, π(y)) (4)

where we denote yleaf the unique leaf node of Y .
Outputted conditional distribution. The proba-
bility of y ∈ Y is computed by a standard condi-
tionality factorization :

P̂(y|x) =
∏

z∈A(y)

P̂(z|x, π(z))

Motivations. Contrary to BCE-based methods, this
modelisation directly incorporates the hierarchy
structure prior of labels. Besides, the outputted
probability distribution is coherent and exhaustive.
It is more powerful than a leaf nodes softmax, as
it decomposes the leaf probability estimation into
several sub-problems. It is also computationally
cheap, with a O(|Y|) time complexity.

4.2 Logit-adjusted conditional softmax
We then propose an enhanced version of the condi-
tional softmax, in order to improve its robustness
to data imbalance. This is particularly important
for our newly introduced HWV dataset, which has
around half of labels having less than 10 instances
in total. Our proposal is motivated by Zhou et al.
(2020), who suggest that integrating the prior prob-
ability distribution in the model is relevant to the

235



HTC task, which is confirmed by their experimen-
tal results. Their approach involves initializing (or
fixing) the weights of the structure encoder using
this pre-computed prior distribution. Hence, we
draw inspiration from Menon et al. (2021) and
introduce the logit-adjusted conditional softmax
cross-entropy. Equation (3) becomes:

P̂(y|x, π(y)) = es
[y]
x +τ log ν(y|π(y))

∑
z∈C(π(y))

es
[z]
x +τ log ν(z|π(z))

where ν(y|π(y)) is an estimation of P(y|π(y))3

and τ a hyperparameter. Equation (4) remains
unchanged. Comprehensive details on the adap-
tation of the logit-adjusted softmax to our case,
along with the theoretical justifications, are pro-
vided in Appendix C.3 (Plaud et al., 2024). We
expect this loss to enhance performances on the
under-represented classes.

4.3 Conditional sigmoid binary cross-entropy
In practice, several real-world datasets consistently
used in recent literature to evaluate HTC mod-
els (Lewis et al., 2004; Aly et al., 2019) are multi-
path. As the conditional softmax is not designed
for multi-path labels, we propose to use a condi-
tional sigmoid loss, introduced by Brust and Den-
zler (2020). It follows a similar intuition to the
conditional softmax: sigmoids are applied to each
entry of sx, modeling the conditional probability of
the node given its parent. Hence, the contribution
to the loss of a pair (x, Y ) is given by a masked
cross-entropy4:

lCSig(x, Y ) = −
∑

z∈Y
log(P̂(z|x, π(z)))

+
∑

u∈C(π(z))\{z}
log(1− P̂(u|x, π(z)))

Proposition 2 Let x ∈ X , Y ⊂ Y and W defined
as per Equation 2 then

∂lCSoft(x, Y )

∂W
=

∂lCSig(x, Y )

∂W

Proof can be found in Appendix C.4 (Plaud et al.,
2024). While the conditional sigmoid was not mo-
tivated by theoretical arguments in Brust and Den-
zler (2020), Proposition 2 proves that gradients

3In practice, we estimate it by computing an empirical
probability on train set for each label. It is not trainable.

4See Fig. 2b of Brust and Denzler (2020) for visual under-
standing of the mask

Dataset Train/Val/Test
#nodes

(#leaves)
#nodes

per level
Avg. #labels
per sample

HWV (SPL)
6,408/1,602

2,003
1186
(953)

11-109-381-
437-244-4

3.7

WOS (SPL)
30,070/7,518

9,397
141

(134)
7-134 2.0

RCV1 (MP)
23,149/ -
781,265

103
(82)

4-55-43-1 3.2

BGC (MP)
58,715/14,785

18,394
146

(120)
7-46-77-16 3.0

Table 1: Key statistics of the selected datasets. SPL in-
dicates that the dataset enters the single path leaf labels
setting, and MP that it is multi-path; d represents the
maximum depth of the label hierarchy.

computed for this loss and the conditional soft-
max cross-entropy loss are equivalent. This loss
then allows to deal with both multi-path and non-
exhaustive datasets while having similar properties
to conditional softmax.5

5 Experimental settings

In this section, we introduce the existing datasets
and models we experiment with; we also present
our new dataset, Hierarchical WikiVitals (HWV).

5.1 Datasets

We will verify the performance of our proposed
approaches versus baselines and recent state-of-
the-art models on hierarchical metrics on three
widely used datasets in the HTC literature, which
is mainly applied to English data: Web-of-Science
(WOS) (Kowsari et al., 2018), RCV1-V2 (Lewis
et al., 2004) and BGC (Aly et al., 2019). Data
statistics are displayed in Table 1: those datasets
have in common a relatively large number of train-
ing samples, a sizable number of nodes, and a low
depth of the label structure. We contribute to HTC
benchmarking by releasing Hierarchical WikiVi-
tals, which we aim to present a more difficult chal-
lenge.

HWV Dataset Texts are extracted from the ab-
stracts of the vital articles of Wikipedia, level 4 6

as of June 2021. This project involves a handmade
hierarchical categorization of the selected articles,
which are themselves put through high scrutiny
with respect to their quality. The resulting dataset
is a single path leaf label dataset, a constraint only
fulfilled by WOS. As the number of nodes and the

5However, no logit-adjusted version of it can be properly
derived.

6https://en.wikipedia.org/wiki/Wikipedia:
Vital_articles/Level/4
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HWV WOS

Method
Hamming L. F1-score (in %) ↑ hF1 AUC

(in %) ↑
Hamming L. F1-score (in %) ↑ hF1 AUC

(in %) ↑(in ‰) ↓ micro macro (in ‰) ↓ micro macro
BCE 0.854±0.010 85.86±0.15 45.56±0.58 89.23±0.13 3.627±0.015 87.03±0.05 81.19±0.12 89.18±0.10

CHAMP 0.786±0.009 87.14±0.15 50.90±0.24 89.87±0.19 3.637±0.037 87.01±0.13 81.23±0.18 88.74±0.08

HBGL - - - - 3.584±0.027 87.22±0.10 81.86±0.19 89.00±0.10

HGCLR 0.922±0.020 84.92±0.37 44.89±1.38 88.35±0.35 3.727±0.077 86.63±0.27 80.04±0.45 89.23±0.22

HITIN 0.776±0.006 87.49±0.08 51.73±0.42 90.72±0.16 3.655±0.028 87.05±0.10 81.49±0.06 88.92±0.04

Leaf Softmax 0.950±0.036 84.79±0.57 51.49±0.52 88.55±0.47 3.987±0.059 85.91±0.25 80.02±0.29 88.62±0.08

Conditional Sigmoid 0.801±0.011 87.01±0.19 52.27±0.82 90.40±0.17 3.692±0.067 86.86±0.23 81.07±0.30 88.78±0.17

Conditional Softmax 0.788±0.015 87.49±0.10 53.79±0.65 90.94±0.09 3.869±0.086 86.27±0.17 80.25±0.33 88.77±0.07

Cond. Softmax + LA (ours) 0.782±0.004 87.51±0.07 54.39±0.58 90.97±0.05 3.837±0.038 86.35±0.12 80.11±0.26 88.90±0.10

Table 2: Performance evaluation metrics (and 95% confidence interval) on the test sets of the WOS and HWV
datasets for the implemented models. Best results for each metric are highlighted in bold. The HBGL model was
too large to fit in the memory of a 32GB GPU on the HWV dataset.

RCV1 BGC

Method
Hamming L. F1-score (in %) ↑ hF1 AUC

(in %) ↑
Hamming L. F1-score (in %) ↑ hF1 AUC

(in %) ↑(in ‰) ↓ micro macro (in ‰) ↓ micro macro
BCE 8.225±0.148 86.65±0.30 66.47±1.49 93.66±0.19 7.788±0.071 80.51±0.21 62.33±1.36 90.26±0.29

CHAMP 8.565±0.234 85.93±0.66 62.86±3.64 93.12±0.33 7.775±0.081 80.54±0.20 63.58±0.49 90.19±0.22

HBGL 8.122±0.071 87.11±0.12 70.20±0.33 93.35±0.14 8.092±0.045 80.19±0.11 65.94±0.18 88.08±0.10

HGCLR 8.761±0.276 86.11±0.26 67.49±0.61 93.27±0.14 8.054±0.171 80.16±0.29 63.58±0.40 89.81±0.17

HITIN 8.583±0.188 85.72±0.60 60.00±5.15 93.04±0.24 7.981±0.096 80.36±0.21 61.62±1.47 90.08±0.16

Conditional Sigmoid 8.652±0.316 85.77±0.71 63.90±2.45 93.23±0.36 7.954±0.202 80.24±0.46 62.65±0.64 90.07±0.40

Table 3: Performance evaluation metrics (and 95% confidence interval) on the test sets of the RCV1 and BGC
datasets for the implemented models. Best results for each metric are highlighted in bold.

depth of the hierarchy are higher than for the previ-
ously cited datasets, HWV is much more challeng-
ing. It is also characterized by a very imbalanced
label distribution with ∼ 50% of labels having less
than 10 examples in the whole dataset. We show in
Figure 1 three observations from our new dataset,
illustrating how much leaf nodes depth can vary
(ranging from 2 to 6). Comprehensive details re-
garding the building process of the quality of data
of HWV are provided in Appendix B (Plaud et al.,
2024).

5.2 Models

We propose to compare very different HTC mod-
els, ranging from simple baselines to the most re-
cent state-of-the-art approaches. For fair compar-
ison between them, we use a pre-trained BERT7

model (Devlin et al., 2019) as text encoder, adopt-
ing the standard [CLS] representation as hx for
every model. We list below all the different models
evaluated. BERT + BCE is the simplest baseline,
treating the problem as a multi-label task, with-
out using any information from the hierarchical
structure of labels. BERT + Leaf Softmax out-
puts a distribution over leaves, and hence is only
fitted for single-path leaf label settings. BERT +

7https://huggingface.co/bert-base-uncased

CHAMP implements the penalization of false pos-
itives based on their shortest-path distance to the
ground label set in the tree (Vaswani et al., 2022).
BERT + Conditional {Softmax, logit-adjusted
Softmax, Sigmoid} are our proposed methods, de-
tailed in Section 4.1. Hitin (Zhu et al., 2023),
HBGL (Jiang et al., 2022), HGCLR (Wang et al.,
2022a) are among the most recent models, propos-
ing respectively to separately encode the label hi-
erarchy in an efficient manner, to incorporate both
global and local information when encoding the
label hierarchy, by considering subgraphs, and to
use contrastive learning and exploiting the label
hierarchy to create plausible corrupted examples.

5.3 Training details

We use bert-base-uncased model from the trans-
formers library (Wolf et al., 2020) as text encoder
(110M parameters). Our implementation is based
on Hitin.8 Each of our baselines is trained for 20
epochs on a V100 GPU of 32GB with a batch size
of 16. We used an AdamW optimizer with initial
learning rate of 2 · 10−5 and with a warmup period
of 10% of the training steps. For HBGL9, Hitin and
HGCLR10, we rely on implementation guidelines

8https://github.com/Rooooyy/HiTIN
9https://github.com/kongds/HBGL

10https://github.com/wzh9969/contrastive-htc
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to conduct experiments. For datasets not used in
the original papers, we performed a grid-search hy-
perparameter optimization. Our results are derived
from averaging over four separate training runs,
each initialized with distinct random seeds, ensur-
ing the robustness and fairness of our evaluation
methodology.

6 Results and Analysis

Figure 3: Averaged Macro F1-Scores on the test set per
depth for different models and for the HWV dataset.
The error bars represent a 95% confidence interval.

We start our investigation by evaluating models
on our newly proposed dataset, HWV. Results
are shown in Table 2. Unfortunately, the HBGL
architecture could not run for HWV, requiring
memory above the capacity of our GPUs. On this
dataset, we note the overall superiority of our
newly introduced logit-adjusted conditional
softmax loss and its vanilla version. The latest
models fail to obtain the best results, which
is surprising given the complex hierarchy and
label imbalance. We hence emit the hypothesis
that while hierarchy-aware models were proven
useful on simpler datasets, they fail to capture
that complexity on HWV. To investigate why
it performs better, we display in Figures 3 & 4
averaged macro F1-scores over classes. Figure 3
corresponds to averages of scores based on label
depth: we observe that the higher the depth the
higher the improvement brought by conditional
softmax and its logit-adjusted version is (except
for depth 6 which has only 4 classes inside).
Figure 4 seems to hint that the improvement
of the logit-adjusted conditional softmax vs. a
vanilla conditional softmax lies in its ability to
correctly classify under-represented classes. Until
the third decile of the label count distribution,
our newly introduced method is statistically
better. We could have expected such a result, as

Figure 4: Averaged Macro F1-Scores on the test set
by quantiles of label counts distribution in the training
set for different models and for the HWV dataset. The
shaded regions represent a 95% confidence interval.

this loss was specifically designed to deal with
label imbalance (see Appendix C.3 (Plaud et al.,
2024)). Obviously, depth is strongly correlated
with under-representation of labels. We then
conduct an ablation study with respect to the
label hierarchy, by cutting the HWV hierarchy
at depth 2. By doing so, the hierarchy becomes
shallow and the label imbalance remains. Table 4
presents the results obtained from this modified
dataset. In this scenario, state-of-the-art models
catch up with our conditional softmax losses and
Hitin reclaim a marginal lead across all metrics.
Furthermore, we observe that our logit-adjusted
conditional softmax remains better than the
vanilla conditional softmax, especially on macro
F1-score. These two observations allow us to
refine our conclusions. First, the superiority of the
vanilla conditional softmax on HWV vs. recent
state-of-the-art methods seems to stem from the
hierarchy complexity: a conditional modelisation
allows to better classify deep classes. Second,
the logit-adjusted version proves to be useful in
presence of label imbalance as we can see with
macro F1-score metrics, which are statistically
better than the vanilla version in both versions of
HWV dataset.

On WOS, simpler baselines reach remarkable re-
sults. Despite the marginal superiority of HBGL, it
is noteworthy that the BERT+BCE model is in the
top performances across all metrics, while not
using label hierarchy information. On this dataset,
our new method, while competitive, lags behind.

These results are coherent with conclusions
drawn with HWV dataset : the WOS dataset has
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HWV (depth 2)

Method
Hamming L. F1-score (in %) ↑ hF1 AUC

(in %) ↑(in ‰) ↓ micro macro
BCE 2.367±0.030 92.89±0.06 78.42±0.31 94.67±0.15

HITIN 2.316±0.068 93.05±0.20 79.59±0.43 94.79±0.18

Cond. Soft. 2.450±0.087 92.65±0.26 78.40±1.06 94.73±0.18

Cond. S. L.A. 2.432±0.072 92.89±0.22 79.38±0.26 94.77±0.18

Table 4: Performance evaluation metrics (and 95% con-
fidence interval) on the test sets of the cutted HWV
dataset for the implemented models. Best results for
each metric are highlighted in bold.

a low complexity, both in terms of depth (maxi-
mum depth of 2) and distribution of labels (only
one class has less than 40 examples in the dataset).
On multi-path datasets, our observations align
closely with what we noticed on WOS: we ob-
serve in Table 3 that a straightforward BCE loss
consistently yields great results across datasets and
metrics. Hierarchical metrics clearly highlight this
phenomenon. In fact, model rankings in multi-label
F1 scores and hierarchical F1 scores only keep con-
sistent for HWV: for the three other datasets, the
structure-aware threshold-independent metrics
put the BCE baseline to the top.

We believe those results allow us to draw two
main lessons: first, that hierarchical metrics bring
useful insights on HTC evaluation, and are neces-
sary to properly evaluate models on their capacity
to encode label structure, which our results show to
be lacking. Second, that when used on a more chal-
lenging dataset, state-of-the-art hierarchy-aware
HTC models are less able to integrate that com-
plex hierarchical information into their prediction
than a simple model trained with conditional soft-
max cross-entropy.

7 Conclusion

In this paper, we come back upon recent progress
in HTC, and propose to investigate its evaluation.
To do so, we begin by showing the limitations
of the inference and metrics that are commonly
used in the recent literature. We instead propose
to use existing hierarchical metrics, and an asso-
ciated inference method. Then, we introduce a
new and challenging dataset, Hierarchical WikiVi-
tals; our experiments show that recent sophisticated
hierarchy-aware models have trouble integrating hi-
erarchy information in any better way than simple
baselines. We finally propose simple hierarchical
losses, able to better integrate hierarchy informa-
tion on our dataset. In the future, we plan to in-
vestigate the inference mechanism for hierarchical

metrics, through which we will aim to make a direct
contribution to improving models on HTC tasks.
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Abstract

Recent advances in computational linguistics
include simulating the emergence of human-
like languages with interacting neural network
agents, starting from sets of random symbols.
The recently introduced NeLLCom framework
(Lian et al., 2023) allows agents to first learn an
artificial language and then use it to communi-
cate, with the aim of studying the emergence of
specific linguistics properties. We extend this
framework (NeLLCom-X) by introducing more
realistic role-alternating agents and group com-
munication in order to investigate the interplay
between language learnability, communication
pressures, and group size effects. We validate
NeLLCom-X by replicating key findings from
prior research simulating the emergence of a
word-order/case-marking trade-off. Next, we
investigate how interaction affects linguistic
convergence and emergence of the trade-off.
The novel framework facilitates future simula-
tions of diverse linguistic aspects, emphasizing
the importance of interaction and group dynam-
ics in language evolution.

1 Introduction

Human language can be viewed as a complex
adaptive dynamical system (Fitch, 2007; Steels,
2000; Beckner et al., 2009), in which individual
behaviours of language users drive linguistic emer-
gence and change at the population level. Lan-
guages are shaped by the brains of individuals
who are learning them (Christiansen and Chater,
2008; Kirby et al., 2014) and novel conventions
and meanings are negotiated during interaction and
language use (Fusaroli and Tylén, 2012; Nambood-
iripad et al., 2016; Garrod et al., 2007). The effect
of these mechanisms on linguistic patterns has been
studied extensively, and it is recognized that lan-
guage systems do not spring from the mind of a
single individual, but are the result of constant rein-

*Shared senior authorship.

terpretation and filtering through populations of hu-
man minds. As such, language users are not mere
passive learners, but unconsciously and gradually
contribute to language change.

Recently, this interactive and dynamic property
of human language was recognized as a key fac-
tor to improve AI (Mikolov et al., 2018), lead-
ing to a large interest in simulating the emer-
gence of human-like languages with neural net-
work agents (Havrylov and Titov, 2017; Kottur
et al., 2017; Lazaridou et al., 2017; Lazaridou and
Baroni, 2020). Typically, a pair of agents is simu-
lated where a speaking agent tries to help a listener
recover an intended meaning by generating a mes-
sage the listener can interpret. Early frameworks
have been progressively expanded to display impor-
tant aspects of human language and communica-
tion, like generational transmission (Li and Bowl-
ing, 2019; Chaabouni et al., 2019; Lian et al., 2021;
Chaabouni et al., 2022), group interaction (Tiele-
man et al., 2019; Chaabouni et al., 2022; Rita et al.,
2022; Michel et al., 2023; Kim and Oh, 2021) and
other aspects (Galke and Raviv, 2024). Within this
body of work, most studies start from sets of ran-
dom symbols, with a strong focus on tracking the
emergence of human-like language properties such
as compositionality (Chaabouni et al., 2020, 2022;
Li and Bowling, 2019; Conklin and Smith, 2022)
or principles of lexical organization like Zipf’s law
of abbreviation (Rita et al., 2020).

However, neural agent emergent communication
frameworks could also be a valuable tool to simu-
late the evolution of more specific aspects of lan-
guage. Studies with human participants have ad-
dressed many other aspects such as specific syntac-
tic patterns like word order or morphology (Saldana
et al., 2021b; Culbertson et al., 2012; Christensen
et al., 2016; Motamedi et al., 2022), a tendency
to reduce dependency lengths (Fedzechkina et al.,
2018; Saldana et al., 2021a), colexification patterns
and the role of iconicity or metaphor in the emer-
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Figure 1: Overview of the NeLLCom-X framework.

gence of new meanings (Karjus et al., 2021; Ver-
hoef et al., 2015, 2016, 2022; Tamariz et al., 2018),
and combinatorial organisation of basic building
blocks (Roberts and Galantucci, 2012; Verhoef,
2012; Verhoef et al., 2014). What most of these
studies have in common is that participants are
asked to learn and/or interact with pre-defined arti-
ficial languages specifically designed by the exper-
imenters to study the linguistic property of interest.
However, the existing neural-agent communica-
tion frameworks (often based on EGG (Kharitonov
et al., 2019)), do not enable training agents on pre-
defined languages. A different body of work has
studied the learnability by neural networks of vari-
ous types of artificial languages (Lupyan and Chris-
tiansen, 2002; Wang and Eisner, 2016; Bisazza
et al., 2021; White and Cotterell, 2021; Hopkins,
2022; Kallini et al., 2024). This paradigm has led
to important insights, revealing inductive biases of
neural models, but is limited to studying learnabil-
ity in a passive supervised learning setting, unlike
the dynamic and interactive setting in which human
language has evolved.

A framework combining agent communication
with the ability to learn pre-defined artificial lan-
guages was recently introduced by Lian et al.
(2023). In NeLLCom (Neural agent Language
Learning and Communication), agents are first
trained on an initial language through Supervised
Learning, followed by a communication phase
in which a speaking and listening agent continue
learning together through Reinforcement Learning
by optimizing a shared communicative reward.

In this paper, we extend NeLLCom with group
interaction with the aim of studying the interplay
between learnability of specific pre-defined lan-
guages, communication pressures, and group size
effects under the same framework. To this end, we
first extend the vanilla NeLLCom agent to act as
both listener and speaker (i.e. role alteration, cf.
Figure 1), which was identified as an important
gap in the emergent communication literature by

Galke et al. (2022). Then, we design a procedure
to let such ‘full-fledged’ agents interact in pairs
with either similar or different initial language ex-
posure, or in groups of various sizes. With the
extended framework, NeLLCom-X, we replicate
the key findings of Lian et al. (2023) and addi-
tionally show that (i) pairs of agents trained on
different initial languages quickly adapt their utter-
ances towards a mutually understandable language,
(ii) languages used by agents in larger groups be-
come more optimized and less redundant, and (iii)
a word-order/case-marking trade-off emerges not
only in individual speakers, but also at the group
level.

We release NeLLCom-X to promote simulations
of other language aspects where interaction and
group dynamics are expected to play a key role.1

2 Related Work

Role-alternating agents Initially, most work on
emergent communication modeled agents to ful-
fill separate, complimentary roles (i.e. one agent
always speaks, the other always listens). Human
language users are, of course, able to take both
roles. When listing a set of "design features" of
human language, Hockett (1960) refered to inter-
changeability as the ability of language speakers
to reproduce any linguistic message they can un-
derstand. In experiments with humans commu-
nicating via artificial languages, participants also
usually take turns being the speaker and listener
(Kirby et al., 2015; Namboodiripad et al., 2016;
Roberts and Galantucci, 2012; Verhoef et al., 2015,
2022). Therefore, Galke et al. (2022) named role-
alternation as a missing key ingredient to close the
gap between outcomes of simulations and findings
from human language evolution data.

Exceptions to this trend include the role-
alternating architectures of Kottur et al. (2017),
Harding Graesser et al. (2019), and Taillandier et al.

1https://github.com/Yuchen-Lian/NeLLCom-X
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(2023). Recently, Michel et al. (2023) propose a
method to couple a speaker and listener among a
group of speaking and listening agents. By what
they call "partitioning", the listener-part is only
trained to adapt to its associated speaker, while the
listener parameters are frozen during communica-
tion with other speakers. Hence, the speaking and
listening parts of an agent are tied softly, i.e. no
"physical" link via shared modules. While being
workable, this partitioning seems less realistic in
terms of cognitive plausibility and communication,
as human listeners continually refine their under-
standing during all kinds of interactions (speaking
as well as listening). What all these studies have in
common is their focus on protocols emerging from
scratch, i.e. starting from random symbols, which
does not allow for simulations with pre-defined
languages. Closer to our goal, Chaabouni et al.
(2019) train agents on artificial languages and ob-
serve them drift in a simple iterated learning setup
that does not model communication success. They
use sequence-to-sequence networks that can func-
tion both as speaker and listener by representing
both utterances and meanings as sequences and
merging meaning and word embeddings into a sin-
gle weight matrix, tied between input and output.

We combine elements of the above techniques
to design agents that can learn artificial languages
and use them to interact in a realistic manner.

Group communication Natural languages typi-
cally have more than two speakers, and language
structure is shaped by properties of the population.
According to the Linguistic Niche hypothesis, for
example, languages used by larger communities
tend to be simpler than those used in smaller, more
isolated groups (Wray and Grace, 2007; Lupyan
and Dale, 2010). Similarly, experiments with hu-
man participants have shown that interactions in
larger groups can result in more systematic lan-
guages (Raviv et al., 2019). Various emergent
communication simulations have been designed
to investigate group effects, revealing the emer-
gence of natural language phenomena. Tieleman
et al. (2019), for example, found that represen-
tations emerging in groups are less idiosyncratic
and more symbolic. They model a population of
community-autoencoders and since the identities of
the encoder and decoder are not revealed within a
pair, the emerging representations develop in such
way that all decoders can use them to successfully
reconstruct the input, resulting in a more simple

language as also found in humans. Michel et al.
(2023) found that larger agent groups develop more
compositional languages. Harding Graesser et al.
(2019) investigated various language contact sce-
narios with populations of agents that have first de-
veloped distinct languages within their own groups,
and could observe the emergence of simpler ’cre-
ole’ languages, resembling findings from human
language contact. Kim and Oh (2021) vary the
connectivities between agents in groups, and find
the spontaneous emergence of linguistic dialects
in large groups with over a hundred agents hav-
ing only local interactions. Again, none of these
frameworks support training agents on pre-defined
languages, limiting the extent to which they can be
applied to specific human-like linguistic features.

In this work, we showcase how NeLLCom-X
agents can interact in groups using artificial lan-
guages that were specifically designed to study the
emergence of word-order/case-marking patterns.

3 NeLLCom-X

We summarize the original NeLLCom framework
(Lian et al., 2023) and then explain how we extend
it with role alternation and group communication.

3.1 Original Framework
NeLLCom agents exchange simple meanings using
pre-defined artificial languages. To achieve this,
the framework combines: (i) a supervised learn-
ing (SL) phase, during which agents are taught a
language with specific properties, and (ii) a rein-
forcement learning (RL) phase, during which agent
pairs interact via a meaning reconstruction game.

Meanings are triplets m = {A, a, p} represent-
ing simple scenes with an action, agent, and patient,
respectively (e.g. PRAISE, FOX, CROW). An artifi-
cial language defines a mapping between any given
meaning m and utterance u which is a variable-
length sequence of symbols from a fixed-size vo-
cabulary (e.g. ‘Fox praises crow’). According to
the language design, the same meaning may be ex-
pressed by different utterances, and vice versa, the
same utterance may signal different meanings.

The speaking function S : m 7→ u is imple-
mented by a linear-to-RNN network, whereas the
listening function L : u 7→ m is implemented by a
symmetric RNN-to-linear network.2 The sequen-

2To make the two networks fully symmetric, we slightly
modify the original listener architecture of Lian et al. (2023)
by adding a meaning embedding layer before the final softmax.
Preliminary experiments show no visible effect on the results.
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tial components are implemented as a single-layer
Gated Recurrent Unit (Chung et al., 2014). In both
directions, meanings are represented by unordered
tuples instead of sequences to avoid any ordering
bias, differently from Chaabouni et al. (2019) who
also represent meanings as sequences.

The SL phase minimizes the cross-entropy loss
of the predicted words given meaning (speaker)
or the predicted meaning tuple given utterance
(listener) with respect to a gold-standard dataset
D = (m,u). The RL phase maximizes a shared
reward r(m, û) evaluated by the listener’s predic-
tion L(û) given the speaker-generated utterance
û = S(m). More details on the SL and RL proce-
dures, the respective training objectives, and net-
work architectures are given in Appendix A.

Crucially, each agent in the original NeLL-
Com can either function as listener (utterance-to-
meaning) or as speaker (meaning-to-utterance), but
not as both, see Figure 1. While this minimal
setup was sufficient to simulate the emergence of
the word-order/case-marking trade-off (Lian et al.,
2023), it does not allow for role alternation –a miss-
ing key ingredient for realistic simulations of emer-
gent communication (Galke et al., 2022) and a nec-
essary condition to simulate group communication.

3.2 Full-fledged Agent

To realize a full-fledged agent (α) that can speak
and listen while interacting with other agents,
we pair two networks αi = (NS

i , N
L
i ) using two

strategies: parameter sharing and self-play (Fig. 1).

Parameter sharing A common practice in NLP
is tying the weights of the embedding (input)
and softmax (output) layers to maximize perfor-
mance and reduce the number of parameters in
large language models (Press and Wolf, 2017).
Chaabouni et al. (2019) applied this technique to
their sequence-to-sequence utterance↔meaning ar-
chitecture. However in our setup, listening and
speaking are implemented by two separate, sym-
metric networks. We then tie the input embedding
of the speaking network to the output embedding
of the listening network X(NS

i ) = O(NL
i ) (both

representing meanings). Likewise, we tie the input
embedding of the listener to the output embedding
of the speaker X(NL

i ) = O(NS
i ) (both represent-

ing words). Because of these shared parameters,
the speaker training process will also affect the
listener, and vice versa. To balance listener and
speaker optimization during supervised learning,

we alternate between the two after each epoch.3

Self-play Even when word and meaning repre-
sentations are shared, the rest of the speaking and
listening networks remain disjoint, potentially caus-
ing the speaking and listening abilities to drift in dif-
ferent directions. As discussed in Section 2, a real-
istic full-fledged agent should be able to understand
itself at any moment. To ensure this, we let the
agent’s speaking network send messages to its own
listening network while optimizing the shared com-
municative reward r, a procedure known as self-
play in emergent communication literature (Lowe
et al., 2020; Lazaridou et al., 2020). In Section 6.1,
we show empirically that self-play is indeed nec-
essary to preserve the agents’ self-understanding
while their language evolves in interaction.

3.3 Interactive Communication

Given the new full-fledged agent definition, com-
munication becomes possible between two or more
role-alternating agents. We introduce the notion
of turn to denote a minimal communication ses-
sion where RL weight updates take place between
an agent’s speaker and either its own listener or
another agent’s listener:

self_turn(αi) = RL(NS
i , N

L
i ) (1)

inter_turn(αi, αj) = RL(NS
i , N

L
j ) (2)

For example, in our experiments, a turn corre-
sponds to 10 batches of 32 meanings. Note that
interaction can involve agents that were trained on
the same language, or on different initial languages,
as we will show in Section 6.

3As verified in preliminary experiments, results are similar
whether the last epoch is a listening or speaking one.

Algorithm 1: Group Communication
Input: set of SL-trained agents: Agents,

edges in the connectivity graph: G,
n_rounds, σ

1 for r = 1 : n_rounds do
2 comm_turns = shuffle(G)
3 for turni ∈ comm_turns do
4 ispk, ilst = turni

5 αspk = Agents[ispk], αlst = Agents[ilst]
6 inter_turn(αspk, αlst)
7 for α = {αspk, αlst} do
8 α.activation += 1
9 if α.activation >= σ then

10 self_turn(α)
11 α.activation = 0
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Turn scheduling During group communication,
a connectivity graph G is used to define which
agents can communicate with another, and which
cannot. Within G, a node i represents an agent
and a directed edge (i, j) represents a connection
whereby αi can speak to αj , but not necessarily
vice versa. Turn scheduling then proceeds as shown
in Algorithm 1: Before each turn, an edge (i, j) is
sampled without replacement from G. Then αi and
αj perform an inter_turn of meaning reconstruc-
tion game, with αi acting as the speaker and αj as
the listener. Interactive turns are interleaved with
self-play turns at fixed intervals, i.e. every time an
agent has participated in σ×inter_turn, it performs
one self_turn. Once all edges in G have been sam-
pled, a communication round is complete. In this
work, we only consider a setup where all agents
can interact with all other agents (G is a complete
directed graph). We leave an exploration of more
complex configurations such as those studied by
Harding Graesser et al. (2019); Kim and Oh (2021);
Michel et al. (2023) to future work. We set σ = 10
in all interactive experiments, unless differently
specified. Interaction between two agents follows
the same procedure as group communication.

4 Experimental Setup

As our use case, we adopt the same artificial lan-
guages as Lian et al. (2023). These simple verb-
final languages vary in their use of word order
and/or case marking to denote subject and ob-
ject, and were originally proposed by Fedzechkina
et al. (2017) to study the existence of an effort-
informativeness trade-off in human learners.

Artificial languages The meaning space includes
10 entities and 8 actions, resulting in a total of
10×(10−1)×8=720 possible meanings. Utter-
ances can be either SOV or OSV. The order profile
of a language is defined by the proportion of SOV,
e.g. 100% fixed, 80% dominant, 50% maximally
flexible-order. Objects are optionally followed by a
special token ‘mk’ while subjects are never marked.
To simplify the vocabulary learning problem, each
meaning item correspond to exactly one word, lead-
ing to a vocabulary size of 10+8+1=19. Two ex-
ample languages are shown in Table 1.

Evaluation Following Lian et al. (2023), agents
are evaluated on a held-out set of meanings un-
seen during any training phase. The SL phase
is evaluated by listening/speaking accuracy com-

language properties possible utterances
100s+0m 100% SOV; 0% marker Tom Jerry chase

80s+100m 80/20% SOV/OSV Tom Jerry mk chase
100% marker Jerry mk Tom chase

Table 1: Two example languages with varying order
and marking proportions, and corresponding utterances
for the meaning m={A: CHASE, a: TOM, p: JERRY}.

puted against gold dataset D, while the RL phase is
evaluated by meaning reconstruction accuracy, or
communication success. In NeLLCom-X, commu-
nication success denotes two different aspects: self-
understanding when measured between the same
agent’s speaker and listener network, or interactive
communication success when measured between a
speaking agent and a different listener agent:

accself (m,αi) = acc(m,Lαi(Sαi(m)) (3)

accinter(m,αi, αj) = acc(m,Lαj (Sαi(m)) (4)

where acc(m, m̂) is 1 iff the entire meaning is
matched. Interactive success is not symmetric.

Production preferences Besides accuracy, our
main goal is to observe how the properties of a
given language evolve throughout communication.
This is done by recording the proportion of markers
and different orders in a set of utterances generated
by an agent for a held-out meaning set, after filter-
ing out utterances that are not recognized by the
initial grammar. When the focus is on the trade-off,
rather than on a specific word order, we measure
order entropy. Production preferences can be ag-
gregated over an individual agent, a group, or the
entire population.

5 Replicating the Trade-off with
Full-fledged Agents

Before moving to interactive communication, we
validate the new NeLLCom-X framework through
a replication of Lian et al. (2023)’s main findings.
The simple speaker-listener communication setup
of NeLLCom could be seen as a speaker-internal
monitoring mechanism predicting the utterance un-
derstandability (Ferreira, 2019). Here, we com-
pare NeLLCom results to those of NeLLCom-X
full-fledged agents only engaging in self-play. We
use SL to train two sets of agents on the exact
same languages as Lian et al. (2023), respectively:
100s+67m for fixed-order and 50s+67m for flexible-
order. Then, every agent performs 60 self_turn it-
erations causing its production preferences to drift.
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Figure 2: Two populations of 50 agents engaging in self-
play (no interaction) after having learned two flexible-
order, optional-marker languages: one with 67% the
other with 50% marking. Left column: Average commu-
nication success across self-play turns. Right column:
Production preferences: solid diamonds mark the initial
language; each empty circle denotes a full-fledged agent
at the end of self-play; solid circles are the average of
all agents, with error bars showing standard deviation.

After SL, our agents have successfully learnt
both languages but no regularization happens, as
expected. By contrast, the results of self-play av-
eraged over each 50-agent set indicate that both
languages progressively lose markers. Crucially,
the fixed-order language does so faster than the
flexible one, where markers are often necessary for
agent/patient disambiguation. In sum, self-play in
NeLLCom-X results in very similar trends as the
simple NeLLCom setup, confirming the emergence
of a human-like order/marking trade-off (Fedzechk-
ina et al., 2017). Detailed replication results are
provided in Appendix B. Here, we report commu-
nication success during self-play and production
preferences at the end of self-play for the flexible
language (Figure 2, top row). Self-understanding
increases through RL leading to a much more in-
formative language, while production preferences
reveal that this spans from an overall decrease in
order entropy with marking proportion remaining
almost the same on average (solid circle). While
some agents approach the optimal points of fixed-
order/no-marking (bottom-left corner) or flexible-
order/full-marking (top-right), the large variability
in production preferences suggests many agents
settle on less optimized, redundant languages, as
also found by Lian et al. (2023).

Initial marking proportion We reconsider here
a language design choice of Lian et al. (2023)
who, in turn, inherited it from the human study

of Fedzechkina et al. (2017). It was recently found
that human learners exposed to a fixed-order lan-
guage with 75% marking tend to regularize by in-
creasing marker use even though this would make
the language less efficient (Tal et al., 2022). Sim-
ilarly, the dominant proportion (67%) of marking
utterances in our initial languages may push the
agents to prefer marking even when it may be a
redundant strategy. Hence, we propose that a more
balanced distribution of 50% markers and 50/50%
word order may be a better choice to reveal the in-
trinsic preferences of the learners, if there are any,
without biasing them to regularize markers. Results
in Figure 2 (bottom row) show that this language
has overall lower communicative success, as ex-
pected given the higher amount of ambiguous sen-
tences. However, success increases substantially
during interaction while production preferences re-
veal a larger variability in solutions including those
with more fixed order and less markers. We use this
more neutral combination as the default language
in all remaining experiments.

6 Interactive Communication Results

This section presents our main results: in Sec-
tion 6.1 we focus on pairwise interaction and show
how NeLLCom-X can be used to simulate commu-
nication between speakers of different languages,
which was not possible in the original framework;
in Section 6.2 we move to group communication
and study the effect of group dynamics on commu-
nication success and production preferences. Train-
ing details for this section are given in Appendix C.

6.1 Speakers of Different Languages

We study a simple setup with two full-fledged
agents interacting with each other in both ways
αbase↔αother. The first (αb for base) is always
trained on the neutral language 50s+50m, while
the second (αo for other) is trained on one of four
languages with different properties. If interaction
works, we expect (i) agent pairs to negotiate a mu-
tually understandable language and (ii) αb’s lan-
guage to drift in different directions according to
its interlocutor. For production preferences, we
are interested here in the specific word order of
the evolving languages so we plot proportion of
markers against proportion of SOV instead of order
entropy.

The communication success plots in Figure 3
(left column) show a faster convergence and higher
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Figure 3: Interactive communication between different
language speakers. The first agent is always trained on
50s+50m (αb). Each experiment is repeated with 50
agent pairs.

final accuracy when αo has a stronger order prefer-
ence. As for production preferences (Figure 3, right
column), in the control setting where two neutral
agents interact with each other, most agents move
towards either side of the plot, representing order
regularization. A larger portion of agents regular-
ize towards OSV rather than SOV, which was also
observed by Lian et al. (2023) and might be due
to OSV being the order where the disambiguating
marker appears earlier. Marking decreases only
slightly on average. The next two settings involve
initial languages with few markers and different
order preferences but equally low order entropy
(20s+20m and 80s+20m). As shown by the highly
symmetric trends, these pairs strongly converge
by regularizing towards the dominant order of αo

and further reducing markers. The fourth setting in-
volves a language where marking is widespread and
informative due to high order entropy (50s+80m).

w/ self-play (σ=10) w/o self-play (σ=inf)

Figure 4: Impact of self-play during interaction in pairs
of agents speaking 80s+20m and 20s+20m respectively.
Each experiment is repeated with 20 agent pairs, and
the average communication per turn is shown.

Here, αb shows on average a similar order regular-
ization as in the control setting αb↔αb, but with
a marking increase instead of decrease. Finally,
when involving a dominant-order language with
no clear marking preference (80s+50m), agents
strongly regularize the dominant order, with a ma-
jority of them reducing marker use.

Taken together, these results demonstrate that
(i) pairs of different-language agents succeed in
negotiating a mutually understandable language
in most cases, and (ii) the evolution of an agent’s
language strongly depends on whom they interact
with, thereby matching the expectations for a real-
istic simulation of interactive communication.

Impact of self-play during interactions As ex-
plained in Section 3.3, each agent performs a
turn of self-play after completing σ = 10 turns
of interactive communication, based on prelimi-
nary experiments. We compare this to a setup
where no self-play is performed during interaction
(σ = inf), in the case where two agents start from
a state of poor mutual understanding due to lim-
ited marking and strongly diverging order prefer-
ences (80s+20m vs. 20s+20m). As shown in Fig-
ure 4, disabling self-play leads to extremely low
self-understanding even though communication be-
tween the two agents is successful. To explain this
result, we inspect the production preferences of in-
dividual agent pairs and find that many regularize
their language in opposite directions (e.g. dominant
SOV vs. dominant OSV, both with no markers),
indicating a total decoupling of the speaking and
listening ability. Thus, we confirm that embedding
tying alone does not allow for a realistic interac-
tion simulation, making self-play necessary in our
framework.
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Figure 5: Interactive communication in groups of same-
language speakers (50s+50m). Right column: Group-
level production preferences (each point is a group) and
Spearman’s correlation ρ between marker use and order
entropy.

6.2 Effect of Group Size

Here we move back to a setup where all agents
are trained on the same neutral and unstable initial
language (50s+50m), but this time they interact
in groups of different sizes (2, 4, 8, 20) using the
standard self-play frequency (σ = 10). To make
results comparable, we ensure the total number of
interactive turns per agent is the same (≈200) in
all setups, by setting comm_round to 100, 34, 15,
and 6 respectively. A total of 200 agents are trained
in each group size setting.4

Figure 5 (left column) shows similar learning
curves for all group sizes, demonstrating that com-
munication is successful even in larger groups.
In all cases, interactive and self-communication
test accuracy start low (25%), but agents collabo-
rate and end up between 60% and 80% success at
inter_turn = 100.

4100 runs of group of 2, 50 of 4, 25 of 8, and 10 of 20. See
all group-specific training details in Appendix C. In this paper,
we only consider fully connected communication graphs and
fix the total amount of trained agents to enable comparison.
We leave an exploration of other group communication factors,
such as density and connectivity, to future work.

For production preferences, we plot proportion
of marking by order entropy as we are again in-
terested in order flexibility rather than the specific
order chosen by the agents (Figure 5, right column).
Here, each circle denotes the average production
preferences of an entire group, as opposed to those
of a single agent. When comparing results across
different group sizes, we see that the variability ob-
served in self-playing agents (Section 5) including
less optimal and redundant strategies, gets smaller
as group size increases. The average entropy in
groups of 8 and 20 is also lower than in groups
of 4 or 2. In the group setting, an agent’s choice
to use a marker does not only depend on its own
order entropy but on that of the entire group. As
a measure of the order/marking trade-off at group
level, we therefore calculate Spearman’s correla-
tion (ρ) between order entropy and marker use,
both computed over all (categorizable) utterances
produced by all agents in a group. As shown in
Figure 5, ρ steadily increases with group size from
relatively weak (0.32) in pairs to strong (0.73) in
groups of 20. This confirms that pairs, like self-
playing agents, still often settle on redundant strate-
gies, while larger groups develop more optimized
languages in which stronger order consistency at
the group level leads to a drop in marker use, con-
firming the emergence of the trade-off also at the
group level.5

7 Discussion and conclusion

We introduced NeLLCom-X, a framework for sim-
ulating neural agent language learning and com-
munication in groups, starting from pre-defined
languages. Agents in this framework display the
cognitively plausible property of interchangeability
(Hockett, 1960), by which anything they can un-
derstand, they can say and vice versa, while also
having the ability to align to other individuals. We
replicated an earlier finding by Lian et al. (2023)
and showed that a word-order/case-marking trade-
off still appears with the adjusted full-fledged agent
architecture. Subsequently, we simulated interac-
tions between agents trained on different languages.
We found that pairs quickly adapt their utterances
towards a mutually understandable language and
that the neutral language drifts in different direc-
tions depending on the preferences of the other

5Even when trained for much longer, the results of pairs
remain similar, suggesting they indeed settle on less optimized
solutions which is not overcome simply by more interactions
(e.g. 200 rounds, ρ = 0.33). See Appendix D.
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agent. Moreover, agents converge on a shared lan-
guage faster, and reach higher accuracy in cases
where one of the two agents has a stronger word
order preference. We then assessed the effect of
performing self-play during interactive communi-
cation and found it necessary to ensure our full-
fledged agents continue to understand themselves,
while also realistically adapting to other individuals.
Lastly, we studied group dynamics and found that
NeLLCom-X agents manage to establish a success-
ful communication system even in larger groups
(up to size 20). Moreover, we generally see a larger
entropy reduction in the languages developed by
larger groups as compared to the languages used
by pairs of agents. This finding aligns with previ-
ous work on group-level emergent communication,
where it was shown that groups developed less id-
iosyncratic languages than pairs (Tieleman et al.,
2019) as well as with human experiments which
demonstrated more systematic languages to emerge
in larger groups (Raviv et al., 2019). In our simu-
lations, pairs and smaller groups sometimes settle
on less optimized and partly still redundant solu-
tions, while large groups end up with more efficient
communication systems.

In the future, NeLLCom-X can be used to study
the influence of learning and group dynamics on
many other language universals. We plan to keep
refining the framework to allow studying differ-
ent connectivities between the agents, multilin-
gual populations and generational transmission of
emerged languages to new agents.

Limitations

Although the use of miniature artificial languages
in our work allows for easily interpretable results
due to abstractions and simplifications that are hard
to achieve with natural human languages, the lan-
guages used currently are very small. This may
limit the possibility of drawing conclusions beyond
proof-of-concept demonstrations. Future work
should increase the size and complexity of the lan-
guages to see if results hold on a larger scale and
compare to patterns found in real human languages,
such as those reported by Levshina et al. (2023).

The meanings in our simulations are also
strongly abstracted away from reality. While our
design is well suited for an investigation of the
word-order/case-marking trade-off, future simula-
tions may need a less constrained meaning space,
possibly using images to represent meanings.

All experiments conducted so far with
NeLLCom-X use the same neural agent ar-
chitecture (GRU), but we know that different
architectures exhibit different inductive biases
(Kuribayashi et al., 2024) or memory constraints
and these factors may influence the findings.
Different types of neural learners, however, can be
easily plugged into NeLLCom-X.

Interaction between individuals in groups is not
the only population factor that shapes language,
but linguistic structure is shaped by both interac-
tion and learning (Kirby et al., 2015). Especially
when languages are learned and transmitted to sub-
sequent generations repeatedly, even small induc-
tive biases may have a large effect on emerging
properties (Thompson et al., 2016). We therefore
plan to augment NeLLCom-X with iterated learn-
ing so that new agents learn from the utterances of
others and become teachers to agents in the next
generation.

Finally, our agents are interacting in groups with
multiple individuals, but they currently do not have
any awareness of agent identities. A more realistic
simulation should take into account that individ-
uals know who they are interacting with, which
becomes even more important when different net-
work structures and connectivities will be explored.
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A More Details about NeLLCom

We list here additional details on the original NeLL-
Com framework (Lian et al., 2023) that also apply
to our extended NeLLCom-X framework.

Speaker and Listener Architectures Both
speaking and listening networks have a single 16-
dim GRU layer. The shared meaning embeddings
have 8-dim and the shared word embeddings have
16-dim. The maximum utterance length for the
speaking decoder is set to 10 words.

Supervised Language Learning During super-
vised learning, the speaker learns the mapping from
the meaning inputs to utterances and vice versa for
the listener. Dataset D is composed of meaning-
utterance pairs (m,u) where u is the gold-standard
generated for m by a predefined grammar. Given
training sample (m,u), speaker’s parameters θS
and listener’s parameters θL are optimized by min-
imizing the cross-entropy loss of the predicted
words and the predicted meaning tuples respec-
tively:

Losssup(S) = −
I∑

i=1

log pθS (w
i|w<i,m) (5)

Losssup(L) = −(log pθL(A|u)
+ log pθL(a|u) + log pθL(p|u)) (6)

where wi...wI are the words composing utterance
u, whereas A, a, p are respectively the action, agent
and patient of meaning m.

Communicative Reward Optimization Com-
munication is implemented by a meaning recon-
struction game following common practice in
the artificial agent communication literature (e.g.
Steels, 1997; Lazaridou et al., 2018). The speaker
generates an utterance û given a meaning m,
and the listener needs to reconstruct meaning m
given û. The policy-based algorithm REINFORCE
(Williams, 1992) is used to maximize a shared re-
ward rL(m, û), defined as the log likelihood of m
given û according to the listener’s model:

rL(m, û) =
∑

e ∈ m={A,a,p}
log pθL(e|û) (7)

Thus, the communication loss becomes:

Losscomm
(S,L) = −rL(m, û)∗

I∑

i=1

log pθS (w
i|w<i,m)

(8)

B Replicating NeLLCom Results with
NeLLCom-X Full-fledged Agents

B.1 Training details for the replication

For this replication (discussed in Section 5), we
make the training configuration as consistent as
possible with Lian et al. (2023). Specifically, we
split the data into 66.7/20% training/testing. The
testing proportion is different from the 33.3% used
in NeLLCom as we would like to match the test
set size we use for interactive communication in
this work. All entities and actions are required to
appear at least once in the training set. The default
Adam optimizer is applied with a learning rate of
0.01. Both SL and self_turn iterate 60 times.6 Each
replication setup is repeated with 50 random seeds.

B.2 Results

Fixed-order self-communication Starting from
the initial marker proportion (66.7%), fixed-order
language learners start to drop the marker (50% at
round 60) during self-communication while main-
taining high understandability (95%) (Figure 6 (a1)
and (a4)). This aligns with the results of Lian et al.
(2023).

Flexible-order self-communication The self-
communication accuracy in the flexible-order lan-
guage (Figure 6 (c1)) starts from a relatively low
success rate as expected, but increases with more
communication rounds. In particular, agents ex-
ceed the communication success they had achieved
at the end of SL on new meanings and finally reach
a much higher accuracy on new meanings at the end
of self-communication (around 75%) comparing to
the communication success they had achieved at
the end of SL.

The average ordering and marking propor-
tions also show that flexible-order language self-
communication results in a very similar pattern
as was found by Lian et al. (2023): (i) The aver-
age word order production (Figure 6 (c2)) shows a
strong preference for OSV, (ii) Although the overall
marking system ends with a similar marker propor-
tion as the initial condition (Figure 6 (c4)), i.e., the
proportion of with-marker utterances is twice the
proportion of no-marker utterances, we can see a
clear shift to conditional marking (Figure 6 (c3))
with an asymmetric use of markers: at round 60,

6As the 66.7% trainset results in 480 samples, which equals
15 batches of 32 samples per turn. This is slightly different
than 10 batches per turn during interactive communication.
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Figure 6: Replicating the results from Lian et al. (2023) with NeLLCom-X full-fledged self-communicating agents
with fixed-order (a) and flexible order (c) languages. Comparing the original results with a new, more neutral, initial
languages with 50% markers in (b) and (d).

the marker proportion on utterances with OSV or-
der (70%) remains similar to the initial proportion
(66.7%), while the proportion of markers use with
SOV drops to 35%. This order preference and
asymmetric marking system align with the flexible-
order language results of Lian et al. (2023).

Figure 7d shows the production preferences of
individual agents where the distributions of utter-
ance type usage diverge over time, similar to the
independent speaker and listener communication
results in Lian et al. (2023).

Uncertainty vs. Effort Lian et al. (2023) found
that agents balanced uncertainty and effort in a
similar way to human participants in an artificial
language learning task (Fedzechkina et al., 2017).
To evaluate whether a similar uncertainty-effort
trade-off is found with our full-fledged agents, we
apply the same measurement on both fixed and
flexible languages in Figure 7a. Besides the results
from our new framework, we also reproduce the
independent listener-speaker communication result
from Lian et al. (2023) (Figure 7b) and human
results from Fedzechkina et al. (2017) (Figure 7c)
for comparison.

For the fixed-order language, the obvious drop

of the averaged effort fits both Lian et al. (2023)
and Fedzechkina et al. (2017). Among 50 agents,
only one agent significantly increases the use of
markers and ends at around 3.8 words per utterance.
Others reduce the marker, and two agents even end
with 3.0 and 3.05 words per utterance which means
almost no markers are produced. For the flexible-
order language, uncertainty is reduced slightly less
strongly as in the human results, which was also
the case in (Lian et al., 2023).

50% marking in initial language As described
in Section 5, the initial proportion of marker use
of 67%, which was used in Lian et al. (2023) and
inherited from Fedzechkina et al. (2017), may cre-
ate a bias for the agents to regularize towards more
marker use, settling on more redundant languages.
We therefore switched to the more neutral value of
50% markers in the initial language. In Figure 6,
the self-communication results of this new setting
can be directly compared to the original set-up.
As expected, markers are dropped more rapidly in
the fixed-order 50% marker language than in the
67% marker language (Figure 6 (a3) versus Fig-
ure 6 (b3)). In the flexible-order languages, agents
trained on the 67% marker language mostly kept
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(a) NeLLCom-X self-communication (b) Lian et al. (2023) communication (c) Humans (Fedzechkina et al., 2017)

(d) flex-mk67: Individual production patterns during self-communication.

Figure 7: Replicating the results of Lian et al. (2023): Supervised learning followed by Self-communication with
NeLLCom-X full-fledged agents. All results are averaged over 50 random seeds.

group size # comm_edges # comm_rounds # repeated groups
2 2 = 2 ∗ (2− 1) 100 = ⌈100/(2− 1)⌉ 100 = 200/2
4 12 = 4 ∗ (4− 1) 34 = ⌈100/(4− 1)⌉ 50 = 200/4
8 56 = 8 ∗ (8− 1) 15 = ⌈100/(8− 1)⌉ 25 = 200/8
20 380 = 20 ∗ (20− 1) 6 = ⌈100/(20− 1)⌉ 10 = 200/20

Table 2: Number of communication edges, number of rounds, and number of repeated groups for each group-size
setting. Theaw settings were selected to ensure a fair comparison (i.e. similar amount of computation) across
different group sizes.

using the marker, even though they also developed
a clear preference for one word order, resulting
in redundant strategies. With 50% markers in the
initial language, however, agents drop the marker
when they develop a word order preference despite
being trained on a flexible word order language
(Figure 6 (c3) versus Figure 6 (d3)).

C Training Details for Interactive
Communication Experiments

We explain here the detailed setup for the main ex-
periments discussed in Section 6.1 and Section 6.2.
This setup was determined based on preliminary
experiments to yield optimal results in terms of
learning accuracy (during SL) and communication
success (during RL).

Data splits We first split the data into 80/20%
training/test. The test split is used thoughout the
whole training. We resample 66.7% meanings out
of the first train set (resulting in 480 meaning-
utterance pairs) for the SL training phase. All enti-
ties and actions are required to appear at least once
in the training set.

Then, for each communication turn, 50% mean-
ings are sampled from the first train set (resulting in
320 meanings) and used as the training samples for
this RL turn. Because interactive communication is
always preceded by SL, agents have already learnt
the mapping between words and entities and ac-
tions in the meaning space. Thus we do not enforce
the all-seen-entities/actions rule in RL sampling.

Communication turns and rounds During inter-
active communication, the RL learning rate is set to
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0.005. For each communication turn, 1 epoch is ap-
plied corresponding to 10 batches of 32 meanings.
We fix the total number of inter_turn per agent to
(approximately) 200 (both speaking and listening
are considered). The total round is then computed
as:

comm_rounds =
⌈

200 ∗ group_size
2 ∗ |commu_edges|

⌉
,

or to simplify the equation in fully connected com-
munication graphs:

comm_rounds =
⌈

100

group_size− 1

⌉
.

For a group of 2, a communication round includes
2 communication edges to be sampled: Gg2 =
{α0 → α1, α1 → α0}. For a group of 4, a commu-
nication round includes 12 = 4×(4−1) communi-
cation edges Gg4 = {A0 → A1, A0 → A2, A0 →
A3, A1 → A0, A1 → A2, A1 → A3, A2 →
A0, A2 → A1, A2 → A3, A3 → A0, A3 →
A1, A3 → A2}. Similarly, |Gg8| = 8× (8− 1) =
56 and |Gg20| = 20× (20− 1) = 380. As for self-
play, each agent performs 200/σ self-play turns in
total during interaction, that is 200/10=20 in the
standard case where σ = 10.

Number of random seeds In Section 6.1 we re-
peat each language combination experiment with
50 pairs of agents (i.e. 100 random seeds). In Sec-
tion 6.2, we set the total number of trained agents
to 200 in each setup, (i.e. number of groups =
200/group_size). The details of rounds and re-
peated groups are listed in Table 2.

Communicative success
per turn

Marker use
by order entropy

10
0

ro
un

ds
20

0
ro

un
ds

Figure 8: Interactive communication in pairs of same-
language speakers (50s+50m): Production preferences
(right column) do not change much when training for
200 rounds (bottom row) instead of 100 (top).

D Additional Group Experimennts

Figure 8 shows the effect of longer training on the
production preferences of pairs of same-language
speakers (50s+50m). Production preferences (right
column) do not change much after 100 additional
turns (bottom row), and the correlation ρ increases
only marginally from 0.32 to 0.33.
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Abstract

This study introduces Simple Reasoning with
Code (SiRC), a novel instruction fine-tuning
method for solving mathematical reason-
ing problems, particularly designed for Viet-
namese, which is considered a low-resource
language. Specifically, solving mathematical
problems requires strategic and logical reason-
ing, which remains challenging in this research
area. This paper presents a simple yet effective
instruction fine-tuning method for mathemat-
ical reasoning. Unlike previous approaches,
our proposed method effectively combines
chain-of-thought reasoning with code gener-
ation without requiring a sophisticated infer-
ence procedure. Furthermore, we focus on ex-
ploiting small open-source large language mod-
els (LLMs) for the Vietnamese language. In
this regard, we first introduce a trainable Viet-
namese mathematical reasoning dataset, which
is named ViMath-InstructCode. The pro-
posed dataset is then used for fine-tuning open-
source LLMs (e.g., less than 10 billion param-
eters). Experiments conducted on our custom
ViMath-Bench dataset, the largest benchmark-
ing dataset focusing on Vietnamese mathemat-
ical problems, indicate the promising results
of our proposed method. Our source code and
dataset are available for further exploitation1.

1 Introduction

Large language models (LLMs), including closed
sources (e.g., GPT series (OpenAI, 2023)) and
open sources (e.g., Llama series (Touvron et al.,
2023)) have become fundamental in advancing
natural language processing (NLP). These mod-
els achieve remarkable language comprehension

1https://github.com/quangvinh2110/vietnamese-math-
reasoning

† Equal contribution
∗ Corresponding author

and generation abilities, which advances many ap-
plications in text generation, code assistance, and
mathematical reasoning. Notably, leading propri-
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Figure 1: Comparative analysis of previous works with
our approach for mathematical reasoning task using
LLM with finetune instruction: Traditional method us-
ing reasoning step (CoT method); PoT uses Codex
to generate text to programming language statements;
ToRA employing multiple LLM calls within an LLM
agent setting; Our proposed method uses LLM to gen-
erate both reasoning step and code generation within a
single call LLM.

etary LLMs like GPT-4 and Claude excel in math-
ematical tasks, as evidenced by their top rankings
on benchmarks such as GSM8K and MATH. How-
ever, smaller open-source models (fewer than 10
billion parameters) significantly lag in performance.
It is challenging for open source to achieve simi-
lar capabilities due to the nature of mathematical
problem-solving, which requires precise multiple
reasoning steps, symbolic manipulation, and com-
plex computation (Ahn et al., 2024).

Technically, a potential solution is to special-
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ize general-purpose LLMs in mathematics via su-
pervised fine-tuning by distilling the knowledge
from larger teacher models into smaller student
models (Fu et al., 2023; Liang et al., 2023). An
early approach uses chain-of-thought (CoT) expla-
nations of existing data or extra CoT-style data gen-
erated by the larger models to train the smaller stu-
dent model (Liu et al., 2023). Sequentially, (Chen
et al., 2022a) proposes Program of Thoughts (PoT),
which uses Codex (Chen et al., 2021) to generate
text-to-programming language statements to find
the answer. A recent approach uses the emerging
LLM agent concept (Xi et al., 2023) to combine
the two aforementioned approaches to improve the
performance of mathematical reasoning (Gou et al.,
2023a).

Despite various attempts to narrow the gap be-
tween closed-source and open-source models, the
most cost-effective method for solving mathemati-
cal problems remains unresolved. Naively apply-
ing strategies like using chain-of-thought (CoT)
or code generation to solve problems has not pro-
duced optimal results. Furthermore, employing
multiple LLM calls within an agent setting (Gou
et al., 2023a) incurs higher costs. Additionally,
research on solving mathematical problems in Viet-
namese, a low-resource language, is still nascent
due to a lack of studies in this area.

In this regard, this study proposes SiRC, a sim-
ple effective instruction finetuning approach by
combining chain-of-thought reasoning with code
generation. Conceptual comparisons among SiRC
and other previous approaches in this research field
are illustrated in Figure 1. Generally, our main
contributions in this study are threefold as follows:

• We propose SiRC framework, a simple and
novel approach for solving elementary-level
mathematical problems using a mixture of
chain-of-thought reasoning and code genera-
tion (Figure 1). Empirical studies have demon-
strated that this approach is effective for Viet-
namese mathematical problems at this level
and outperforms the naive implementation of
CoT and code transferring.

• We present the first large-scale Vietnamese
elementary mathematical dataset of 8k sam-
ples collected from various trusted sources,
which we called ViMath-Bench. Further-
more, we augment this dataset using strong

teacher models (Llama3-70B-Instruct2

and Qwen2-72B-Instruct3), resulting in
ViMath-InstructCode dataset consisting
of 14k training samples. We also explored
other synthetic data construction approaches.
To the best of our knowledge, this is the
first comprehensive study of Vietnamese
mathematical reasoning.

• We release a series of models finetuned with
ViMath-InstructCode dataset, which yield
superior performance on ViMath-Bench test
set. We hope that these models will establish
a solid baseline for future research in mathe-
matical reasoning in Vietnamese.

2 Literature Review

Human-annotated Math Datasets: Solving math
word problems using Large Language Models
(LLMs) has attracted extensive research efforts to
create diverse datasets that enhance the model’s
mathematical reasoning capabilities, particularly
in the English language. While early large-scale
datasets like Dolphin18K (Huang et al., 2016)
provided a foundation, they lacked detailed infor-
mation on deriving the final answer, limiting their
usefulness in teaching mathematical reasoning
to models. Similarly, the AQuA-RAT dataset
(Ling et al., 2017) has quality issues, including
over-templatization and incorrect solutions. More
recent math datasets have been designed with a
focus on including detailed explanations and a
diverse range of natural language expressions to
provide more useful signals during model training.
Notable examples are MathQA (Amini et al.,
2019), GSM8K (Cobbe et al., 2021), and MATH
(Hendrycks et al., 2021), which have improved the
quality of the data by including questions requiring
multiple solving steps as well as providing correct
solutions. However, the language barrier presents
a challenge, as these datasets are primarily in
English, making them less directly beneficial for
low-resource language research. Especially in
Vietnamese, as far as we know, there has not been
any large-scale dataset dedicated to math word
problems.
Synthetic Data Construction: Some LLMs
exhibit advanced mathematical reasoning and

2https://huggingface.co/meta-llama/
Meta-Llama-3-70B-Instruct

3https://huggingface.co/Qwen/
Qwen2-72B-Instruct
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tool use abilities, making the idea of distilling
knowledge from these models to student model
highly attractive. nvidia/OpenMathInstruct-14

extracts problems from GSM8K and MATH train-
ing subsets and synthetically generate solutions
by using Mixtral 8x7b5 model to use a mix
of text reasoning and code blocks executed by
Python interpreter. Tiger-Lab/MathInstruct6

compiles a list of high-quality and diverse math
instruction-tuning datasets augmented by GPT-4.
Several other approaches use capable LLMs to
augment existing math datasets, such as evolving
the difficulties of the questions (Luo et al., 2023) or
deriving detailed solution trajectories interleaving
rationales and code (Gou et al., 2023b).

Mathematical Reasoning and Tool Integra-
tion: The chain-of-thought (Wei et al., 2022)
prompting technique, which instructs a model to
divide a problem into smaller, manageable sub-
problems, enhances reasoning tasks significantly
(referenced in CoT and least-to-most papers). This
method has its merits in mathematical reasoning as
well (as seen in wizard math studies), but its effec-
tiveness diminishes when tasks require symbolic
manipulation and computations. An alternative
strategy involves training models to create code that
solves problems, then utilizing computational tools
like a Python interpreter to execute the code (Chen
et al., 2022b). However, relying solely on code
generation is not effective for theoretical questions
or in scenarios with complex natural language, as
it may lack sufficient rationale. (Gou et al., 2023b)
combines chain-of-thought with code generation
to improve performance, though it requires multi-
ple interactions with large language models (LLM).
All mentioned approaches are actively explored
with English datasets in focus, however there has
been no study on this subject in Vietnamese.

3 ViMath-Bench Dataset

In this section, we present the construction pro-
cedure of the Vietnamese mathematical reasoning
dataset, ViMath-Bench. To the best of our knowl-
edge, this is the first dataset created for Vietnamese
mathematical reasoning. The pipeline of the data

4https://huggingface.co/datasets/nvidia/
OpenMathInstruct-1

5https://huggingface.co/mistralai/
Mixtral-8x7B-v0.1

6https://huggingface.co/datasets/TIGER-Lab/
MathInstruct

construction is illustrated in the Figure 2, which
are sequentially described as follows:

3.1 Data Sources
Our dataset is derived from three prominent Viet-
namese online educational platforms: Tailieumoi7,
Hamchoi8, and Vietjack9. These websites serve
as comprehensive resources for general education
in Vietnam, catering to a diverse audience includ-
ing students, teachers, and parents. They provide
solutions to textbook and workbook problems, ref-
erence materials for grades 1 to 12 across various
subjects, and lesson plans for teachers. Notably,
all content on these websites is freely accessible.
For our study, we specifically targeted multiple-
choice questions (MCQs) from grades 3 to 5, col-
lecting approximately 20,000 questions. The Vi-
etjack website provided fields such as question,
choices, full answer, and right choice. How-
ever, Tailieumoi and Hamchoi did not offer the
right choice field, necessitating additional steps
to complete the dataset.

3.2 Preprocessing
To ensure the quality of the data, we implemented a
multi-step preprocessing pipeline. First, we normal-
ize the data to follow a consistent and standardized
representation:

• Text Normalization: All text data was nor-
malized to the NFC standard to ensure con-
sistent character encoding. Vietnamese tones
were also standardized to maintain uniformity
across the dataset.

• Format Conversion: We converted HTML
formats to Markdown using the Pandoc10 li-
brary. This conversion not only saved tokens
during the model training and inference pro-
cess but also facilitated easier processing and
analysis.

Subsequently, we implemented a rigorous filter-
ing process to ensure the data was of the highest
quality:

• Exclusion of Non-Relevant Samples: We
filtered out samples containing tables and im-
ages, as our current focus does not include
multimodal data.

7https://tailieumoi.vn/
8https://hamchoi.vn/
9https://www.vietjack.com/

10https://pandoc.org/
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Figure 2: ViMath-Bench Dataset.

• Duplicate Removal: We employed an edit
distance metric to identify and remove dupli-
cate questions. Specifically, if two samples
had an edit distance of greater than 90, one
sample was discarded. Preference was given
to retaining samples due to the completeness
of its data fields.

• Missing Fields Extraction: For the remain-
ing data from the available resources, we em-
ployed a set of rules to extract the correct
choice field for full answer. This method
allowed us to successfully retrieve the correct
answers for approximately 70% of the sam-
ples. The remaining 30% of the data, which
lacked this critical field, were subsequently
removed.

After these preprocessing steps, the dataset con-
tains 8.4K samples, which we name ViMath-
Bench. Each sample of the dataset contains four
fields: question, choices, correct_choice, and
full_answer, which are beneficial for both train-
ing and evaluation. This dataset is then divided
into 7.1K training samples and 1.3K test samples
to facilitate the evaluation of our models.

4 Methodology

We introduce Simple Reasoning with Code
(SiRC) framework, which is a simplified approach
to solving elementary mathematical problems using
both CoT reasoning and code generation. We lever-
age a teacher-student framework to distill knowl-
edge from larger open-source LLMs to smaller,
more resource-efficient models, tailored specifi-
cally for Vietnamese mathematical reasoning tasks.

4.1 SiRC Inference Procedure

We propose a novel, efficient approach to address
the arithmetic and calculation challenges faced by
large language models (LLMs), described in Algo-

rithm 1. Our method integrates Python code gener-
ation into the problem-solving process in a unique
way. Unlike previous studies that either generated
only code all at once or used iterative reasoning
and code generation (which can be cost-inefficient
because of multiple LLM calls), our approach sim-
plifies the process by combining reasoning and
coding in a single, structured LLM response:

• Step-by-Step Reasoning: The LLM first out-
lines all necessary steps to solve the math
problem without performing any calculations.

• Python Code: Immediately following the rea-
soning, the LLM generates Python code to
execute the required calculations.

This seemingly two-step process is completed
in a single LLM call, which not only simplifies
the reasoning-code generation in a chained multi-
agent setup but also enhances the effectiveness of
the solution. By separating the logical problem-
solving steps from the actual computation, our
method provides a clear, executable pathway to
solve complex mathematical problems. After fin-
ishing the reasoning-code generation and code exe-
cution, SiRC makes the last LLM call to generate
the final answer to the question.

4.2 Teacher-Student Framework
To implement our SiRC approach effectively,
we develop ViMath-InstructCode, a synthetic
dataset designed to enable trainable open-source
LLMs to adopt our proposed method. We employ
a knowledge distillation approach (Semnani et al.,
2023), utilizing larger models as teachers to trans-
fer knowledge to smaller, more resource-efficient
student models. In the most general case, this
framework allows multiple strong larger models
to act as teachers, enabling the available smaller
models to learn from all of them and obtain com-
bined capabilities. This process allows us to create
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Figure 3: Overview of ViMath-Instruct-Code dataset construction

Algorithm 1 SiRC Inference Procedure
Require: Multiple-choice question of problem P
Ensure: Solution to P

1: Reasoning-Code Generation (LLM call):
Generate all necessary steps to solve P as tex-
tual guidance only + Python code to execute
the required calculations based on the outlined
steps.

2: Execution (Python interpreter): Extract the
generated Python code and execute to obtain
the solution to P .

3: Answer Generation (LLM call): Generate
final choice for P based on the output of previ-
ous steps.

more compact versions of the LLMs that are tai-
lored for Vietnamese mathematical reasoning tasks
while maintaining the ability to perform both step-
by-step reasoning and code generation as outlined
in our SiRC framework.

4.3 Construction of ViMath-InstructCode
Dataset

Following the Teacher-Student framework, we
specifically use Llama-3-70B and Qwen-2-72B as
the teacher models, with publicly available small
models serving as the distilled versions. We
selected these two models because they usually
demonstrate different reasoning responses to the
same math problem, making it advantageous to
learn from both. However, due to resource limita-
tions, we could not extend our experiments to other
large models or closed-source LLM APIs. Specifi-
cally, ViMath-InstructCode is constructed based

on the ViMath-Bench training set, which is sequen-
tially illustrated as follows (Figure 3)):

• Input Data: The input data consists of math
problems collected and preprocessed as de-
tailed in section 3. This dataset, referred to
as ViMath-Bench, serves as the foundation
for generating step-by-step solutions. Specifi-
cally, we extracted the training split and aug-
mented it in subsequent steps to ensure it can
be efficiently trained by language models.

• Solution Augmentation: Upon reviewing the
full answer fields of the crawled data, we ob-
served that the solutions often have an unde-
sirable format where the conclusion precedes
the explanation. This format may be unin-
tuitive for the model to learn from, as learn-
ing from data of this format would teach the
model to predict the answer before reasoning
about the question. Additionally, the solutions
lack depth, as they do not provide step-by-step
explanations, thereby failing to offer a rich sig-
nal in reasoning for the model to learn. To ad-
dress these issues, we decided to augment the
crawled solutions using the teacher models.
These models enhance the solutions in two
ways: firstly, by adding a detailed explanation
that outlines every step and computation in-
volved in solving the problem; and secondly,
by formatting the augmented solution so that
the explanation precedes the final answer. At
the end of this step, we obtain a dataset of
pure Chain-of-Thought fashion.

• Reasoning-Code Generation: In this step,
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we further augment the detailed step-by-step
solutions from the previous step to obtain data
with the desired structure. This structure con-
tains reasoning followed by code, which are
central to our SiRC framework. Specifically,
we prompted the teacher models to first refor-
mat the solutions from the previous step by
eliminating all computations and preserving
only the reasoning steps. After completing
the reformatting, the models then continue to
generate Python code to solve problems that
require calculations. The input of this process
is a detailed solution (with chain-of-thought
fashion which details on both reasoning and
computation), and the output is textual guid-
ance (without computation) and Python code
(that executes necessary computations).

• Data Filtering: The generated data from the
previous step are passed through a filtering
module. This module extracts and executes
the Python code, then compares the extracted
answer from the code’s output with the pro-
vided correct answer to verify its correctness.
Samples with incorrect output are discarded.
Additionally, edit distance is used to dedupli-
cate the generated solutions and code snippets.

5 Experimental Setup

5.1 Evaluation Metrics
The primary metric for evaluating the performance
of the models was accuracy. This metric measures
the percentage of questions q where the model
gives the correct final answer. The accuracy is
calculated as follows:

Accuracy(Q) =
1

|Q|

|Q|∑

i=1

{SiRC(qi, Ci) == ai}

where qi is the i-th question in a set of ques-
tions Q, Ci is the set of corresponding choices for
question qi. SiRC(qi, Ci) is the final answer con-
cluded by running the SiRC inference procedure
on qi, which is compared with the correct choice
ai of qi. Accuracy provides a straightforward and
intuitive measure of the model’s effectiveness in
solving mathematical reasoning tasks.

5.2 Training datasets
We conducted extensive experiments using mul-
tiple training datasets, each representing a differ-
ent approach to solving math problems with large

language models (LLMs). These approaches in-
clude fine-tuning with an unprocessed crawled
dataset as a baseline, Chain-of-Thought (CoT)
reasoning, Programming-of-Thought (PoT), and
our proposed SiRC framework. This diverse
collection of training datasets allows for a com-
prehensive comparison, showcasing the effec-
tiveness of our SiRC framework across various
methodologies. Table 1 provides detailed infor-

Dataset Description #Num.

ViMath-Bench
Crawled dataset,
described in section 3

7K

ViMath-
Reasoning

Detailed Step-by-step
reasoning with textual
computation, generated
by teacher models

14K

ViMath-Code

Only using code to
solve the problem,
generated by using
teacher models

14K

ViMath-
InstructCode

Structured reasoning
followed by code,
described in section 4.3

14K

Table 1: Details of Training Datasets for Different Ap-
proaches

mation on the construction of each dataset, their
characteristics, and the number of samples in-
cluded. Notably, while the ViMath-Bench dataset
contains only 7k training samples, its deriva-
tives—ViMath-Reasoning, ViMath-Code, and
most importantly, ViMath-InstructCode—each
contains 14k training samples. This increase is due
to the use of two teacher models, Llama-3-70B and
Qwen2-72B, in generating these datasets.

5.3 Implementation

Hyperparameter Values
batch size 128
epoch 3
learning rate 2e-4
learning rate scheduler cosine
weight decay 0
cutoff-len 2048
lora-r 64
lora-alpha 128
lora-dropout 0.05
lora-target-modules all linear

Table 2: Hyperparameters for the model fine-tuning
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Model No finetuning Baseline Finetuning Finetuning w/ SiRC (ours)

w/o
CoT

w/
CoT

ViMath-
Bench

ViMath-
Reasoning

ViMath-
Code

ViMath-
Reasoning

+Code

ViMath-
InstructCode

ViMath-
Reasoning

+InstructCode

WizardMath-7B-V1.1 46.01 53.44 52.25 78.97 - - - -
MetaMath-Mistral-7B 51.46 52.41 52.96 77.00 - - - -
vinallama-7b-chat 40.79 38.97 38.26 57.87 - - - -
Vistral-7B-Chat 44.98 63.56 51.30 74.31 - - - -

Llama-3-8B-Instruct 75.97 67.98 73.60 83.32 85.22 86.01 86.4 87.27
Qwen2-7B-Instruct 83.4 84.82 79.68 88.38 87.98 88.14 90.83 91.15
deepseek-math-7b-rl 89.49 89.57 82.53 88.38 88.93 89.64 89.49 90.59

Llama-3-70B-Instruct 89.80 90.28 - - - - - -
Qwen2-72B-Instruct 92.09 92.09 - - - - - -

Table 3: Performance comparison of models under different finetuning conditions. The two best results in each row
are in bold.

Backbone Model: In our experiments, we
use a diverse selection of open-source language
models as backbones. Firstly, we choose
models specifically trained for mathematical
problem-solving: WizardMath-7B-V1.1 and
MetaMath-Mistral-7B. However, these mod-
els lack native support for Vietnamese. To
address this, we then select models trained
with a sufficient amount of Vietnamese data:
vinallama-7b-chat and vistral-7b-chat,
though these are not specifically designed for
solving math problems. Finally, we include some
of the latest multilingual models which also show
strong coding and mathematical capabilities:
Qwen2-7B-Instruct, Llama-3-8B-Instruct,
and deepseek-math-7b-rl. In total, we utilize
seven models as our backbones.
Hyperparameters: For fine-tuning the backbones,
we employed the Low-Rank Adaptation (LoRA)
technique across all models. To ensure a fair com-
parison, we kept the hyperparameters consistent
for every model. Detailed information regarding
these hyperparameters is provided in Table 2.

6 Results

Table 3 presents a detailed performance compari-
son of various models under different conditions.
The effectiveness of the proposed SiRC frame-
work is highlighted, demonstrating its impact on
enhancing model accuracy in mathematical reason-
ing tasks.

6.1 Baselines

No Fine-Tuning Among the models evaluated
without any fine-tuning, deepseek-math-7b-rl
and Qwen2-7B-Instruct exhibited the highest ac-
curacies without CoT prompting, achieving 89.49%

and 83.4%, respectively. This underscores these
models’ robust baseline capabilities in mathemati-
cal reasoning when used out of the box.

CoT prompting had varied effects on model
performance. For some models, such as
vistral-7b-chat and WizardMath-7B-V1.1, it
significantly boosted accuracy by nearly 19% and
7%, respectively. However, for other models, CoT
prompting had little to no effect or even decreased
performance. This indicates that the benefits of
CoT prompting are not consistent across all models
and may depend on specific model architectures or
underlying training data.
Baseline Fine-Tuning When models were fine-
tuned with the baseline ViMath datasets (as detailed
in Table 1), there were notable improvements in
performance compared with no finetuning setting.
Augmented datasets, namely ViMath-Reasoning
and ViMath-Code consistently outperform raw
dataset ViMath-Bench, showing the clear advan-
tage of using teacher models to generate synthetic
training data. Notably, for all models, we exper-
imented with finetuning by combining these two
augmented datasets yielded the highest accuracies
across all baseline configurations. However, we did
not conduct training experiments with code-related
data on the first four models, because they were not
sufficiently trained with code data.

6.2 Main results

Finetuning with SiRC framework To enable
models to follow the SiRC inference framework,
we trained them on datasets that include our pro-
posed ViMath-InstructCode dataset. Finetun-
ing with only ViMath-InstructCode dataset en-
abled models to consistently surpass performance
when trained with only ViMath-Reasoning or
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Model Qwen2-7B-Instruct Llama-3-8B-Instruct deepseek-math-7b-rl
w/o Solution Augmentation 89.80 83.64 89.72
w/o Filtering Module 87.83 85.69 89.49
use only Llama3-70B-Instruct 88.46 84.19 87.98
use only Llama3-70B-Instruct (sampled twice) 87.91 84.11 87.91
use only Qwen2-72B-Instruct 89.25 83.79 88.14
use only Qwen2-72B-Instruct (sampled twice) 90.75 84.58 89.17
full pipeline (ours) 90.83 86.40 89.49

Table 4: Ablation study results

ViMath-Code. Additionally, finetuning using the
combined ViMath-{Reasoning+InstructCode}
dataset yielded the highest accuracies observed,
with Qwen2-7B-Instruct achieving an impres-
sive 91.15%, outperforming all other configu-
rations. This highlights the synergistic effect
of integrating reasoning data with our proposed
ViMath-InstructCode data, which collectively
enhances model performance more effectively than
using either dataset in isolation.

Finally, we ran inference on the teacher
models, Llama3-70B-Instruct and
Qwen2-72B-Instruct, achieving the highest
no-finetuning inference accuracy of 92.09%
with Qwen2-72B-Instruct when using CoT
prompting. Although Qwen2-72B-Instruct
outperformed Qwen2-7B-Instruct (finetuned
with our ViMath-InstructCode and follow SiRC
inference procedure), our model closely followed
by only less than 1% accuracy. This again
demonstrates the robustness of the teacher-student
methodology and the effectiveness of our SiRC
framework.

6.3 Ablation Study
To further understand the contribution of each com-
ponent in our proposed SiRC framework and the
ViMath-InstructCode dataset, we conducted an
ablation study. This study helps to isolate and eval-
uate the impact of different components and steps
in our dataset construction pipeline. The configu-
rations tested and their corresponding results are
summarized in Table 4.

The full pipeline, including solution
augmentation, filtering steps, and utiliz-
ing two teachers (Llama3-70B-Instruct
and Qwen2-72B-Instruct, each sampled
once), achieved the highest performance
for both Qwen2-7B-Instruct (90.83%) and
Llama-3-8B-Instruct (86.40%), demonstrating
the effectiveness of the complete process. Ex-
cluding the solution augmentation step, which

provides detailed explanations and formatting by
the teacher models, resulting in a performance
drop across almost all models. Using only
Llama3-70B-Instruct or Qwen2-72B-Instruct
for generating data also led to lower performance,
underscoring the need for diversity provided
by multiple teacher models. Sampling twice
with either teacher model showed negligible
improvement, indicating that the added diversity
from another teacher model is crucial. Ex-
cluding the filtering step resulted in decreased
accuracy for Qwen2-7B-Instruct (87.83%) and
Llama-3-8B-Instruct (85.69%), emphasizing
the role of data quality control in enhancing
model reliability and accuracy. Interestingly,
deepseek-math-7b-rl maintains stable perfor-
mance even without the filtering step, suggesting
that this model may be more resilient to noise
in the training data compared to others. Overall,
these results demonstrate that each component of
our ViMath-InstructCode construction pipeline,
including solution augmentation, the use of
multiple teacher models, and filtering, significantly
contributes to the overall performance of the
models, with the full pipeline consistently yielding
the best results, confirming the robustness and
effectiveness of our approach.

7 Conclusion

This study proposes a novel fine-tuning instruc-
tion approach for mathematical reasoning, which
is specified for the Vietnamese language. Specifi-
cally, we present SiRC, an effective framework,
which significantly enhances the mathematical
reasoning capabilities of language models with
minimal cost. Furthermore, by leveraging the
ViMath-InstructCode dataset and combining it
with reasoning datasets, the proposed framework
achieves superior performance, underscoring the
effectiveness of our approach. Accordingly, the
experimental results indicate that diverse and com-
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prehensive training data is crucial for improving
model accuracy in complex tasks such as mathe-
matical reasoning.

Limitations

While our study successfully constructs the
ViMath-InstructCode dataset using the SiRC
framework, it is important to acknowledge some
limitations in our approach: i) Firstly, the general-
ization to other languages of SiRC, though promis-
ing, is still unclear. The SiRC framework and
ViMath-InstructCode dataset have been specif-
ically designed for Vietnamese. Adapting this
framework to other languages, particularly those
with even fewer resources, necessitates additional
efforts in constructing datasets as well as run-
ning experiments; ii) Secondly, the proposed
ViMath-InstructCode is still prone to noises.
The construction of this dataset, despite relying
on trusted open sites and undergoing several pre-
processing steps to ensure its quality, is completed
without any human verification. This could result
in a small proportion of faulty samples in our train-
ing dataset.

Ethical considerations

Regarding concerns related to the sources of the
datasets in our research, they are built from publicly
accessible sources, guaranteeing no privacy issues
or violations. We do not gather any personally
identifiable information, and all data is acquired in
compliance with legal and ethical guidelines.

References
Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui

Zhang, and Wenpeng Yin. 2024. Large language
models for mathematical reasoning: Progresses and
challenges. In Proceedings of the 18th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, EACL 2024: Student Research
Workshop, St. Julian’s, Malta, March 21-22, 2024,
pages 225–237. Association for Computational Lin-
guistics.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. Mathqa: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),

pages 2357–2367. Association for Computational
Linguistics.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2022a. Program of thoughts
prompting: Disentangling computation from rea-
soning for numerical reasoning tasks. CoRR,
abs/2211.12588.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2022b. Program of thoughts
prompting: Disentangling computation from rea-
soning for numerical reasoning tasks. CoRR,
abs/2211.12588.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and
Tushar Khot. 2023. Specializing smaller language
models towards multi-step reasoning. In Interna-
tional Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research,
pages 10421–10430. PMLR.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2023a. Tora: A tool-integrated reasoning
agent for mathematical problem solving. CoRR,
abs/2309.17452.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2023b. Tora: A tool-integrated reasoning
agent for mathematical problem solving. CoRR,
abs/2309.17452.

267

https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://doi.org/10.18653/V1/N19-1245
https://doi.org/10.18653/V1/N19-1245
https://doi.org/10.18653/V1/N19-1245
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://proceedings.mlr.press/v202/fu23d.html
https://proceedings.mlr.press/v202/fu23d.html
https://doi.org/10.48550/ARXIV.2309.17452
https://doi.org/10.48550/ARXIV.2309.17452
https://doi.org/10.48550/ARXIV.2309.17452
https://doi.org/10.48550/ARXIV.2309.17452


Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the MATH dataset. In Proceedings
of the Neural Information Processing Systems Track
on Datasets and Benchmarks 1, NeurIPS Datasets
and Benchmarks 2021, December 2021, virtual.

Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin,
and Wei-Ying Ma. 2016. How well do computers
solve math word problems? large-scale dataset con-
struction and evaluation. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers. The Association
for Computer Linguistics.

Zhenwen Liang, Wenhao Yu, Tanmay Rajpurohit, Peter
Clark, Xiangliang Zhang, and Ashwin Kalyan. 2023.
Let GPT be a math tutor: Teaching math word prob-
lem solvers with customized exercise generation. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2023, Singapore, December 6-10, 2023, pages 14384–
14396. Association for Computational Linguistics.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4,
Volume 1: Long Papers, pages 158–167. Association
for Computational Linguistics.

Hanmeng Liu, Zhiyang Teng, Leyang Cui, Chaoli
Zhang, Qiji Zhou, and Yue Zhang. 2023. Logicot:
Logical chain-of-thought instruction tuning. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, Singapore, December 6-10, 2023,
pages 2908–2921. Association for Computational
Linguistics.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
CoRR, abs/2308.09583.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Sina J. Semnani, Violet Z. Yao, Heidi C. Zhang, and
Monica S. Lam. 2023. Wikichat: Stopping the hal-
lucination of large language model chatbots by few-
shot grounding on wikipedia. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2023,
Singapore, December 6-10, 2023, pages 2387–2413.
Association for Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard

Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan,
Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran
Wang, Changhao Jiang, Yicheng Zou, Xiangyang
Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng,
Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan
Zheng, Xipeng Qiu, Xuanjing Huang, and Tao Gui.
2023. The rise and potential of large language model
based agents: A survey. CoRR, abs/2309.07864.

268

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.18653/V1/P16-1084
https://doi.org/10.18653/V1/P16-1084
https://doi.org/10.18653/V1/P16-1084
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.889
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.889
https://doi.org/10.18653/V1/P17-1015
https://doi.org/10.18653/V1/P17-1015
https://doi.org/10.18653/V1/P17-1015
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.191
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.191
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.157
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.157
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.157
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2309.07864
https://doi.org/10.48550/ARXIV.2309.07864


Proceedings of the 28th Conference on Computational Natural Language Learning, pages 269–279
November 15-16, 2024 ©2024 Association for Computational Linguistics

Generalizations across filler-gap dependencies in neural language models

Katherine Howitt1 Sathvik Nair1, 3 Allison Dods1 Robert Melvin Hopkins1, 2

1Department of Linguistics, University of Maryland
2Department of Computer Science, University of Maryland

3University of Maryland Institute for Advanced Computer Studies
{kghowitt,sathvik}@umd.edu

Abstract

Humans develop their grammars by making
structural generalizations from finite input.
We ask how filler-gap dependencies, which
share a structural generalization despite di-
verse surface forms, might arise from the in-
put. We explicitly control the input to a neu-
ral language model (NLM) to uncover whether
the model posits a shared representation for
filler-gap dependencies. We show that while
NLMs do have success differentiating gram-
matical from ungrammatical filler-gap depen-
dencies, they rely on superficial properties of
the input, rather than on a shared generaliza-
tion. Our work highlights the need for specific
linguistic inductive biases to model language
acquisition.

1 Introduction

Human learners use their linguistic environment
to acquire a grammar. At the same time, they
come to generalizations that are not obviously sig-
naled in the input. The central puzzle in language
acquisition is to characterize the system that al-
lows for human-like generalizations from finite
input. Linguists posit that these generalizations
are achieved through shared representations that
allow learners to treat superficially distinct phe-
nomena as a class (Chomsky, 1977; Kaplan and
Bresnan, 1982; Gazdar, 1982; Gazdar et al., 1985;
Pollard and Sag, 1987; Postal, 1999). The re-
cent success of neural language models (NLMs)
has caused many to question the necessity of
linguistically-specific representational systems in
language learning (Wilcox et al., 2018, 2023; Pi-
antadosi, 2023).

We address this renewed controversy by con-
ducting two experiments to uncover whether
NLMs posit a shared representation for a particu-
lar syntactic dependency: filler-gap dependencies.
We consider whether an NLM recognizes filler-
gap dependencies in superficially distinct con-

structions, as humans do (Crain and Fodor, 1985;
Stowe, 1986; Bever and McElree, 1988; Traxler
and Pickering, 1996; Sprouse et al., 2016). We
further ask whether the NLM posits a shared rep-
resentation for filler-gap dependencies, and thus
systematically applies constraints across them.

Recent research shows NLMs can differenti-
ate between grammatical and ungrammatical in-
stances of filler-gap dependencies in individual
constructions, but our study asks whether filler-
gap dependencies are treated as a class by the
NLM. If a shared structural relation is learnable
by an NLM, which lacks language-specific bi-
ases, then, in principle, a learner does not need
to have such biases to learn that relation. Al-
though one could learn the correct pattern through
piecemeal learning of each construction individ-
ually (given enough input), a shared representa-
tion across filler-gap dependencies would allow
a learner to generalize from only a subset of
constructions containing filler-gap dependencies.
Whether an NLM posits this shared representation
is the question.

We provide an NLM with direct evidence for a
filler-gap dependency in one construction and test
whether it generalizes to other constructions. In
our first experiment, we augment an NLM’s train-
ing data with specific instances of clefting, and in
our second, topicalization. We compare perfor-
mance on four constructions containing filler-gap
dependencies: Wh-movement, clefting, tough-
movement, and topicalization. The NLM treating
filler-gap dependencies systematically would be
evidence that this shared representation is learn-
able without language-specific inductive biases.

2 Filler-gap dependencies

Filler-gap dependencies share a set of properties
across superficially distinct constructions, includ-
ing sensitivity to islands(Chomsky, 1977). These
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properties persist across constructions, despite
variation in semantic contribution and discourse
function (Schütze et al., 2015). In psycholinguis-
tic experiments, humans have been shown to be
sensitive to gaps across filler-gap dependencies,
including wh-movement (Crain and Fodor, 1985;
Stowe, 1986), tough-movement (Bever and McEl-
ree, 1988), and clefting (Traxler and Pickering,
1996), though see Sprouse et al. (2016) for vari-
ation in English relative clauses. These effects
are sensitive to locality constraints, and appear to
be mediated by the presence of islands (Phillips,
2006; Traxler and Pickering, 1996; McElree and
Griffith, 1998; Omaki et al., 2015). Generalizing
from surface forms on the basis of a shared rep-
resentation could be critical to learning, especially
if some constructions containing filler-gap depen-
dencies do not occur frequently in the input.

Clefting (1) is one construction that contains
a filler-gap dependency. In (1a), the filler these
snacks forms a dependency with the gap site,
marked with __ for readability, but silent in nat-
ural language. The filler is interpreted as the ob-
ject of bought, despite not appearing linearly be-
side bought in the string. Strings lacking a filler
but containing a gap (1b) are ungrammatical, and
when the gap is filled (i.e., an object, such as
cheese, immediately follows the verb), the accept-
ability pattern reverses (1c-d). In other words,
neither a filler nor a gap can occur without the
other. Importantly, clefts are superficially similar
to sentences like (1d) which lack a filler-gap de-
pendency, and thus are structurally quite distinct.
A learner must distinguish between instances of
clefting (1a) and other superficially similar sen-
tences (1d).

(1) a. It is these snacks that Mary bought
__ today.

b. * It is apparent that Mary bought __
today.

c. * It is these snacks that Mary bought
cheese today.

d. It is apparent that Mary bought
cheese today.

Filler-gap dependencies occur in many con-
structions, including Wh-movement (2), topical-
ization (3), and tough-movement (4), which differ
in surface form but share the filler-gap dependency
and its properties.

(2) I know what Mary bought __ today.

(3) These snacks, Mary bought __ today.

(4) These snacks are tough to buy __ here.

While it might initially appear that learning
could occur from simply expecting a gap when
presented with a filler, properties of this depen-
dency also include specific constraints on when
they can be formed. Some structural configu-
rations, called islands, block the formation of a
filler-gap dependency. For example, a filler-gap
dependency cannot be formed inside a relative
clause (e.g., that carried __) despite the fact that
carried lacks an object (i.e., is followed by a gap).
The relative clause blocks the dependency, and so
a gap is unacceptable regardless of the presence of
a filler. Examples (5)-(8) show that all filler-gap
dependencies are subject to this same restriction.

(5) * It is these snacks that Mary bought [the
bag that carried __] today.

(6) * I know what Mary bought [the bag that
carried __] today.

(7) * These snacks, Mary bought [the bag
that carried __] today.

(8) * These snacks are tough to buy [the bag
that carried __] here.

One task for a learner is to recognize, on the ba-
sis of grammatical examples only (e.g., (1a) and
(1d), but not (1b), (1c), or (5)), when each filler-
gap dependency can and cannot occur. A further
task is to recognize that the same properties apply
to each construction containing a filler-gap depen-
dency (2-4), and thus posit a shared representation
underlying all filler-gap dependencies.

An alternative method to generalizing would be
a piecemeal learning process: learning each con-
struction separately. For the piecemeal process
to work, sufficient examples of each construction
must occur in the input, and similar constraints
across these constructions would arise from dis-
tinct observations. NLMs here provide an oppor-
tunity to test whether a shared representation can
in principle be extracted from the input without
linguistic biases.

2.1 NLMs and Filler-gap dependencies
NLMs can learn at least some syntactic represen-
tations involving locality (see Linzen and Baroni
(2021) for a review). NLMs have been shown
to represent shared syntactic structure across dif-
ferent constructions in simulated priming (Prasad
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et al., 2019) and simulated satiation (Lu et al.,
2024) experiments, which compare measures from
NLMs before and after exposing them to sen-
tences with similar syntactic structures. Similarly,
NLMs have been shown to generalize over syntac-
tic structures that have been excluded from their
training data (Jumelet et al., 2021; Warstadt, 2022;
Misra and Mahowald, 2024; Patil et al., 2024).
How human-like these generalizations are is still
an open question.

With respect to filler-gap dependencies, NLMs
capture language-specific island constraints in En-
glish (Wilcox et al., 2018; Ozaki et al., 2022;
Wilcox et al., 2023) and Norwegian (Kobzeva
et al., 2023) in sentences with embedded Wh-
movement. Ozaki et al. (2022) analyze other con-
structions with filler-gap dependencies (clefting,
topicalization, and tough-movement) and find that
model performance varies by construction and is
associated with the relative frequency of the con-
structions in texts resembling the training cor-
pus. In other words, Ozaki et al. (2022) argue the
model’s ability to approximate human behavior is
dependent on the availability of each construction
type in the input. Whether this ability is modu-
lated by a shared representation across different
constructions is not known.

Finally, Lan et al. (2024) investigate the ex-
tent to which NLM performance with double gap
phenomena (parasitic gaps and across the board
movement) is in line with human judgments. In
these constructions, a gap can occur inside an is-
land, only if another gap is present. While they
find that pretrained NLM performance is low for
constructions with parasitic gaps or across the
board movement, the authors show that adding
examples of parasitic gaps and across the board
movement to an NLM’s training data adjusts its
performance to be in line with human expecta-
tions, showing directly the relationship between
NLM performance and surface forms in the train-
ing data. Thus, if the training data of an NLM
does not contain sufficient instances of a partic-
ular construction, its ability to correctly capture
the pattern of grammaticality suffers, strengthen-
ing Ozaki et al. (2022)’s claim that input frequency
matters.

The methodology introduced by Lan et al.
(2024) provides a path for exploring whether
NLMs make generalizations that are not appar-
ent from simply testing a pretrained model: if the
model can improve on one construction from di-

rect training on that construction, we can ask what
other effects such training might have. Does train-
ing a model on one construction containing a filler-
gap dependency affect its performance on other
constructions containing filler-gap dependencies,
the way one might expect given a shared represen-
tation?

3 Methods

3.1 Measuring Filler-gap dependencies and
Island Effects

Psycholinguistic findings show structural con-
straints affect human expectations for gaps in-
side islands (Phillips, 2006; Traxler and Pickering,
1996; Stowe, 1986). One way to evaluate whether
an NLM’s predictions align with these effects is
to measure its surprisal, the negative log probabil-
ity of a word given context; less surprising words
have higher probabilities. Surprisal quantifies the
effect of processing difficulty (Levy, 2008). In-
vestigating NLM surprisal at particular points in
a sentence effectively treats the models like psy-
cholinguistic subjects (Futrell et al., 2019).1

To determine whether the NLMs capture syn-
tactically relevant knowledge, we evaluate sur-
prisal at critical regions of grammatical and un-
grammatical variants of superficially similar sen-
tences, as in (1). We compute surprisal of the re-
gion following a verb, which can either consist of
a direct object (a filled gap, -gap) or an adverb
(a gap, i.e., no direct object, +gap). Each string
also either contains a filler (+filler) or does not (-
filler). This 2x2 design is illustrated in Table 1,
with the critical region marked in bold. For exam-
ple, the surprisal at today in (1a) should be lower
than the surprisal at cheese in (1c) because in the
latter case, given the filler these snacks, the reader
expects a gap in the object position of bought. If
the critical region consists of multiple words, we
sum their surprisals.

If the NLM has learned the dependency, we ex-
pect to see high surprisal in the critical regions of
ungrammatical sentences: both when it encounters
a gap without having seen a prior filler (1b, +gap/-
filler), as well as if it has seen a filler but then en-
counters a filled gap (1c, -gap/+filler). Likewise,
we expect low surprisal in the critical regions of

1However, see Van Schijndel and Linzen (2021) and
Huang et al. (2024) for arguments that surprisal is not al-
ways a good estimate of human behavior for some types of
syntactically complex sentences.
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+filler -filler expected
effect

+gap It is these
snacks that

Mary
bought _

last week.

*It is
apparent
that Mary
bought _

last week.

negative

-gap *It is these
snacks that

Mary
bought the
cheese last

week.

It is
apparent
that Mary
bought the
cheese last

week.

positive

Table 1: The expected effect is the difference in the
LM’s surprisal for versions of the same simple (non-
island) construction with and without a filler.

grammatical sentences: if it encounters a gap after
having seen a filler (1a, +gap/+filler), as well as if
it sees neither filler nor gap (1d, -gap/-filler).

To summarize these predictions, we calculate
the filler effect: the difference in surprisal between
two sentences that are identical except for the pres-
ence of a filler (Wilcox et al., 2018, 2023). We
take the surprisal for a +filler sentence and sub-
tract the surprisal of its -filler counterpart. Based
on the predictions from the previous paragraph,
our filler effect predictions for simple (non-island)
sentences are as follows: a negative filler effect in
the +gap condition and a positive filler effect in the
-gap condition. These predictions are in Table 1.

The filler effect prediction for sentences with is-
lands differs from the prediction for simple sen-
tences. Filler-gap dependencies are not licensed
into islands; sentences with islands are ungram-
matical if they possess either a filler, a gap, or both.
Only the sentences with no filler and no gap should
be grammatical. Following Wilcox et al. (2023),
we predict an NLM with human-like performance
on island effects should show filler effects around
zero in sentences with islands. If the NLM has
learned that filler-gap dependencies are always un-
licensed inside an island, the presence or absence
of a filler should not affect the NLM’s surprisal at a
gap inside an island. Therefore, there should be no
difference between the surprisal in the +filler and
-filler conditions, i.e., a filler effect of zero. These
predictions are summarized in Table 2. It is worth
noting that Ozaki et al. (2022) have a different pre-
diction for islands: they assume that grammatical-
ity affects surprisal and that the NLM’s surprisal

+filler -filler expected
effect

+gap *It is these
snacks that

Mary
bought the

bag that
held _ last

week.

*It is
apparent
that Mary
bought the

bag that
held _ last

week.

Closer
to zero

than
simple
effect

-gap *It is these
snacks that

Mary
bought the

bag that
held the

cheese last
week.

It is
apparent
that Mary
bought the

bag that
held the

cheese last
week.

Closer
to zero

than
simple
effect

Table 2: For sentences containing islands, the expected
effect is a reduction of the filler effect compared to the
effect in simple sentences.

will be different at the filled gap in the grammati-
cal -gap, -filler condition. We discuss islandhood
and surprisal further in Section 5.

3.2 Language Model

We estimate surprisal from a recurrent neural net-
work (RNN) from Gulordava et al. (2018), which
is a Long-Short-Term Memory (LSTM) RNN
(Hochreiter and Schmidhuber, 1997) with two hid-
den layers with 650 units in each layer, trained on
data from an English Wikipedia corpus (90 million
tokens, or around 3 million sentences). We chose
to use this model because prior research evaluat-
ing it on filler-gap dependencies has shown suc-
cess in capturing human-like knowledge of filler-
gap dependencies, even relative to larger mod-
els (Wilcox et al., 2018; Ozaki et al., 2022; Lan
et al., 2024; Wilcox et al., 2023; Kobzeva et al.,
2023). Because it has transparent training data, we
could carefully compare the pretrained RNN with
models augmented with instances of different con-
structions, which we call Cleft-RNN and Topic-
RNN. Details of the augmented training data for
these models are explained in Section 4. 2

2Transformers and LSTMs perform similarly on syntac-
tic generalization tasks when trained on the same amounts of
data, despite the transformers’ lower perplexity (Patil et al.,
2024). We did, however, replicate the results of our baseline
for each construction with a pretrained GPT-2 model. See
Appendix C1 for these results and more discussion on mod-
eling choices.
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3.3 Statistical Analysis

We test for two effects: the first is whether the
models recognize that a filler must be associated
with a gap in simple sentences, and the second
is whether this expectation is modulated by the
presence of an island. To determine whether the
RNN learned the filler-gap dependency in simple
sentences, we fit a linear mixed-effects regression
model following Wilcox et al. (2023) using sur-
prisal as the dependent variable, sum-coded fea-
tures for the presence or absence of fillers and gaps
which were fixed effects. If the RNNs learn the
filler-gap dependency for a particular construction,
we expect to see a negative interaction term be-
tween the presence of fillers and gaps, in line with
Wilcox et al. (2023).

Additionally, Wilcox et al. (2023) fit mixed-
effects models including islandhood as a fixed ef-
fect, claiming that a positive three-way interac-
tion between the presence of fillers, gaps, and is-
lands reflects the successful learning of island con-
straints. We apply this analysis, but also consider
both directions of the dependency separately: unli-
censed gap effects (UGE) in sentences containing
a gap, and filled gap effects (FGE) in sentences
without a gap (Kobzeva et al., 2023). We fit sepa-
rate linear mixed-effects models for the surprisals
of sentences with and without gaps, with fixed ef-
fects for fillers and islands.3 This analysis allows
us to tease apart the two-way nature of the depen-
dency and analyze whether the RNNs’ failures or
successes are driven by only one direction of the
dependency. Success requires the regression mod-
els’ coefficients to all be negative for UGEs and
all be positive for FGEs for both main effects and
interactions. These analyses were repeated sep-
arately for the pretrained and augmented RNNs.
All regression models were sum-coded, included
random effects for each item (Barr et al., 2013),
and fit using the Pymer library in Python (Jolly,
2018). All formulas and results are reported in
Appendix B.

4 Experiments

We evaluate an RNN’s behavior on four filler-
gap dependency constructions in both simple sen-
tences and sentences with an island. We augment

3Since Kobzeva et al. (2023) were only testing for island
effects, their regression models were fit on filler effects rather
than raw surprisals based on the presence of an island. We
consider the joint presence of filler and island in our analysis.

the NLM’s training data with instances of a single
construction and then observe the effects of that
augmentation on its performance on tests of other
constructions. In other words, we ask whether
"teaching" an NLM filler-gap dependencies in one
construction helps it "learn" the dependency in
other constructions. If and only if the NLM acts
consistently with linguists’ conclusion that these
constructions share an underlying representation,
an improvement in performance on one construc-
tion should generalize to others. Our implementa-
tion 4 and models 5 are both publicly available.

4.1 Materials

For embedded Wh-movement, we use the mate-
rials from Wilcox et al. (2023)’s experiment on
complex NP islands. For each of the other 4 con-
structions in (1)-(4), we test a "simple" version
(no island) - where a dependency can be formed
- and an island version - which does not allow for
the formation of a filler-gap dependency. For top-
icalization, we test two versions: one ("topical-
ization without intro"), to closely match the ma-
terials used by Ozaki et al. (2022), in which the
topicalized element has no analog in the no filler
sentences, and one ("topicalization with intro") in
which the filler is replaced with an introductory
string to control for the length of the sentence and
the presence of a comma. See Tables 1 and 2 for a
schema of the design using one construction, cleft-
ing. For each construction, we generate a set of
items with a fixed syntactic template and a vocab-
ulary that varies across the set. We ensure that the
lexical items are all in the RNN’s vocabulary. For
each item, we modulate the presence of a filler,
a gap, and an island structure, generating 8 sen-
tence types per item. Our final testing set contains
486 clefting items, 486 topicalization with intro,
161 topicalization without intro, and 243 tough-
movement items.

4.2 Predictions

Each graph shows the average filler effect with
95% confidence intervals for simple and island
sentences for each construction, before and after
augmentation. For simple constructions, we ex-
pect to see a negative filler effect when the gap
is present (blue bars) and a positive effect when

4https://github.com/umd-psycholing/
lm-syntactic-generalization

5https://huggingface.co/sathvik-n/
augmented-rnns
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the gap is absent (orange bars). This is because a
human-like learner should find a gap less surpris-
ing when a filler is present than when there is no
filler, and vice versa when there is no gap. (See
Section 3.1 for more detail.) For island construc-
tions, we expect that the confidence interval for
the filler effect should overlap with zero because
a human-like knowledge of islands suggests that a
gap should be equally surprising regardless of the
upstream presence of a filler; the same is true in
the no-gap condition, using one of Wilcox et al.
(2023)’s criteria. A less stringent relative metric
for learning islands is a reduced effect relative to
the filler effect in simple sentences (Wilcox et al.,
2023); in other words, the difference in surprisal at
the critical region decreases rather than disappears
entirely.6

4.3 Experiment 1: Training on clefting

Our initial test of the pretrained RNN yielded vari-
ation across constructions consistent with Ozaki
et al. (2022). Based on these results, we chose to
augment the pretrained RNN’s training data with
instances of clefting because it fails to demon-
strate knowledge of islands in clefting; also, cleft-
ing is reported as less frequent compared to Wh-
movement in Ozaki et al. (2022). We hypothesize
that Wilcox et al. (2023)’s robust effects with em-
bedded Wh-movement may be due to the relative
frequency of the construction in the training cor-
pus.

We create a training set for clefting, using the
same syntactic template for test sentences but with
different lexical items. We then retrain the RNN
following the same configurations in Gulordava
et al. (2018), with training data that include all
original training material and 864 additional ex-
amples of grammatical simple clefting. Half the
examples contain a gap, as in (1a), half do not, as
in (1d). We refer to this model as Cleft-RNN.

4.3.1 Results
Simple constructions. We first present the filler ef-
fects for the simple sentences of each construction
of the pretrained RNN (before augmentation) and
Cleft-RNN, plotted in Figure 1. Testing the pre-
trained RNN on simple constructions, we repli-
cate Wilcox et al. (2023)’s findings for embedded
Wh-movement. The pretrained RNN also shows
the desired filler effect pattern in simple sentences

6For an alternative view on capturing island effects in
NLMs, see Section 5 and Ozaki et al. (2022)

for clefting and tough-movement, but not for ei-
ther form of topicalization. For each construc-
tion type, we looked at the two-way interaction of
filler and gap, confirming a positive result for Wh-
movement, clefting, and tough-movement (nega-
tive interaction terms with p < 0.001). The inter-
action effects for topicalization were positive, in-
dicating that the pretrained RNN did not learn the
dependency in either type of topicalization con-
structions.

Training on clefting had no significant effect on
knowledge of the dependency in simple sentences
of any construction, confirmed both by the quali-
tative appearance of the graphs and by the mixed-
effects models for each construction type (negative
interaction terms with p < 0.001). 7 Since Cleft-
RNN did not learn the dependency in either form
of topicalization, we do not report island effects.

Island constructions. The results for construc-
tions containing islands before and after augmen-
tation, presented in Figure 2, are less straightfor-
ward. For no construction did the pretrained RNN
meet the most stringent criteria for recognizing is-
land constraints: that is, both filler effects in the
island condition equaling zero. We do see varying
degrees of reduction in the filler effects for each
construction in the island vis-a-vis the simple con-
dition. We consider each direction of the depen-
dency separately: filled gap effects (FGE, orange)
and unlicensed gap effects (UGE, blue).

The mixed-effects model using Wilcox et al.
(2023)’s methods shows negative filler-gap in-
teraction terms and positive three-way interac-
tion terms for Wh-movement, clefting, and tough-
movement, suggesting that the pretrained RNN
correctly captures island constraints for all con-
structions where it knows the simple dependency.
However, this result is at odds with our qualita-
tive findings, which suggest the model did not
learn the relevant generalization in clefting. We
observe that in the -gap condition (orange bars),
the filler effect is equal in magnitude in both the
simple and island conditions. In fact, the filler ef-
fect is negative, suggesting high surprisal in the
grammatical (-filler, -gap) sentence (see Table 2).
This qualitative result is confirmed by our separate
mixed-effects model for FGEs, which shows sta-

7We did observe changes in effect size, but because we
consider knowledge of filler-gap dependencies to be binary
(either learned or not learned), it is difficult to draw conclu-
sions from minor changes in the effect size that do not change
the status of the significant interaction.
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Figure 1: Filler effects for simple constructions for the pretrained model and Cleft-RNN.

Figure 2: Filler effects for simple and island construc-
tions for the pretrained model and Cleft-RNN. Since
this dependency was not learned for topicalization, we
do not display these results.

tistically significant positive coefficients for Wh-
movement and tough-movement (p < 0.001), but
not for clefting. In the regression models for UGE,
we observe statistically significant negative coeffi-
cients for all three constructions (p < 0.001). In
other words, the pretrained RNN is not sensitive
to FGEs for clefting constructions, consistent with
the qualitative pattern.

We now review Cleft-RNN’s behavior with is-
land constructions. The direction and magnitude
of the effects in the three-way interaction model
are consistent with the conclusion that Cleft-RNN
captures island constraints in clefting and Wh-
movement. For the clefting construction (in other
words, when presented with examples structurally
identical to those it was trained on), our regres-

sion models for FGEs and UGEs support this re-
sult. All coefficients for the UGEs are nega-
tive, and all coefficients for the FGEs are posi-
tive. Cleft-RNN is less sensitive to the presence of
an upstream filler at a filled gap in an island con-
struction than the pretrained RNN, though qualita-
tively the grammatical form is still more surprising
than the ungrammatical form. For Wh-movement,
Cleft-RNN’s confidence interval of the filler ef-
fect for islands in the +gap condition overlaps with
zero, achieving our most stringent criterion for
displaying knowledge of island constraints. Re-
sults were statistically significant, both for clefting
(p < 0.001) and for Wh-movement (p < 0.01),
which was tested on a smaller stimulus set.

In tough-movement, however, augmentation
has a detrimental effect. The magnitude of the
filler effect in the +gap condition for islands is
equivalent to that in the simple cases. The pos-
itive, non-significant interaction term for the re-
gression model for UGEs in tough-movement sup-
ports this observation; Cleft-RNN lacks sensitivity
to islands in tough-movement constructions.

For topicalization, our regression models do not
have the correct signs for either construction type,
confirming, as a qualitative inspection of Figure
1 suggests, that Cleft-RNN does not learn the de-
pendency in these constructions.

4.4 Experiment 2: Training on topicalization

Since neither the pretrained RNN nor Cleft-RNN
are able to arrive at the correct generalization for
cases of topicalization, we now determine if pro-
viding the pretrained RNN with positive direct ev-
idence of topicalization is sufficient for learning
this dependency. We follow a similar procedure
to the previous experiment, generating sentences
from the same syntactic template for topicaliza-
tion with intro and ensuring the lexical items do
not appear in the testing sentences. We augment
the RNN’s Wikipedia corpus with 864 grammati-
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Figure 3: Filler effects for simple and island construc-
tions for the pretrained model and Topic-RNN.

cal examples of topicalization, half with a gap and
half without a gap, and train it using the hyper-
parameters in Gulordava et al. (2018). The aug-
mented model is referred to here as Topic-RNN.

4.4.1 Results
Figure 3 shows filler effects in the pretrained RNN
and Topic-RNN. Training explicitly on simple in-
stances of topicalization does not lead the model
to posit the dependency in both directions. Here,
positive evidence is not enough to learn even the
simple dependency. The regression model does
not show significant effects for basic filler-gap li-
censing in Topic-RNN.

Topic-RNN does learn that the presence or ab-
sence of an upstream filler should modulate sur-
prisal at a gap (UGEs, blue bars), but it fails to
learn the correct relationship between a filled gap
and the absence of an upstream filler (FGEs, or-
ange bars). In fact, Topic-RNN’s surprisal is con-
sistent with the non-human-like hypothesis that
the cheese in the sentence The snacks, Mary
bought the cheese last week is less surprising than
in the sentence In fact, Mary bought the cheese
last week.

5 Discussion

In this paper, we test whether NLMs can gener-
alize knowledge of filler-gap dependencies across
different constructions when their input is aug-
mented with only one construction containing a
filler-gap dependency. The pattern of knowledge
of the pretrained RNN potentially reflects piece-

meal learning, where the frequency of particular
constructions modulates the model’s recognition
of the filler-gap dependency for each construc-
tion type individually (Ozaki et al., 2022). How-
ever, based on the pretrained results alone we can-
not determine whether the NLM’s inferences for
one construction are based on others, hence the
need for an augmentation-based procedure. Ex-
periment 1 found that while Cleft-RNN behaves
differently than the pretrained RNN on clefting,
Wh-movement, and tough-movement, it fails to
generalize systematically across all the types of
filler-gap dependencies we test. Cleft-RNN’s fail-
ure to learn the relevant dependency for simple
topicalization sentences further confirms that these
models do not arrive at their knowledge of filler-
gap dependencies through a shared representation.

Cleft-RNN does improve its representation of
island constraints in clefting, the construction it
was augmented with. However, this improve-
ment still preserves the incorrect prediction for
grammaticality. In this case, positive evidence of
grammatical forms is still insufficient for human-
like learning. This finding supports a conclusion
drawn by Lan et al. (2024): that given sufficient
evidence of a construction, NLMs can arrive at a
correct representation of the constraints. However,
the ability to generalize from one construction ap-
pears weak at best.

Cleft-RNN’s filler effect for Wh-movement is
the only instance among our findings where an
NLM achieves the most stringent measure of is-
lands: a confidence interval overlapping with zero.
However, we are cautious to over-interpret this
finding: our test set for Wh-movement was far
smaller than that of the other construction types.

Further, the failure of Cleft-RNN to capture is-
lands in tough-movement relative to the pretrained
RNN highlights a more pressing issue with NLMs
that rely only on surface distributions: exposure
to one construction type can cause a degradation
in an NLM’s knowledge of a different type, when
the two share superficially similar characteristics
at odds with the dependency. The learner would
then need even more positive direct evidence of
the other type to offset such erroneous conclu-
sions.

We found that the NLM we tested fares worse
at recognizing island constraints than past stud-
ies would suggest: both the pretrained RNN and
our augmented models failed to arrive at the most
stringent measure of islandhood in all cases but
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Wh-movement in Cleft-RNN. We suspect this is
greatly influenced by the frequency of surface
forms of particular constructions, as hypothesized
by Ozaki et al. (2022).

Why, then, did Wilcox et al. (2023)’s method
of using the presence of fillers, gaps, and islands
as predictors of surprisal yield a significant inter-
action for islandhood in instances where the filler
effect suggested otherwise? We believe that the
interaction collapses effects across different com-
binations of features. Our NLMs succeed with
UGEs, which likely obscures their corresponding
failure to recognize FGEs. However, the failure in
FGEs suggests that the NLM is recognizing nei-
ther grammaticality nor the presence of an island.
For FGEs, the filler effect is in the wrong direc-
tion; grammatical continuations (i.e., those with-
out a filler or a gap) are more surprising than un-
grammatical ones (a filler and no gap). This con-
tradicts both the measures for islands proposed by
Wilcox et al. (2023) and Ozaki et al. (2022), who
suggest that rather than no difference at the gap
site, surprisal should align with grammaticality.
Here we find that surprisal does not align with ei-
ther measure and is in fact showing the reverse pat-
tern for grammaticality.

The results of Experiment 1 strongly suggest
that the NLM arrives at its knowledge of filler-gap
dependencies through piecemeal learning and that
positive direct evidence of a filler-gap dependency
in each construction is required to learn the de-
pendency for that construction. We conducted Ex-
periment 2 to explore whether positive evidence
of simple topicalization sentences is sufficient for
Topic-RNN to make predictions consistent with a
human-like understanding of both the simple de-
pendency and islands. Topic-RNN learns to ex-
pect a gap given a filler, but fails to learn the other
direction of the dependency: that in the absence of
a filler, there should be no gap. The model’s fail-
ure to learn the simple topicalization dependency
even in the face of direct evidence is an additional
challenge to claims that language-specific biases
are not necessary to learn such dependencies.

Taken together, the results from Experiments 1
and 2 show that NLMs do not generalize from
a shared representation to learn filler-gap depen-
dencies. Instead, they rely heavily on input that
closely aligns with individual constructions. Fur-
ther, in cases such as topicalization, NLMs ap-
pear to struggle with learning the dependency. Our
findings are particularly important as researchers

consider in what ways NLMs might and might not
serve as good proxies for language learners. Our
work reiterates the importance of specific linguis-
tic inductive biases to model language acquisition.
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Abstract

Interpretability studies have played an impor-
tant role in the field of NLP. They focus on the
problems of how models encode information
or, for instance, whether linguistic capabilities
allow them to prefer grammatical sentences
to ungrammatical. Recently, several studies
examined whether the models demonstrate pat-
terns similar to humans and whether they are
sensitive to the phenomena of interference like
humans’ grammaticality judgements, including
the phenomenon of agreement attraction.

In this paper, we probe BERT and GPT models
on the syntactic phenomenon of agreement at-
traction in Russian using the psycholinguistic
data with syncretism. Working on the language
with syncretism between some plural and sin-
gular forms allows us to differentiate between
the effects of the surface form and of the un-
derlying grammatical feature. Thus we can
further investigate models’ sensitivity to this
phenomenon and examine if the patterns of
their behaviour are similar to human patterns.
Moreover, we suggest a new way of comparing
models’ and humans’ responses via statistical
testing. We show that there are some simi-
larities between models’ and humans’ results,
while GPT is somewhat more aligned with hu-
man responses than BERT. Finally, preliminary
results suggest that surface form syncretism in-
fluences attraction, perhaps more so than gram-
matical form syncretism. 1

1 Introduction2

With the fast development of large language mod-
els (LLMs), interpretability has become (Belinkov

1The code for the experiments is available here: https:
//github.com/bamaxi/agreement-probing.

2For brevity we use the following abbreviations (glosses):
SG – singular number; PL – plural number; NOM – nominative
case; ACC – accusative case; GEN – genitive case; genders:
M – masculine, F – feminine, N – neuter

et al., 2023) an important issue in Natural Lan-
guage Processing. Interpretability studies aim to
explain what LLMs learn during pre-training, for
instance, whether they pick up factual information
or develop language skills. One of the promising
directions of interpretability research is compar-
ing model responses to human acceptability judge-
ments (Lau et al., 2017; Warstadt et al., 2018). A
case in point is the research on the phenomenon of
agreement attraction.

In this paper, we investigate models’ sensitivity
to agreement attraction in light of morphological
syncretism. We design a probing experiment based
on the data from a previous psycholinguistic ex-
periment on humans (Slioussar, 2018). The focus
is on Russian, a language with rich morphology,
which allows us to investigate agreement attrac-
tion interacting with different types of syncretism.
Syncretism is a surface formal identity of grammat-
ically distinct forms like genitive singular polja ‘of
field (GEN.SG)’ and nominative plural polja ‘fields
(NOM.PL)’ being formally identical. This kind of
identity occurs in genitive case and it differs from
accusative case syncretism of some other nouns,
where it is simply the nominative and accusative
case forms that coincide (separately in singular
and in plural): lug ‘meadow(NOM.SG=ACC.SG)’
and luga ‘meadows(NOM.PL=ACC.PL)’. Distin-
guishing accusative and genitive syncretisms is a
unique setup that helps to disentangle the effects
of structure (underlying features) from the effects
of surface forms.
(1) a. Trass-a

path-SG

čerez
across

polje
field

byl-a
be.PST-SG

nov-oj
new-SG

‘The highway across the field was new’
b. Trass-y

path-PL

čerez
across

polje
field

byl-i
be.PST-SG

nov-ymi
new-PL

‘The highways across the field were new’
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Agreement is a grammar rule where grammati-
cal features like number or gender of one linguis-
tic element, the controller, license corresponding
features on a syntactically related element, the tar-
get. In (1a) singular subject trassa is the controller
and requires singular on the verb ‘be’ and adjec-
tive. Similarly, in (1b), plural trassy requires plural.
This type of phenomena is well acquired by peo-
ple (Guasti, 2017), who easily recognize errors
in agreement (see e.g. (Slioussar, 2018)). How-
ever, the task becomes more complicated if the
controller and the target of agreement are sepa-
rated by some linguistic material. It is yet more
complicated, if the surface form of the intervening
material coincides with the form of a potential con-
troller due to syncretism. The agreement errors are
not recognised so easily in this case. The higher
acceptability of incorrect sentences of this type is
called agreement attraction and has been under
research in psycholinguistics (Wagers et al., 2009)
and in NLP. In NLP similar studies have already
been widely conducted on the English language,
revealing the inner workings of language models
(Gulordava et al., 2018; Arehalli and Linzen, 2020),
as well as the relationship between model errors
and human errors (Linzen and Leonard, 2018).

We tackle a more complex question of whether
and how the models parse two kinds of syncretism
that could potentially cause agreement attraction
for Russian. This allows us to finely distinguish
the effect of the surface form from the effect of the
underlying syntactical structure. We employ the
data from a psycholinguistic study of (Slioussar,
2018), measuring Russian speakers reading times
and cloze test completion. This further allows us
to compare model’s behaviour to that of humans.

Our contributions can be stated as following:

• We probe models on the task of agreement
attraction with a new type of data. While
recent studies were done for English, we work
with a morphologically rich language with
case-number syncretism, namely Russian;

• We compare the effect of syncretism to the
effect of the underlying grammatical features

• We supply linguistic research with extra-
human knowledge, showing to what extent
neural networks’ linguistic capabilities are
similar to those of humans on the example of
agreement attraction phenomenon;

• We propose a new way of comparing models’
responses to the results of psycholinguistic
experiments, as we perform more robust sta-
tistical analysis.

2 Related Work

2.1 Probing methodology
The interpretation of behaviour and learned rep-
resentations of language models has been studied
extensively. Belinkov et al. (2020) suggests clas-
sifying probing methods into structural and be-
havioural. Structural methods involve a diagnostic
classifier, i.e. a simpler model, such as logistic
regression, trained atop of embeddings from a big-
ger model. Such methods were criticised (Hewitt
and Liang, 2019; Voita and Titov, 2020) for over-
relying on an external classifier: it is not clear if
the overall results of the studies depend on how
well a model encoded linguistic information, and
not on how well a classifier has been trained. Be-
havioural methods, on the other hand, involve no
such external classifier and exploit models’ inherit
architecture. For example, Salazar et al. (2020)
adapt masked language modelling task to probe
internal linguistic knowledge of BERT.

2.2 Acceptability judgements
In linguistic theorizing, human acceptability judge-
ments are an important tool. These are scores
proxying grammaticality of the sentences (Chom-
sky, 1965; Schütze, 1996), binary (acceptable /
unacceptable) or scalar. These were picked up in
NLP (Lau et al., 2017) and, among other things,
led to the creation of acceptability datasets like
(Warstadt et al., 2018). Similarly, Warstadt et al.
(2020) introduce a probing suite based on minimal
pairs of grammatical and ungrammatical sentences.
The suite covers several semantic, morphological
and syntactic phenomena, such as negative polarity
items, agreement and verb conjugation. It is shown
that various behavioural model metrics can be cho-
sen as analogues to human acceptability scores
to establish preference of one sentence over an-
other, and Warstadt et al. (2020) choose to compare
full sentence likelihood. A similar work was re-
cently done for Russian by Taktasheva et al. (2024).
Indeed, this benchmark included sentences with
attractor under subject-predicate agreement phe-
nomenon, and models scored lower on such sen-

2
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tences than on similar sentences with no attractor.
Our present work differs in that we compare hu-
man and models’ performance on psycholinguistic
data, designed for controlled experimental stud-
ies on human, with focus on syncretism-grammar
comparison.

2.3 Psycholinguistics and neural networks

Since interpretation has become an important part
of NLP research, several works have adapted psy-
cholinguistic data to study how models acquire
language. For example, Li et al. (2021) use psy-
cholinguistic stimuli to study the effect of surprisal
in RoBERTa layerwise showing that the best per-
forming model shows surprisal already in the early
layers. Other works adapt psycholinguistic con-
cepts for better explanation of language model be-
haviour. Sinclair et al. (2022) use the effect of
priming, studied earlier for humans, to see what
can affect LLM’s responses.

Other works directly or indirectly compare re-
sults of the models to human responses. Ettinger
(2020) introduces a suite of several tasks taken
from psycholinguistics to evaluate linguistic abil-
ities of BERT. The author compares humans and
the model on the basis of surface responses, such
as sentence completion. Similarly, Li et al. (2022)
adapt experiments based on the theory of Construc-
tion Grammar to study how different constructions
are perceived by humans and models showing that
transformers can detect constructions. They com-
pare how the results of humans differ from the
results of neural networks on such tasks as sorting
preferable constructions. Wilcox et al. (2021) com-
pare models’ responses to human reaction time for
a suite of syntactic tasks. They show that mod-
els resemble humans in their predictions although
they do not achieve human-like level. Lampinen
(2022) provides detailed discussion of how using
proper psycholinguistic analysis of human evalu-
ation allows drawing clearer insights from com-
paring LLMs to humans while bringing up the
question of fair comparison of human and model
responses.

2.4 Studies of attraction in agreement

Agreement is a phenomenon of licensing gram-
matical features like number or gender by one lin-
guistic element, the controller, on another syntacti-

cally related element, the target. In general, while
proper agreement requires understanding underly-
ing hierarchic structure, subject-verb agreement is
acquired early by human speakers (Guasti, 2017).
Nonetheless, agreement is vulnerable to errors, par-
ticularly in the presence of “attractors” – subject
noun dependents that are not subjects, but could be
erroneously construed as subjects (see 2, 3 below).
(2) a. *The key to the cabinets were rusty

b.**The key to the cabinet were rusty

(3a) *Trass-a

path-SG

čerez

across
polj-a

field-PL

byl-i

be.PST-PL

nov-ymi

new-PL

‘The highway across the fields were new’
(3b)**Trassa

path-SG

čerez
across

pol-e
field-SG

byli
be.PST-PL

novymi
new-PL

‘The highway across the field were new’

Both sentences have longer reading times com-
pared to fully grammatical sentences. However,
sentences (2a) and (3a) show a reduced effect due
to the presence of attractor nouns (cabinets and
polja ‘fields’). Here, these nouns could be con-
strued as subjects and underlined parts could be
proper sentences (see also Figure 1). This creates
an illusion of grammaticality and mitigates the pro-
cessing difficulty arising from the actual violation
of grammar. Attraction of agreement is thus a
grammatical notion, although similar interference
effects are discussed for semantics, too (Timkey
and Linzen, 2023). Hierarchy understanding by
the models has been studied extensively for En-
glish (Gulordava et al., 2018; Arehalli and Linzen,
2020) and agreement attraction in particular has
been compared in models and humans in a work
similar to ours (Arehalli and Linzen, 2020).

One of the main sources of our data comes
from Slioussar (2018). This study explores the
role of syncretism (morphological ambiguity) in
inducing attraction errors in number agreement, in
Russian speakers. Syncretism is a phenomenon
where two distinct moprhological categories are
realized in the same way (Caha, 2019; Baerman
et al., 2005). Unlike English, Russian nouns inflect
for two categories: number and case, thus could
potentially exhibit syncretism. Indeed, genitive sin-
gular polja ‘of field (GEN.SG)’ and accusative plu-
ral polja ‘fields (ACC.PL)’ are formally the same.
Both are, in turn, identical to nominative plural
polja ‘fields (NOM.PL)’ (all of these are, of course,
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distinguished in a context). Slioussar (2018) shows
that surface syncretism in itself, independently of
the underlying grammatical number feature, ex-
plains attraction effects. Thus ACC.PL and GEN.SG,
surface forms both identical to what plural subject
would be (=NOM.PL), show attraction effects, al-
though GEN.SG is underlyingly singular (which
is deducible from the syntactic structure of the
full sentence). Crucially, Slioussar (2018) believes
such data to be difficult for existing theories of
attraction. We test whether the effect holds for
models.

3 Experimental Setup

We study the attraction phenomenon in LLMs and
compare it to human data available from (Slious-
sar, 2018). In these experiments, humans’ reading
time has been measured in relation to the gram-
matical pattern of the sentence. We follow this
approach in our experimental setting, yet we also
propose a model-specific interpretability analysis.
We reproduce the reading time analysis performed
on humans’ data, by introducing the readability-
like metrics for LLM. We offer deeper insights into
how LLMs process sentences of every grammatical
pattern, by analyzing their attention maps.

Our statistical analysis methodology mostly fol-
lows the one of Slioussar (2018), with a few
changes made for the sake of results’ interpretabil-
ity. Since we test the models on the exact same
data on which humans have been tested, we man-
age to avoid uneven comparisons, yet support the
theoretical findings of the original work.

3.1 Models

We work with transformer-based models of dif-
ferent architectures: ruBERT3, an encoder-only
model, and ruGPT4, a decoder-only architecture.

ruBERT (Kuratov and Arkhipov, 2019) was
trained on the Russian part of Wikipedia and news
data with pretraining objectives of Masked Lan-
guage Modelling (MLM) and Next Sentence Pre-
diction (NSP), following the original BERT archi-
tecture (Devlin et al., 2019).

ruGPT-3.5 (Zmitrovich et al., 2024) was trained

3https://huggingface.co/DeepPavlov/
rubert-base-cased

4https://huggingface.co/ai-forever/ruGPT-3.
5-13B

on data from various domains (Wikipedia, books,
and news) with a language modelling pretraining
objective. The model is based on the original archi-
tecture of the GPT-3 model (Brown et al., 2020).

3.2 Data

Abonement

Абонемент

Абонемент

Абонемент

Abonementy

Абонементы

Абонементы

Абонементы

na

на

на

на

на

на

на

на

konsert

konserty

концерты

концерт

концерт

концерт

концерты

концерты

byl

byli

был

были

были

был

были

был

dorogim

dorogimi

дорогим

дорогими

дорогими

дорогим

дорогими

дорогим

A ticket for a concert was expensive

a concert was expensive

*

*

*

*

Abonement

Abonement

Abonement

Abonementy

Abonementy

Abonementy

na

na

na

na

na

na

na

konsert

konsert

konsert

konserty

konserty

konserty

byl

byl

byl

byli

byli

byli

dorogim

dorogim

dorogim

dorogimi

dorogimi

dorogimi

Figure 1: Example of one set of data: Each sentence
exists in 8 variants, formed by different combinations
of the number of the subject (the first word), the at-
tractor (third word), and the predicate (fourth and fifth
words). Words in the singular are highlighted in blue,
and words in the plural are highlighted in purple. Sen-
tences marked with an asterisk (∗) are ungrammatical.

To compare how perception of the attraction
phenomenon differs in humans and models, we use
the dataset prepared for a psycholinguistic study
by Slioussar (2018), provided by the author upon
our request.

The dataset includes in total 80 sentences with
subject-verb agreement, full text is available for
64 of them. All our experiments with the mod-
els use this subset of 64 sentences, while fuller
80 sentence data is available for human response
times (on these see the Section 4.3). All the sen-
tences had the same syntactic structure: subject +
attractor + verb + other_verb_dependents.
The attractor is either in accusative case or in gen-
itive case, splitting the data in halves. Also, in
each of the 64 sentences, the subject, the attractor
and the verb can have a singular or a plural marker
amounting to 8 variants, as Figure 1 illustrates for a
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condition with an attractor in accusative case. The
total number of items is thus 64 ∗ 8 = 512. No-
tably, in all sentences the predicate is an adjective
with byt’ ‘to be’, the verb under examination, as
an auxillary. We concur that using single lemma
limits empirical coverage, but here it facilitates
comparison.

As mentioned, sentences of Slioussar (2018)
each belong to one of the two types. In half the sen-
tences, the context demands that attractor be in the
accusative case and in the other half that it be in the
genitive case. Such setup allowed Slioussar to dis-
entangle the effects of the underlying grammatical
number from the effects of the surface form. This
is because nominative plural is the form that could
attract predicate agreement, and accusative plural
is syncretic (has the same surface form) with nom-
inative plural, while the reverse is true for genitive:
it is genitive singular, that is syncretic with plural,
while genitive plural is not (see Examples 4, 5).
This is the unique property allowing to distinguish
attraction by grammatical features and attraction
by surface form. If attraction errors pattern the
same way in accusative as in genitive, that would
mean that only grammatical number is important.
On the other hand, if these patterns were different
depending on the case, surface form must matter
too.
(4) ACCusative: ACC.PL = NOM.PL, ACC.SG ̸= NOM.PL

a. tropinka cherez lug[ACC.SG] byla/*byli
‘a path trough the meadow was/*were’

b. tropinka cherez luga[ACC.PL] byla/*byli
‘a path trough the meadow was/*were’

c. luga[NOM.PL] byli
‘the meadows were’

(5) GENitive: GEN.PL ̸= NOM.PL, GEN.SG = NOM.PL

a. korobka dlya kraski[GEN.SG] byla/*byli
‘a box for the paints was/*were’

b. korobka dlya krasok[GEN.PL] byla/*byli
‘a box for the paints was/*were’

c. kraski[NOM.PL] byli
‘paints were’

3.3 Methods

To evaluate models’ behavior on the agreement at-
traction, we collect vectors representing model’s
activity when processing each of these 512 items.

Then, inspired by (Slioussar, 2018), we employ sta-
tistical analysis to learn if observed features some-
how reflect the sentence structure.

We hypothesize that eight groups of sentences
can be meaningfully ranked by model’s perplex-
ity: sentences where attraction does happen as de-
scribed above (e.g., 2a, 33a, 4b) should be more
natural than the respective purely ungrammatical
variants (2b, 33b, 4a), but less natural than cor-
rect sentences (6). Moreover, this effect should be
reflected in human reading times.

(6) Predicted ranking of sentence types:
grammatical > attractor > ungrammatical

Most importantly, we expect to see one of three
scenarios Slioussar (2018) outlined regarding the
distinction between syncretism and underlying fea-
tures. To test our hypotheses, we use two methods:
perplexity-based and attention-based methods de-
scribed below.

3.3.1 Estimation of models’ certainty
Due to the differences in architectures and ob-
jectives of ruGPT and ruBERT, a direct compar-
ison of the models’ performance is not feasible.
As the analysis of human behaviour in Slioussar
(2018) was focused on word-level reading times,
our analysis also focuses on word-level rather than
sentence-level predictions.

In general, we want to estimate for each item
how likely the verb is, given a prefix of subject and
attractor (for grammatical items this is the correct
verb form that agrees well with subject, and for
ungrammatical ones — an incorrect form that does
not). Such approach has already been shown to
be effective for the study of attraction in GPT-like
models (Arehalli and Linzen, 2020). Since this
does not translate straightforwardly to BERT, to
facilitate the comparison we establish the following
methodological adjustments:

• ruGPT: we calculate the logarithmic proba-
bility of the first verb after the attractor word
as an estimate of the model’s generation.

ScoreGPT (X) = logpθ(xiverb |x<iverb)

where x<iverb is tokens before verb.
• ruBERT: we use a masked language model-

ing approach. Specifically, we mask all tokens
succeeding the attractor word. The generation
estimate is then determined by subtracting the
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probability of the first masked token from the
overall masked sequence probability.

ScoreBERT (X) = logpθ(xverb|context)
where context is left part of the sentence
(x0, x1, ..., xverb−1).

This approach allows for a relative comparison
of GPT and BERT’s generation capabilities, fo-
cusing on the influence of the attractor word on
subsequent word prediction, despite their distinct
architectures and training objectives.

Both score estimates based on probability for
BERT and GPT are naive implementations in
this case. They may not work for other mod-
els or words (Kauf and Ivanova, 2023) (Pi-
mentel and Meister, 2024). For some models
word prediction estimation is made more diffi-
cult due to the tokenization step, where target
word may be split into several tokens. In our
case, however, we only predict one of four forms
of ‘to be’ word: byl(was)SG,masc and all its
variations byla(was)SG,femn, bylo(was)SG,neut,
byli(were)PL, which are tokenized as a single to-
ken for GPT and BERT.

3.3.2 Appoximating effect from a subject and
an attractor

Apart from perplexity, we extract attention head
projections and compare the attention distributions
between different types of sentences. We take at-
tention scores from each head and layer and then
extract attention used to predict a predicate (an
auxilary verb and an adjective) that comes from a
subject and from an attractor. Therefore, we get
two arrays representing attention from a predicate
on a subject and an attractor respectively. These
scores are averaged across attention heads for each
layer. In other words, we calculate how much im-
pact the subject had on prediction of a predicate
and how much impact the attractor had on predic-
tion of the same predicate. To compare the results
on different sentence types, we use Student’s T-test
with Bonferroni correction.

4 Results and Discussion

4.1 How models perceive different types of
ungrammatical sentences

To check whether models are sensitive to agree-
ment errors in general, we evaluate their qual-

ity with adapted masked language model scoring
(Salazar et al., 2020): we first calculate the scores
(see Section 3.3.1) for each of our sentences and
then we compare two sentences (grammatical and
ungrammatical) that share the same subject and
attractor and differ only in the number of the pred-
icate. The sentence is grammatical if the number
of the subject and the predicate match. We count
the model as answering correctly, if the score for
the grammatical sentence is higher than for the un-
grammatical sentence. The results are summarised
in Table 1, with the results for humans taken from
the experiment 2 in (Slioussar, 2018) where par-
ticipants were asked to complete a sentence. The
tasks for models and humans are rather distinct
and the data doesn’t warrant a direct comparison.
Rather, we are interested in comparing models’
performance on different structures and their trend
to the human trend.

As seen from the table, both ruGPT and ruBERT
perform very well. Moreover, they show similar
error patterns to humans. The sentences where it
was easier to distinguish the correct sentence from
an incorrect one were sentences where both the
subject and the attractor were of the same num-
ber, especially in the singular. Humans show better
results on completing such sentences as well. How-
ever, when the subject and the attractor differ in
number, for humans it was easier when the subject
was in plural, while for both ruBERT and ruGPT
this was more difficult and they made less mistakes
in singular subject + plural attractor structure.

4.2 Comparison of attention scores

We compare attention scores between sentences of
different structures. We calculate paired Student’s
test; Figure 2 shows p-values of such tests after
Bonferronni correction for ruBERT and ruGPT re-
spectively. As seen from the figure, for ruBERT
model, the main significant differences (p < 0.05)
are mostly between correct sentences and similar
sentences with attractors. For example, a correct
sentence of type P_P-P (predicate, subject and at-
tractor are in plural) is significantly different from
structures P_S-P (predicate in plural, subject in
singular and attractor in plural) and S_P-S (pred-
icate in singular, subject in plural and attractor in
singular). However, grammatical sentences do not
differ in attention with ungrammatical sentences

6

285



P_P
-P

P_P
-S

P_S
-P

P_S
-S

S_P
-P

S_P
-S

S_S
-P

S_S
-S

P_P-P

P_P-S

P_S-P

P_S-S

S_P-P

S_P-S

S_S-P

S_S-S

1 0 0.06 1 0.01 1 0.66

1 0.55 0.02 1 0 0.27 1

0 0.55 1 1 0.52 0 0.32

0.06 0.02 1 0.2 0 0 0.07

1 1 1 0.2 0.01 0.12 1

0.01 0 0.52 0 0.01 0 0

1 0.27 0 0 0.12 0 0

0.66 1 0.32 0.07 1 0 0

BERT Object attention

P_P
-P

P_P
-S

P_S
-P

P_S
-S

S_P
-P

S_P
-S

S_S
-P

S_S
-S

P_P-P

P_P-S

P_S-P

P_S-S

S_P-P

S_P-S

S_S-P

S_S-S

0 0 1 0 1 0.68 0.37

0 0 0 0 0 0 0

0 0 1 1 0.02 0 0

1 0 1 1 1 1 0

0 0 1 1 0.01 0.01 0

1 0 0.02 1 0.01 1 0

0.68 0 0 1 0.01 1 0.01
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Figure 2: Results of Student’s pairwise t-test (p-values) for ruBERT and ruGPT verb-to-attractor attention scores
respectively between 8 variants of the sentence. The first letter encodes the number of a predicate (S for singular
and P for plural), the second letter encodes the number of a subject and the third letter encodes the number of an
attractor, for example, P_S-P stands for a sentence where a subject is in singular but an attractor and a predicate are
in plural.

where attractors differ in number with predicates.
Attention scores in ruGPT do not follow a clear

pattern and are most probably affected by other
factors that we do not control as we focus on dif-
ference in number.

Structure ruGPT ruBERT Humans

S-S 1.0 1.0 0.83
S-P 1.0 0.94 0.77
P-S 0.95 0.86 0.79
P-P 1.0 0.97 0.8

Table 1: Comparison of accuracy scores of ruGPT and
ruBERT to the percentage of successfully completed
tasks in the psycholinguistic experiment (figures for
humans are taken from Slioussar (2018)

4.3 Comparison with human results
We employ statistical models similar to those of
Slioussar (2018) and perform regression analysis
in R (R Core Team, 2023) with mixed models
from lme4 package (Bates et al., 2015). We em-
ployed package lmerTest Kuznetsova et al. (2017),
and also pbkrtest Halekoh and Højsgaard (2014),
where applicable, to obtain the p-values of vari-
ables in these mixed models. Below we report
p-value of lmerTest but Kenwald-Roger test of
pbkrtest yields very similar p-values numerically.
The R code for these calculations is also available
in our project repository.

The following comparison is made to data on
human reading times (RT) (Slioussar, 2018), on
which we fit a new model. We evaluate the perfor-

mance of both language models with the following
mixed-effects statistical model (7). The depen-
dent variable is the score (or RT in humans) of
a singular and of a plural predicate given a cer-
tain subject-attractor prefix. Recall, that for every
sentence, there are 4 possible prefixes and 2 pos-
sible numbers for the predicate, thus we have 8
sentence variants. This is a setup similar to Slious-
sar experiments with humans’ RTs when reading
such sentences word-by-word. We thus compare
RT for humans with scores for our models. Al-
though these are, of course, quite disparate values,
we deem them to be the most optimal values for
comparison in the available data. These are both
numeric variables, which we take to be proxying
‘surprisal’ by a given sentence.

Slioussar shows that RTs are, in a sense, delayed
and that predictor variables (described below) are
not significant on the word 4, the verb, first word
of the predicate, but significant on word 5, the par-
ticiple, second word of the predicate. Our model
fitted on word 4 is indeed not significant, thus for
humans we analyze RTs on word 5. We reiterate
that for models we test verb/word 4 scores. Mod-
els and humans are different in how they process
sentences, and we consider such setup to be a fair
comparison.

(7) lmer(Score ∼ N1 +N2 +kind+ (1|Sent))
As random effects we use sentence number

(and participant number for humans, too). Our
predictor variables are the number of the sub-
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Figure 3: Estimates of variables predicting score for models (3.3.1), and reaction time (ms) for humans in data
from (Slioussar, 2018). These proxy ‘surprisal’ but differently: lower model score→ more surprisal, higher human
reaction time→ more surprisal. Coefficients are in dark blue, when p-values computed with lmerTest package
(Kuznetsova et al., 2017) are significant with p-value < α = 0.05.

ject and of the attractor, similarly to Slioussar
(2018), but unlike Slioussar we do not include
interaction terms into the model, opting instead
for three-way encoding of sentence ‘grammatical-
ity’ judged by grammatical features. We distin-
guish grammatical sentences, where verb num-
ber matches subject number, attractor sentences,
where verb number does not match subject number
but matches attractor number and ungrammatical
sentences, where verb number matches neither. We
encode contrasts, such that kind = attractor
falls into intercept, and kind = grammatical
and kind = ungrammatical remain as (one-hot
encoded) variables. Thus, while we also test attrac-
tion effects as does Slioussar, our approach allows
us to test the ranking hypothesis. Recall, that we
predict the ranking in (6) for ‘surprisal’. For mod-
els this should be exactly the ranking of scores and
for humans this should be the reverse ranking of
RTs (least time spent on grammatical sentences
and most on ungrammatical). We show below, that
this is mostly borne out.

Finally, recall that sentences of Slioussar (2018)
each belong to one of the two types: in half of the
sentences the attractor is in accusative case and
in the other half in the genitive case, and case de-
termines surface syncretism (Section 3.2). Thus
syncretism is captured differently: for accusative,
where ACC.PL = NOM.PL – by ‘kind’ variable
above, for genitive, where GEN.SG = NOM.PL –
by ‘attractor number’ variable.

We thus perform regression analysis analysis
for three sets of data: all sentences, accusative

case only sentences, genitive case only sentences.
The first model would inform us of grammatical
tendencies, while the other two models isolating
case would inform us of the effect of surface syn-
cretism. These three regressions are fit on each of
ruBERT, ruGPT and humans data, totalling in 9
experiments.

P-values and coefficients are shown in Figure
3. On full data, for ruBERT all variables achieve
significance and for ruGPT all variables except
attractor number achieve significance. This corre-
lates with investigation into attention heads: there,
similarly, ruBERT seems to attend to the attractor,
while ruGPT does not. The ranking hypothesis in
6 holds, and grammatical sentences receive higher
scores (W > 0) than baseline, attractor sentences,
while absolutely bad sentences (non-grammatical
and without attraction) receive scores lower (W <
0) than baseline attractor sentences. Importantly,
for ruGPT the bigger coefficients indicate stronger
distinction between sentence kinds. This is in line
with its higher accuracy (Table 1). As for the hu-
man data, the result is similar to ruGPT, rather than
ruBERT, with attractor number not achieving sig-
nificance. However, the ranking holds for humans
too: RTs to grammatical sentences are lower (W <
0) than for attractor sentences (interpreted as less
surprisal) while they are higher (W > 0) for totally
ungrammatical sentences.

We now consider two subsets by case indepen-
dently. For accusative case sentences, where syn-
cretism is exactly the (PL = NOM.PL) the results
are very similar to full data results. The ranking
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hypothesis holds. This is because exactly this type
of syncretism (deep, grammatical) is captured well
by feature kind variable. As such, for ruBERT and
ruGPT all variables achieve significance, even at-
tractor number for ruGPT. Again, GPT coefficients
are higher indicating stronger distinction between
sentence kinds. As for human RTs, they are signifi-
cantly different between sentence kinds and follow
the hypothesis. However, the precise numbers of
subject and attractor are insignificant, which would
mean there is no assymetry in agreement with sin-
gular or plural nouns for humans.

Finally, we consider only the sentences with
genitive, where syncretism is GEN.SG=NOM.PL,
so if surface form matters in attraction, singular
would be more “attractive” here than grammat-
ical plural. This is not captured by kind vari-
able, which is oriented on grammatical feature
rather than surface form. Thus featurally un-
grammatical sentences are not significantly dif-
ferent from feature attracting sentences. How-
ever, the attractor number being singular increases
the score of ruGPT, while for full data and ac-
cusative data the reverse was true. Put more ex-
plicitly, it means that grammatical attraction in
genitive plural (P_S-P: Subject =S, kind=attractor,
Attractor=P =⇒ Attractor=Verb=PL) is scored
at −2.31 + (−0.46) = −2.77, lower than surface
form attraction in genitive singular (S_S-P, techini-
cally kind=ungram, Subject = Attractor =S =⇒
Verb=PL) −2.31 + (−0.46) + 0.25 = −2.52 (not
counting the insignificant kind=ungram = −0.26).
Although ruBERT result is inconclusive (perhaps
due to intercept not being significant) we take this
to indicate that at least for GPT it is formal syn-
cretism and not grammatical features, that predicts
the attraction. This is a result similar to (Slious-
sar, 2018). Our model on her human data shows
similar result: RT is not significantly different be-
tween featurally “attractive” and ungrammatical
sentences, while singular attractor reduces RT.

Overall, models seem more sensitive to attractor
number than humans, meaning singular and plural
attractors are treated differently in a setup where
attraction by grammatical number could happen.

5 Conclusion

We explored how models react to errors in subject-
verb agreement, where humans are prone to mis-

takes of attraction. These are ungrammatical con-
texts that look as if agreement happens not with the
subject as a whole, but with subject’s dependent
(2a, 33a).

We find that indeed, like humans, models see
such sentences as more acceptable than ungram-
matical sentences with no attraction, i.e. the rank-
ing in (6) holds for humans and models alike. Most
importantly, we find in genitive, a pattern similar
to what Slioussar (2018) finds, where surface syn-
cretism is more predictive of attraction than gram-
matical number. Recall that in our case attraction
by surface syncretism obtains for genitive singular,
where the attractor is neither nominative nor plu-
ral, while grammatical attraction is expected for
genitive plural. This is a somewhat puzzling result
for humans (Slioussar, 2018) and models alike, be-
cause other tasks show that both are sensitive to
deeper structure.

As for overall accuracy, ruGPT, a decoder model,
was more likely to choose correct sentence continu-
ation, assigning higher probability to the verb form
with the correct number. BERT, an encoder model,
did worse here.

Attention scores investigation does not present a
clear picture, but for ruBERT comparison between
sentences that differ only in attractor are signifi-
cant. This may be the reason for why its scores are
significantly determined by attractor number.

We examined a single phenomenon of agree-
ment attraction in subject-verb agreement on a
constrained dataset from a psycholinguistic study
of Slioussar (2018). We confirmed that ruBERT
and ruGPT exhibit agreement attraction by gram-
matical number. An intriguing preliminary find-
ing, resembling Slioussar (2018)’s results is that
for ruGPT agreement attraction seems more sensi-
tive to formal identity than to grammatical number,
which could be distinguished in Russian genitive
forms.

6 Limitations

This study presents several limitations that necessi-
tate further investigation. The study’s findings are
based on a single experiment focusing on grammat-
ical number agreement and only on one language.
Moreover, a single and frequent verb lemma is
tested. This narrow scope limits the generalizabil-
ity of the results to other grammatical phenomena.
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Future research should explore the observed effects
across a wider range of grammatical structures.

The study compared human performance to that
of language models based on the assumption that
these models demonstrate sensitivity to probabilis-
tic relationships at the word level. However, this
comparison remains indirect. Although the se-
lected models allowed direct comparisons under
specific experimental conditions and successfully
reproduced previously observed grammaticality ef-
fects, other models, even within the same architec-
ture may show different results. Future research
would benefit from exploring the nuances of dif-
ferent language model architectures in relation to
human performance in grammaticality tasks.

Additionally, large language models are used
for research, which implies that even inference on
such models can be difficult with a limited compu-
tational budget.

7 Ethics Statement

In the implementation and evaluation of our pro-
posed approach, we use only publicly available
code to avoid any ethical concerns. We use data
acquired upon request (to Slioussar). The data did
not include any personal data, as each participant
was encoded with a label. i.e. participant 1, 2
etc. To the best of our knowledge, all participants
gave an informed consent to the author of original
studies.
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Abstract

Natural language exhibits various universal
properties. But why do these universals exist?
One explanation is that they arise from func-
tional pressures to achieve efficient communi-
cation, a view which attributes cross-linguistic
properties to domain-general cognitive abilities.
This hypothesis has successfully addressed
some syntactic universal properties such as
compositionality and Greenbergian word order
universals. However, more abstract syntactic
universals have not been explored from the per-
spective of efficient communication. Among
such universals, the most notable one is struc-
ture dependence, that is, grammar-internal op-
erations crucially depend on hierarchical repre-
sentations. This property has traditionally been
taken to be central to natural language and to
involve domain-specific knowledge irreducible
to communicative efficiency.

In this paper, we challenge the conventional
view by investigating whether structure depen-
dence realizes efficient communication, focus-
ing on coordinate structures. We design three
types of artificial languages: (i) one with a
structure-dependent reduction operation, which
is similar to natural language, (ii) one with-
out any reduction operations, and (iii) one with
a linear (rather than structure-dependent) re-
duction operation. We quantify the commu-
nicative efficiency of these languages. The re-
sults demonstrate that the language with the
structure-dependent reduction operation is sig-
nificantly more communicatively efficient than
the counterfactual languages. This suggests
that the existence of structure-dependent prop-
erties can be explained from the perspective of
efficient communication.

1 Introduction

To understand the universals of natural language,
it is crucial to address why such universals exist,
as well as how such universals can be theoretically

described. This raises the question: what kinds of
pressures shape these universals?

One explanation is that the universals of natu-
ral language are shaped as a result of functional
pressures to achieve efficient communication (Zipf,
1949; Jaeger and Tily, 2011; Christiansen and
Chater, 2016; Kemp et al., 2018; Gibson et al.,
2019; Futrell and Hahn, 2022; Fedorenko et al.,
2024). Efficient communication refers to a situa-
tion where the amount of information conveyed is
maximized while the effort required for production
and comprehension is minimized under human cog-
nitive constraints. If some structural property of
languages is shaped to achieve efficient communi-
cation, it can be optimized under two competing
functional pressures: the need to be as simple as
possible and the need to be as informative as possi-
ble.

The hypothesis that two competing pressures for
utilities shape the form of human language has long
been assumed in linguistics (Hawkins, 1994, 2004;
Haspelmath, 2008). In recent years, methodolo-
gies have been established to examine this hypoth-
esis by quantifying the simplicity and informative-
ness of languages by using information-theoretic
criteria (Kemp et al., 2018; Gibson et al., 2019;
Futrell and Hahn, 2022). To date, this hypothe-
sis has been successfully examined at the lexical
level (Ferrer i Cancho and Solé, 2003; Kemp and
Regier, 2012; Piantadosi et al., 2011, 2012; Regier
et al., 2015; Zaslavsky et al., 2018; Mollica et al.,
2021; Steinert-Threlkeld, 2021; Denić et al., 2022;
Trott and Bergen, 2022; Uegaki, 2022; Chen et al.,
2023; Pimentel et al., 2023; van de Pol et al., 2023;
Denić and Szymanik, 2024, inter alia). At the syn-
tactic level, there are pieces of empirical evidence
that grammar itself is shaped to achieve efficient
communication (Gildea and Jaeger, 2015; Futrell
et al., 2020a,b; Hahn et al., 2020, 2021; Clark et al.,
2023), and it has been shown that the existence of
syntactic universals such as compositionality and
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Greenbergian word order universals (Greenberg,
1963) can be explained by this hypothesis (Kirby
et al., 2015; Hahn et al., 2020).

But we do not yet know whether this type of
competition-based account can be extended to
more abstract types of linguistic knowledge that
go beyond mere sensitivity to structure such as
compositionally and word order. A representative
type of such abstract knowledge comes from cases
of what one might call structure dependence, by
which we broadly refer to operations that directly
manipulate structural representations at some level
of linguistic representation. Structure dependence
has traditionally been taken to be a characteristic
and central property of human language (Chom-
sky, 1957, 1965; Everaert et al., 2015); in fact, a
key underlying theme throughout the whole his-
tory of mainstream generative grammar is extreme
skepticism of the idea that such properties can be
reduced to communicative principles. The dogma
in this line of thought has it that abstract syntactic
properties of language are thought to be governed
by domain-specific efficient computation neces-
sary for deriving the structure of language (Hauser
et al., 2002; Chomsky, 2005; Berwick and Chom-
sky, 2016), while communication is viewed as not
essential to the core linguistic competence (Chom-
sky, 2002; Hauser et al., 2002). It is thus crucial
to investigate whether even such syntactic proper-
ties can be accounted for from the perspective of
domain-general efficient communication.

In this paper, we directly address this issue by
examining structure dependence. Specifically, we
investigate whether structure dependence realizes
efficient communication by focusing on coordinate
structures. We design three types of languages: (i)
one with a structure-dependent reduction operation,
which has coordinate structures similar to those
in natural language, (ii) one without any reduc-
tion operations, and (iii) one with a linear (rather
than structure-dependent) reduction operation. The
latter two are conceptually possible but counter-
factual languages. We adopted White and Cot-
terell’s (2021) artificial probabilistic context-free
grammars (PCFGs) to create the three languages.
Then we quantify the simplicity and informative-
ness of these languages and compare their commu-
nicative efficiency. The results demonstrate that the
languages with a structure-dependent reduction op-
eration are significantly more communicatively ef-
ficient than their counterfactual counterparts. This
suggests that the structure-dependent properties in

human language can be explained in terms of effi-
cient communication.

2 Background

2.1 Efficient communication hypothesis

In recent years, many researchers in cognitive sci-
ence and computational psycholinguistics have in-
creasingly focused on attributing cross-linguistic
properties to domain-general cognitive functions.
The central thesis of this strand of research is that
natural language is shaped to achieve efficient com-
munication (Zipf, 1949; Jaeger and Tily, 2011;
Christiansen and Chater, 2016; Kemp et al., 2018;
Gibson et al., 2019; Futrell and Hahn, 2022; Fe-
dorenko et al., 2024). Communicatively efficient
structures are more likely to be learned because
they may be used more frequently and are easier
to process during learning. This can drive changes
in the language that further enhance communica-
tive efficiency (Jaeger and Tily, 2011; Fedzechkina
et al., 2012). Alternatively, the intergenerational
transmission bottleneck in cultural evolution might
lead to the selection of communicatively efficient
languages (Christiansen and Kirby, 2003; Kirby
et al., 2015). In either case, if functional pressures
for efficient communication are at work, languages
are expected to be optimized for efficient commu-
nication.

To test this hypothesis, one approach is to
quantify and compare the communicative effi-
ciency of real languages with logically possible
but unattested counterfactual languages. For exam-
ple, Hahn et al. (2020) showed that real languages
reach an optimal word order under the trade-off be-
tween simplicity and informativeness. Simplicity
refers to how simple the sentences of a language
are as strings, while informativeness indicates how
accurately the meaning can be reconstructed from
the sentences of that language. The communica-
tive efficiency of a language is then defined as the
weighted sum of simplicity and informativeness.
They created counterfactual languages for each of
the 51 natural languages by changing word order
patterns while maintaining the projectivity of de-
pendency structures and calculated the communica-
tive efficiency of all the languages. They found that
almost all of the real languages had significantly
higher communicative efficiency than their coun-
terparts. This indicates that natural language is
shaped by the pressure to enhance communicative
efficiency.
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2.2 Structure dependence

It has long been argued that natural language syn-
tax exhibits structure dependence, the sensitivity
to a hierarchical syntactic structure rather than a
linear sequence of words (Chomsky, 1957, 1965;
Everaert et al., 2015). Grammatical operations are
thus applied based on syntactic structures, not on
linear strings. For instance, yes-no questions in En-
glish are a well-known syntactic phenomenon that
requires a structure-dependent grammatical rule.
In English yes-no questions, the auxiliary of the
main clause moves to the front of the sentence. If
we were to formulate the rule for forming yes-no
questions as move the leftmost auxiliary verb to the
front, which is not structure-dependent, we would
incorrectly transform a sentence The man who is
running is happy into Is the man who running is
happy? The correct transformation should move
the second is from the main clause, resulting in Is
the man who is running happy?

In the same way, it has traditionally been as-
sumed that coordination, which is the focus of this
study, also requires a structure-dependent gram-
matical operation (Chomsky, 1957, 1975 (=1955);
Ross, 1967). For example, the coordinated sen-
tence John ran and swam is derived from John ran
and John swam, and Mary called and praised John
is derived from Mary called John and Mary praised
John, through a structure-dependent grammatical
operation known as Conjunction Reduction (Fig-
ure 1). Conjunction Reduction is formulated as
follows:

(Y +X1 + Z) + CC + (Y +X2 + Z)

→ Y + (X1 + CC +X2) + Z,

(Chomsky, 1957, p.113, with slight modifications)

where X represents any syntactic category, Y and
Z represent any syntactic category or string, CC
represents any conjunction, and + denotes con-
catenation. Conjunction Reduction captures the
fact that coordination is possible between identical
syntactic categories for any syntactic category.1

1In the subsequent linguistic literature, Conjunction Re-
duction has been replaced by a more sophisticated approach
known as Generalized Conjunction (Gazdar, 1980; Partee and
Rooth, 1983), which overcomes some important limitations
of Conjunction Reduction (e.g., Partee, 1970). However, the
fundamental insight of structure dependence in the classical
formulation of Conjunction Reduction is fully retained in Gen-
eralized Conjunction, since the latter can essentially be viewed
as a reformulation of the former at the level of semantic rep-
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(a) A kernel sentence

S

NP

Mary

VP

V

V

called

CC

and

V

praised

NP

John
(b) Reduced sentence

Figure 1: A coordinate structure (b) is derived by ap-
plying Conjunction Reduction, a structure-dependent
reduction operation to a sentence-level coordinated ker-
nel sentence (a).

We aim to investigate whether this structure-
dependent reduction operation contributes to com-
municative efficiency in natural language.

3 Experiment

3.1 Data

Design of languages We designed the following
three types of languages to investigate the impact
on communicative efficiency when a language does
not have a structure-dependent reduction operation
at all:

1. No-reduction language: A language with no
reduction. Only sentence-level coordination
is possible.

2. Structure-reduction language: A lan-
guage with structure-dependent reduction. Co-
ordination is possible between identical syn-
tactic categories.

resentation using lambda calculus and higher-order functions.
This study focuses on the operations applied to structures
at any level. Therefore, the difference between Conjunction
Reduction and Generalized Conjunction is orthogonal to the
following discussion.
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CFG rules

S → NPSubj VP
VP → IVerb | TVerb NPObj |VerbComp SComp
SComp → Comp S
NP → Adj NP | NP PP | NP Rel VP
NPSubj→ Noun CaseSubj | PronounSubj
NPObj → Noun CaseObj | PronounObj
PP → Prep NP
X → X CC X , where X ={NP, Adj, IVerb,

TVerb}

Table 1: Overview of the grammatical rules equipped
in White and Cotterell’s (2021) PCFG. For simplicity,
features such as tense and number are omitted.

3. Linear-reduction language: A language
with linear (rather than structure-dependent)
reduction where repeated expressions in the
same sentence are deleted in a coordinate
structure.

Data generation For each language, the sen-
tences to be evaluated were created using a set of
PCFGs defined by White and Cotterell (2021). The
PCFGs are equipped with six switches to reverse
the linear order of specific heads and dependents,
which results in a total of 26 = 64 word order
patterns in the artificial languages.

The PCFG includes the following basic syntac-
tic categories: verb, noun, pronoun, adjective, con-
junction, preposition, particle, sentential comple-
mentizer, and relativizer. Some features such as
tense (present and past), number (singular and plu-
ral), and grammatical relation (subject and object)
are assigned to categories. The grammatical rules
are defined by the categories, as shown in Table 1.
The combination of categories and features results
in a total of 44 syntactic categories and a lexicon
consists of 1,254 words. Although this grammar is
much simpler than that of real natural languages, it
is sufficiently sophisticated for our purpose of com-
paring structurally different languages. Moreover,
it allows us to simultaneously take into considera-
tion typologically diverse word order patterns.

We used this PCFG to create corpora of the
artificial languages with 64 different word or-
ders. We then constructed the no-reduction,
structure-reduction, and linear-reduction
languages defined above for each of these word
orders. The structure-reduction language
is the direct output of the PCFG. We then ex-
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(a) structure-reduction language
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Figure 2: Examples of the three languages expressing
the same meaning. The word order is set with all six
switches being strictly head-final as in Japanese. For
simplicity, information on number and tense has been
omitted from the syntactic categories in these figures.

panded all of the coordinate structures in the
structure-reduction language to a sentence
level to create the no-reduction language. Fur-
thermore, we applied a linear reduction to the
no-reduction language by deleting all repeated
words in the same coordinate structure to create
the linear-reduction language. The examples
of the tree structures of the three types of artificial
languages are shown in Figure 2.

We measure the communicative efficiencies for
these 64 word orders × 3 types = 192 kinds of
languages.

3.2 Estimating communicative efficiency

Definition of communicative efficiency For
the simplicity/informativeness trade-off, follow-
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ing Hahn et al. (2020), we evaluate simplicity as
a property of the linear sequence, in terms of how
easily the next word in an utterance can be pre-
dicted, i.e., predictability, and informativeness in
terms of how well the syntactic structure behind an
utterance can be reconstructed, i.e., parsability.

Predictability is specifically defined as the neg-
ative entropy, −H(U), of all utterances u in a lan-
guage:

−H(U) =
∑

u∈U
p(u) log p(u). (1)

Here, we define the probability of utterance u as
the product of the probabilities of the words that
constitute the utterance. When the sample size is
sufficiently large, entropy can be estimated as the
mean word-by-word surprisal. Surprisal is a metric
that empirically predicts human behavioral (e.g.,
Demberg and Keller, 2008; Smith and Levy, 2013;
Shain et al., 2024) and neural (e.g., Frank et al.,
2015; Lopopolo et al., 2017; Brennan and Hale,
2019; Shain et al., 2020) data. The mean negative
word-by-word surprisal represents the ease of in-
cremental sentence processing on average under
surprisal theory (Hale, 2001; Levy, 2008).

Parsability is defined as the negative conditinal
entropy, −H(T |U), of the underlying syntactic
structure t given an utterance u:2

−H(T |U) =
∑

t∈T ,u∈U
p(t, u) log p(t|u). (2)

Since semantic calculation in compositional seman-
tics crucially depends on the building of syntac-
tic structures (Montague, 1970; Heim and Kratzer,
1998), we employ a metric of informativeness that
captures how unambiguously the underlying syn-
tactic structure can be reconstructed—both tempo-
rally and globally—as an indicator of how accu-
rately the intended meanings of utterances can be
recovered.

Then, following Ferrer i Cancho and Solé (2003)
and Hahn et al. (2020), we defined a communica-
tive efficiency function as the weighted sum of
predictability and parsability:

Ω(λ) := λpredictability + (1− λ)parsability
(3)

= −λH(U)− (1− λ)H(T |U), (4)
2Hahn et al. (2020) cenceptually defined parsability as

mutual information I(U ; T ) = H(T ) − H(T |U) between
an utterance and its syntactic structure. However, they actu-
ally estimated the value of parsability as −H(T |U) on the
assumption that H(T ) is constant.

where λ is a trade-off parameter ranging from 0 to
1, which represents the contribution of each term.
The objective function that captures the trade-off
between the cost of linguistic expressions and the
likelihood of meaning given the expression has
been used in previous studies (e.g., Ferrer i Cancho
and Solé, 2003; Frank and Goodman, 2012; Kemp
and Regier, 2012; Regier et al., 2015; Hahn et al.,
2020).

Recurrent Neural Network Grammars To ob-
tain the values of predictability and parsability, we
adopted Recurrent Neural Network Grammars (RN-
NGs; Dyer et al., 2016). RNNGs are a generative
model of sentences that explicitly models hierar-
chical structures by processing the action sequence
of shift-reduce parsing. RNNGs can be used for
both language modeling and parsing with the same
model parameters, which is suitable for our pur-
pose here.

In this study, we used the left-corner stack-only
RNNGs (Kuncoro et al., 2018) implemented with
PyTorch3 by Noji and Oseki (2021). We used a
two-layer LSTM, where both the hidden layer and
the input layer have 256 dimensions.4

Left-corner parsing is considered reasonable for
human incremental sentence processing from the
perspective of memory capacity (Abney and John-
son, 1991; Resnik, 1992) and is often assumed as a
model of human sentence processing (e.g., Lewis
and Vasishth, 2005; van Schijndel et al., 2013).
Additionally, it has already been pointed out that
a simple bottom-up strategy without a predictive
process cannot explain the human incremental pro-
cessing of coordinate structures in English at least
when the parser conducts a serial parsing (Sturt
and Lombardo, 2005; Stanojević et al., 2023). This
motivates our choice of a left-corner as a parsing
strategy.

We performed a beam search with a beam size of
100 for inference. We also used word-synchronous
beam search (Stern et al., 2017) with a size of 10.

3https://github.com/pytorch/pytorch/releases/
tag/v1.12.1

4Other hyperparameters are as follows: random seeds are
{3435, 3436, 3437}, optimizer is Adam (Kingma and Ba,
2015), learning rate is 0.001, dropout is 0.3, and batch size
is 128. The code of RNNGs we employed (Noji and Os-
eki, 2021) is available at https://github.com/aistairc/
rnng-pytorch.
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Estimation of communicative efficiency Pre-
dictability for the languages can be obtained by

−H(U) =
∑

u∈U
p(u) log pϕ(u), (5)

and following Hahn et al. (2020), we define the
log-likelihood of each utterance u as

log pϕ(u) :=

N∑

i=1

log pϕ(wi|w<i), (6)

where wi represents the i-th word composing the
utterance and ϕ represents the parameters of the
RNNGs. We can approximate the negative entropy
of u with its Monte Carlo estimate on test data:

−H(U) ≈ 1

|Test Data|
∑

u∈Test Data

log pϕ(u). (7)

We calculated the values of predictability according
to the formula above.

Parsability can be calculated by

−H(T |U) =
∑

t∈T ,u∈U
p(t, u) log pϕ(t|u), (8)

and in the same way, the conditional entropy can
be approximated with its Monte Carlo estimate on
test data:

−H(T |U) ≈ 1

|Test Data|
∑

t,u∈Test Data

log pϕ(t|u).

(9)

Here, we define the log-likelihood of the condi-
tional probability of the tree structure t given each
utterance u as

log pϕ(t|u) :=
N∑

i=1

log pϕ(tbest|w≤i). (10)

Again, wi and ϕ represent the i-th word of the ut-
terance and the parameters of RNNGs, respectively.
tbest refers to the most likely constituency parse in
the word-synchronous beam at each word.

For 192 types of artificial languages, we gener-
ated 20,000 sentences for each and divided them
into an 8-1-1 train-dev-test split for training and
evaluation. For all languages, we trained RN-
NGs on word-by-word using Adam (Kingma and
Ba, 2015) for 10 epochs each with multiple ran-
dom seeds. Then, we calculated the values of
predictability and parsability, normalized by the
number of words, to ensure valid comparisons
across languages with inherently different sentence
lengths.

4 Results

A distribution of the values of communicative ef-
ficiency for the three types of languages, as cal-
culated by RNNGs, is shown in Figure 3. For an
interpretation of the trade-off parameter λ, the pre-
dictability and parsability values of all languages
are z-transformed (i.e., centered and divided by
the standard deviation) before being substituted
into Eq 4. The lines in the figure show the tran-
sitions of the value of communicative efficiency
for λ with a 95% confidence interval (CI). By
finding the coordinates where the lines intersect,
we can observe the behavior of communicative
efficiency for each language depending on the
value of λ. The lower bound of the 95% CI for
structure-reduction intersects with the upper
bound of the 95% CI for linear-reduction at
λ = 0.18. In the same way, the upper bound
of the 95% CI for structure-reduction inter-
sects with the lower bound of the 95% CI for
linear-reduction at λ = 0.93. This indi-
cates that structure-reduction languages are
the most communicatively efficient, at least within
the range of λ values between 0.18 and 0.93.

Additionally, when we examine only pre-
dictability or parsability, their distributions are
shown in Figure 4 and Figure 5, respectively.
The mean values for predictability were ordered
as no-reduction > structure-reduction
> linear-reduction, while for parsabil-
ity, the order was linear-reduction >
structure-reduction > no-reduction, in
which all of the pairs have a statistically significant
difference (p < 0.05/3 by paired t-test with
Bonferroni correction). This indicates that when
only predictability or parsability is individually
considered, the structure-reduction language
may not always be the best option. However,
to satisfy both criteria simultaneously, i.e., to
consider the weighted sum of predictability and
parsability under the parameter λ ∈ [0.18, 0.93],
the structure-reduction language achieves
the highest score of communicative efficiency as
shown in Figure 3.

To further interpret the results of predictabil-
ity and parsability, we plotted least squares re-
gression lines between word position in the sen-
tence and each word-by-word value (Figure 6). For
predictability, only the linear-reduction lan-
guages significantly decline towards the latter part
of the sentence. As for parsability, although the
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Figure 3: Distribution of communicative efficiency for the three types of languages with 95% CI. The x-axis
and y-axis represent the trade-off parameter λ and communicative efficiency, respectively. Both predictability
and parsability are z-transformed for an interpretation of λ. The structure-reduction languages are the most
communicatively efficient under the parameter λ ∈ [0.18, 0.93] for 95% CI.

Figure 4: Distribution of predictability for the three
types of languages. Error bars indicate 95% CI.

linear-reduction languages experience a faster
decrease, the other two languages, which have
longer expression lengths, achieve a lower over-
all score.

5 Discussion

We demonstrated that the structure-reduction
languages, which have the same structure-
dependent reduction operation as natural language,
had significantly higher communicative efficiency
compared to the conceptually possible but coun-
terfactual no-reduction and linear-reduction
languages when we calculated the scores by RN-

Figure 5: Distribution of parsability for the three types
of languages. Error bars indicate 95% CI.

NGs with a trade-off parameter λ ∈ [0.18, 0.93].
This suggests that the structure-dependent reduc-
tion operation prevalent in the natural language
syntax may exist due to functional pressures to sup-
port efficient communication along lines discussed
in Section 2.1. It should be noted that, as Figure 3
shows, when λ is extremely small or large, the
no-reduction or linear-reduction languages
achieve the highest efficiency scores. However, λ
represents the relative contribution of the two terms
to the overall efficiency score. It is difficult to as-
sume a reasonable scenario where only one term is
emphasized. While we do not aim to estimate a spe-

297



(a) Relationship between predictability and word position.

(b) Relationship between parsability and word position.

Figure 6: Relationship between predictabil-
ity/parsability and word position for the three
types of languages. Predictability and parsability here
refer to the negative surprisal and the negative log-
likelihood of the best parse for each word, respectively.
The lines represent the fit of a least squares regression
model for these data.

cific value of λ, empirically, Ferrer i Cancho and
Solé (2003) found in their simulation experiment
that Zipf’s law emerged when λ ≈ 0.41. In addi-
tion, Hahn et al. (2020) demonstrated that gram-
mars optimized at λ ≈ 0.47 captured all 8 of the
Greenberg correlations they investigated, whereas
optimizing solely for predictability or parsability
did not account for all of them.5

When we consider only one of the terms consti-
tuting communicative efficiency, that is, predictabil-
ity (simplicity) or parsability (informativeness),
one of the two counterfactual languages achieves
the highest score. The no-reduction language is
the easiest in terms of prediction, i.e., the estima-
tion of the next word, among the three types. This is
because the language has no reduction, and all sen-

5Hahn et al. defined a communicative efficiency function
as Ω(λ) := λpredictability + parsability and set λ = 0.9.
In other words, while we assigned weights of λ and 1 − λ
to predictability and parsability, respectively, they assigned
weights of 0.9 and 1. Solving the equation λ/(1−λ) = 0.9/1
gives λ ≈ 0.47.

tences are fully represented, so the number of local
patterns for the next word is limited, which makes
prediction easier. For example, in a no-reduction
language where the part of speech at the begin-
ning of a sentence is always X in its word order
pattern, the part of speech following a conjunc-
tion must be X , while structure-reduction and
linear-reduction languages have more varia-
tions, which lead to higher entropy of strings. How-
ever, the no-reduction language is not well-suited
for parsing. As sentence length increases, the num-
ber of potential parses grows exponentially (Church
and Patil, 1982). Since this language lacks reduc-
tion and results in longer overall expressions, the
possible parses at each word position rapidly in-
crease, as shown in Figure 6(b). Consequently, it
is not an optimal design from the perspective of
estimating the underlying structure of an utterance.
In contrast, the linear-reduction language has
shorter overall expressions, resulting in fewer pos-
sible parses at each word position.6 As a result, it
is superior in terms of estimating tree structures.
However, the reduction is too radical, making it
challenging to maintain predictability. As shown in
Figure 6(a), this issue is evident in the latter parts
of sentences in this language, where predictions
become increasingly difficult due to the need to
consider the possibility that previously mentioned
words might have been reduced. In short, a reduc-
tion operation is necessary to enhance parsability,
but it should be applied restrictively so as not to
sacrifice next-word predictability. Balancing the
trade-off between the two, a structure-dependent
reduction is the most preferred design for maximiz-
ing communicative efficiency.

It should be noted that even in natural language,
there are instances of linear reduction operations
such as stripping (Hankamer and Sag, 1976), for
instance shown below, or sentences that retain
sentence-level coordination without reduction for
pragmatic purposes such as emphasis.

(11) Mary took a walk in the park, and Bill too.

However, these phenomena occur as alternative
choices in a language that has a structure-dependent

6The parsability metric used here may overestimate the
informativeness of linear-reduction languages. This met-
ric does not account for whether the estimated tree structure
is correct, nor does it fully capture the inherent ambiguity in
the language. A more accurate approach could involve quanti-
fying informativeness using mutual information (e.g., Ferrer
i Cancho, 2005; Futrell, 2017; Zaslavsky et al., 2018; Hahn
et al., 2020), though this would not change our conclusion.
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reduction operation. Our claim is that a language
lacking a structure-dependent reduction operation
entirely is not preferable from the perspective of
efficient communication.

The results of this study have interesting impli-
cations for theoretical linguistics research. Struc-
ture dependence, a syntactic universal property
we addressed here, has traditionally been argued
to be one of the characteristic features of human
language (Chomsky, 1957, 1965; Everaert et al.,
2015). A prominent view in the mainstream gen-
erative grammar argues that natural language in-
volves domain-specific predispositions and that
syntactic properties of language—including struc-
ture dependence—are best explained from the per-
spective of ‘efficient computation’ reflecting such
predispositions genetically hard-wired in the hu-
man brain (Hauser et al., 2002; Chomsky, 2005;
Everaert et al., 2015; Berwick and Chomsky, 2016).
Under this view, communication is taken to be a
kind of epiphenomenon, not essential to the core
linguistic competence (Chomsky, 2002; Hauser
et al., 2002). However, our results suggest that at
least some structure-dependent properties present
in natural language (such as coordination) can be
explained from the perspective of efficient com-
munication. This does not immediately refute the
dominant research program attempting to explain
linguistic properties from a ‘computational’ per-
spective, but it does indicate that abstract properties
in syntax may not necessarily need to be explained
solely from that perspective. This aligns with the
existing body of research that attempts to explain
various aspects of natural language from the per-
spective of efficient communication (Gibson et al.,
2019; Fedorenko et al., 2024).

6 Conclusion

In this paper, we investigated whether structure
dependence, one of the syntactic universals, re-
flects the optimization for efficient communica-
tion. To address this issue, we focused on co-
ordinate structures and designed three types of
artificial languages: (i) one with a structure-
dependent reduction operation, (ii) one without
any reduction operations, and (iii) one with a linear
(rather than structure-dependent) reduction opera-
tion. We quantified the communicative efficiency
of these languages and compared them. The results
demonstrated that the languages with a structure-
dependent reduction operation were significantly

more communicatively efficient than their coun-
terfactual counterparts. This suggests that the
structure-dependent properties of natural language
can be explained from the functional perspective
of efficient communication.7

Limitations

There is room for improvement in the objective
function for communicative efficiency. Although
we used the mean word-by-word surprisal, condi-
tioned on all preceding words, as a measure of pre-
dictability, human language processing is subject
to short-term memory constraints (Gibson, 1998;
Lewis and Vasishth, 2005; Isono, 2024). Thus, it
is preferable to model predictability in a way that
incorporates lossy memory representation (Futrell
et al., 2020a; Hahn et al., 2021, 2022). Moreover,
the psychological plausibility of the parsability met-
ric should be critically evaluated, both conceptually
and empirically. Since parsability relies on an in-
termediate representation—syntactic structures—it
does not fully capture the direct relationship be-
tween linguistic expressions and their meanings,
suggesting that there is room for further conceptual
refinement.

To the best of our knowledge, this study is the
first to investigate communicative efficiency with
respect to structure dependence. We focused on
coordinate structures with the artificial language
paradigm as a starting point. Of course, a deeper
understanding of structure dependence in language
will require using natural language data and ex-
tending the analysis to phenomena such as agree-
ment and movement that are argued to be relevant
to structure dependence. In future work, we plan
to test the relationship between structure depen-
dence and communicative efficiency by applying
the methodology proposed here to a broader range
of syntactic constructions, using treebanks like Uni-
versal Dependencies (Nivre et al., 2020).

Ethical considerations

We used all tools and datasets following their re-
spective terms and licenses. We employed Chat-
GPT and Grammarly for writing assistance and
utilized ChatGPT for writing experimental code.
We used these tools in compliance with the ACL
2023 Policy on AI Writing Assistance.

7Code for reproducing our experiments is available at
https://github.com/kohei-kaji/coordination.
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Abstract

This paper evaluates whether large language
models (LLMs) exhibit cognitive fan effects,
similar to those discovered by Anderson in hu-
mans, after being pre-trained on human textual
data. We conduct two sets of in-context recall
experiments designed to elicit fan effects. Con-
sistent with human results, we find that LLM
recall uncertainty, measured via token probabil-
ity, is influenced by the fan effect. Our results
show that removing uncertainty disrupts the ob-
served effect. The experiments suggest the fan
effect is consistent whether the fan value is in-
duced in-context or in the pre-training data. Fi-
nally, these findings provide in-silico evidence
that fan effects and typicality are expressions
of the same phenomena.

1 Introduction

Some subfields of AI are explicitly interested in
understanding and mimicking the nature of human
cognition (cognitive modeling, computational psy-
chology, affective computing) but even more im-
plicitly rely on models of human cognition (human-
computer interaction, embodied robotics, collabo-
rative robotics, AI assistive technology, computa-
tional game theory). A model that, through training,
learned to implicitly exhibit human-like cognitive
behaviors could be of tremendous value both to the
explicit study of human cognition as an ethical test
subject, and as a more faithful model of human be-
havior to those fields that seek to develop systems
to work along side human counterparts. We believe
that some large language models (LLM) may be
excellent candidates for such a role.

LLMs process information in a manner that is
fundamentally different from humans. The matrix
multiplications, maximum inner product search,
and perceptron networks may have, at some level,
been inspired by the biological neuronal system.

https://github.com/JesseTNRoberts/Large-Language-
Model-Recall-Uncertainty-is-Modulated-by-the-Fan-Effect

But beyond the superficial, the systems bear no
similarities. In spite of algorithmic and mechanis-
tic dissimilarity, a growing body of work suggests
that by merely training on human-language data,
large language models learn to exhibit human-like
cognitive behaviors as shown in Table 1.

In this paper, we survey the work applying cog-
nitive science inspired evaluations to LLMs to ana-
lyze, understand, and catalog their relation to hu-
man cognition. We extend the existing work by
providing the first investigation of human-like fan
effects à la Anderson and Reder (1999) in LLMs.
This effect is specifically interesting because it has
a relation to the previously studied typicality effect,
and it is understood to be an expression of human
categorization uncertainty that has been precisely
measured through response time delay.

Our results show that (1) some LLMs exhibit
human-like fan effects based on the typicality of
categorical items learned in pre-training; (2) some
LLMs exhibit human-like fan effects based on the
relative frequency of items in the model context;
and (3) with uncertainty mitigated, the observed fan
effect is disrupted. Of the models tested, Mistral
(Jiang et al., 2023) and SOLAR (Kim et al., 2023)
exhibit noteworthy human-like fan effects, includ-
ing nuanced differential fan effects previously ob-
served in humans (Radvansky, 1999).

The results have two practical implications:
LLMs learn to exhibit human-like uncertainty and
that uncertainty may interfere with recall tasks. Our
results additionally provide in-silico evidence that
the fan effect is a special case of typicality as is true
in COBWEB models (Silber and Fisher, 1989).

Understanding the cognitive behaviors acquired
from language is essential to the successful appli-
cation of LLMs in human-adjacent scenarios. Gen-
erally speaking, human-like cognitive effects may
serve to smooth interactions between machine and
human. Alternatively, a minority of discrepancies
may serve to undermine the interactions.
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Phenomena Study by Measure(s) Statistic Significance Systematic Perturbation

Theory of Mind

Bubeck et al. (2023) qualitative — — —
Kosinski (2023) frequency — — —
Sap et al. (2022) frequency — — —
Ullman (2023) frequency — — —

Trott et al. (2023) token probs χ2 + β reported —
Ma et al. (2023) frequency — — —
Li et al. (2023) frequqncy — — —

Logical Reasoning

Binz and Schulz (2023) token probs χ2 + t + β reported —
McCoy et al. (2019) frequency — — —
Lamprinidis (2023) frequency — — —

Yax et al. (2024) token probs χ2 reported —
Lampinen et al. (2023) frequency χ2 + t reported —

Framing &
Anchoring

Binz and Schulz (2023) token probs χ2 + t + β reported —
Jones and Steinhardt (2022) frequency — — —

Suri et al. (2023) frequency — reported —

Decision-Making

Binz and Schulz (2023) token probs χ2 + t + β reported —
Jones and Steinhardt (2022) frequency — — —

Coda-Forno et al. (2024) frequency β reported —
Hagendorff et al. (2023) frequency χ2 reported —

Typicality
Misra et al. (2021) token probs r + ρ reported —

Roberts et al. (2024b) token probs r reported model

Priming
Sinclair et al. (2022) token probs — — data
Roberts et al. (2024b) token probs w reported data + model

Michaelov et al. (2023) token probs — — data
Emotion Induction Coda-Forno et al. (2023) frequency r + t + probit β reported —

Table 1: Review summary of large language model behavioral studies. r = Pearson, ρ = Spearman, β = β-regression,
t = t-test, w = Wilcoxon. Systematic perturbation refers to the presence of noise injected into the model or data to
improve result robustness.

2 Background

The fan effect is a psychological effect in human
categorization behavior, first identified in Ander-
son (1974), where subjects take longer to recognize
and accept or reject concepts that have overlapping
features with concepts previously presented in a
learning set. This has most commonly been stud-
ied using concepts made up of person-place pairs.
More formally, given some training concept set
S = {< X1, Y1 >, ..., < Xn, Yn >}, where X
and Y are features of the concepts, response time
when performing recognition tasks for an arbitrar-
ily chosen query concept < Xq, Yq > is correlated
with the number of times that Xq and Yq occur in
S. The effect is apparent regardless of whether or
not < Xq, Yq >∈ S.

Fan effects have subsequently been found to
present with varying strength across different con-
texts. This tendency is dubbed the differential fan
effect. Differential fan effects have been investi-
gated across object type and concept presentation
modality. It was first identified by Radvansky and
Zacks (1991), in which the fan effect was found to
occur in instances where presented concepts have
the same object associated with multiple places

(that is to say, the object feature had a high fan
value) but not when multiple persons were associ-
ated with a single place (i.e. the place feature had
a high fan value). Radvansky et al. (1993) later
extended this to different object types, specifically
small locations and inanimate objects. Stopher and
Kirsner (1981) found that fan effects do not seem
to present when concepts are presented via images
rather than text, suggesting that differential fan ef-
fect context is affected by modality in addition to
content.

There remains some debate on the mechanism
of the fan effect in human subjects, particularly in
regard to explaining differential fan effects. Rad-
vansky et al. (1993) proposed a mechanism, based
on the concept of mental models, by which subjects
create and maintain models of the world based on
learned facts and that some types of overlap in pre-
sented concepts necessitate the creation of more
models than less overlapping concept sets of the
same size. Anderson and Reder (1999) proposes
a different mechanism, derived from a cognitive
architecture in which fan effects are mediated by
changing weights of edges in the concept network.
This mechanism was further supported experimen-
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tally in Sohn et al. (2004) but challenged for larger
datasets in Radvansky (1999).

Fan effects are found by Silber and Fisher (1989)
in probabilistic categories created by COBWEB to
be a special case of another phenomenon known
as the typicality effect. This would seem to sug-
gest that fan effects may arise as a consequence of
categorization, with a potential explanation being
that items closer to the categorical center are more
likely to collide with other items, leading to recall
uncertainty, while items further from the center are
less likely to experience aliasing.

Typicality, first formalized and identified in hu-
mans by Rosch (1975), refers to a tendency of hu-
mans to perform categorization tasks quicker when
prompted with a more typical member of a cate-
gory than with a less typical member of a category,
with level of typicality determined by how common
the features of an instance of a category are among
all members of the same category and among con-
trasting categories. That is, both an item’s intra-
category similarity and its inter-category similarity
affect typicality assessments. For example, given
pictures of two birds, a robin and a penguin, human
subject response time will be higher when answer-
ing whether the penguin is a bird than whether the
robin is a bird.

2.1 Prior Work
In Table 1, the results of a comprehensive survey
of current work in LLM cognitive behavior studies
is provided. No works could be found that study
language model fan effects. Though Tung (2024)
studied memory interference behavior in LLMs
and use fan values in their analysis, they do not
explicitly consider the fan effect or its presence.

On the other hand, work has been done that
establishes the presence of typicality effects in
LLMs (Misra et al., 2021; Bhatia and Richie, 2022;
Roberts et al., 2024b) as well as vision models
(Upadhyay et al., 2022). Bhatia and Richie (2022)
found that BERT shows evidence of typicality ef-
fects, including consistency with typicality vio-
lations common to humans. Misra et al. (2021)
recreated a subset of the experiments conducted by
Rosch (1975) which were used to identify typical-
ity effects in humans, identifying typicality effects
across numerous categories and models. Roberts
et al. (2024b) replicated Misra et al. (2021) with
PopulationLM, establishing that the effect was not
eroded when studied in a population.

Roberts et al. (2024b) found that the population

standard deviations tended to positively correlate
with typicality in encoder-only models, though not
in decoder-only models. This suggests that the un-
certainty captured by LLM variance may not be
analogous to human uncertainty since LLMs are
overwhelmingly based on the decoder-only archi-
tecture (Roberts, 2024).

3 In-Pretraining (Typicality) Fan Effect

Anderson originally observed the fan effect in the
response times of humans when correctly respond-
ing to questions. However, in Silber and Fisher
(1989), the authors observed human-like fan ef-
fects in a COBWEB model and found they were
consistent with a special case of typicality. Based
on this observation and extant work regarding the
presence of typicality effects in LLMs, we hypothe-
size that LLMs may exhibit a fan effect induced by
the relative typicality of categorical items acquired
from pretraining. Specifically we formulate RQ3.1.

Research Question 3.1. Given a partial list of
items drawn from a category and presented to an
LLM, are absence/presence prediction probabilities
modulated by item typicality such that probabilities
conditioned on typical items tend to be lower than
those conditioned on less typical items?

Expanding on this, based on results from
(Roberts et al., 2024b), more typical items tend
to have increased predicted word probability even
when counterfactual prompting is used, most likely
due to base rate probability effects (Moore et al.,
2024). However, if a fan effect is present, the prob-
ability should tend to decrease with increasing typ-
icality.

It is important to note that LLM probabilities are
not necessarily analogous to human response times.
However, existing work (Misra et al., 2021; Roberts
et al., 2024b) has shown that typicality judgments,
which have been measured via response time in
humans (Rosch, 1975), are correlated with LLM
probabilities.

3.1 Methodology

Models: All experimental trials are conducted
among a systematically perturbed population
formed from each base model using PopulationLM
(Roberts et al., 2024b) to decrease the likelihood
that obtained results are anomalous. The median
value is the preferred aggregation when random
sampling for the purpose of estimating a true value
(Doerr and Sutton, 2019). Therefore, the median
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In-pretraining Fan Effect Prompt
Following is a list that contains a
number of birds. After the list,
a bird will be judged as either
present or absent in the list. If the
list contains the bird, answer with
present. If the list does not con-
tain the bird, answer with absent.
The list of birds is: toucan, mag-
pie, swan, flamingo, duck, goose,
blackbird, pelican, woodpecker, con-
dor, canary, ostrich, redbird, catbird,
lark, parakeet, hummingbird, blue-
jay, bluebird, sparrow, crow, vulture,
cardinal, turkey, chicken, goldfinch,
wren. According to the list, mag-
pie is present. According to the list,
kingfisher is absent. According to
the list, robin is____

LLM
P (present) and P (absent)

Figure 1: Prompt to measure presence/absence belief.

across each base model population is taken as the
group prediction.

We choose RoBERTa (Liu et al., 2019), GPT-
2 (Radford et al., 2019), Llama-2 (Touvron et al.,
2023), Llama-3 (Meta, 2024), Mistral (Jiang et al.,
2023), and SOLAR (Kim et al., 2023) as the base
models for the experiments. RoBERTa and GPT-
2 are chosen as representatives of models previ-
ously studied and found to exhibit typicality effects
(Roberts et al., 2024b). However, past work has
found that higher order human-like behaviors may
not be exhibited in smaller models (Roberts et al.,
2024a). We therefore include large open source
LLMs (Llama-2, Llama-3, Mistral, and SOLAR)
that may be more likely to exhibit more nuanced
recall effects.
Data Presentation: Based on work by Rosch
(1975) regarding human typicality judgments
across items in ten categories, we construct lists for
each of the ten categories in Figure 3 by randomly
selecting half of the items in a category. Selected
items are included precisely once in a comma sep-
arated list with instructional content and two in-
context examples. The in-context examples are not
randomly sampled and are instead consistent across

all experiments.
For each item (N≈60) in each category and ev-

ery model population member (N=50) we obtain a
probability of absence and a probability of presence
via counterfactual prompting (Moore et al., 2024).
The probability is measured by obtaining the prob-
ability assigned to the canary words “present” and
“absent” given each constructed prompt. We repeat
each experiment for each base model for each cate-
gory 10 times without reuse of populations or item
lists. An example interaction for the category bird
and the item robin is shown in Figure 1.
Human Comparison: The values for human typ-
icality ratings are taken from Rosch (1975) and
compared to the generated model probabilities to
understand how typicality, as understood from hu-
man studies, impacts model behavior when per-
forming recall.
Other Hardware and Software: All experiments
used an A100 GPU Google Colab environment.
Token likelihoods were obtained using a fork of the
minicons Python library (Misra, 2022).

Figure 2: Top row: Mistral and SOLAR show signifi-
cant negative Pearson correlations consistent with fan
effects across a range of categories. Bottom row: Items
present in the context do not elicit a human-like fan
effect.

3.2 Results
As noted, the fan effect was only observed by An-
derson in humans when responding correctly to
questions. Thus, only the true absence group (TAG)
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Figure 3: Left col: Predictions are made using Mistral. Right col: Predictions are made using SOLAR. Bottom
row: queried item is present (w/o uncertainty). Top row: queried item is absent (with uncertainty). Fan effects are
evident in the negative Pearson correlation (shown in Figure 2) in the natural group above the noise floor.

and true presence group (TPG) should be consid-
ered candidate scenarios that may exhibit a human-
like fan effect.

In the upper left plot in Figure 3, there is an
obviously distinct group which resides above the
threshold (0.35), which we refer to as the proba-
bility noise floor. We interpret the group above
the noise floor to be the TAG, that is the subset of
absent items which the model regards as absent.
The TPG, the subset of present items which the
model regards as present, can be analogously seen
in the bottom left with a noise floor at (0.5). Among
predictions in the TAG, the probabilities have an
obvious negative correlation with typicality, show-
ing that more typical items tend to induce lower
“absent” probabilities. We find that SOLAR (Kim
et al., 2023) shows a similar fan effect, with TAG
and TPG noise floor at (0.2).

The noise floor observed in both SOLAR and
Mistral is an empirical observation which warrants
additional consideration. From our investigation,
the fan effect in LLMs is modulated by the probabil-
ity magnitude. Therefore, low probability outputs
induce noise in the observation of the fan effect in
the model probabilities which are shown for com-
pleteness in Figure 3 but filtered in the correlation
analysis shown in Figure 2.

Interestingly, in the lower left of Figure 3 the
TPG for Mistral has positive correlations which are
inconsistent with the fan effect. This is reflected
in the bottom of Figure 2 as well. SOLAR, on the
other hand, tends toward inter-category random-
ness in the bottom of Figure 2.

3.3 Discussion

In response to RQ3.1, we find in Figure 3 that
items absent from the list elicit a human-consistent
fan effect evident in the canary probabilities in
Mistral (Jiang et al., 2023) and SOLAR (Kim et al.,
2023). The probabilities show a significant (r>0.3)
(Hinkle et al., 2003) correlation with intra-category
typicality in Figure 2 consistent with the fan effects
discovered in COBWEB and theorized in humans.
This result shows that LLMs exhibit fan effects
based on the effects of typicality present in the
pretraining data.

RoBERTa (Liu et al., 2019), GPT-2 (Radford
et al., 2019), Llama-2 (Touvron et al., 2023), and
Llama-3 (Meta, 2024) were equivalently evalu-
ated but showed no significant correlation, though
Llama-3 does show a similar, slight effect. We ad-
ditionally conducted the correlation investigation
presented using the population variance in place of
the token probabilities and found no significant cor-
relations. This reinforces the possibility put forth
in Roberts et al. (2024b) that decoder-only LLM
variance may not capture human-like uncertainty
given fan effects are understood as an expression
of human uncertainty.
Interpretation: We were surprised to find the fan
effect exhibited in the TAG but not the TPG. How-
ever, in retrospect this could have been anticipated
based on nuanced consideration of the experiment.

The fan effect is canonically explained as a mod-
ulation of human uncertainty based on the categor-
ical distance from an exemplar. When evaluating
the TPG, the model is able to judge with near cer-
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tainty by retrieving the queried item. On the other
hand when judging the absence of a TAG item, the
model can only know that the item has not been
retrieved. The model assigns the probability of ab-
sence although it may actually be that the item is
present but overlooked, inducing uncertainty. We
hypothesize this uncertainty is precisely what the
fan effect is modulating. So, when queried about
an absent atypical item, the model responds confi-
dently as if implying, “I definitely didn’t see that”.

The above scenario in which the fan effect is
only observed in the absent case seems plausibly
consistent with human cognitive behavior. Imagine
a context in which a human has a deck of cards
and is asked if a card is present. If the card is
found, then the person will have no uncertainty
about their response. On the other hand, if the card
is not found, the certainty of the response would be
expected to be modulated by the fan effect. That is,
if an unusual or outlier card is being searched for
then it is likely that the person would notice if it
had been present. However, it is reasonable that a
human could more easily overlook a common card.

We hypothesize that the uncertainty mitigation
due to access to the queried items in the TPG leads
to the disruption of the fan effect in Mistral and
SOLAR. Our results leave unclear the nature of the
fan effect under mitigated uncertainty in the TPG.

3.4 Next Steps

Future work should consider creating long context
lists that prevent models from retrieving TPG items
with high fidelity to attempt to induce uncertainty
and fan effects in the TPG. This was not possible
currently since no extant lists of intra-category typi-
cal items in humans are sufficiently long. However,
it may be possible to use LLMs to augment the
typicality datasets to create a sufficiently large list.

Results from Mistral suggest that fan effects
without uncertainty tend toward a typicality effect
response with increasing probability as typicality
increases. However, results from SOLAR suggest
that they tend toward noise. Future work should
additionally attempt to disambiguate the nature of
the fan effect when uncertainty is mitigated.

Future work should investigate human behav-
ior in a scenario similar to the described card ex-
periment to understand human fan effect behavior
under mitigated uncertainty.

4 In-Context Fan Effect

We investigate the presence of fan effects as origi-
nally defined in Anderson (1974) in the context of
concepts composed of categorical features. This ad-
dresses the question of whether fan effects show up
in concepts defined and fan values induced exclu-
sively in-context. We formulate this as RQ4.1. We
augment our analysis to investigate the presence
of differential fan effect as described in Radvansky
and Zacks (1991), providing RQ4.2.

Research Question 4.1. Given a list of simple con-
cepts defined by their composite features that is pre-
sented to an LLM, are absence/presence prediction
probabilities modulated by feature fan values such
that probabilities conditioned on high fan features
tend to be lower than probabilities conditioned on
low fan features?

Research Question 4.2. Given a list of simple con-
cepts defined by their composite features that is
presented to an LLM, is correlation of absence/p-
resence prediction probability with fan value modu-
lated by the fan values of one feature more strongly
than another feature?

4.1 Methodology

We closely recreate the experimental methodology
of Anderson (1974), with methods similar to those
described in section 3.1 for in-pretraining fan ef-
fects.

Models: Based on the results regarding in-
pretraining fan effects, we conduct in-context fan
effect experiments with populations formed from
Mistral and SOLAR using PopulationLM. The ex-
periment uses a generated model population of size
N = 50 with median aggregation across popu-
lation to determine group prediction. As before,
probabilities are obtained using the canary words
“present” and “absent”.
Data Presentation: Concepts are defined as nat-
ural language facts that pair persons, in the form
of occupation labels, with places. Each fact is pre-
sented as a sentence of the form “The <occupation>
is in the <place>”. Features are sampled from pre-
defined person and place lists, each of size 20. The
fan value is defined as the number of concepts that
contain a given feature value. For example, if three
distinct concepts indicate a person is present in
the place “School”, the fan value of “School” is
3. Concept lists are randomly generated to control
for ordering effects and feature combination base
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rates due to semantically connected features (e.g.
<Priest, Church>).

No. of Concepts per Person

1 2 3

N
o.

of
C

on
ce

pt
s

pe
rP

la
ce 1

aA dD gG
bB eE hH
cC fF iI

2

jJ eK gJ
kK rR hR
lL iL

3

mM dM gM
nN rN hN
oO fO iO

Table 2: Feature assignment pattern used in Anderson
and Reder (1999) and replicated in the in-context fan
effect experiment.

The concepts in the recreation of Anderson are
generated exactly as in Anderson (1974). A pre-
defined set of feature combinations are used, as
summarized in Table 2, which are designated by
lowercase letters for persons and uppercase letters
for places. The person and place assigned to each
letter is randomly selected without replacement at
the beginning of each trial. The result is N=26 con-
cepts presented to the model in each trial, with a
total of 16 fan value combinations (including fan =
0 for features not present in the set).

Prompts presented to the model follow prompt
design similar to that in section 3.1. The prompt is
composed of four sections: An instructional pream-
ble, the concept list, a two-shot ICL example, and
the test query. The ICL examples include a concept
that is appended to the end of the concept list that
is guaranteed to not be generated. This guaranteed
concept is followed by two example queries and
simulated outputs, one where the concept is the
guaranteed present concept and one with a guaran-
teed absent concept.

An example prompt in which the concept <Doc-
tor, Park> is shown in Figure 4. Note that <Me-
chanic, Mall> is included in all trials and has a
guaranteed fan value of 1 for both features, while
<Airport, Pilot> is absent in all trials.
Human Comparison: The data pairings gener-
ated are based on the data presented to humans in
Anderson and Reder (1999) which were shown to
illicit the fan effect in human recall.

In-Context Fan Effect Prompt
Following is a list that contains a
number of people and the places in
which they are located. After the
list, a person will be judged as ei-
ther present or absent in a specified
place. When asked about person A
in place B, if the list says that person
A is in place B, answer with present.
If the list does not say that person
A is in place B, answer with absent.
The list of people and places is: The
Nurse is in the Studio. The Police
Officer is in the Bank. . . . The Me-
chanic is in the Mall. According to
the list, in the Mall, the Mechanic
is present. According to the list, in
the Airport, the Pilot is absent. Ac-
cording to the list, in the Park, the
Doctor is____

LLM
P (present) and P (absent)

Figure 4: Prompt to measure presence/absence belief.

Other Hardware and Software: All experiments
are conducted on an A100 GPU Google Colab en-
vironment. Token likelihoods were again obtained
with a modified version of the minicons library
(Misra, 2022).

4.2 Results
The results for both models are shown in Figure
5. As was the case in the in-pretraining experi-
ments, a probability noise floor was noted in the
data for both canary completions (Mistral-absent:
0.3; Mistral-present: 0.4; SOLAR-absent: 0.45;
SOLAR-present: 0.4), providing a TAG and TPG.
The figures are truncated to show only the TPG
and TAG datapoints. Correlation statistics of the
results are shown in Figure 6, with solid columns
indicating correlations with a p ≤ 0.01.

In Mistral, we once again see an obvious neg-
ative correlation between canary probability and
fan value in the TAG predictions. This is consis-
tent with a fan effect when evaluating absence of
a concept (RQ 4.1). In the TAG, we see a stronger
correlation with the fan value of the person fea-
ture than with the fan value of the place feature,
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Figure 5: Results of the Anderson recreation experi-
ments on SOLAR and Mistral Top row: queried item is
absent with the model predicting true absence (with un-
certainty). Bottom row: queried item is present with the
model predicting true presence (w/o uncertainty). Lines
of best fit are included. Pearson correlations shown in
Figure 6.

supporting a positive result for RQ 4.2. This is con-
sistent with results regarding differential fan effects
in Radvansky and Zacks (1991), which found that
the fan effect is mediated more by the fan of a par-
ticular object than the fan of a particular location.

SOLAR shows a slightly different story. For the
TAG predictions, we still see a significant negative
correlation when correlating with the fan of per-
son, but a positive correlation with fan of place.
TPG predictions instead show a negative correla-
tion against fan of place and no correlation against
fan of person. While this seems inconsistent with
our Mistral results, it is consistent with our prior
interpretations when properly analyzed. Based on
these results, SOLAR and Mistral both show evi-
dence of the fan effect in, at minimum, the same
situations as in humans, which is to say uncertain
contexts and based on the fan of person.

From the in-pretraining experiment, we expect
that mitigated uncertainty in the TPG may lead
to disruption of the fan effect. In confirmation,
among TPG items all correlations fail to achieve a
significant p value for fan value and canary prob-
ability Pearson correlation, again suggesting that
mitigated uncertainty disrupts the fan effect.

Figure 6: Negative correlations when the queried item is
absent suggests items are recalled with higher certainty
when the item has fewer in-context appearances (low fan
value). Fan values derived from the queried person show
fan effects while place fan values cause a distruption of
the fan effect. No “present” item queries have significant
p values though all “absent” item queries do.

4.3 Next Steps

There are numerous enhancements that could be
applied to these experiments. While occupations
were chosen as proxies for persons to be consis-
tent with Anderson (1974), more unique identifiers
like names may yield a stronger differential fan
effect if the mental models mechanism proposed
by (Radvansky and Zacks, 1991) is present in lan-
guage models. This should be tested empirically
in future work to investigate the nature of differen-
tial fan effects. Additionally, other feature types
that are not related to persons and places should be
investigated.

Human cognitive experiments often include a
dimension of elapsed time between training and
testing time when studying memory-sensitive be-
haviors. Future work should consider simulating
this time separation in language models. Though
language models do not possess a directly analo-
gous temporal dimension, experiments could evalu-
ate the injection of semantic noise of varying length
as a potential proxy. In fact such an experiment
may suggest that time, to humans, is itself a form
of semantic noise.

5 Conclusions

Our experiments are the first to evaluate LLMs for
the presence of human-like fan effects. We have
shown that Mistral and SOLAR have learned to ex-
hibit fan effects from training on human language
data. This paper is not the first to identify SO-
LAR and Mistral as important human-like LLMs.
Roberts et al. (2024a) found SOLAR and Mistral to
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be significantly more human-like than a large body
of other open-source models when evaluated in a
game theoretic context. Given Mistral was built
from Llama-2 and SOLAR was built from Mistral,
the authors propose the more human-like behavior
may be the result of an improved representation ac-
quired through additional training of Mistral with
sliding window attention.

Our results show that fan effects are present both
when the fan value is induced in-pretraining in the
form of intra-category typicality and when the fan
value is induced in-context in the form of repeated
items within a list. The presence of typicality-based
fan effects in language models lends further cre-
dence to the findings of Silber and Fisher (1989)
suggesting that fan effects are a special case of
typicality effects.

Additionally, we find that when uncertainty is
mitigated, the fan effect is disrupted with divergent
disruption patterns across LLMs. The divergent
patterns across Mistral and SOLAR beg further in-
vestigation. However, we are unaware of any cog-
nitive science literature that addresses fan effects
in a disruptive scenario with mitigated uncertainty.
Therefore, it is unclear how a human may behave
in a similar context. We therefore call for human
experiments.

Similarly, when the fan value is derived from
place instead of person in the Anderson experiment,
both Mistral and SOLAR exhibit a disruption of the
fan effect in agreement with nuanced work regard-
ing differential fan effects (Radvansky and Zacks,
1991). Again, each of these models diverges in the
nature of the disruption but shows a consistent pat-
tern of fan effects in the case of true absence when
the fan value is calculated on the person feature.

Finally, we hope this paper will prove synergistic
with the wider cognitive science and computational
linguistic communities. By adapting experiments
to evaluate the presence of known human cogni-
tive effects in LLMs, we may gain new insight into
cognitive effects. These insights not only help to
explain the factors which influence the behavior of
complex language models but also provide new po-
tential hypotheses regarding the cognitive behavior
of humans.

6 Practical Implications

Human-like uncertainty is shown to be present in
Mistral and SOLAR in the form of a fan effect both
when the fan value is induced in the pretraining

of the model and in the context. However, just
as found in Roberts et al. (2024b), the common
measures of model uncertainty, variance and stan-
dard deviation, may not tend to correlate well with
human uncertainty as quantified by the fan effect.
This suggests that more work needs to be done
to develop a human-consistent measure of LLM
uncertainty.

Additionally, the fan effect should be considered
when engaging LLMs in applications that require
recall. The results here suggest that LLMs may
have more trouble correctly evaluating the presence
or absence of (1) items when the item is frequently
present in the pretraining data and (2) coincident
items when the base item is frequently present in
the context of the model.
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Abstract
With the steep rise in multimodal content
on social media, multimodal sarcasm detec-
tion has gained widespread attention from re-
search communities. Existing studies depend
on large-scale data, which is challenging to
obtain and expensive to annotate. Thus, in-
vestigating this problem in a few-shot sce-
nario is required. Overtly complex multimodal
models are prone to overfitting on in-domain
data, which hampers their performance on
out-of-distribution (OOD) data. To address
these issues, we propose Continuous Attentive
Multimodal Prompt Tuning model (CAMP),
that leverages the prompt tuning paradigm to
handle few-shot multimodal sarcasm detec-
tion. To overcome the siloed learning pro-
cess of continuous prompt tokens, we design a
novel, continuous multimodal attentive prompt
where the continuous tokens intricately en-
gage with both image and text tokens, enabling
the assimilation of knowledge from different
input modalities. Experimental results indi-
cate that our method outperforms other mul-
timodal baseline methods in the few-shot set-
ting and OOD scenarios. Our few-shot dataset
and code is available at https://github.com/
mr-perplexed/camp.

1 Introduction

Sarcasm is a figurative language where the utter-
ance conveys a meaning opposite to the literal
meaning of the words used. Detecting sarcasm
is important for effectively understanding senti-
ment (Maynard and Greenwood, 2014; Badlani
et al., 2019), hate speech (Frenda, 2018; Yang et al.,
2022a), and users’ opinions on social media (Tin-
dale and Gough, 1987; van Eemeren and Grooten-
dorst, 1992; Averbeck, 2013; Ghosh et al., 2021).
With the rise in multimodal content on social me-
dia platforms, multimodal sarcasm detection has
gained widespread attention from research com-
munities. Multiple modalities provide a crucial
clue to ascertain the sarcastic nature of a post since

deciphering sarcasm from uni-modal (only text or
image) content may be highly ambiguous or un-
specified.

Current approaches for multimodal image-text
sarcasm detection (Cai et al., 2019; Pan et al.,
2020; Xu et al., 2020; Liang et al., 2021; Liu et al.,
2022a; Liang et al., 2022; Tian et al., 2023; Wen
et al., 2023) suffer from some major challenges.
These models primarily rely on large annotated
datasets to achieve good performance. However,
these datasets are difficult to obtain, and annota-
tion is expensive and highly challenging due to
socio-cultural and contextual dependencies (Rock-
well and Theriot, 2001; Ivanko and Pexman, 2003;
Dress et al., 2008; Oprea and Magdy, 2019). Dis-
tant supervision techniques for labeling, like the
use of special markers such as #sarcasm on Twitter,
introduce additional noise in the form of wrong la-
bels (Davidov et al., 2010; González-Ibáñez et al.,
2011). Due to the complex structure of these mul-
timodal models, they tend to overfit on in-domain
data causing a reduction in performance for out-of-
distribution (OOD) data.

Prompt-based methods have gained popularity
in few-shot learning as they enable Pretrained Lan-
guage Models (PLMs) to generalize to new tasks
with minimal or no training data as PLMs can serve
as knowledge bases (Petroni et al., 2019; Jiang
et al., 2020) due to their large-scale training on
huge corpora. Hence, it is imperative to use prompt-
based method for our task.

Most of the existing prompt-based works on
downstream tasks are based on prompt-based fine-
tuning (Cao et al., 2022; Yang et al., 2022a,b;
Yu and Zhang, 2022), where discrete prompts are
given as inputs to PLMs, and the entire PLM is fine-
tuned to fill up the mask token. This poses three
main challenges. First, finding the right prompt
in the discrete token space is difficult and often
yields sub-optimal performance. Changes in token
count drastically impact results (Liu et al., 2021).
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Second, training all model weights increases pa-
rameters, memory use, and training time. Lastly,
fine-tuning pre-trained language models often leads
to catastrophic forgetting (Wang et al., 2022; Zhai
et al., 2023), reducing generalizability and perfor-
mance on out-of-distribution data due to changes
in the pre-trained weights.

Motivated by the shortcomings of traditional
multimodal approaches and discrete prompt-based
techniques, we explore the idea of Prompt Tuning
(Li and Liang, 2021; Lester et al., 2021), a new
paradigm involving PLMs where task-specific con-
tinuous prompts are learned during training, keep-
ing the parameters of the PLM frozen. Further, in
the vanilla Prompt Tuning approach, a significant
limitation arises from the frozen nature of the pre-
trained language model (PLM). This constraint re-
sults in independent learning of continuous prompt
tokens without integrating knowledge on how to
attend to both image and text tokens effectively. To
address this challenge, we propose a novel model:
CAMP (Continuous Attentive Multimodal Prompt
Tuning) model for few-shot multimodal sarcasm
detection. To begin with, we design multimodal
continuous prompts with text and image modali-
ties. We also use captions of the images as the third
modality to bridge the semantic gap between im-
age and text. Our approach enhances the model’s
ability to better learn the continuous prompt tokens
by incorporating multimodal information and intro-
ducing attentive mechanisms, thereby significantly
improving its capacity to attend to both image and
text tokens seamlessly.

Our results show that using only 0.3 fraction of
the entire PLM parameters, CAMP can achieve
state-of-the-art results in few-shot multimodal sar-
casm detection. CAMP also shows strong perfor-
mance on the OOD setting. In summary, the main
contributions and findings of this paper are listed
below:

1. To the best of our knowledge, this study is
the first to investigate multimodal sarcasm de-
tection in a few-shot setup using continuous
prompt tuning paradigm.

2. We propose CAMP, a parameter efficient
model leveraging novel continuous attentive
multimodal prompt.

3. Our extensive experiments on two benchmark
datasets showcase our model’s superiority

over strong multimodal baselines in a few-
shot and OOD setting.

4. We present a comprehensive analysis of dif-
ferent prompt-based techniques including
prompting, prompt-based finetuning, and
prompt tuning on our task.

2 Related Work

2.1 Multimodal Image-Text Sarcasm
Detection

The field of sarcasm detection started with text as
the sole modality. Prior works (Joshi et al., 2015;
Khattri et al., 2015; Joshi et al., 2016; Amir et al.,
2016; Zhang et al., 2016; Poria et al., 2016; Ghosh
et al., 2017; Agrawal and An, 2018; Agrawal et al.,
2020; Babanejad et al., 2020; Lou et al., 2021;
Liu et al., 2022b) use different sequence model-
ing techniques, along with external cues like author
information, conversation context, etc, to detect the
incongruity present in the text. With the rise in
the usage of multimodal content on social media,
researchers shifted their attention towards multi-
modal sarcasm detection. (Schifanella et al., 2016)
was the first to perform the task of multimodal sar-
casm detection with text and image modality. This
work used manually designed features to detect in-
congruity between the two modalities. (Cai et al.,
2019) released a new image-text dataset based
on Twitter and proposed a hierarchical early and
late fusion method to combine the two modalities.
Work by (Xu et al., 2020) employed decomposition
and relation network to identify cross-modality in-
congruity and semantic association. Study by (Pan
et al., 2020) showed that sarcasm could arise from
either intra-modal or inter-modal associations. So,
they proposed a self-attention-based model to cap-
ture intra and inter-modal incongruity. (Liang et al.,
2021, 2022) used graph neural networks over in-
modal and cross-modal graphs to detect sarcasm.
To model both granular-level and abstract-level in-
congruities, (Liu et al., 2022a) used hierarchical
semantic interactions between image-text modali-
ties. (Wen et al., 2023) proposed a Dual Incongruity
Perceiving (DIP) network, which combines seman-
tic intensified distribution modeling and siamese
sentiment contrastive learning modules to distin-
guish between sarcastic and non-sarcastic samples.
(Tian et al., 2023) proposed a Dynamic Routing
Transformer model to adaptively capture the inter-
modal contrast between image and text to identify
sarcasm.
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Unlike traditional methods relying on extensive
annotated data and training of PLMs like BERT
(Devlin et al., 2019) as foundational components,
our approach operates in a few-shot learning sce-
nario, utilizing a frozen PLM. This strategy proves
effective in handling the scarcity of sarcasm annota-
tions while achieving state-of-the-art performance
with only a fraction of the PLM parameters.

2.2 Multimodal Prompt-Based Approaches

Recent studies have used prompt-based methods
for various multimodal NLP downstream tasks like
visual QA (Liu et al., 2022c; Chappuis et al., 2022;
Guo et al., 2022; Ossowski and Hu, 2023), senti-
ment analysis (Gao et al., 2021; Yang et al., 2022b;
Yu et al., 2022; Yu and Zhang, 2022; Hosseini-Asl
et al., 2022), and hate speech detection (Cao et al.,
2022; Ji et al., 2023; García-Díaz et al., 2023; Cao
et al., 2023).

Most of these approaches have either focused on
prompting or prompt-based finetuning paradigms.
However, a detailed study on using continuous
prompts for multimodal sarcasm detection is yet
to be explored. To this end, we propose a continu-
ous prompt tuning approach to tackle multimodal
sarcasm detection with attentive prompts.

3 Proposed Approach

3.1 Problem Definition

Given a multimodal sample xj = (Tj , Ij), where
Tj = {t1j , t2j , ...., tnj } is the text and I is the as-
sociated image, the task is to assign xj a label
yj ∈ Y = {sarcastic, nonsarcastic}. Tradi-
tionally, the task of multimodal sarcasm detec-
tion has been formulated as a binary classifica-
tion task, wherein the model outputs two prob-
abilities corresponding to the label space Y =
{sarcastic, nonsarcastic}. The sample is clas-
sified based on the higher probability label. We
reformulate the task as a Masked Language Mod-
eling Problem. Given a PLM M , M is prompted
with multimodal input to fill the [MASK] token,
which represents the labels Y .

3.2 Multimodal Prompt Tuning

We propose a novel model called CAMP
(Continuous Attentive Multimodal Prompt Tuning)
model for few-shot multimodal sarcasm detection.
Figure 1 shows the overall architecture of our pro-
posed model. In this sub-section, we elaborate on
the design of continuous multimodal prompt, while

in the next sub-section, we delve into incorporating
attention mechanism into the continuous prompt
tokens to generate continuous attentive multimodal
prompt.

Given a multimodal sample consisting of text
Tj and an associated image Ij , text modality Tj

can be directly fed to the PLM. However, PLMs
are not designed to accommodate image modality
information. To curb this, following (Yang et al.,
2022b), we generate pseudo-visual tokens. First,
the original image Ij is passed through ResNet, and
it is then projected into the text feature space using
a weight matrix W t and bias vector bt, as depicted
by the equation:

Vj = W t ∗ResNet(Ij) + bt (1)

The Vj is then reshaped, Vj = reshape(Vj) =
{v1j , v2j , ..., vpj }, where Vj ∈ Rp×vdim to generate
the final visual tokens where p is the number of
image token slots and is kept as a hyperparameter.
After introducing the visual tokens, to further re-
duce the gap between image and text modalities, we
generate caption Cj using a vision-language model
BLIP-2 (Li et al., 2023), where Cj = BLIP2(Ij).
BLIP-2 combines frozen pre-trained image models
with language models for representation and gener-
ative learning. This helps BLIP to achieve state-of-
the-art performance in image captioning task. With
these at our disposal, we design our multimodal
prompt template Z as follows which can be fed
to the PLM for it to generate the [MASK] token:
Z(Tj , Cj , Vj) = [Vj ] Tweet text : [Tj ]
Caption : [Cj ]. [MASK]

Subsequently, the PLM embeds Z as a series of
m discrete tokens by passing through its encoder,
creating an embedding matrix F ∈ Rm×hdim .

Now, we design our continuous prompts. In
the prompt tuning paradigm introduced in (Li and
Liang, 2021), learnable vectors called continuous
prompt tokens are added to the prompt being fed to
PLM. These continuous tokens are generated from
a prompt encoder, particularly multilayer percep-
tron or LSTM networks. During training, instead
of fine-tuning the PLM, these continuous tokens
are learned for the task at hand. This differs from
the approach of prompting or prompt-based fine-
tuning. In prompting, discrete prompt tokens are
employed to query the PLM without modifying
the PLM, while in prompt-based finetuning, all
the PLM weights are updated. Figure 2 presents a
schematic difference between the paradigms.

316



Figure 1: Architecture of our CAMP model.

Figure 2: Schematic Representation of a) Prompt-Based
Finetuning strategy and b) Prompt Tuning strategy.

We prepend the continuous learnable tokens to
the prompt, which are represented by the matrix
H = {h1, h2, ...., hk} ∈ Rk×hdim , where k is the
number of continuous prompt tokens. The param-
eters of the underlying prompt encoder is repre-
sented by ϕ. H is then combined with the embed-
ded input F , resulting in a unified matrix [H;F ] of
dimensions R(k+m)×hdim . This combined matrix
called the PLM input embedding matrix, forms the
input for the PLM.

3.3 Attentive Multimodal Prompt Tuning

A significant drawback of the vanilla continuous
prompt tuning approach is the siloed learning pro-
cess for continuous prompt tokens, overlooking the
essential integration of knowledge required for ef-
fectively attending to both image and text tokens.

This happens because the weights of the PLM are
frozen in prompt tuning, hindering the function of
the attention mechanism. Thus the model cannot
focus on specific parts of the input sequence when
generating outputs, failing to capture dependencies
and relationships between different tokens.

To address this issue, we design a continuous
attentive multimodal prompt, where the learnable
vectors can attend to the non-learnable or fixed to-
kens before passing through the PLM layers. We
reason that this would capture the dependencies
between the learnable and fixed tokens, and act as
a substitute for the frozen attention layers of the
PLM. We segregate the PLM input embedding ma-
trix [H;F ] into two parts, learnable tokens H and
non-learnable or fixed token embeddings F , where
H = {h1, h2, .., hk} and F = {f1, f2, .., fm}.
[CLS] and [MASK] token embeddings are ig-
nored. To find out which learnable tokens attend
to which fixed tokens, we parameterize the token
embeddings and find out their dot product using
the following equations.

Ha = W hH (2)

F a = W fF (3)

S = HaF a, S ∈ Rk×m (4)

S denotes the attention scores of the learnable
tokens with each of the other fixed tokens.

For learnable token hl, we calculate its relative
attention score attnl from S.
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attnl = σ(
1

m

m∑

i=0

Sli) (5)

We define the new set of learnable tokens as
H̃ = {h̃1, h̃2, ..., h̃k}, where,

h̃l = attnlhl (6)

The attentive learnable token matrix H̃ is then com-
bined with the embedded input F , resulting in a
unified matrix [H̃;F ] of dimensions R(k+m)×hdim .
This combined matrix forms the final input and is
passed through the PLM to generate the [MASK]
token.

3.4 Model Training and Prediction
We feed our final input embedding matrix E =
[H̃;F ] to the PLM M . The [MASK] token in E
helps to recast the problem into a cloze-filling task.
The objective of M is to model the probability of
predicting class yj ∈ Y as:

P (([MASK] = yj)|E) =
eWyjO[MASK]

∑
yj∈Y eWyjO[MASK]

(7)
where O[MASK] is the hidden representation of
[MASK] token and Wyj is the final layer weight
of the PLM M . The parameters are optimized by
using cross-entropy loss. We update the parameters
of the continuous vector tokens ϕ, the projection
weights, W h, and W f during the training process,
while the entire set of weights for M is frozen.

4 Experiments

4.1 Datasets
We evaluate our model CAMP on two benchmark
datasets MMSD (Cai et al., 2019) and MMSD2.0
(Qin et al., 2023). MMSD2.0 builds upon MMSD
by removing spurious cues and re-annotating the
unreasonable negative samples. Following (Yu and
Zhang, 2022), we randomly sample 1% of the train-
ing data with two different seeds for our few-shot
setting, keeping the number of samples equal for
each category. We maintain |valid| = |train|,
while the number of samples in the test set is kept
the same. The statistics of the dataset are presented
in Table 1.

4.2 Experimental Settings
We use BERT-base-uncased as our PLM and NF-
ResNet-50 (Brock et al., 2021) as our visual en-
coder. Both these backbone networks are kept

frozen while training. We map the label space of
both MMSD and MMSD2.0 datasets from {0, 1}
to {No, Y es}, where the label Y es denotes a sar-
castic sample. Following (Yu and Zhang, 2022),
to account for variation in performance, we exper-
iment three times for each split, totaling 6 (3×2)
training runs for each dataset. We report the mean
Accuracy (Acc), mean Macro-F1 (F1), and the stan-
dard deviation across the 6 runs. We set the batch
size to 16 and the learning rate to 1e-4 for both
datasets. The number of continuous prompt tokens
is set to 50 for MMSD and 80 for MMSD2.0, while
image token slots are fixed at 3 for both datasets.
The maximum token length for the PLM is 128.
We run our model for 20-100 epochs and pick the
model that performs best for the validation set for
testing. Additional hyperparameter details are in
the Appendix section A.1

4.3 Baselines
We compare our proposed model CAMP with four
groups of baselines in a few-shot setting.

1. Text Modality: We compare with TextCNN
(Kim, 2014), a CNN based text classification
model, and BiLSTM (Graves and Schmid-
huber, 2005). We finetune standard BERT
(Devlin et al., 2019) to compare with our
model as it uses a BERT-based adaptation.
LM-BFF (Gao et al., 2021) uses generated
text prompts tailored to each dataset and text
demonstrations to address few-shot text clas-
sification tasks. LM-SC (Jian et al., 2022)
builds on LM-BFF by incorporating super-
vised contrastive learning for few-shot text
tasks. We also compare a variant of our model
CAMP(w/o img) without the image and cap-
tion tokens.

2. Image Modality: Similar to (Cai et al., 2019),
we use the image embedding of the pooling
layer of ResNet (He et al., 2015) for sarcasm
classification. We also benchmark on ViT
(Dosovitskiy et al., 2020), a transformer-based
vision model. We also compare a variant of
our model CAMP(w/o txt) without the text
and caption tokens.

3. Image + Text Modality (Full-Shot): We
compare our model with state-of-the-art multi-
modal models for sarcasm detection designed
for full dataset setting. HFM (Cai et al., 2019)
used hierarchical early and late fusion to fuse
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Train Valid Test
Dataset Pos Neg Total Pos Neg Total Pos Neg Total
MMSD 99 / 8642 99 / 11174 198 / 19816 99 / 959 99 / 1459 198 / 2410 959 / 959 1450 / 1450 2409 / 2409
MMSD2.0 99 / 9572 99 / 10240 198 / 19816 99/1042 99 / 1368 198 / 2410 1037 / 1037 1072 / 1072 2409 / 2409

Table 1: Statistics of MMSD and MMSD2.0 dataset in the few shot setting. For splits presented as X/Y, X represents
the few-shot data sampled while Y represents the total data. The total train split represents approximately 1% of the
total training data with |valid| = |train|, while the number of samples in the test set is kept the same.

MMSD MMSD2.0
Modality Method Acc F1 Acc F1

ResNet 0.664 (0.1) 0.602 (1.2) 0.638 (1.3) 0.625 (0.5)
Image ViT 0.611 (1.6) 0.522 (1.7) 0.560 (2.8) 0.614 (0.5)

CAMP(w/o txt) 0.664 (2.7) 0.635 (3.2) 0.659 (1.9) 0.645 (2.2)
TextCNN 0.631 (2.8) 0.549 (2.5) 0.568 (0.7) 0.570 (1.6)
BiLSTM 0.602 (1.7) 0.560 (2.3) 0.499 (2.1) 0.595 (2.1)

Text BERT 0.667 (2.2) 0.665 (3.1) 0.590 (2.9) 0.623 (2.4)
LM-BFF 0.695 (2.7) 0.688 (2.3) 0.637 (1.4) 0.626 (2.5)
LM-SC 0.698 (1.4) 0.681 (0.8) 0.640 (0.7) 0.632 (1.5)
CAMP(w/o img) 0.696 (1.7) 0.678 (1.5) 0.613 (0.3) 0.560 (2.0)
HFM 0.612 (1.3) 0.598 (1.1) 0.561 (0.2) 0.361 (0.3)

Image+Text Attn-BERT 0.707 (1.7) 0.696 (1.3) 0.659 (1.6) 0.683 (1.8)
(Full-Shot) HKE 0.503 (2.3) 0.667 (2.8) 0.408 (1.5) 0.579 (1.3)

DIP 0.704 (2.7) 0.698 (2.3) 0.685 (2.8) 0.658 (2.6)
DynRT 0.583 (0.1) 0.487 (0.6) 0.518 (2.9) 0.513 (3.2)
PVLM 0.712 (0.6) 0.699 (0.2) 0.665 (2.2) 0.658 (2.1)

Image+Text UP-MPF 0.707 (2.4) 0.701 (2.6) 0.669 (0.4) 0.663 (0.1)
(Few-Shot) CAMP(w/o attn) 0.716 (0.5) 0.697 (0.7) 0.662 (0.2) 0.652 (0.4)

CAMP 0.729 (0.9) 0.717 (1.0) 0.692 (2.8) 0.681 (2.3)

Table 2: Performance comparison of existing methods with our proposed model CAMP. The best results across
metrics are highlighted in bold. Numbers in bracket indicate standard deviation.

image, text, and image attributes. D&R Net
(Xu et al., 2020) uses semantic association.
Attn-BERT (Pan et al., 2020) used a self-
attention mechanism to model intra and inter-
modal incongruity. InCrossMGs (Liang et al.,
2021) used GCN to model self and cross-
modal interaction. A cross-modal image-text
GCN is used by CMGCN. (Liang et al., 2022)
HKE (Liu et al., 2022a) used a hierarchi-
cal interaction network to model both gran-
ular and abstract level incongruities. DIP
(Wen et al., 2023) network integrates senti-
ment contrastive learning with semantic mod-
eling. DynRT (Tian et al., 2023) used a Dy-
namic Routing Transformer model.

4. Image + Text Modality (Few-Shot): Due to
the lack of few-shot multimodal baselines for
our task, we adopt two state-of-the-art base-
lines from the Multimodal Sentiment Analysis
task. PVLM (Yu and Zhang, 2022) directly
introduces the image features to pre-trained
language. UP-MPF (Yu et al., 2022) uses pre-
training data with tasks based on PVLM. We
also compare a variant of our model named as
CAMP(w/o attn) without the attention mod-
ule.

We run all the baseline models in their original
settings on our few-shot data splits and report the
results. The original codes for some of the base-
lines are not available, and hence we don’t include
them in our comparisons.1

4.4 Main Results

Following (Yu and Zhang, 2022), we report the
results on the randomly sampled 1% of the training
data in Table 2. Our findings are as follows: (1)
CAMP outperforms all other baseline methods for
both datasets in unimodal as well as multimodal
settings. This demonstrates the efficacy of continu-
ous attentive prompts to leverage pretrained knowl-
edge to classify instances accurately. It can be ob-
served that the performance of CAMP, along with
all other baselines, decreases for the MMSD2.0
dataset. This is because certain cues important for
sarcasm, like hashtags and emojis, have been com-
pletely removed from the text in MMSD2.0. (2)
For the unimodal methods, text modality methods
perform better than image modality methods in
MMSD. This shows that textual features provide
more sarcastic cues. (3) For the image modality

1Original codes for D&R Net and InCrossMGs are not
publicly available, while CMGCN uses extra attributes which
is not available.
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MCMD
Strategy Method Acc F1

Attn-BERT 0.477 (0.3) 0.474 (0.1)
Multimodal DIP 0.545 (1.2) 0.545 (0.8)
Baselines DynRT 0.519 (1.6) 0.518 (1.4)

PVLM 0.564 (1.8) 0.541 (1.3)
UP-MPF 0.582 (2.1) 0.577 (1.9)

Prompt-Based PTd
1 0.578 (0.5) 0.509 (0.8)

Finetuning PTd
2 0.584 (1.7) 0.374 (1.9)

Prompt- CAMP(w/o attn) 0.588 (0.4) 0.516 (0.7)
Tuning CAMP 0.601 (1.3) 0.591 (1.6)

Table 3: Performance comparison on OOD setting. Dis-
crete Templates PT d

i used in Prompt-Based Finetuning
are listed in Table 6.

MMSD MMSD2.0
Method Acc F1 Acc F1
w/o cap 0.694 (1.3) 0.671 (0.2) 0.655 (1.2) 0.636 (1.7)
w cap 0.729 (0.9) 0.717 (1.0) 0.692 (2.8) 0.681 (2.3)

Table 4: Ablation on caption tokens for CAMP model

methods, CAMP(w/o text) outperforms other base-
lines across both the datasets. This observation is
interesting because although PLMs are pretrained
on text, our attentive, continuous prompt can still
effectively attend to the visual tokens and guide
the PLM to classify sarcastic samples correctly. (4)
Contrary to the general perception that multimodal
methods should outperform unimodal ones, we find
that this does not always hold true for few-shot
scenarios. We hypothesize that in a multimodal
scenario, the baseline models necessitate a larger
parameter count for training, with only a limited
amount of supervised data, which directly results
in subpar performance. Our model CAMP out-
performs the best multimodal baseline by 1.7% in
MMSD and 0.7% in MMSD2.0 dataset. This is be-
cause CAMP only learns instance-specific continu-
ous prompts while keeping the PLM frozen. Thus,
CAMP can effectively utilize the knowledge base
of the PLM while generating dynamic prompts that
guide the PLM for better classification.

4.5 Out-of-Domain Evaluation

To assess the generalization ability of CAMP, we
evaluate it on a new dataset, which we call MCMD
(Multi-modal Code-Mixed Memes Dataset), intro-
duced by (Maity et al., 2022). As there are only two
publicly available multimodal sarcasm datasets, we
opt for this dataset due to its similarity in nature
and the presence of labeled sarcasm. To construct
MCMD, we filter out memes without sarcasm la-
bels or those that are code-mixed, resulting in
306 samples (183 sarcastic and 123 non-sarcastic).
Since MMSD2.0 is a more balanced dataset, we

Figure 3: Performance comparison of CAMP and
CAMP(w/o attn) over MMSD and MMSD2.0 datasets
for various token lengths.

train all models with it and test on MCMD.
It can be observed from Table 3 that our model

shows a stronger generalization ability than other
multimodal baselines2 and methods in prompt-
based finetuning strategy. We reason that since we
don’t change the PLM weights for CAMP during
training, the PLM can retain its inherent knowledge
of language understanding, which results in better
performance for cross-dataset setup. We also ob-
serve that within the prompt tuning strategy, CAMP
outperforms CAMP(w/o attn) because the contin-
uous prompt vectors in CAMP can attend to the
input modality tokens and thus can adapt to gener-
ate different continuous prompts based on the input
instance.

5 Ablation Experiments

With our ablation experiments, we try to answer
the following research questions. (1) Is contin-
uous attentive multimodal prompt better than its
non-attentive counterpart? (2) How effective are
continuous prompt tokens over their discrete coun-
terparts for multimodal sarcasm detection? (3) Do
captions reduce the semantic gap between image
and text modalities?

5.1 Attentive vs Non-Attentive

We evaluate CAMP and CAMP(w/o attn) on vari-
ous continuous token lengths namely {10, 20, 30,
40, 50, 80, 100}. Figure 3 shows that accuracy in-
creases for both models across both datasets as the

2HFM and HKE cannot be compared as they required
external attributes which is not present for MCMD dataset.
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MMSD MMSD2.0
Strategy Method Acc F1 Acc F1
Prompting PTd

1 0.601 0.375 0.569 0.362
PTd

2 0.574 0.504 0.551 0.474
Prompt-Based PTd

1 0.735 (0.4) 0.722 (0.3) 0.692 (1.6) 0.680 (1.6)
Finetuning PTd

2 0.746 (0.9) 0.731 (0.8) 0.688 (1.9) 0.687 (1.9)
Prompt CAMP(w/o attn) 0.716 (0.5) 0.697 (0.7) 0.662 (0.2) 0.652 (0.4)
Tuning CAMP 0.729 (0.9) 0.717 (1.0) 0.692 (2.8) 0.681 (2.3)

Table 5: Performance comparison of discrete vs continuous prompt-based methods. For Prompting approach, we
only prompt the model on test set using the templates in Table 6. Hence, we do not report any standard deviation.

Discrete Prompt Templates Label Words

PTd
1 = [Vj ] Tweet Text: [Tj ] Caption: [Cj ]

Is the sentence sarcastic? [MASK]
Yes/No

PTd
2 = [Vj ] Tweet Text: [Tj ] Caption: [Cj ]

The sentence is [MASK]
Sarcastic/Neutral

Table 6: Description of various discrete prompt tem-
plates that we design for ablation experiments. Here
PT d

i is the discrete prompt template i. Here [Vj ] stands
for visual token slots, [Tj ] stands for textual token slots
while Cj represents caption token slots.

number of tokens increases up to a certain point,
after which the performance degrades. We reason
that as prompt length increases, the PLM’s ability
to effectively capture the contextual nuances of the
task at hand increases. However, after a certain
point, the information learned by these tokens be-
comes redundant, which leads to overfitting. We
find that CAMP performs superiorly over almost all
continuous prompt token lengths than CAMP(w/o
attn), with an average accuracy gain of +2.2% for
MMSD and +1.33% for MMSD2.0 datasets. This
shows the effectiveness of our attention module,
which potently captures the dependencies between
continuous tokens and the input tokens of text and
image modalities.

5.2 Discrete vs Continuous

To demonstrate the effectiveness of continuous at-
tentive multimodal prompt over its discrete counter-
parts, we formulate two discrete prompt templates,
one in the declarative form and the other as an in-
terrogative sentence, presented in Table 6. We also
perform experiments with other templates and la-
bel words which are presented in Appendix section
A.3. It can be seen from Table 5 that our proposed
model CAMP which is based on prompt tuning
strategy, outperforms prompting-based approaches
by a very significant margin. This is because sar-
castic utterances are less common in the general
corpora on which these PLMs have been trained.
We can also observe that a slight change in discrete

prompts induces a significant difference in accuracy
(△2.7% for MMSD and△1.8% for MMSD2.0) for
prompting strategy. While prompt-based finetuning
methods demonstrate a moderate performance ad-
vantage (+1.7% Acc in MMSD while no improve-
ment in MMSD2.0) over our model, this outcome
aligns with expectations, given that we do not fine-
tune the entire PLM. Our model’s strength lies in
its parameter efficiency and consequently reduced
training time, as we update only 30% of the entire
model weights, compared to fine-tuning the entire
model weights of the PLM.

5.3 Importance of Caption Tokens
The importance of caption tokens to bridge the
semantic gap between image and text modalities
can be seen from the reduced performance of the
CAMP(w/o cap) variant in Table 4. This suggests
that captions provide additional semantic informa-
tion that enriches the context of an image. This
additional layer of information helps the model bet-
ter understand and interpret the image, leading to
improved performance.

6 Conclusion

In this paper, we tackled the problem of few-shot
multimodal sarcasm detection. Unlike traditional
approaches that rely on early or late image-text
fusion to learn the subtle interaction between the
image and text modalities, we reformulate the prob-
lem as a cloze-filling task. To this end, we propose
a novel approach of using continuous attentive mul-
timodal prompt for this task. These attentive, con-
tinuous prompt tokens can effectively attend to the
image and text modalities tokens and can dynam-
ically adapt according to the input instance. Our
extensive experiments over two datasets demon-
strate the effectiveness of our model, which out-
performs strong baselines in few-shot and Out-of-
Distribution (OOD) settings. We also demonstrate
the efficacy of our model CAMP over other discrete
token-based techniques, including prompting and
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prompt-based finetuning, through several ablation
experiments.

Limitations

Firstly, for our few-shot setting, we randomly sam-
ple 1% of the entire training dataset, which is an
experimental choice. To account for the variabil-
ity in sample diversity, we randomly sample two
1% splits of the training data and report the av-
erage performance. However, we believe that an
alternate sampling strategy, in which more diverse
samples can be collected, needs exploration. Sec-
ondly, some of the images have embedded text
which we did not consider. Incorporating the text
information present in the images could provide
additional contextual cues and improve the over-
all understanding and analysis of the image con-
tent. For this study, we experimented with a BERT-
base model. It will be interesting to see how other
encoder or encoder-decoder architectures perform
for the multimodal sarcasm detection task in the
prompt-tuning paradigm.
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A Appendix

A.1 Hyperparameter Details
We run all our experiments on a Nvidia RTX A5000
GPU with 24GB of memory. We use the pre-
trained blip-opt-2.7b 3 model for generating cap-
tions. We employ the OpenPrompt4 library to build
our prompt learning model. All our experiments
use AdamW optimizer with a weight decay of 0.01.
We run our model for 20-100 epochs and pick the
model that performs best for the validation set for
testing. In all experiments, we use a learning rate of
0.0001 and a batch size of 16. The value of hdim is
768, which is the default embedding dimension for
BERT. The number of continuous prompt tokens is
set to 50 for MMSD and 80 for MMSD2.0, while
image token slots are fixed at 3 for both datasets.
The maximum token length for the PLM is 128.

A.2 Performance on Different Discrete Tokens
In this section, we experiment with different dis-
crete tokens shown in Table 7 and present their
comparative analysis in Table 10 in both prompting

3https://huggingface.co/Salesforce/
blip2-opt-2.7b

4https://github.com/thunlp/OpenPrompt

Discrete Prompt Templates Label Words

PTd
1 = [Vj ] Tweet Text: [Tj ] Caption: [Cj ]

Is the sentence positive? [MASK]
Yes/No

PTd
2 = [Vj ] Tweet Text: [Tj ] Caption: [Cj ]

So the meme is: [MASK]
Sarcastic/Neutral

PTd
3 = [Vj ] Tweet Text: [Tj ] Caption: [Cj ]

This post can be termed as: [MASK]
Funny/Serious

Table 7: Description of Various Discrete Prompt Tem-
plates. Here PT d

i is the discrete prompt template i.
Here [Vj ] stands for visual token slots, [Tj ] stands for
textual token slots while Cj represents caption token
slots.

MMSD
Method Acc F1
ResNet 0.715 0.696
ViT 0.663 0.659
NF-ResNet-50 0.729 0.717

Table 8: Performance comparison of different visual
encoders for our CAMP model.

and prompt-based finetuning techniques. Sarcasm
detection, being a difficult task, simple prompt-
ing with discrete tokens yields sub-optimal perfor-
mance while showing a lot of variation in perfor-
mance. However, finetuning the entire parameter
set of BERT demonstrates a significant jump in
performance, which is expected.

A.3 Effect of Different Visual Encoders

We experimented with different visual encoders,
including ResNet and ViT, for our CAMP model.
The experimental results on MMSD dataset are pre-
sented in Table 8. However, we found NF-ResNet-
50 performs the best among them and hence we
use this for all our experiments.

MMSD
Image Token Length Acc F1

1 0.710 0.671
3 0.729 0.717
5 0.724 0.702
7 0.716 0.699

Table 9: Ablation experiment on different image tokens
for CAMP.

A.4 Impact of Different Image Token Lengths

To find out how much image information is re-
quired for CAMP to achieve best performance,
we conduct experiments with varied image token
lengths on MMSD dataset. The length of contin-
uous prompt token is kept at 50 since we achieve
best performance for MMSD dataset. It can be
observed from Table 9 that the when image token
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MMSD MMSD2.0
Strategy Method Acc F1 Acc F1

PTd
1 0.601 0.377 0.567 0.364

Prompting PTd
2 0.603 0.501 0.554 0.497

PTd
3 0.436 0.435 0.491 0.491

Prompt- PTd
1 0.732 (0.1) 0.727 (0.4) 0.686 (0.1) 0.664 (0.1)

Based PTd
2 0.721 (0.5) 0.718 (0.6) 0.702 (0.8) 0.691 (0.1)

Finetuning PTd
3 0.738 (0.8) 0.718 (0.3) 0.694 (2.4) 0.691 (2.4)

Table 10: Performance comparison of discrete prompts
under prompting and prompt-based finetuning strategy.
Numbers in bracket indicate standard deviation. For
Prompting approach, we only prompt the model on test
set using the templates in Table 7. Hence, we do not
report any standard deviation.

length is 1, the utilization of image information
becomes incomplete, whereas increasing it beyond
3 introduces redundancy to the model.
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Abstract

The data-driven investigation of the extent
to which lexicons of different languages
align has mostly fallen into one of two cate-
gories: colexification-based and distributional.
The two approaches are grounded in distinct
methodologies, operate on different assump-
tions, and are used in diverse ways. This raises
two important questions: (a) are there settings
in which the predictions of the two approaches
can be directly compared? and if so, (b) what
is the extent of the similarity and what are its
determinants? We offer novel operationaliza-
tions for the two approaches in a manner that
allows for their direct comparison, and conduct
a comprehensive analysis on a diverse set of 16
languages.

Our analysis is carried out at different levels of
granularity. At the word-level, the two meth-
ods present different results across the board.
However, intriguingly, at the level of semantic
domains (e.g., kinship, quantity), the two meth-
ods show considerable convergence in their pre-
dictions. Our findings also indicate that the
distributional methods likely capture a more
fine-grained alignment than their counterpart
colexification-based methods, and may thus be
more suited for settings where fewer languages
are evaluated.1

1 Introduction

To what degree do translation equivalents in dif-
ferent languages – for example, English red and
French rouge – encode the same meaning? This
question, in various forms, has long been a
topic of interest in the cognitive sciences (Whorf,
1956; Fodor, 1975; Frawley, 1998; Burns, 1994;
Snedeker and Gleitman, 2004; Majid et al., 2008;
Croft, 2010). Indeed, lexicons are often viewed
as reflecting the structure of human cognition; un-
derstanding how meaning is expressed across lan-

1Our code and data is available at https://github.com/
tai314159/Aligning_Alignments.

Figure 1: Colexification graph for the target concept
“steigen::V” (which corresponds to the word rise in En-
glish, and nousta in Finnish. Each vertex corresponds
to a concept that is colexified with the target concept
either in English or Finnish. The English lexicalizations
of the target concept are in black and the Finnish lexi-
calizations are in Blue. The concepts themeselves are
in Green. Each edge (marked by an arrow) denotes that
a colexification exists in English/Finnish (as labeled).

guages helps understand how humans categorize
and represent the world.

A building block in answering such a question is
the ability to evaluate the similarity between words
that seemingly express a similar meaning (hence-
forth, translation pairs) across different languages.

Traditionally, in linguistic and cognitive re-
search, comparing the meaning of words across lan-
guages involves methodologies and approaches that
are less data-driven in nature, prioritizing in-depth,
relatively small-scale exploration of meaning, such
as descriptive comparisons (Karidi et al., 2024;
Wierzbicka, 1972), elicitation studies (Barnett,
1977; Tokowicz et al., 2002; Moldovan et al., 2012;
Allen and Conklin, 2013; Purves et al., 2023) and
semantic maps (Haspelmath, 2003; Croft, 2022).
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The difficulty in defining lexical similarity be-
tween concepts, let alone translation equivalents,
has motivated a transition from theoretical frame-
works to data-driven approaches. Indeed, a signifi-
cant amount of recent works has focused on using
data-driven methods to measure the equivalence of
word pairs across different languages (Majid et al.,
2014; Youn et al., 2016; Thompson et al., 2018;
Jackson et al., 2019; Thompson et al., 2020; Rabi-
novich et al., 2020; Beinborn and Choenni, 2020;
Georgakopoulos et al., 2022). All work on this
question inherits an even more fundamental set of
questions: how is meaning defined and how is the
meaning of words captured? Within this rich body
of work, we can identify two main methodological
approaches.

The first approach is based on colexification
patterns, which aims to compare the association
between lexical form and senses across languages.
Colexification is the case where two or more con-
cepts are lexicalized with a single form in a given
language (François, 2008; Rzymski et al., 2020)
(see Table 2). For example, both English right and
German recht colexify (i) a sense related to the cor-
rectness of a fact and (ii) a sense related to location
or direction in space, while the Arabic yamin is
associated with the spatial sense, but not the cor-
rectness sense. According to this approach, the
degree to which words or sets of words in a certain
domain in different languages align, can be defined
as the degree to which the words colexify the same
concepts. For example, the English right may be
said to be more similar to the German recht than
the Arabic yamin (cf. Haspelmath, 2003). Recently,
a large-scale cross-lingual database of colexifica-
tions has been compiled (CLICS; Rzymski et al.,
2020)2. This database provides a valuable resource
for exploring the relationships between words and
concepts across a wide range of languages, and en-
ables the quantitative comparison of colexification
patterns in different languages (Youn et al., 2016;
Jackson et al., 2019; Xu et al., 2020; Georgakopou-
los et al., 2022; Karjus et al., 2021a; Bao et al.,
2021).

The second approach is based on distributional
word embeddings (here, DISTA). This approach

2Another valuable resource for lexical semantics is Babel-
net (Navigli and Ponzetto, 2012). In this work we choose
CLICS over BabelNet because BabelNet’s fine-grained sense
distinctions, such as separating “apple” as a fruit from “apple”
as a tree, introduce excessive noise, whereas CLICS provides
more manageable colexifications for our purposes.

was recently proposed as a viable data-driven
method for cross-lingual lexical semantic inves-
tigations (Thompson et al., 2018, 2020; Beinborn
and Choenni, 2020; Rabinovich et al., 2020; Karidi
et al., 2024), for improving cross-lingual transfer
(Sun et al., 2021) and for investigating multicul-
tural knowledge in LLMs (Havaldar et al., 2023).
While all distributional methods use the word em-
beddings of translation pairs for computing sim-
ilarity, many different operationalizations of this
general approach are possible. See §2.1.

Both approaches have had a substantial impact
on the computational cognitive science literature
(Youn et al., 2016; Jackson et al., 2019; Thompson
et al., 2020). These approaches seek to reveal an ab-
stract structure that underlies the relation between
words and their meanings (e.g, languages from
different language families might have the same
structure of kinship terms). However, while both
are data-driven and aim to capture similar phenom-
ena, they rely on different data and methodologies,
and in fact likely capture different aspects of lin-
guistic meaning. Colexification-based approaches
set out to quantify similarity in lexicographical re-
sources, while distributional embeddings use any
signal that can be reliably extracted from the data.
For example, DISTA may not represent rare senses,
while colexification does not take frequency into
account at all. They are also applied differently:
colexification-based approaches often constructs
intricate cross-lingual networks to explore mean-
ing universality (Youn et al., 2016; Jackson et al.,
2019), while distributional alignment methods op-
erate at the word level and can then be extended to
larger word sets (Thompson et al., 2020).

In this work we seek to empirically compare
the predictions of these two approaches. How-
ever, given the divergence in methodologies and
underlying assumptions adopted by these various
approaches, it is not clear if it is sound, or even
possible, to compare them. Moreover, obtaining
a meaningful signal from colexification data typi-
cally requires aggregating information across thou-
sands of languages (Youn et al., 2016; Jackson
et al., 2019) and is rarely used for analysis at the
word-pair level; instead, its strength lies in the anal-
ysis of intricate networks. Therefore, working with
a substantially smaller set of languages or even
comparing a single language pair at a time, as is of-
ten the case in multilingual NLP research, requires
adapting the approaches so they will yield compa-
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rable predictions. We ask whether these distinct
approaches converge at interface settings – settings
in which the two approaches offer coherent simi-
larity measures that can be compared. We show
that such cases of convergence exist (§5) and, in
these cases, ask whether – and when – the different
approaches yield similar predictions. This is, to
the best of our knowledge, the first time that these
questions have been tackled within NLP.3

Analysis at various levels of granularity reveals
that at the word-level, the two methodologies yield
different results across the board. However, at
the domain-level4, the trends presented by the two
methods show substantially higher correlation. In
general, there is an overall greater similarity across
different distributional methods than between the
two families of approaches, in terms of their pre-
dictions and the factors that influence them (§5).
Moreover, while distributional methods are cor-
related in their alignment predictions with exter-
nal similarity measures (§5.4), the colexification
approach is not. This suggests that the distribu-
tional approach captures more fine-grained aspects
of meaning and is better suited for either delicate
analysis of the results or when using a smaller set
of languages. Also, the domain-level might be
a more robust level to report alignment than the
word-level. Additonally, we find that rate of lexical
change is a significant predictor for cross-lingual
alignment, across all methodologies. We discuss
the implications of these results in §7.

To recap, we (i) operationalize distribution-
based and colexification-based approaches so as
to enable a direct empirical comparison between
them, (ii) perform in-depth comparison of differ-
ent operationalizations of the two approaches, (iii)
study the ramifications of different design choices
that they incorporate.

2 cross-lingual Lexicon Alignment

Much research on cross-lingual alignment between
lexicons has sought to uncover whether certain
concepts, notably in domains perceived as basic
to the human experience, such as space, time,
color, quantity, and family relations, are univer-

3Recently, (Liu et al., 2023a) used co-occurrences to dis-
cover colexification patterns . However, their focus was pri-
marily on reconstructing the colexifications from textual data,
rather than analyzing colexification as a measure of cross-
lingual semantic similarity and comparing it against method-
ologies that are based on word embeddings.

4A semantic domain is a way of grouping words together
based on common aspects of meaning or function.

Figure 2: Colexifications. Examples of concepts from
the CLICS dataset and their colexifications. Each colex-
ification indicates the languages in which these concepts
colexify, drawn from 16 languages used in this paper.

sal, on the one hand, or culturally- or historically-
contingent, on the other hand (Fodor, 1975; Brown
and Witkowski, 1983; Burns, 1994; Frawley, 1998;
Evans and Levinson, 2009; Wierzbicka, 2010; Åke
Viberg, 1983; Majid et al., 2014). Alignment can
either be defined with respect to individual words
(i.e, word-level alignment) or with respect to do-
mains (i.e, domain-level alignment). For example,
we might expect the word Sunday in English not to
align well with the Hebrew multiword expression
denoting the same day of the week yom rishon, as
the latter does not bear any of the religious conno-
tations of Sunday in English. The degree of their
alignment is a word-level alignment. One can also
compare the extent to which the concepts of time
align more generally, in which case we might ex-
pect Hebrew and English to be relatively similar,
given that Hebrew, spoken in Israel, prima facie
has a Western conception of time, with, for exam-
ple, a division of the year into twelve months, a
division of the week into seven days, and so on.
This is termed domain-level alignment.

2.1 Distribution-based Alignment

Distribution-based alignment measures leverage
NLP tools to evaluate cross-lingual similarity
(Artetxe et al., 2018; Conneau et al., 2017; Vulić
et al., 2021; Rabinovich et al., 2020; Thompson
et al., 2020; Karidi et al., 2024). Traditionally, these
assessments have been performed using global
methods, which align whole language spaces si-
multaneously and then assess their similarity using
downstream tasks, such as Bilingual Lexicon In-
duction (Artetxe et al., 2018; Conneau et al., 2017).
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This approach typically includes techniques like lin-
ear transformations or joint model training across
multiple languages (Pires et al., 2019; Gonen et al.,
2020). 5 However, for identifying patterns of di-
vergence and convergence in the usage of specific
words and domains, this approach is suboptimal, as
globally optimal alignment (one that minimizes the
distance between the image of one language in the
space of another language) may completely distort
the alignment of specific words or subsets, in the
interest of improving the alignment of other, larger
word sets (Karidi et al., 2024).

On the other hand, local methods take a more
granular approach, comparing the similarity of in-
dividual word meanings one at a time.

Intuitively, a naïve approach to comparing the
meaning of a concept across languages is to com-
pare the number of overlapping nearest neighbors
of a word and its direct translation across languages
(Thompson et al., 2018). This approach is intu-
itive and stems from the distributional definition
of meaning as the semantic neighborhood of the
concept. However, the current method falls short in
considering the intricate semantic relations within
the groups of neighbors. To address this drawback,
metrics for historical semantic change (Hamilton
et al., 2016) have been adopted (Thompson et al.,
2020; Beinborn and Choenni, 2020; Karidi et al.,
2024). This is done by comparing the vectors of
distances between a word and its neighbors across
languages. Our computational approach is fully
adapted from (Karidi et al., 2024).

2.2 Colexification-based Methods

The most extensive resource on colexification is the
CLICS database (Rzymski et al., 2020). It provides
information on colexification patterns for a wide
range of concepts (a notion of a word sense; see
§4), such as individual terms in domains like basic
colors, body parts, and kinship, as well as more
complex conceptual domains like emotion, time,
and space, across 3156 languages. Each concept is
linked to a set of words in different languages that
are used to express that concept.

Colexification patterns are frequently used by
cognitive scientists to estimate word similarity,
working under the assumption that colexification

5We are aware of one study of cross-lingual lexical com-
parison that used global alignment to project languages to a
shared space, and defined the degree of alignment between a
translation pair to be the distance of the image of one word to
the embedding of the other (Rabinovich et al., 2020).

English
French
Italian
German 
Dutch 
Spanish 
Polish 
Hindi
Finnish
Estonian 
Turkish 
Chinese 
Korean 
Japanese 
Hebrew 
Arabic

Figure 3: Distribution of languages by family. The 16
languages used in our analysis, color-coded by their lan-
guage family. Each segment represents the proportion
of languages within their respective families.

of two concepts reflects similarity between them
(François, 2008; Xu et al., 2020; Harvill et al.,
2022). For example, the word ka-um in Tagalog
can be linked to the concepts FATHER and ELDER

BROTHER. This colexification is taken to reflect the
cultural concept of the importance and authority
of older male relatives in Tagalog society. Youn
et al. (2016) analyzed a subset of 22 basic concepts
from the Swadesh list, and showed that they exhibit
patterns of meaning universality across languages.
Jackson et al. (2019) conducted the first large-scale
analysis using colexification patterns to assess cul-
tural variability in people’s conceptualization of
emotions. However, the hypothesis that colexifi-
cation and semantic similarity are tightly related
is still missing direct empirical validation at scale
(Natale et al., 2021).

Recently, colexification has also been utilized
in NLP to study cross-lingual transfer (Liu et al.,
2023a,b; Chen et al., 2023).

3 Experimental Setup

We briefly describe our experimental setup, with
full details in Appendix §A.

Data & Languages. We perform our analysis on
a diverse set of 16 languages, spanning 7 different
language families from many geographical areas
across Eurasia (see Figure 3): English, French,
Italian, German, Dutch, Spanish, Polish , Finnish,
Estonian, Turkish, Chinese, Korean, Japanese , He-
brew, Hindi and Arabic.

The lexicon used in our analysis consists of
1,016 concepts sourced from NorthEuraLex (NEL)
(Dellert et al., 2020), a comprehensive linguistic
resource containing these concepts with their word
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forms in 107 different languages.
We map the concepts in NEL to domains, using

Concepticon.6 There are 20 domains (e.g, animals,
kinship; full list is in Appendix §A), each contain-
ing 22− 136 concepts.

Models & Settings. For static word embeddings
we use fastText7 300-dimension word embeddings,
trained on Wikipedia using the skip-gram model
(Bojanowski et al., 2017). For contextualised word
embeddings (CWE) we use mBERT8 (bert-base-
multilingual-uncased model) 768-dimension vec-
tors for the 16 languages. To extract sentences to
use with contextualised models, we use the Leipzig
corpus.9 We replicate our experiments with other
architectures and datasets (see Appendix D).

4 Alignment Metrics

We now turn to presenting the metrics we use in the
paper. Each metric either follows the distribution-
based Alignment (DISTA) or the Colexification-
based Alignment (COLEXA) approach. For DISTA
we follow the metrics and notations outlined in
(Karidi et al., 2024).

Notation. Let C be the set of concepts in the NEL
dataset (Dellert et al., 2019, see §3). We adopt
the notion of a concept from the lexical typology
literature (e.g., Dellert et al., 2019; Rzymski et al.,
2020), and take it to mean a word sense defined
independently of any specific language. Let Ω be a
set of languages. A language L ∈ Ω may or may
not lexicalize a concept c ∈ C, and may lexicalize
several concepts with one word (colexification).
We denote the lexicon corresponding to C in a given
language L with L, and note that |L|≤ |C| for
every language. We assume that C is partitioned
into domains, and denote the (non-overlapping)
domains with D1, . . . ,Dm.

Given a concept c ∈ C, we denote its lexical-
ization (the word expressing that concept) in lan-
guage L with rL(c) ∈ L. A translation pair be-
tween languages L1 and L2 is a pair of words
(w1, w2) ∈ L1 × L2, such that there exists c ∈ C
such that rL1(c) = w1 and rL2(c) = w2. For ex-
ample, the concept SONG gives rise to the English-

6https://concepticon.clld.org/
7https://fasttext.cc/docs/en/

unsupervised-tutorial.html
8https://huggingface.co/

bert-base-multilingual-uncased
9https://corpora.uni-leipzig.de/en?corpusId=

deu_news_2021

French translation pair (song,chanson). In prin-
ciple, several translation pairs may correspond to
a concept and language pair, but in the data we
experiment with, this does not occur.

For a given word w in a given language L, we
denote its embedding with emb(w,L). We denote
the embedding space corresponding to L with ℓ.

4.1 Colexification-based Alignment
We operationalize the notion of colexification-
based alignment (COLEXA) to establish a common
ground that facilitates a valid empirical comparison
between DISTA and COLEXA. We experiment with
a lexical alignment method that is based on colexi-
fication data (Rzymski et al., 2020). This method
measures the alignment of a single concept across
multiple languages. We furthermore extend it to
measure the alignment of an entire domain across
multiple languages. We note that different works
that used COLEXA have used different methodolo-
gies, since there is no standard methodology for
them. We therefore define measure that in our view
captures the core statistics used by these papers.

Concept-Level Colexification-based Alignment.
For every concept c ∈ C and language Li (i = 1, 2),
let Zc

(i) the inverse image of rLi(c):

Z(i)
c = {c′ ∈ C|rLi(c) = rLi(c

′)}
We define:

ϑ(c)L1,L2 =
1

2

( |Zc
(1) ∩ Zc

(2)|
|Zc

(1)|
+

|Zc
(2) ∩ Zc

(1)|
|Zc

(2)|

)

Intuitively, this is a measure of the joint colex-
ifications of the concept. For example, in Figure
1,the concept steigen::V is colexified with aufge-
hen(sonne)::V in English, and lexicalized as the
word form rise, while in Finnish, an additional two
concepts (aufstehen::V and sich erheben::V) are
colexified (lexicalized as the word form nousta).

Domain-Level Colexification Based Alignment.
Given the scarcity of colexifications that occur at
the level of individual concepts (as many concepts
are not colexified with any other concept), it is
reasonable to extend the concept-level measure to
quantify the alignment of a semantic domain across
languages. For this we aggregate the concept-level
alignment.This is done by aggregating ϑ over the
concepts in D.10

10We note that both concept-level and domain-level mea-
sures obtain values in [0, 1], where a value of 1 is obtained in
the case of identity in the colexifications in the domain and 0
is obtained where there are no joint colexifications.
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4.2 Distribution-based Alignment

In this section, we first present the computational
framework we adopt in this paper, namely Se-
mantic Neighborhood Comparison; a standard ap-
proach for comparing embeddings in different
spaces, used for both computational historical
linguistics and lexical similarity tasks (Hamilton
et al., 2016; Thompson et al., 2020; Beinborn and
Choenni, 2020), that has recently been facilitated
as an NLP task and extended to architectures be-
yond static representations (Karidi et al., 2024). We
present several variants of this approach, including
one based on contextualized word embeddings.11

Semantic Neighborhood Comparison (SNC).
Let c ∈ C be a concept and w1 = rL1(c) ∈ L1,
w2 = rL2(c) ∈ L2 its lexicalizations, and v1 =
emb(w1, L1) ∈ ℓ1, v2 = emb(w2, L2) ∈ ℓ2 their
respective embeddings. We compute its k nearest
neighbors in ℓ1 with {n(1)

1 , ..., n
(1)
k } (k = 100 in

our experiments12; see §3). We then translate the
nearest neighbors to L2 (§3 for translation retrieval
method), by taking their translation pairs, and de-
note the resulting vectors with {n(2)

1 , ..., n
(2)
k } ∈ ℓ2.

We define the unidirectional metric as
aL1→L2(c) =

ρ

((
cos(v1, n

(1)
i )

)k

i=1
,
(
cos(v2, n

(2)
i )

)k

i=1

)

ρ is the Pearson correlation coefficient 13. The
bidirectional metric as the arithmetic mean over the
two directions:

aL1↔L2(c) =
aL1→L2(c) + aL2→L1(c)

2

We refer to this alignment strategy as DISTA-
STATIC.

Contextualised Word Embeddings. We now
turn to detailing metrics that are analogous to
DISTA-STATIC, but instead use CEs 14.

11In a subsequent paper (Karidi et al., 2024), we present
the variants of the standard approach, for contextualised word
embeddings, and perform extensive evaluation on them. Here,
we choose two variants (DISTA-AVE and DISTA-CLOUD) to
use in our analysis.

12We experimented with other values of k and selected the
one that overall correlated the most with human-judgment
based evaluations (see §5.4).

13We conducted experiments with Spearman correlation, as
well as Kendall τ . They present similar trends and are omitted
due to space considerations.

14We denote contextualised word embeddings by CEs.

Figure 4: Illustration of nearest neighbors in the contex-
tualized space. t-SNE plot in 2D of point clouds for the
words: arm, hand, nose, and body. The nearest neigh-
bor of hand is arm, as they have the minimal distance
among all pairs of points from distinct clouds.

DISTA-AVE. For word w ∈ L, we extract its rep-
resentation from all layers (if w is tokenized to
multiple subwords, we average over the subword
representations). We average the outputs from lay-
ers 1-12 to define the final vector for w.15 We then
proceed with the SNC process, as described with
DISTA-STATIC.

DISTA-CLOUD. For word w ∈ L, we extract
all sentences (with a threshold of 1000) that w ap-
pears in, from an auxiliary corpus (see §3). We
extract the CEs (from layer 12, if it is tokenized
to subwords, we average over them) for w from
each of the sentences. Denote these vectors with
Vw = {v1w , ..., vkw} ⊆ R768. In this setting, each
word w is represented by a point cloud of vectors
Vw. Hence, the distance between two words is the
distance between their corresponding point clouds
(see Figure 4). We define point-cloud distance as
follows:

d(w, w̃) = mini,j cos(viw , vjw̃)

We follow the SNC procedure (defined above)
under this definition of distance 16.

15We follow the approach of averaging over layers as de-
scribed in (Karidi et al., 2024), consistent with the method
used in (Vulić et al., 2020).

16We experiment with various pooling strategies and com-
putational methods for building the contextualised spaces. For
example, we experiment with pooling from different layers or
combination of layers, similarly to DISTA-AVE. We also ex-
periment with several definitions for the point-cloud distance,
and several processing steps for generating the point-cloud
itself, such as averaging the vectors within the point-cloud
or clustering the set into clusters using a Gaussian Mixture
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Figure 5: Correlation between DISTA and COLEXA. Correlation (Pearson) is computed for various aggregation
methods: (a) concept-level, (b) domain-level and (c) language-level. All correlation values are significant with
p < 0.05.

COLEXA DIST-STATIC DIST-CLOUD

To
p

3 fingernail March thirty
sweep August fifty
cover January twelve

B
ot

to
m

3 recognize rise corner
endure groan soft
wool set round

Table 1: Most and least aligned words. Word-level
alignment, averaged across languages.

5 Comparing COLEXA and DISTA

The main goal of this paper is to asses the fea-
sibility of applying two key types of alignment
metrics, colexification-based (COLEXA §4.1) and
distribution-based (DISTA §4.2) , within an inter-
face setting, allowing for a direct empirical com-
parison of their outcomes. To this end, we initially
establish the metrics in a manner that allows for a
technically viable comparison (§2). We examine
the convergence of their empirical findings as well
as compare different metrics within the same cate-
gory, that represent different operationalizations of
a similar approach and data to account for.

5.1 Word-level Comparison
We start with the most straightforward level of com-
parison between metrics, which is their word-level
correlation.17. Table 1 shows examples of the most
and least aligned words.

Figure 5 shows that: (1) COLEXA is in low
correlation with all of the DISTA methods (high-
est correlation is achieved between COLEXA and

Model. They all yield similar trends, and are not reported due
to space limitations.

17A metric and a language pair give rise to a vector of align-
ment scores. Full details on how we compute the correlations
at the word, domain, and language levels can be found in
Appendix §B.

DISTA-STATIC, r = 0.34); and (2) DISTA meth-
ods are moderately correlated among themselves
(r ≈ 0.5).

Another natural question to ask is whether
COLEXA and DISTA make similar predictions in
terms of what concepts are more or less aligned
across languages on average. That is, we investi-
gate the correlation between COLEXA and DISTA
over the set of concepts C, where we average the
score over all language pairs.

To conclude, by directly examining the statistical
relation between the scores, we find that although
there are similarities in the trends presented by
the two methodologies, they yield different results
across the board.

5.2 Domain-level Comparison

Alignment metrics between languages are often
used to compare the degree of alignment across
different domains. For example, Thompson et al.
(2020) argue, based on findings with a DISTA-
STATIC metric, that more structured domains tend
to be better aligned across languages. To exam-
ine the alignment at the domain level, we aggre-
gate the word-level alignment over each domain
(without aggregating over languages; see Figure
5). Strikingly, as opposed to the concept-level com-
parison, here the similarity between the DISTA
methods is very high, reaching r = 0.93 (between
DISTA-CLOUD and DISTA-STATIC). In addition,
the correlaton between COLEXA and DISTA highly
increases (reaching r = 0.65 with DISTA-STATIC).
The differentiation both amongst the DISTA meth-
ods themselves and between DISTA and COLEXA
has become less distinct. This finding encourages
the formulation of conclusions at the domain level,
as it presents to be more stable.
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COLEXA DISTA-STATIC DISTA-CLOUD
To

p
3 Quantity Quantity Quantity

The House Time Kinship
Social Politics Kinship Time

B
ot

to
m

3 Basic actions Basic actions Agriculture
Sense perception Motion Spatial relations

Motion The house The house

Table 2: Most and least aligned domains for various
metrics. Alignment computed by aggregating over lan-
guages and over domains. “Basic actions.” refers to
“Basic actions and technology” and “Agriculture” refers
to “Agriculture and vegetation”.

Most and Least Aligned Domains. For DISTA,
the most aligned domains are Quantity, Time and
Kinship (Figure 6, for DISTA-CLOUD)18, whereas
the least aligned domains are Motion, Basic Ac-
tions, and Technology and Possession. Similar
trends are reported by Thompson et al. (2020), who
argue that the high degree of alignment of these
domains is related to their structure and organi-
zation along explicit dimensions (e.g., generation:
grandmother/mother/daughter, in the Kinship do-
main). This robust effect exhibited in DISTA is par-
tially preserved with COLEXA; Quantity the most
aligned domain, whereas Time is the 4th aligned.
However, Kinship is the 7th most aligned (out of
the 20 domains). Table 2 presents a few examples
of the differences.

5.3 Factors Influencing Alignment

We turn to analyse whether similar factors influence
the alignment results for DISTA and COLEXA (full
analysis is available in Appendix §C). Examining
both lexical features, such as frequency, concrete-
ness, and rate of change, alongside environmen-
tal features, such as cultural and geographical dis-
tance, we find that at the word level, the correlation
between alignment measures and these features
ranges from none to weak. However, at the domain
level, an interesting finding emerges: the rate of
lexical change is a strong predictor for both DISTA
and COLEXA. Specifically, we observe a correla-
tion of approximately r ≈ −0.6 for DISTA and
r = −0.81 for COLEXA. This interesting result
means that words that undergo faster lexical change
are less aligned across languages. This aligns with
findings that polysemy plays a significant role in
the rate of lexical change (Brown and Witkowski,

18This trend persists for all DISTA methods and various k
values.

1983; Thompson et al., 2020), and corresponds
with observations that the rate of change is nega-
tively correlated with prototypicality (how repre-
sentative a word is of its category) (Dubossarsky
et al., 2017).

5.4 Comparing Against A Reference Point
Unlike many NLP tasks, when comparing the
meanings of translation equivalents across lan-
guages, there is no ground truth to reference against.
Instead, datasets and tasks from cognitive science
literature, such as similarity in picture naming or
translation norms, can serve as converging evi-
dence for validating different measures.

This comparison has several caveats: first, it
applies to a limited set of languages and stimuli;
second, it is not clear that this measure captures
the same notion of similarity we aim to quantify
using metrics for cross-lingual lexical similarity.
We hereby detail these measures and use them as a
reference point for comparison.

Multipic. MultiPic is a standardized set of 750
drawings of concrete objects with name agreement
norms for six European languages (English, Span-
ish, Netherlands Dutch, German, French and Ital-
ian). For each picture and language, the norm is
an information statistic that reflects the level of
agreement across participants.

We filter the pictures in the Multipic dataset
to only include pictures with concepts from NEL,
which results in a total of 194 pictures. We compute
the correlation between the agreement scores (aver-
age agreement score over all languages) for these
pictures and the different DISTA and COLEXA
metrics for the corresponding concepts. Results
show that while DISTA-AVE and DISTA-STATIC

are moderately correlated with Multipic (r ≈ 0.3,
p < 0.05), the other methods are weakly to not
correlated with the dataset.

TransSim. TransSim is a dataset of 562 Dutch-
English translation pairs together with a human
similarity rating between each pair. We again fil-
ter the dataset to include word pairs that are cov-
ered by NEL, resulting in 187 Dutch–English trans-
lation similarity judgment scores. We compute
the correlation between English-Dutch translation
similarity judgements and the alignment metrics
for English-Dutch, aggregated by domain (domain-
level). A relatively high correlation is presented,
where DISTA-STATIC (r = 0.59, p < 0.05) and
DISTA-AVE (r = 0.51, p < 0.05) rank highest.
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However, COLEXA is only weakly correlated with
TransSim (r ≈ 0.1, p < 0.05).

To conclude, when comparing both DISTA and
COLEXA to norm-based measures, we find that
DISTA shows a moderate correlation with some
measures, whereas COLEXA does not. This dis-
tinction suggests that DISTA may be more suitable
for detailed analysis of cross-lingual similarity as
it is better aligned with human judgements, while
COLEXA might be better suited for coarse-grained
analysis. However, since these external measures
apply only to a subset of languages and concepts,
this limitation should be considered. Therefore,
we defer a more comprehensive multi-approach
comparison to future work.

6 Qualitative Analysis

To further understand the nature of alignment and
convergence of the various approaches, we man-
ually examine data from four randomly-selected
languages pairs (English-German, German-Arabic,
Arabic-Hebrew and Spanish-Hindi); specifically,
for each method and language pair we take the
top/bottom aligned 100 words, together with
their 10 nearest neighbors in each language (for
COLEXA we consider colexifications instead of
neighbors). Even within the most aligned domains,
there is variability in the order of aligned words
(e.g., in DISTA-CLOUD numbers such as seven
and fifty are the most aligned, whereas in DISTA-
STATIC it is months, such as March). However,
words in highly aligned domains tend to greatly
overlap in their neighbors, and somewhat preserve
their order of distances.

It is difficult to draw conclusions at the word-
level just by looking at the raw data (this is also re-
flected in our empirical analysis in disagreement be-
tween the methodologies, §5.1). This is especially
true for COLEXA or for the least aligned words. We
do find, however, that certain words exhibit highly
consistent colexification patterns across languages.
For instance, the word fingernail frequently colexi-
fies with the word nail. Based on this analysis, we
hypothesize that words that colexify conceptualy
similar senses (e.g., fingernail and nail/hand and
claw/etc.) tend to have more universal colexifica-
tion patterns and in turn more aligned (this echoes
the finding that conceptual similarity shape colexi-
fication (Karjus et al., 2021b)), and that this is also
reflected by high alignment in DISTA as this type
of polysemy is less prone to affect the dissimilarity

of neighbors across languages. Conversely, when
two distinct senses are colexified (e.g., bank in En-
glish colexifies a sense of financial institution and
a sense of terrain), the neighbors are likely a mix
of words relating to each sense, leading to lower
distributional alignment.

7 Discussion

Distribution-based and colexification-based ap-
proaches both capture a data-driven notion of simi-
larity between the lexicons of different languages.
However, they rely on different methodologies
and assumptions about the data that should be ac-
counted for, and are commonly applied in distinct
ways. This raises the question of whether they are
comparable, and if so – whether their predictions
converge.

We find that despite the inherent differences be-
tween the methods, when viewed at the level of
domains, the two appraoches show similar trends.
We also find that the rate of lexical change is a
strong predictor for alignment, words that change
less have more stable meaning across languages.
In contrast to COLEXA, DISTA is significantly cor-
related with extrinsic measures for meaning align-
ment across languages. A possible explanation is
that COLEXA captures coarser aspects of meaning
or that it is more suitable for scenarios which re-
quire aggregation across a more extensive range of
languages. We still find this resource highly valu-
able, especially for investigations of high-level pat-
terns of lexical similarity (e.g., variation in emotion
concepts over the worlds languages (Jackson et al.,
2019)), since it is less prone to noise stemming
from the training data than DISTA. However, for a
more fine-grained analysis or when less languages
are available, we encourage the use of DISTA.

In this paper we lay the ground for a direct com-
parison of DISTA and COLEXA. Our findings call
for a more nuanced discussion of lexical alignment,
and also underscore the importance of taking into
account multiple approaches for similarity when
drawing empirical conclusions about lexical simi-
larity. Different approaches and settings may well
lead to different conclusions, which highlights the
importance of justifying the technical approach
taken in each paper.
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A Experimental Setup

Languages. We perform our analysis on a di-
verse set of 16 languages, spanning 7 different top-
level language families from many geographical ar-
eas across Eurasia: English (eng), French (fra), Ital-
ian (ita), German (deu), Dutch (nld), Spanish (spa),
Polish (pol), Finnish (fin), Estonian (est), Turkish
(tur), Chinese (chn), Korean (kor), Japanese (jap),
Hebrew (heb), Hindi (hin) and Arabic (arb).

NorthEuraLex (NEL) is a lexical resource com-
piled from dictionaries and other linguistic re-
sources available for individual languages in North-
ern Eurasia. NEL comprises a list of 1016 distinct
concepts together with their word forms in 107
languages (Table 5). Rare cases where a concept
does not have a realization in a given language are
excluded for that language.

Semantic Domains. We map the concepts in
NEL to domains, using Concepticon.19 There are
20 domains, each containing 22 − 136 concepts:

19https://concepticon.clld.org/

animals, Agriculture and vegetation, time, quantity,
kinship, basic actions and technology, clothing and
grooming, cognition, emotions and values, food
and drink, modern world, motion, posession, sense
perception, social and political relations, spatial
relations, speech and language, the body, the house
and the physical world.

Lexical and Language Features. We report re-
sults while controlling for a variety of lexical fea-
tures and features of the languages compared. Ge-
ographic distance between languages is computed
as the geodesic distance (distance in an ellipsoid)
between their latitude and longitude coordinates
(taken from Glottolog20). Cultural distance is com-
puted as the proportion of common cultural traits
from a set of 92 non-linguistic cultural traits for 16
societies representing the languages in our analysis,
taken from D-PLACE21 (Thompson et al., 2020).
We use the wordfreq library22 for word frequencies.
We then compute the log-transformed frequency (to
reduce the impact of outliers and extreme values).
Realizations of some concepts, such as tail, evolve
rapidly, while others, such as two evolve at a much
slower rate. This phenomenon is referred to as the
rate of (lexical) change. We use lexical change
rates derived from (Pagel et al., 2007), available for
Russian, Greek, English and Spanish.

Word Embeddings. For static word embed-
dings we use fastText23 300-dimension word em-
beddings, trained on Wikipedia using the skip-
gram model (Bojanowski et al., 2017). For
contextualised word embeddings (CWE) we use
mBERT24 (bert-base-multilingual-uncased model)
768-dimension vectors for the 16 languages. To
extract sentences for DISTA-CLOUD, we use the
Leipzig corpus.25 We additionally conduct our
experiments using XLM-RoBERTa-base 26 for
DISTA-CLOUD and DISTA-AVE and on 300-dim
word2vec multilingual embeddings 27 for DISTA-
STATIC. Moreover, we run all of the computations
for DISTA-CLOUD and DISTA-AVE with a differ-

20https://glottolog.org/
21https://d-place.org/
22https://pypi.org/project/wordfreq
23https://fasttext.cc/docs/en/

unsupervised-tutorial.html
24https://huggingface.co/

bert-base-multilingual-uncased
25https://corpora.uni-leipzig.de/en?corpusId=

deu_news_2021
26https://huggingface.co/xlm-roberta-base
27https://github.com/Kyubyong/wordvectors
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ent dataset; the Wikipedia section in the Leipzig
Corpus, for the latest year available in each lan-
guage 28. The trends closely match those described
in the paper.29.

Hyperparameters. For our distributional based
alignments (§4.2), we set k = 100. We exper-
imented with other values of k and selected the
one that overall correlated the most with human-
judgment based evaluations (see §5.4).

B Word, Domain and Language Level
Alignment

We describe here our method for computing cor-
relations at three levels of granularity: word-level,
domain-level, and language-level.

LetM be the set of alignment metrics. We de-
note the raw data as follows:

µ(m,Lp, Lj) ∀m ∈M, Lp × Lj ∈ Ω2

For a pair of languages Lp, Lj and a metric m,
µ(m,Lp, Lj) ∈ R|C| is a vector whose i-th coor-
dinate is the alignment value of concept ci under
metric m between Lp and Lj .

We use Pearson’s r (with a two-tailed test for sig-
nificance) for computing correlation, unless stated
otherwise.

Word-level Correlation. The most direct level
of comparison between metrics is their word-level
correlation. Let

(
Ω
2

)
be the set of all language

pairs (without repetitions), and denote its size with
l=
(|Ω|

2

)
. For m ∈M, define µ̂(m) ∈ Rl|C| the con-

catenation of µ(m,Lp, Lj) for all language pairs.
Word-level correlation is the Pearson correlation
between µ̂(m), for m ∈M (See Figure 5).

Domain-level Correlation. Alignment metrics
between languages are often used to compare the
degree of alignment across different domains. For
example, Thompson et al. (2020) argue, based on
findings with DISTA-STATIC , that more structured
domains, such as Quantity and Time, tend to be
better aligned across languages. To examine the
alignment at the domain level, for every measure
m ∈ M, we aggregate the word-level alignment
over each domain (without aggregating over lan-
guages). We get µ̂(m) ∈ Rlm (m is the number of
semantic domains).

28https://wortschatz.uni-leipzig.de/en
29See Appendix §D for experiments on other architectures

than the ones presented in the main paper.

Figure 6: Alignment of domains under DISTA-AVE.
The domains are ranked according to the mean value
of the alignment. Each box represents the distribution
of alignment values (per language pair), for a specific
domain (concepts-level alignment is aggregated within
each domain). The centre line is the median, the box lim-
its are the upper and lower quartiles, and the whiskers
represents the 1.5× interquartile range.

Language-level Correlation. Another natural
question to ask is whether COLEXA and DISTA
make similar predictions in terms of what concepts
are more or less aligned across languages on aver-
age. That is, we investigate the correlation between
COLEXA and DISTA over the set of concepts C,
where we average the score over all language pairs.
Formally, for each alignment measure mi ∈ M:
(µ̂(mi))j = 1

l

∑
(Lj ,Lp)∈P µ(mi, Lj , Lp) (we av-

erage over languages, not over concepts). Results
are similar in this setting (Figure 5).

C Factors Influencing the Alignment

We examine factors influencing alignment and con-
trol for various features — lexical features like
frequency, concreteness, and rate of lexical change,
as well as environmental features such as geograph-
ical and cultural distance — and compare their
effects on different alignment methodologies (see
Section 5.3)30. Full results are presented in Table
3.

Correlation With Lexical Features. At the
word-level (µ(mi) ∈ R|C|l), there is no correlation

30We follow the analysis done in (Karidi et al., 2024) and
extend it to other methodologies.
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between both DISTA and COLEXA with respect
to frequency and concreteness. There is a weak-
moderate negative correlation with rate of lexical
change (strongest for DISTA-STATIC, r = −0.32).
When aggregating over domains (µ(mi) ∈ Rlm)
concreteness is still not correlated with any of the
alignment methods; however, the correlation goes
up for frequency (albeit still weakly) and jumps
for rate of change (r ≈ −0.6 for DISTA and
r = −0.81 for COLEXA). This interesting result
means that words that undergo faster lexical change
are less aligned across languages.

Correlation With Environmental Features.
The question of how geographical and cultural
factors influence the alignment of words across lan-
guages is a matter of ongoing discussion among
scholars (Youn et al., 2016; Josserand et al., 2021,
e.g.,). Table 3 shows a significant correlation with
geographic and cultural distance for DISTA, with
cultural distance playing a more prominent role.
However, COLEXA metrics only present a weak
correlation with environmental methods. These
results indicate yet another point of divergence be-
tween COLEXA and DISTA.

Controlling for Lexical and Enviromental Fea-
tures. To further examine the influence of lexical
and environmental features on the alignment meth-
ods, we perform partial correlation tests to control
for the various features, and multiple regression
analysis to account for the overall variance that is
explained by them. We compute the partial cor-
relation31 between DISTA and COLEXA, while
controlling for the lexical and environmental fea-
tures.

We find that at the concept-level the two mea-
sures are still moderately correlated with r ≈ 0.4.
At the domain-level, DISTA methods are still
highly correlated with one another (r ≈ 0.9),
with a moderate correlation between DISTA and
COLEXA (r ≈ 0.5). We use multiple linear regres-
sion to compute the adjusted R-squared value, with
the environmental and lexical features as response
variables. While the features explain ≈ 20% of the
variance for DISTA, they only explain a negligi-
ble amount of the variance for COLEXA. However,
when aggregating over domains, the features ex-
plain up to 44% of the variance for DISTA, and

31For the partial correlation computations we use the
pingouin package https://pingouin-stats.org/build/
html/generated/pingouin.partial_corr.html

DISTA
CLOUD

DISTA
AVE

DISTA
STATIC

CA

CLT C 0.14⋆ 0.1⋆ 0.25⋆ -0.04
D 0.2⋆ 0.49⋆ 0.13⋆ 0.13⋆

GEO C 0.03⋆ 0.09⋆ 0.22⋆ -0.02
D 0.16⋆ 0.41⋆ 0.05 0.05

frequency C 0.04⋆ 0.06 0.06 0.01
D 0.33⋆ 0.18⋆ 0 0

concreteness C 0.03 0 0 0.02
D 0.18⋆ 0.06 0.1⋆ 0.15⋆

rate-change C -0.32⋆ -0.22⋆ -0.25⋆ -0.14⋆

D -0.57⋆ -0.62⋆ -0.62⋆ -0.81⋆

Table 3: Correlation with lexical and enviromental fea-
tures. Columns represent the features (CA represents
ColexA, CLT denotes cultural distance and GEO de-
notes geographical distance) and subcolumns represents
concept-level aggregation (C) vs. domain-level aggre-
gation (D). significant correlation with p < 0.05 are
marked by ⋆.

DISTA
CLOUD

DISTA
AVE

DISTA
STATIC

CA

CLT C 0.1⋆ 0.08 0.27⋆ 0
D 0.23⋆ 0.31⋆ 0.11⋆ 0.11⋆

GEO C 0.1 0.08⋆ 0.15⋆ 0
D 0.2⋆ 0.39⋆ 0.1⋆ −0.03

frequency C 0 −0.04 0.01 0
D 0.35⋆ 0.15⋆ 0 0.01

concreteness C 0 0 0 0
D 0.15⋆ 0.1⋆ 0.15⋆ 0.1⋆

rate-change C -0.25⋆ -0.27⋆ -0.3⋆ -0.1⋆

D -0.55⋆ -0.48⋆ -0.65⋆ -0.73⋆

Table 4: Correlation with lexical and enviromental fea-
tures (other architectures). Columns represent the fea-
tures (CA represents ColexA, CLT denotes cultural dis-
tance and GEO denotes geographical distance) and sub-
columns represents concept-level aggregation (C) vs.
domain-level aggregation (D). NO represents Neighbors
Overlap metric. significant correlation with p < 0.05
are marked by ⋆.

69% for ColexA. This suggests that the analysis is
more suitable at the domain-level.

D Other Architectures

In the main paper, we conduct our analysis using
the following models and data: for static word
embeddings, we use fastText32 300-dimension
word embeddings, trained on Wikipedia using the
skip-gram model (Bojanowski et al., 2017). For

32https://fasttext.cc/docs/en/
unsupervised-tutorial.html
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Figure 7: Correlation between DISTA and COLEXA
(other architectures). Pearson correlation is computed
for different aggregation methods. The upper matrix
represents concept-level correlations, while the bottom
matrix represents domain-level correlations. All corre-
lation values are significant with p < 0.05.

contextualised word embeddings (CWE) we use
mBERT33 (bert-base-multilingual-uncased model)
768-dimension vectors for the 16 languages.To
extract sentences for DISTA-CLOUD, we use the
Leipzig corpus.34

We additionally conduct our experiments using
XLM-RoBERTa-base 35 for DISTA-CLOUD and
DISTA-AVE and on 300-dim word2vec multilin-
gual embeddings 36 for DISTA-STATIC.

Moreover, we run all of the computations for
DISTA-CLOUD and DISTA-AVE with a different
dataset; the Wikipedia section in the Leipzig Cor-
pus, for the latest year available in each language
37. The trends closely match those described in the
paper (see Figure 7 and Table 4).38.

33https://huggingface.co/
bert-base-multilingual-uncased

34https://corpora.uni-leipzig.de/en?corpusId=
deu_news_2021

35https://huggingface.co/xlm-roberta-base
36https://github.com/Kyubyong/wordvectors
37https://wortschatz.uni-leipzig.de/en
38See Appendix §D for experiments on other architectures

than the ones presented in the main paper.

ENGLISH FORM CONCEPT DOMAIN

mother mutter::N Kinship
mind verstand::N Cognition

go gehen::V Motion

Table 5: Concepts and their domains. Examples of con-
cepts, labled according to the NEL dataset (§3). Each
concept belongs to a semantic domain (“Domain” col-
umn). The “English Form” column contains the lexical-
ization of each concept in English.
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Abstract

We investigate the knowledge of object af-
fordances in pre-trained language models
(LMs) and pre-trained Vision-Language mod-
els (VLMs). A growing body of literature
shows that PTLMs fail inconsistently and non-
intuitively, demonstrating a lack of reasoning
and grounding. To take a first step toward quan-
tifying the effect of grounding (or lack thereof),
we curate a novel and comprehensive dataset of
object affordances – TEXT2AFFORD, charac-
terized by 15 affordance classes. Unlike affor-
dance datasets collected in vision and language
domains, we annotate in-the-wild sentences
with objects and affordances. Experimental
results reveal that PTLMs exhibit limited rea-
soning abilities when it comes to uncommon
object affordances. We also observe that pre-
trained VLMs do not necessarily capture ob-
ject affordances effectively. Through few-shot
fine-tuning, we demonstrate improvement in
affordance knowledge in PTLMs and VLMs.
Our research contributes a novel dataset for lan-
guage grounding tasks, and presents insights
into LM capabilities, advancing the understand-
ing of object affordances. 1

1 Introduction

Object affordance refers to the properties of an
object that determine what actions a human can
perform on them (Gibson, 1979). Gaining the
knowledge of object affordances while learning
textual representation from large corpora maybe
hard; as in NLP, we lack corresponding images (or
videos) which provides necessary visual cues such
as shape, color, and texture to predict affordances.
This lack of mapping or rather grounding ability
has been noted by many researchers in the context
of large pretrained language models (PTLMs). Au-
thors in Bender and Koller (2020) have pointed the

∗*Equal advising
1Code and Data are available at https://github.com/

sayantan11995/Text2Afford

Figure 1: Overview of TEXT2AFFORD with its derived tasks.

lack of symbol grounding to be a fundamental fac-
tor behind PTLMs failing to grasp meaning from
form (surface form text). The authors argue that
language models which are exposed to only text
(surface form) may never truly understand mean-
ing, as PTLMs are unaware of possible groundings
of the surface text. Most current NLP datasets and
tasks are not designed to evaluate grounding, as it
is hard to evaluate grounding without any visual
context. Here, we aim to quantify the ability of
pretrained models to learn affordances – which in
turn requires the ability to ground symbols in text
to real-world objects. In other words, grounding
ability from text can enable understanding and rea-
soning about the physical properties of an object,
which may help predict affordances.

As another example, for the sentence “an apple
in the tree”, we should infer that the “apple” can
be eaten, and is rollable. However we cannot roll
an “apple logo”. In computer vision and robotics
efforts, an accompanying image (or video) often
provides necessary information about shape and
physical properties of the entity, which can be used
to predict affordances (Zhu et al., 2014). However
such information is absent in NLP tasks. To cap-
ture this nuance, we annotate crowdsourced text
intended for other tasks (such as NLI) with the
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Dataset Train
size

Dev
size Test size Reasoning type Source Image-

dependent
Targeted

affordance
Publicly
available

PaCo (Qasemi et al., 2022a) 5,580 1,860 4,960 Preconditioned commonsense Crowd-sourced ✗ ✗ ✔

WINOVENTI (Do and Pavlick, 2021) - - 4,352 Commonsense with exceptions Crowd-sourced ✗ ✗ ✔

PVLIR (Qasemi et al., 2023) 34,000 Preconditioned visual commonsense Other dataset ✔ ✗ ✗

Normlense (Han et al., 2023) - - 10,000 Defeasible visual commonsense Crowd-sourced ✔ ✗ ✔

WinoViz (Jin et al., 2024) - - 1,380 Reasoning object’s visual property Crowd-sourced ✗ ✗ ✗

PROST (Aroca-Ouellette et al., 2021) - - 18,736 Reasoning object’s physical property Other dataset ✗ ✗ ✔

NEWTON (Wang et al., 2023) - - 2,800 Reasoning object’s physical property Crowd-sourced ✗ ✗ ✔

Persiani and Hellström (2019) 734,002 - 314,572 Object affordance without context Synthetic ✗ ✔ ✗

TEXT2AFFORD (Ours) - - 35,520
(2368 * 15) Contextual object affordance Crowd-sourced ✗ ✔ ✔

Table 1: Comparison of TEXT2AFFORD with other reasoning datasets. A larger version is in Appendix A.3 Table 9.

objects and affordances. We use 15 affordance
classes from Zhu et al. (2014). Through extensive
pilot studies, we train a set of annotators using the
toloka.ai platform. We choose 25 highly-skilled
annotators who annotated a total of 2368 sentence-
object pairs with 15 affordance classes, on a 0-3
Likert-like scale. For each sentence-object pair
and each affordance class we ensure annotations
from three annotators to enable majority votings.
We name this novel dataset TEXT2AFFORD. We
use the dataset for zero-shot evaluations of small
LMs, open-source LLMs and also some VLMs by
forming different task setups. Figure 1 presents
an example from TEXT2AFFORD and the derived
tasks (detailed in Section 4). We evaluate the effect
of few-shot fine-tuning on few PTLMs and VLM.
Our contributions can be summarized as follows.
• We curate a novel large scale crowdsourced
text to affordance dataset – TEXT2AFFORD, con-
sisting of 35,520 test data points (2368 sentence-
object pairs with 15 unique affordance classes per
pair). We ensure at least three annotations for each
sentence-object pair for each class.
• Using TEXT2AFFORD, we perform zero-shot
evaluation of several state-of-the-art PTLMs along
with a few VLMs in different settings to identify
the extent to which they gain the knowledge of af-
fordance during pretraining. We further ensemble
the VLM and the PTLM predictions to examine
whether pre-training with images can enrich affor-
dance prediction from text. Overall, we observe
that the SOTA LLMs face difficulties predicting
contextual object affordances solely from text (ac-
curacy < 55%) and the performance gets slightly
enhanced when using powerful VLMs in presence
of synthetic images.
• We also fine-tune few PTLMs on a small sub-
set of our data as well as on some commonsense
reasoning tasks to understand how quickly the af-
fordance knowledge get scaled up and how far the
affordances are related to commonsense knowl-

edge. In addition, we examine the in-context learn-
ing (ICL) ability of few of the SOTA generative
LLMs and VLMs in affordance prediction task.
We find that the pre-trained encoder based models
gain some knowledge about object affordance dur-
ing fine-tuning using the commonsense reasoning
dataset.
• Additionally through finetuning on our dataset,
we show that knowledge of affordance can improve
model’s physical reasoning capability.

2 Related work

Reasoning about object affordances. Object af-
fordances has been extensively studied in Com-
puter Vision and Robotics (Sun et al. (2014); Zhu
et al. (2014)). Recent methods employ deep learn-
ing approaches to detect object affordance. Nguyen
et al. (2017) applies an object detector, CNN and
dense conditional random fields to detect object
affordance from RGB images. Persiani and Hell-
ström (2019) extracts object-action pairs from web
corpora using semantic role labelling. In contrast,
we propose a crowd-sourced text only affordance
dataset to audit the strength of SOTA LLMs and
VLMs to reason about contextualized object affor-
dance.
Probing methods. Talmor et al. (2020) utilizes
probing and employs Multi-choice MLM (Masked
Language Modelling) and Multi-choice QA (Ques-
tion Answering) setup to capture reasoning capa-
bilities of pre-trained Language Models. Yang
et al. (2022) examines zero-shot prediction perfor-
mances on different tasks by LLM through novel
visual imagination. Aroca-Ouellette et al. (2021)
highlights the shortcomings of state-of-the-art pre-
trained models in physical reasoning, with a further
performance decline observed when incorporating
option shuffling and superlatives in reasoning ques-
tions. Liu et al. (2022) proposes a novel spatial
commonsense probing framework to investigate
object scales and positional relationship knowledge
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in text-based pre-trained models and models with
visual signals. Joshi et al. (2020) uses probing
methods to investigate a more fine-grained logical
reasoning capabilities of pre-trained models.

Reasoning tasks and dataset. Reasoning
about object affordance require a sort of com-
monsense reasoning. A series of works (Singh
et al. (2021), et al. (2023), Bisk et al. (2019),
Huang et al. (2019), Talmor et al. (2019), Tal-
mor et al. (2021), Zellers et al. (2018)) study the
text based commonsense knowledge of language
models. Dataset such as δ-NLI (Rudinger et al.,
2020) focuses on defeasible inference of common-
sense knowledge; PaCo (Qasemi et al., 2022a) and
PInKS (Qasemi et al., 2022b) deal with precondi-
tioned commonsense inference of language mod-
els. PVLIR (Qasemi et al., 2023), Normlense (Han
et al., 2023) use images as precoditions to reason
about defeasible commonsense norms. However,
none of these specifically focus on reasoning of
object affordance. Wang et al. (2023) proposes a
benchmark of object-attribute pairs plus a diverse
set of questions to reason object’s physical proper-
ties. Aroca-Ouellette et al. (2021) tackles physical
and affordance reasoning from an object-centric ap-
proach. Persiani and Hellström (2019) attempts to
extract common object-action pairs from web cor-
pora. In Table 1, we demonstrate the comparison of
TEXT2AFFORD with other datasets which perform
different kind of reasoning tasks. We emphasize
that, TEXT2AFFORD is the largest crowdsourced
publicly available text based contextualized affor-
dance dataset with a test size of 35,520 (2368
sentence-object pairs and 15 affordance classes).
Present work. Although a substantial number
of work study the reasoning capabilities of lan-
guage models and propose commonsense reasoning
datasets, however, none of these work concentrate
specifically on evaluating the knowledge of affor-
dance and contextual affordance prediction solely
from text. To bridge this gap, we present a reli-
able crowdsourced test dataset for identifying the
contextualized affordance prediction capability of
LLMs as well as VLMs. Our results show that the
advanced large language models fail to understand
an object’s physical properties aka the affordances
from texts, and there is significant room for im-
provement which may further motivate researchers
to explore models that explicitly learns to ground
objects in text to predict its physical properties and
affordances.

3 TEXT2AFFORD dataset construction

We select 20, 000 sentences from a crowdsourced
English dataset (XNLI English) (Conneau et al.,
2018)2 and extract the noun phrases using the Stan-
ford CoreNLP tool. As we restrict to the affor-
dances that humans can directly perform, we filter
the phrases which do not represent a tangible ob-
ject (using ConceptNet). We manually filter out ob-
jects that cannot be acted upon directly by humans
(such as school, building). After this preprocessing,
we obtain a set of sentence-object pairs (⟨xi, oi⟩),
where the sentence acts as the context for the cor-
responding object. Each sentence on average has
2-3 such objects. We use the 15 predefined affor-
dance classes from Zhu et al. (2014) to label each
sentence-object pair for annotation.
We utilize the Toloka platform3 for conducting the
data annotation. We design an interface on this plat-
form, containing clear instructions and examples
for annotating the data. We conduct two rounds of
pilot studies along with additional AMA (Ask Me
Anything) sessions to analyze the subjective under-
standing of the annotators and, thereby, only select
the high quality, serious annotators. A total of 114
annotators participated in the pilot study, and out of
that we finally engage 25 skilled annotators to an-
notate a total of 2,368 sentence-object pairs each
containing 15 affordance classes. Each datapoint
(i.e., sentence-object pair along with an affordance
class) has been annotated by three different anno-
tators. We provide the details of the pilot studies
& annotator training in Appendix A.1. By eval-
uating the complexity of the task for the annota-
tors from the pilot studies, we intentionally con-
sider a relatively small number of datapoints at a
point for the annotation. This leads us to a total
of 10 phases to complete the final annotation. We
carefully reviewed each annotation and provided
feedback with guidance in case of mistakes. For
instance, annotators initially got confused with the
affordance ‘Watch’ as human can watch any vi-
sual objects. In another instance, some annotators
asked whether ‘Throw’ can be valid affordance for
the object ‘Kittens’ as humans can perform ‘Lift’,
‘Throw’ to the object ‘Kitten’. We discussed these
types of ambiguities with the annotators after each
phase. Throughout each of the data annotation
phases, we put scrupulous attention to quality con-

2We choose XNLI as a source to facilitate multilingual
extensions of our dataset.

3https://toloka.ai/
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Agreement category Affordance classes Objects Object-affordance pair
High agreement
(>0.75) Row, Feed, Ride, Fix the horse, striped white shirts, a brown paper sack, Chinese

lanterns, Adrin’s sword, The movie
breakfast-Feed, a horse-Watch, crops-Fix, sports-Grasp, sports-Lift,
sports-Push, the phone-Feed, football-Ride

Medium agreement
(>0.4 & <0.75)

Throw, PourFrom, WriteWith,
LookThrough, Lift, Grasp, Play, Push

A red flag, An arrow, Art, Automatic weapons, Babies,
Black-and-white TV

computers-WriteWith, cats-Feed, football-Play, book-WriteWith, the
door-Push

Low agreement (<0.4) Watch, SitOn, TypeOn
Brandy from Spain, stone circles, iron, batteries, his fist,
historical artifact, gift, olive oil, outdoor tables, bumper
sticker on a car

weapon-Push, The table-Lift, boat-Fix, paintings-LookThrough,
cats-Throw

Table 2: Agreement based on difficulty in disambiguating different affordance classes, objects and object-affordance pairs.

# of sentence-object pairs annotated 2368
# of affordance class 15
# of instances annotated 106560 (2368 × 15 × 3)
Avg # of objects / class 333
Most prominent class Lift (851 objects)
Least prominent class WriteWith (3 objects)
Total skilled annotators used 25
Avg agreement (Kripendorff’s α ) 0.68

Table 3: TEXT2AFFORD dataset statistics. # of instances an-
notated: (# of <s-o> pairs) * (# of classes) * (# of annotations
per class).

trol, including iterative annotation refinement, and
manual evaluation. The overall statistics for this
currently constructed dataset – TEXT2AFFORD is
in Table 3. The TEXT2AFFORD dataset consists
of 2368 sentence-object pairs having ∼ 100k an-
notations (2368 × 15 × 3). For further details of
the dataset construction, and our method of han-
dling ambiguous scenarios, we refer the reader to
Appendix A.1.

Figure 2: Classwise distribution of the number of objects and
the annotator agreement.

TEXT2AFFORD data exploration. We observe
that classes such as ‘Grasp’, ‘Lift’, ‘Throw’, ‘Push’,
and ‘Watch’ are the most common affordances
for the objects present in the dataset (see Fig-
ure 2). Most frequent objects and their correspond-
ing agreement scores are shown in Appendix A.10
Fig. 8. We observe, agreement scores are fairly
uniform (0.5-0.6) for frequent objects, with high
agreement for some frequent objects (0.8 for “the
movie”). In Figure 9 (see Appendix A.9), we also
see that ‘Grasp’, ‘Lift’, and ‘Throw’ are highly cor-

related classes. There is similar positive correlation
between the class ‘SitOn’ and ‘Ride’, and some
correlation between ‘Watch’ and ‘LookThrough’.
In Table 2, we list down the affordance classes
based on the annotator agreement score, and divide
it into three categories to understand which of the
affordance classes pose the most and least difficul-
ties for the human annotators. We observe that the
classes - ‘Watch’, ‘SitOn’, and ‘TypeOn’ are the
most difficult to disambiguate. Further, to explore
the difficulty of understanding contextual object
affordance, we employ three naïve annotators to
annotate some samples of the TEXT2AFFORD, and
we observe that on an average in 88% cases the
humans are able to predict affordance correctly,
and in some cases the context introducing inherent
difficulty for predicting affordance. Details of the
study is provided in Appendix A.2.

4 Task description

Our first objective is to audit the strength of Large
Language Models in identifying the pre-defined
affordance classes of objects from text in zero-shot
settings. Given a textual context, and the object,
the task is to predict whether a particular affor-
dance class is applicable to that object conditioned
on the context. We majorly leverage 4 types of
task setup for the experiments. For the encoder
based models (e.g., RoBERTa, BERT) we choose
Masked Language Modelling (MLM) and Natu-
ral Language Inference (NLI) based setup, and for
the generative models we adopt 2 types of probing
setup (text only, text+image) to formalize the task.
Table 4 demonstrates different types of tasks that
we engage for conducting the experiments from the
TEXT2AFFORD dataset.

5 Experiments

We explore various state-of-the-art baselines us-
ing pre-trained language models (RoBERTa-large,
BART-large), instruction-fine-tuned large lan-
guage models (e.g., FLAN-T5, Falcon, ChatGPT,
Llama-3), pre-trained multi-modal vision and lan-
guage architectures (CLIP-ViT, ViLT, InstructBLIP,
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Model architecture Tasks Input instance Output

Encoder based
MLM All the women in India wear bangles [SEP_TOKEN] bangles can be used for

[MASK_TOKEN] by human
Probabilities of each affordance classes as the
[MASK_TOKEN]

NLI
premise: All the women in India wear bangles

Entailment scores for each affordance classeshypothesis: bangles can be used for <Affordance> by human

Generation based

Probing with text Consider the sentence - ’All the women in India wear bangles’. Now, from this information
can a human <Affordance> bangles? Answer YES or NO: YES\NO

Probing with text and
image

Consider the sentence - ’All the women in India wear bangles’.
Now, from this information can a human <Affordance> bangles?
Accompanying this query is an image of the bangles. Answer YES
or NO:

YES\NO

Table 4: Overview of the tasks using TEXT2AFFORD. For detailed prompting see Appendix 10.

IDEFICS, LLaVA). We observe whether these mod-
els gain the knowledge of affordances through their
pre-training, fine-tuning on commonsense tasks
(NLI, PIQA), or few-shot fine-tuning scenarios.

5.1 Zero-shot affordance prediction

5.1.1 Pre-trained language models
We frame the zero-shot prediction task in different
ways.
MLM based approach. Here, we pose the zero-
shot task as masked word prediction problem.
We choose BERT-large-uncased, RoBERTa-large
(Zhuang et al., 2021), and BART-large (Lewis et al.,
2020) models for the experiment. We pass the sen-
tence and prompt separated by a [SEP] token as an
input to the model. We use the prompt “<Object>
can be used for <MASK_TOKEN> by human” and
obtain the probability of each affordance label us-
ing the logit corresponding to the <MASK_TOKEN>.
Predictions from generative LLMs. We pose
the task as ‘YES\NO’ questions-answering format
and apply autoregressive language models such
as FLAN-T5 (Chung et al., 2022) (large, xl, and
xxl), Falcon (Almazrouei et al., 2023) (7b and 40b),
Llama-3 4, ChatGPT to get the predictions. We
provide with a ‘YES\NO’ question-answer based
prompt to the LLMs to predict whether a particular
affordance can be performed on the given object.
Based on rigorous prompt engineering we choose
specific prompts for the different models as shown
in the Appendix Table 10. We map ‘YES\NO’ pre-
dictions to 1\0 labels respectively.

5.1.2 Commonsense reasoning tasks
To understand whether the injection of the com-
mon sense knowledge in the pre-trained models
can enhance the performance of the affordance pre-
diction, we first fine-tune the pre-trained models
on common sense reasoning dataset such as PIQA
(Bisk et al., 2019). Then we run the fine-tuned
models on our dataset using the MLM setup. We

4https://github.com/meta-llama/llama3

use BERT-base, BERT-large, RoBERTa-large, and
BART-large models.
Apart from this, we leverage RoBERTa-large and
BART-large fine-tuned on the Multi-genre NLI
(MNLI) corpus (Williams et al., 2018) to eval-
uate on NLI setup. We utilize the sentence as
premise and use the hypothesis as “<object> can
be used for <affordance> by human” for each
object-affordance pair, and use the entailment score
to rank the affordance classes and report mAP and
accuracy. Details of the experiment can be found
in Appendix B.2.1.

5.1.3 Multimodal models
We explore both unimodal and multi-modal task
setup for pre-trained vision and language models.

Text-only MLM setup
VLMs are pre-trained on large datasets having both
image and text. The main goal of their pre-training
is to capture some visual knowledge correspond-
ing to the text while pre-training on multi-modal
dataset such as image-caption pairs. To examine
this, we first use the vision-language model CLIP,
by providing only text prompt as the input and
predict the affordance in an MLM setup.

Multimodal task setup
Images contain necessary information about shape,
texture, and size of objects that can be utilized to
effectively predict an object affordance (such as
the handle of the bucket can be used to grasp and
lift). Hence, we also convert the problem into a
multi-modal task by synthesizing corresponding
images from the context sentence, and predict the
affordance of an object (mentioned in the sentence)
based on the input.
Synthesizing images. In this setup, we use two dif-
ferent techniques to synthesize semantically close
images to corresponding context sentences using
1) retrieval and 2) generation. We further use top
five images for both, to get an accurate estimation.
Image retrieval: We use the CLIP (Radford et al.,
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2021) based sentence-transformers architecture to
search for top five semantically similar images for
each of the contexts from the Visualgenome (Kr-
ishna et al., 2017) dataset.
Image generation: We adopt the generative Sta-
bleDiffusion (Rombach et al., 2022) model to gen-
erate top five images based on the sentence as
a text prompt. Details can be found in the Ap-
pendix B.4.1.
We use the top five retrieved images by using re-
trieval and generation methods each. We use CLIP
(Radford et al., 2021) and ViLT (Kim et al., 2021)
as our vision-text models. CLIP has a text encoder
fT and a visual encoder fV , which can project
text and image into the shared latent space. We
aggregate the k (=5) corresponding images and
use CLIP to compute the relevance score of (x,
y): ScoreV I(x, y) =

1
k

∑K
i=1 cos (fT (x), fv(I

k
y )),

where Iky is the kth image for the input text y. In
the ViLT model, we provide the text prompt along
with the representative images as input to predict
the masked token. We use the same prompt as the
previous MLM task (i.e., “<Object> can be used
for <MASK_TOKEN> by human.”) and get the
probability of each affordance class as the logit
corresponding to the <MASK_TOKEN>.
Text generation based. Similar to section 5.1.1,
we utilize state-of-the-art VLMs to make predic-
tions regarding object affordances. We provide
with a ‘YES\NO‘ question answering based text
prompt along with the aligned images as input to
the VLMs, and the model should generate an an-
swer whether a particular affordance can be per-
formed on the given object. We use state-of-the-art
VLMs such as IDEFICS (Laurençon et al., 2023),
LLaVA (Liu et al., 2023b), InstructBLIP (Dai et al.,
2023) for this task. The text prompt used for the
models can be found in the Appendix D, Table 10.

Ensemble language and vision prediction. Fol-
lowing Yang et al. (2022), we use the weighted
sum as the late fusion over the final output proba-
bilities of each affordance class from the language
and multi-modal models. Experimental details can
be found in Appendix B.3.

5.2 Few-shot prediction

We conduct few-shot experiments by 1) fine-tuning
the encoder based models, 2) randomly selecting 5
demonstration examples for the generative models
to perform few-shot in-context learning (ICL). We
consider the 62 annotated objects and correspond-

ing 15 affordance classes by Zhu et al. (2014) for
the few-shot based experiments.
Training data To create few-shot training exam-
ples for fine-tuning encoder based PTLMs, we take
all the 62 objects, and for each object we randomly
select exactly 1 positive affordance class (i.e., the
class label annotated as 1) and 1 negative affor-
dance class (i.e., the class label annotated as 0) for
generating the training prompt. Overall they con-
stitute 124 training examples (62 sentence-object
pairs and 2 selected classes for each) for the few-
shot experiment. For more details of the training
data curation and the selection of examples for in-
context learning, refer to Appendix B.4
Experimental setup. We fine-tune the encoder
based language models using the training data, and
for the generative LLMs and the VLMs, we utilize
the training data to select in-context demonstration
examples.
Fine-tuning PTLM: We fine-tune the encoder based
PTLMs in NLI based setup having the context sen-
tence as premise and use same hypothesis (i.e.,
“<object> can be used for <affordance> by human”)
which we use in the zero-shot settings. We use
BERT-large-uncased, RoBERTa-large and BART-
large for fine-tuning in this setup. For implementa-
tion details refer to Appendix B.4
In-context learning for generative models: We em-
ploy the same generative LLMs as well as VLMs to
perform affordance prediction using five demonstra-
tion examples from the training data. We use the
same text prompt as zero-shot setting and concate-
nate the five demonstration examples along with
corresponding label (i.e., ‘NO’ for positive class,
and ‘NO’ for the negative class) to the prompt and
ask the LLMs and VLMs to predict the affordance.
In case of the VLMs, we do not provide any addi-
tional image example here.

6 Benchmarking TEXT2AFFORD
prediction

Evaluation metric. To assess the performance of
the zero-shot affordance prediction, we calculate
accuracy in the following way. Each affordance
class is treated as a binary classification problem,
where a value of 1 represents a positive class indi-
cating that the affordance can be performed on the
object, and a value of 0 represents a negative class
indicating that the affordance cannot be performed.
For each positive class ∈ {P1, P2, ..Pn}, we com-
pare the predicted scores of that affordance class
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with the predicted scores of the negative classes
∈ {N1, N2, ..Nm}. If the predicted score of the
positive class is higher than the predicted score of
all the negative classes (i.e., p(Pi) > p(Nj)∀j), we
increment the correct count by 15. Conversely, if
the predicted score of the negative class is higher,
we increment the wrong count by 1. The final ac-
curacy is calculated by dividing the total number
of correct counts by the total number of the in-
stances. To rank the affordance classes based on
the predicted score, we also report the Mean Aver-
age Precision (mAP@K, where K is the number
of affordance classes).

Encoder based
NLI based

Model Actual Fine-tuned LM + VI (CLIP) LM + VI (ViLT)
Acc mAP Acc mAP Acc mAP Acc mAP

RoBERTa-large-mnli 0.64 0.43 0.72 0.49 0.79 0.52 0.79 0.54
BART-large-mnli 0.65 0.38 0.69 0.48 0.62 0.4 0.64 0.43

MLM based
BERT-large-uncased 0.46 0.26 0.58 0.33 0.55 0.38 0.53 0.37
RoBERTa-large 0.55 0.36 0.77 0.49 0.61 0.41 0.62 0.43
BART-large 0.47 0.28 0.65 0.38 0.56 0.35 0.52 0.34

Multi-modal models (zero-shot)
CLIP-VIT (text-only) 0.47 0.34 - - - - - -
CLIP-VIT (retrieval) 0.56 0.35 - - - - - -
CLIP-VIT (generation) 0.61 0.4 - - - - - -
ViLT (retrieval) 0.41 0.31 - - - - - -
ViLT (generation) 0.44 0.32 - - - - - -

Table 5: Performance for affordance prediction using encoder
based models. Acc: Accuracy, LM: Language model, VI:
Vision. Only LMs are ensembled with VI. The best results are
in bold.

Generation based
Predictions from generative LLM

Model Acc (zero-shot) Acc (ICL)
Random baseline 0.18 -
FLAN-T5-large 0.06 0.13±0.04

FLAN-T5-xl 0.07 0.21±0.03

FLAN-T5-xxl 0.33 0.39±0.04

Falcon-7b-instruct 0.19 0.24±0.03

Falcon-40b-instruct 0.43 0.47±0.06

Llama-3-8b-instruct 0.36 0.43±0.05

ChatGPT (GPT-3.5 turbo) 0.41 0.44±0.05

Multi-modal models

Model Acc (zero-shot) Acc (ICL)
IR based IG based IR based IG based

Idefics-9b-instruct 0.26 0.25 0.36±0.02 0.37±0.03

Llava-1.5-7b 0.32 0.34 0.36±0.03 0.40±0.04

InstructBlip-vicuna-13b 0.37 0.39 0.43±0.03 0.45±0.03

InstructBlip-flan-t5-xl 0.12 0.16 0.15±0.02 0.18±0.02

InstructBlip-flan-t5-xxl 0.39 0.45 0.48±0.04 0.53±0.05

Table 6: Zero-shot and in-context learning (ICL) performance
for affordance prediction using generative models. IR: Image
Retrieval; IG: Image Generation. Number of demonstration
examples used for ICL = 5. We also mention the variance over
different selections of examples. The best results are in bold.

Zero-shot performance. Table 5 shows the results
of the zero-shot affordance predictions from the
mentioned models. The second column (i.e., Ac-

5During calculation we discard the cases when there is no
positive class for a sentence-object pair in the ground truth.
We do not find any instance where no negative class is present.

MLM based
Model Accuracy mAP
BERT-base-uncased-finetuned-piqa 0.45 0.26
BERT-large-uncased-finetuned-piqa 0.56 0.29
RoBERTa-large-finetuned-piqa 0.64 0.45
BART-large-finetuned-piqa 0.59 0.35

Table 7: Affordance prediction using models trained on com-
monsense data. Best results are marked in bold.

tual) indicates the values from the original LM and
multi-modal models. The third and fourth columns
(i.e., LM + VI) indicate the performances of ensem-
bling language models with two of the multi-modal
models we used. We observe that, the PTLMs have
some knowledge about object affordances, but they
still lack the comprehensive reasoning ability about
these affordances, which is reflected in the low
mAP values. Further, the performances vary across
different settings. In case of NLI based setup, the
fine-tuned RoBERTa and BART models show im-
provement in the performance, which indicates that
during fine-tuning on MNLI dataset, those models
gain some reasoning ability. In Table 6 we show
the generation based results in a zero-shot setting.
In case of FLAN-T5-large model, where we use
it to predict a binary label (YES\NO) for an affor-
dance class, the performance drops significantly
(the accuracy is less than 7%). This shows that
there are still some challenges for the text-to-text
models in general reasoning ability about the object
affordances. In addition, we find that, the multi-
modal models do not perform well in text-only
settings, despite being pretrained on text and image
data. The performances of the language models
get boosted when ensembling with the multi-modal
models, which indicates that the prediction of ob-
ject affordance from sentence is a difficult task, and
can be enhanced in presence of images. In addi-
tion to evaluating generative models, we establish
a random baseline (Detailed in Appendix B.1). In-
terestingly, we find that models like Flan-T5-large
and Flan-T5-XL underperform compared to this
random baseline in zero-shot settings.
Finetuning on commonsense datasets. We ob-
serve that the fine-tuned model on commonsense
reasoning task (Table 7) show improved perfor-
mance for the affordance prediction task. This indi-
cates that the pre-trained models lack the reasoning
of object affordance. Interestingly, we find that
the smallest BERT-base model fine-tuned on PIQA,
performs almost similar to that of the BERT-large
or BART-large models (see Table 5).
Few-shot performance. We find that, in presence
of few examples from our affordance dataset, the
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reasoning capability about object affordances can
be enhanced for the PTLMs. The results with 124
shots (62 pairs as discussed earlier) are noted in
Table 5. In Table 6, we note the results for the
in-context learning performance of the generative
LLMs and VLMs. We observe a significant perfor-
mance gain over zero-shot settings. Having said
that, we also observe that, even with the in-context
learning, the performance of the generative models
(with more than 7b parameters) do not reach even
close to the performance of the fine-tuned BERT-
large model (340M parameters). This suggests that,
for the specific affordance prediction tasks from
text, finetuning is absolutely essential even for the
state-of-the-art LLMs and VLMs.
Error analysis
Encoder based models. We conducted a qualitative
analysis of the erroneous cases for the two models
(BART-large and RoBerta-large) in MNLI settings
to understand what are the typical causes of errors.
We take examples where accuracy is below 0.3.
Consider the representative example below.

Sentence: The salt from La Mata is often used
as table salt. Object: table salt
Top 5 predicted affordances (according to
the probability score) - [‘sitOn’, ‘pourFrom’,
‘grasp’, ‘fix’, ‘lookThrough’]

The model predicts ‘SitOn’ as the top affordance
for table salt, implying that the model misinter-
prets “table salt” with “table”. Similarly, for the
object “the window sill”, the model predicts ‘look-
Through’, ‘watch’ as top affordances, which again
suggests that the model is confused between “the
window sill” and a “window”. In another case, the
model predicts [’grasp’, ’writing’, ’typing’, ’look-
Through’, ’throw’] as the top affordance labels for
the object “any rock concerts”.
Analysis of generative models. In Appendix Fig-
ure 6a, we plot the correlation between error rate
made by chatGPT for each affordance classes and
the classwise annotator agreement. We observe
a moderately negative correlation (ρ = −0.29)
which suggests that there is a chance that the model
is making higher mispredictions where the agree-
ment is low. Similarly we observe that the mis-
predictions made by chatGPT for the most fre-
quent objects has a moderately negative correlation
(ρ = −0.58) with the annotator agreement. The
correlation is shown in Figure 6b. The trends are
similar for the other LLMs. These results together
indicate that those objects and affordance classes

which are hard to disambiguate by humans also
pose a challenge to the most sophisticated GenAI
models in predicting the correct answer.

7 TEXT2AFFORD for physical reasoning

Apart from benchmarking LLMs and VLMs, we
observe whether Text2Afford can be used as a
source of affordance knowledge. We choose the
physical commonsense reasoning as a target as the
‘Object affordance’ represents an innate physical
property of an object, and we believe that any lan-
guage model having strong affordance reasoning
capability can enhance the physical reasoning ca-
pability. To explore this, we perform an ‘instruc-
tion fine-tuning’ on the TEXT2AFFORD dataset (al-
though it is not meant for training) using few open-
source LLMs (llama-3-8b-instruct, flan-t5),
and test on two physical reasoning dataset - (1)
PROST (Aroca-Ouellette et al., 2021), which con-
tains 10 types of different physical properties of an
object (including 6 affordance properties - rolling,
breaking, stacking, grasping, sliding, bouncing)
along with complex reasoning questions, and (2)
PIQA (Bisk et al., 2019) which, focuses on se-
lecting appropriate option given a situation that
requires physical commonsense.
For PROST, using llama-3 the accuracy boosts
from 0.36 to 0.42 after instruct fine-tuning with
TEXT2AFFORD. Moreover, out of the 6 affor-
dance properties from PROST, the accuracy got
boosted for the reasoning of 5 affordance proper-
ties. For the PIQA, the same LLM gives a max-
imum of 4% accuracy boost. The full result is
shown in Table 8. This suggest the generalizability
of TEXT2AFFORD in physical reasoning tasks.

Model
Dataset

PROST PIQA
Zero-shot +TEXT2AFFORD Zero-shot +TEXT2AFFORD

Llama-3-8b 0.36 0.42( +.06 )* 0.74 0.78( +.04 )*
FLAN-T5-xl 0.13 0.16( +.03 ) 0.57 0.59( +.02 )
FLAN-T5-xxl 0.34 0.38( +.04 )* 0.72 0.75( +.03 )

Table 8: Text-only physical reasoning dataset evalua-
tion using different LLMs fine-tuned on TEXT2AFFORD.
+TEXT2AFFORD: instruction fine-tuned on TEXT2AFFORD.
* indicates p-value (< 0.05) using Mann-Whitney U-Test.

8 Additional details

Reason for choosing XNLI. We select XNLI
to incorporate object references from less conven-
tional and commonly explored scenarios. Unlike
typical object identification datasets, XNLI offers
sentences derived from novels, thus presenting a
more in-the-wild textual context, which adds com-
plexity and diversity to our dataset. Specifically,
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we choose the hypothesis portion of the XNLI sen-
tences due to its shorter context length. This choice
intentionally poses a challenge to LLMs, allowing
us to better evaluate their reasoning capabilities,
especially when dealing with minimal contextual
information.

Non-explicit mention about contextual object
affordance in the instruction. The instructions
shown in Appendix Figure 3 represent the initial
guidance provided to annotators as an introduction
to the task. Since understanding contextual object
affordance can be challenging for non-expert an-
notators, this initial step was designed to give a
basic idea of the task. However, we follow this up
with a comprehensive training process and conduct
two AMA (Ask Me Anything) sessions to ensure
that annotators fully understood the need to base
their judgments on the provided context. These
efforts are key in ensuring high-quality annotations
throughout the dataset creation.

Reason for choosing 0-3 Likert scale in data
annotation. We opt for a 0-3 Likert scale (4-
point) to minimize the potential for neutral or non-
committal responses, which can often arise when
a midpoint option is available. Our initial obser-
vations indicated that some annotators tended to
select an “average" value without fully considering
the contextual affordance of the objects, which di-
minished the depth of their evaluations and limited
the discussion around ambiguities. By adopting
a 4-point scale, we aim to encourage more deci-
sive judgments. In addition, we provide a textbox
(see Appendix Figure 3) for annotators to express
any uncertainties or ambiguities they encountered,
which has helped us in capturing more nuanced
feedback.

Reason for choosing visual genome. We chose
visual genome as a primary source for real images
due to its rich, complex scenes, which are widely
used in visual reasoning tasks. The complexity
of the images in visual genome provides diverse
contexts that align well with the goals of our study,
which focuses on contextual object affordances.
While other methods, such as using search engines
like Bing, have been employed in prior work to
retrieve images, we opt for visual genome to ensure
that the images contain sufficient contextual and
visual detail to support affordance prediction, even
if there are minor limitations in reasoning.

Reason for choosing stable diffusion. Regard-
ing the use of stable diffusion, we have been in-
spired by its demonstrated capability to generate
high-quality, realistic images, particularly in prior
studies where it was effective in reasoning tasks.
While CLIP is primarily trained on real-world im-
ages, we hypothesize that stable diffusion could
generate contextual images with sufficient accu-
racy to complement the real images. The generated
images provide additional diversity, which helps us
explore the affordance prediction task from a differ-
ent angle. The benefit of using stable diffusion lies
in its ability to create controlled, context-specific
images that may not always be available in exist-
ing datasets, providing a broader range of testing
scenarios for our models.

Reason for framing generative tasks as a binary
decision problem. In the generative setting, we
opt for a binary yes/no classification to evaluate the
affordance of individual context-object-affordance
triples. We decide this based on the observation
of the tendency of smaller LLMs to hallucinate,
which can make direct affordance prediction chal-
lenging, particularly in zero-shot scenarios. By
framing it as a binary classification task, we aim
to simplify the evaluation and obtain more reliable
results. In addition, our approach allows for a com-
prehensive evaluation of both positive and negative
affordances. This is critical for our dataset, as it is
designed to assess affordances that are applicable,
as well as those that are not, in a given context.

9 Conclusion

In this paper we introduced a novel text-based af-
fordance dataset TEXT2AFFORD to investigate the
affordance knowledge of PTLMs and pre-trained
VLMs in different zero-shot settings. Our findings
suggest that, the state-of-the-art language models,
particularly text-to-text models, still exhibit limi-
tations in their ability to reason about object affor-
dances. In this seemingly easy task, we observe
how context can introduce various levels of ambi-
guity and difficulty. We also observe, that even in
the presence of such difficulty, human performance
is superior and LLMs/VLMs still face difficulty in
gaining such knowledge during their pretraining.
Additionally, we observe how our dataset provides
some additional knowledge that can be useful for
physical commonsense reasoning – stressing its
orthogonality more with respect to the pretraining
knowledge LLMs and VLMs possess.

350



Acknowledgments

We would like to express our sincere gratitude to
our co-authors for their invaluable contributions
throughout this work. We also extend our thanks
to the reviewers for their constructive feedback,
which significantly helped improve the quality of
the paper. Additionally, we gratefully acknowledge
the support of the Toloka Research Grant program,
which partially funded the data annotation process.

Limitations

All of our experiments were conducted for English
language. The models may act differently in multi-
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This could limit the generalizability of our findings
to other domains or contexts. Despite efforts to
train annotators and ensure agreement, subjective
interpretations of affordance classes, can introduce
noise. Our study primarily relies on textual infor-
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Appendices

A Data annotation

A.1 Details of the TEXT2AFFORD dataset
construction

Preprocessing. We select 20, 000 sentences from
a crowdsourced English dataset (XNLI English)
(Conneau et al., 2018)6 and extract the noun
phrases using the Stanford CoreNLP tool. As we
restrict to the affordances that humans can directly
perform, we filter the phrases which do not rep-
resent a tangible object (using ConceptNet). We
manually filter out objects that cannot be acted
upon directly by humans (such as school, build-
ing). After this preprocessing, we obtain a set of
sentence-object pairs (⟨xi, oi⟩), where the sentence
acts as the context for the corresponding object.
Each sentence on average has 2-3 such objects. We
use the 15 predefined affordance classes from Zhu
et al. (2014) to label each sentence-object pair for
annotation.

We further expand our dataset with the labeled
dataset provided by Zhu et al. (2014). Authors
present 62 common objects and their correspond-
ing 15 affordance labels. Given that our task is
context-based affordance prediction, we require to
have sentence-object pairs for labelling. To gener-
ate diverse context for this dataset, we utilize the
ChatGPT UI78 model to generate synthetic sen-
tences for each of the objects, followed by careful
manual correction.
Pilot studies & annotator training. We annotate
the dataset using the Toloka platform9. We design
an interface on this platform, which contained clear
instructions and examples for annotating the data.
We conduct two rounds of pilot studies to analyze
the subjective understanding of the annotators and,
thereby, filter out the high quality, serious annota-
tors. For the first pilot study, we present the anno-
tators with the smaller 62 sentence-object pairs and
ask them to label the instance with each affordance
class on a scale of 0 to 3, indicating whether or
not the affordance can be performed on the object.
Here, 0-1 indicates that the affordance cannot be
performed (high-low) and 2-3 indicates that the
affordance can be performed low-high). We will

6We choose XNLI as a source to facilitate multilingual
extensions of our dataset.

7https://chat.openai.com
8Prompt used: Can you make realistic sentences with the

following objects? Followed by the list of object names.
9https://toloka.ai/

further use these 62 synthetic sentence-object pairs
for few-shot training. For quality control, we se-
lect the top 90% of the available annotators in the
platform, who are proficient in English, and use
computers to complete the tasks10. A total of 15
annotators labelled the data, and all of them were
incentivized uniformly. After the first pilot, we find
that there is an extremely poor agreement among
the annotators, and the overall precision is around
28%. Therefore, we moved on to a second pilot
study. Here, we use all the 62 sentence-object pairs
from the previous study, along with 32 randomly
selected sentence-object pairs from the XNLI data.
We use the top 30% of the annotators (based on
the quality determined by the platform) available
on the platform, while other criteria remained the
same. We annotate 32 sentence-object pairs our-
selves, and use all the labelled examples as control
data points to guide the annotators while labelling.
A total of 114 annotators (including the 14 annota-
tors from the first pilot study) participated in this
version of the pilot study. We assign a specific
skill to the annotators who attained more than 30%
precision and 30% recall. In total, 48 annotators
passed this criteria. Through initial pilot studies,
we learnt that without grounded images, the task
appears quite subjective to annotators. The main
goal of the pilot studies have been to understand
the annotators’ quality, their comprehension of the
task, and their preferences for incentives per task.
We have also conducted two additional AMA (Ask
Me Anything) sessions with interested annotators
to further clarify the task.
Final annotation. In the final phase, we con-
duct the annotation on a larger set of sentence-
object pairs, carefully selecting a total of 2,368
pairs. To ensure diverse perspectives and minimize
bias, we engage 25 skilled annotators in this phase.
Three annotators independently annotated each of
the sentence-object pairs. Each annotator meticu-
lously evaluated the affordance classes for every
pair, contributing to a comprehensive annotation of
the dataset. We perform the annotations in phases
and complete the full task over 10 phases.
Reason for multiple annotation phases. We inten-
tionally consider relatively small number of data
points for annotation in a single phase to make the
review process easier. We carefully reviewed each
annotation and provided feedback with guidance

10We exclude mobile-users as we believe the instructions
may not appear clearly on mobile devices.
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in case of mistakes. For instance, annotators ini-
tially got confused with the affordance ‘Watch’ as
human can watch any visual objects. In another
instance, some annotators asked whether ‘Throw’
can be valid affordance for the object ‘Kittens’ as
humans can perform ‘Lift’, ‘Throw’ to the object
‘Kitten’. We discussed these types of ambiguities
with the annotators after each phase. We mea-
sured class-wise agreement and average agreement
across all classes after each annotation phase to
ensure the quality of the annotations. The over-
all statistics for this currently constructed dataset –
TEXT2AFFORD is in Table 3. Throughout the data
processing pipeline, we put scrupulous attention to
the quality control, including the use of pilot stud-
ies, iterative annotation refinement, and manual
filtering. These measures ensure that the dataset
is comprehensive, accurate, aligned with the ob-
jectives of the study and can be reliably reused in
future. Overall, our TEXT2AFFORD dataset con-
sists of 2368 sentence-object pairs having ∼ 100k
annotations (2368 × 15 × 3).

A.2 Additional analysis on the datapoints by
human

To further interpret the difficulty (or ambiguity) of
the datapoints, we filter out the “sentence-object-
affordance” triples based on the percentage anno-
tator agreement. We categorize the triples into 3
sections:

Agreement > 0.75: Total 26,411 triples
0.4<Agreement < 0.75: Total 7,084 triples
Agreement < 0.4: Total 2,025 triples

In general, the average agreement is higher for
negative affordance classes than that of positive
classes, which implies that it is easier for humans
to tell which ‘affordance’ is not applicable to a par-
ticular object.
We employ three postgraduate students and provide
them with the same set of instructions. We ran-
domly sample 200 datapoints from the high agree-
ment category (>0.75), and 200 samples from the
low agreement category (<0.4) and ask to annotate
independently. For the high agreement category
scenario, we observe that in 86%, 87%, 91% of the
cases their answers aligned with the majority voted
answers. For the low agreement category, in most
of the cases they feel there is not enough informa-
tion in the context to answer about affordance. In
some cases, it was easier to tell the affordance of

the object alone, but the context made it difficult to
answer. For example:
Context: “SCR systems are primarily made from
tree branches , lime and sawdust .” Can a human

“Sit On” tree branches?
Without the context, it is easier to say “Yes”.

A.3 Comparison with other reasoning dataset

A.4 Instruction page on the Toloka platform

Figure 3 shows the guidelines/instructions, that the
annotators had to follow for labelling.

A.5 Interface for labelling

A sample task interface is shown in Figure 4.

A.6 Annotators demographics

Figure 5 provides the demographic information
about the annotators. We can observe that a large
number of annotators (36%) are from Russia and
most of the annotators having the age in between
20-35.

A.7 Phasewise annotator agreement

We plot the soft agreement11, hard agreement12 in
Figure 7, which shows gradual increase in agree-
ment scores.

A.8 Incentive details

During the pilot study, we provided USD 0.05 per
task-suite where in each task-suite, there were 10
examples (15 affordance labels for each example)
to be answered. We attempted to take feedback
from the tolokers who had answered randomly (e.g.,
mark all the values as 0), to understand their re-
quirements properly. Most of them suggested that
a wage of $0.1 to $0.15 would be ideal for the
survey.

During the main study we provided USD 0.25
per task-suite, where in each task-suite there were
5 examples to be answered. Some of them were
consistently providing good answers and few of
them also suggested improvement on the objects.
We awarded them with an additional bonus of USD
0.5. Overall, we spent USD 777 for the annotation
process.

11Soft agreement: Mapping Likert scale ratings to binary
labels for measuring agreement by applying a threshold value.

12Hard agreement: Treating each Likert scale rating as a
distinct label.
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Dataset Train size Dev size Test size Reasoning type Source Image-
dependent

Targeted
affordance

Publicly
available

αNLI (Bhagavatula et al., 2020) 169,654 - 1,532 Abductive logical reasoning Crowd-sourced ✗ ✗ ✔

αARCT (Niven and Kao, 2019) 2420 632 888 Abductive logical reasoning Crowd-sourced ✗ ✗ ✔

FOLIO (Han et al., 2022) 1004 204 227 Deductive logical reasoning Expert written ✗ ✗ ✔

ANLI (Nie et al., 2020) 162,865 3,200 3,200 Deductive logical reasoning Synthetic ✗ ✗ ✔

WinoLogic (He et al., 2021) - - 562 Deductive logical reasoning Crowd-sourced ✗ ✗ ✔

LogiQA (Liu et al., 2021) 7,376 651 651 Mixed logical reasoning Crowd-sourced ✗ ✗ ✔

LogiQA 2.0 (Liu et al., 2023a) - - 3,238 Mixed logical reasoning Crowd-sourced ✗ ✗ ✔

PaCo (Qasemi et al., 2022a) 5,580 1,860 4,960 Preconditioned commonsense Crowd-sourced ✗ ✗ ✔

δ-NLI(Rudinger et al., 2020) 36,999 3,329 3,512 Defeasible commonsense Other dataset ✗ ✗ ✔

WINOVENTI (Do and Pavlick, 2021) - - 4,352 Commonsense with exceptions Crowd-sourced ✗ ✗ ✔

PVLIR (Qasemi et al., 2023) 34,000 Preconditioned visual commonsense Other dataset ✔ ✗ ✗

Normlense (Han et al., 2023) - - 10,000 Defeasible visual commonsense Crowd-sourced ✔ ✗ ✔

WinoViz (Jin et al., 2024) - - 1,380 Reasoning object’s visual property Crowd-sourced ✗ ✗ ✗

PROST (Aroca-Ouellette et al., 2021) - - 18,736 Reasoning object’s physical property Other dataset ✗ ✗ ✔

NEWTON (Wang et al., 2023) - - 2,800 Reasoning object’s physical property Crowd-sourced ✗ ✗ ✔

Persiani and Hellström (2019) 734,002 - 314,572 Object affordance without context Synthetic ✗ ✔ ✗

TEXT2AFFORD (Ours) - - 35,520
(2368 * 15) Contextual object affordance Crowd-sourced ✗ ✔ ✔

Table 9: Comparison of TEXT2AFFORD with other reasoning datasets.

A.9 Correlation of affordances

In Figure 9 we show the correlation between the
different affordance classes.

A.10 Most frequent objects

Figure 8a shows the most frequent 15 objects in the
TEXT2AFFORD dataset.

B Experimental setup

B.1 Random baseline

In addition to evaluating generative models, we es-
tablish a random baseline. For this baseline, we
randomly assign "yes" to the 15 affordance classes
for each sentence-object pair, with random selec-
tions made from 0 to 9 (based on the observation
that the maximum number of positive affordances
per pair is 9). Interestingly, we find that models
like Flan-T5-large and Flan-T5-XL underperform
compared to this random baseline in zero-shot set-
tings, highlighting the inherent difficulty of the task
in such scenarios.

B.2 Zero-shot experiments

B.2.1 Commonsense reasoning tasks
To understand whether the injection of the com-
mon sense knowledge in the pre-trained models
can enhance the performance of the affordance pre-
diction, we first fine-tune the pre-trained models
on common sense reasoning dataset such as PIQA
(Bisk et al., 2019). Then we run the fine-tuned
models on our dataset using the MLM setup. We
use BERT-base, BERT-large, RoBERTa-large, and
BART-large finetuned on MNLI.
NLI based approach. The NLI task considers a
premise and a hypothesis as input pair ⟨p, h⟩, and

the models are trained to predict the probability
whether the hypothesis is entailed by, contradicts
or neutral with respect to the premise. Here we
use the entailment probability from the models:
pLa(h|p) = p(l = “ENTAILMENT”|(p, h)).
This approach requires language models to be fine-
tuned on premise-hypothesis pairs with the cor-
responding labels. Here we use RoBERTa-large
and BART-large fine-tuned on the Multi-genre NLI
(MNLI) corpus (Williams et al., 2018) consisting of
433k sentence pairs. For each sentence-object pair
in our dataset as the premise, and use the hypoth-
esis as “<object> can be used for <affordance>
by human” for each object present in the sentence
and 15 affordance classes. Using the NLI setting,
we predict the entailment score for each affordance
class for the given sentence-object pair. We use
these scores for ranking the affordance classes and
report mAP scores as well as accuracy.

B.3 Ensemble language and vision prediction

Following Yang et al. (2022), we use the weighted
sum as the late fusion over the final output prob-
abilities of each affordance class from the lan-
guage and multi-modal models. Before late fu-
sion, we normalize the output probability scores
from different models. We calculate the score as:
Pens(y|x) = (1−w)pLa(y|x)+wpVI

(y|x) where
w is the relative size of the vision-text model and
the language model (following Yang et al. (2022)):
w = Sigmoid

(
ρVI
ρLa

)
. Here ρVI

and ρLa denote
the number of parameters of the multi-modal and
language models respectively.
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Introduction

Mike has bought a Robot to do simple household tasks such as writing on a paper, playing a guitar, throwing garbage outside based
on what Mike says to the Robot. However, the Robot is not accustomed with the Mike's household objects, so it does not
know which thing can be used for which of the tasks. For example, the Robot is not aware that a pen or a pencil can be used for
writing on a paper, but can not be played. A guitar or a banjo can be played, but not used for writing.  This is important for the
Robot to know before acting on instructions such as "clean the dishes for me".
However, the good-news is that the Robot can be taught about any object and its corresponding action. You, as a trainer, have been
asked to teach the Robot about the household objects.  Your task is simple -- there are few common objects (or things) in the house
and you need to tell the Robot what actions (i.e. tasks) can be performed with each of those from a set of selected actions (tasks).
This will help the Robot learn about what action can be performed on what type of objects.

See the below figure to understand which kind of action can be performed on which objects.

 

Task Description

You are given a sentence and the object name present in the sentence. You are required to mark the actions that can be performed from a
given list of 15 actions.

For example:

Sentence: The tennis shoes have a range of prices.
Object: The tennis shoes

Out of the 15 given actions: Grasp, Lift, Throw, Push, Fix, Ride, Play, Watch, SitOn, Feed, Row, PourFrom, LookThrough, WriteWith, TypeOn
Select: Grasp, Lift, Throw, Push, Fix as that is something we typically do/is done/can be done with "The tennis shoe".

For each of the given actions, you are given a scale ranging from   0 to 3 .  The selection of a score of "0" means you strongly believe the
action cannot be done, while a score of "3" means you strongly believe the action can be done. Scores of "1" and "2" are for cases
where you are less sure about whether or not the action can be done. One example of selections is given below for the object "The
tennis shoes" 

Additional Examples:

1. Objects that can be grasped: Pencil, tennis ball

2. Objects that can be Lift: a book, a box, a chair

3. Objects that can be Thrown: a baseball, a frisbee, a rock

4. Objects that can be Pushed: table, brakes of a car

5. Objects that can be Fixed: machines, vehicles, electronics

6. Objects that can be Ride: bicycles, motorcycles, horses, roller coasters

7. Objects that can be Play: musical instruments (guitar, piano, violin), sports equipment (tennis racket, soccer ball), electronic devices (video game console)

8. Objects that can be Watch: televisions, computer screens, movie screens

9. Objects that can be SitOn: chairs, benches, sofas

10. Objects that can be Feed: animals such as dogs and cats, as well as birds

11. Objects that can be Row: boats, canoes, kayaks, and rowboats

12. Objects that can be PourFrom: a pitcher, a bottle, a jug, a teapot

13. Objects that can be looked through:  windows, telescopes, binoculars

14. Objects that can be WriteWith: pens, pencils, markers

15. Objects that can be TypeOn: computers, laptops, tablets, smartphones

Figure 3: The instruction used for annotators in the Toloka platform

B.4 Few-shot experiments

Training data To create few-shot training
examples for fine-tuning encoder based PTLMs,
we take all the 62 objects, and for each object we
randomly select exactly 1 positive affordance class

(i.e., the class label annotated as 1) and 1 negative
affordance class (i.e., the class label annotated
as 0) for generating the training prompt. As this
dataset does not contain any context sentences
for a corresponding object, we use ChatGPT UI
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Figure 4: The sample task interface used for the annotators
in the Toloka platform

to generate the sentences for the corresponding
objects and manually verify the sentences, so
that it does not contain any invalid information.
Finally, we have 62 sentence-object pairs and
2 classes (one positive and one negative) per
pair, which we use to generate training examples.
Each training example consists of a prompt and a
label. They constitute 124 training examples (62
sentence-object pairs and 2 selected classes for
each) for the few-shot experiment.

Selecting examples for in-context learning
: We randomly sample five sentence-object-
affordance triples from the above training data
as the incontext demonstration examples in such
a way that there should be k positive affordance
classes. We vary the number of positive affordance
classes k ∈ {1, 2, 3} and report the average
accuracy.

Experimental setup. We fine-tune the encoder
based language models using the training data, and
for the generative LLMs and the VLMs, we utilize
the training data to select in-context demonstration
examples.
Fine-tuning PTLM: We fine-tune the PTLMs in two
different setups - NLI based and prompt based. For
the NLI based setup we have the context sentence
as premise and use same prompt (i.e., “<object>
can be used for <affordance> by human”) which
we use in the zero-shot settings as hypothesis. We
use label as 1 for the positive affordance and label
as 0 for the negative affordance. We use BERT-
large-uncased, RoBERTa-large and BART-large for
fine-tuning in this setup. We reuse these fine-tuned
models for few-shot predictions in MLM setup.
We use Adam optimizer with a learning rate of
2× 10−5. We fine-tune the model for 5 epochs for

(a) Country distribution of the annotators

(b) Age distributions of the annotators

Figure 5: The Annotators Demographics

each case.
In-context learning for generative models: We em-
ploy the same generative LLMs as well as VLMs to
perform affordance prediction using five demonstra-
tion examples from the training data. We use the
same text prompt as zero-shot setting and concate-
nate the five demonstration examples along with
corresponding label (i.e., ‘YES’ for positive class,
and ‘NO’ for the negative class) to the prompt and
ask the LLMs and VLMs to predict the affordance.
In case of the VLMs, we do not provide any addi-
tional image example here.

B.4.1 Multimodal task setup
Images contain necessary information about shape,
texture, and size of objects that can be utilized to
effectively predict an object affordance (such as
the handle of the bucket can be used to grasp and
lift). Hence, we also convert the problem into a
multi-modal task by retrieving (or generating) a
corresponding image from the context sentence,
and predict the affordance of an object (mentioned
in the sentence) based on the input.
Synthesizing images. In this setup, we use two
different techniques to synthesize semantically
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(a) (b)

Figure 6: (a) Correlation between average classwise error rate made by chatGPT and the annotator agreement. (ρ = −0.29) (b)
Correlation between frequent object wise error rate made by chatGPT and the annotator agreement. (ρ = −0.58∗). *indicates a
p-value < 0.05.

Figure 7: Phase-wise annotator agreement.

close images to corresponding context sentences
using 1) retrieval and 2) generation. We further
use top five images for both, to get an accurate
estimation.
Retrieval based: We employ Visualgenome
(Krishna et al., 2017) dataset, consisting of
108,077 images and 3.8 million object instances
as the image database. We first encode the images
using multi-modal CLIP (Radford et al., 2021)
based sentence-transformers architecture, and
index those image embeddings using Approximate
Nearest Neighbour search (ANN)13, for making
the search efficient. Now, for each sentence, we
search for top five images from the database to be
used further.
Generation based: Recently, the multi-modal gen-
erative models (Ramesh et al., 2022; Saharia et al.,
2022) have shown incredibly good performance
for text based image generation tasks. We adopt

13https://pypi.org/project/annoy/

the recent StableDiffusion (Rombach et al., 2022)
model to generate top five images based on the
sentence as a text prompt.

We use the top five retrieved images by using
retrieval and generation methods each. We use
CLIP (Radford et al., 2021) and ViLT (Kim et al.,
2021) as our vision-text models. CLIP is pre-
trained on 400M image-caption pairs with the con-
trastive learning strategy. CLIP has a text encoder
fT and a visual encoder fV , which can project
text and image into the shared latent space. We
aggregate the k (=5) corresponding images and
use CLIP to compute the relevance score of (x,
y): ScoreV I(x, y) =

1
k

∑K
i=1 cos (fT (x), fv(I

k
y )),

where Iky is the kth image for the input text y. In
the ViLT model we provide the text prompt along
with the representative images as input to predict
the masked token. We use the same prompt as the
previous MLM task (i.e., “<Object> can be used
for <MASK_TOKEN> by human.”) and get the
probability of each affordance class as the logit
corresponding to the <MASK_TOKEN>.
Text generation based. Similar to section 5.1.1,
we utilize state-of-the-art VLMs to make predic-
tions regarding object affordances. We provide
with a ‘YES\NO‘ question answering based text
prompt along with the aligned images as input to
the VLMs, and the model should generate an an-
swer whether a particular affordance can be per-
formed on the given object. We use state-of-the-art
VLMs such as IDEFICS (Laurençon et al., 2023),
LLaVA (Liu et al., 2023b), InstructBLIP (Dai et al.,
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(a) (b)

Figure 8: (a) Most frequent 15 objects and their corresponding frequency in the TEXT2AFFORD dataset. (b)
Annotator agreement for the most frequent 15 objects.

Figure 9: Correlation between each of the affordance
classes.

2023) for this task. The text prompt used for the
models can be found in the Appendix D, Table 10.

C Additional (mis)prediction analysis

C.1 Affordance classwise mis-prediction

We analyze the mis-prediction rates for each class
using the best LLMs (chatGPT, llama-3-8b). We
observe that, the classwise mis-prediction rate is
similar to the distribution of each class in the origi-
nal data, i.e., the classes such as ‘grasp’, ‘lift’ hav-
ing higher mis-predictions compared to ‘typeOn’,
‘row’.

C.2 Objects with multiple positive affordances

We conduct an analysis to determine whether the
frequency of positive affordances for an object im-
pacts model accuracy. Our findings indicate that
the accuracy is highest when an object has a single
positive affordance. Beyond this point, the num-
ber of positive affordances does not significantly
influence the model’s performance. Specifically,
we observe that as the number of positive affor-
dances increases, the accuracy fluctuates without
a clear pattern, suggesting that additional positive
affordances do not contribute to a consistent im-
provement or decline in model accuracy.

C.3 Correlation of ChatGPT accuracy and
average human agreement

We provide the figures corresponding to the gener-
ative model analysis in Figure 6.

D Prompt selection

We use intuitive prompts for each of the setups,
which are suitable for affordance related to object.

E Instruction fine-tuning setup

Data sample selection. We select sentence-
object pairs from the TEXT2AFFORD dataset where
at least one positive affordance is present. For
each selected sentence-object pair, we randomly
assign one positive affordance and one negative
affordance, yielding a balanced dataset of 1819
training instances (positive and negative classes).
To incorporate additional domain knowledge and
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Model Prompt used

FLAN-T5 consider {sentence}. Now, from this information
can human {affordance} the {object_name}? An-
swer YES or NO:

Falcon """You are a helpful AI assistant. Answer only
"YES" or "NO" for the question based on the given
context. Context:sentence \n »QUESTION« Can
human {affordance} the {object_name}? \n »AN-
SWER«""".strip()

I-BLIP, IDEFICS, LLaVA consider the sentence {sentence}. Now from this
information, can human {affordance} the {ob-
ject_name}? Accompanying this query is an image
of the object_name. Note that the image may con-
tain noise or variations in appearance. Given the
textual description and the image, answer YES or
NO whether the human can {affordance} the {ob-
ject_name}. Answer: "

Table 10: Prompt format used by different models for
the prediction. I-BLIP: InstructBLIP.

reduce the likelihood of generating hallucinated an-
swers, we include 500 randomly sampled instances
from the training set of the target task (i.e., PIQA).
For the PROST task, as the training set is not ex-
plicitly available, we sample from the test set and
ensure these samples are removed from the eval-
uation set during testing. The training instances
are framed in a multiple-choice question answering
format.

Fine-tuning setup. We utilize Alpaca-formatted
prompts (shown in Table 11, Table 12 and Table 13
for the TEXT2AFFORD, PIQA and PROST tasks,
respectively). We fine-tune 4-bit quantized models
with PEFT, focusing on the adapter layers. We
perform the fine-tuning over 5 epochs with a batch
size of 8, a learning rate of 2e-10, weight decay,
and a maximum sequence length of 256.

F Model implementation details

The language models and the ViLT are built on
top of the huggingface API14. For NLI based zero-
shot prediction, we use the zero-shot classification
pipeline 15. We adapted the CLIP model from the
OpenAI’s public repo 16, and we select the ViT/B32
as the image encoder. For ViLT, we select the
vilt-b32-mlm 17 model. For generative LLMs and
VLMs we apply the models available on hugging-
face 18. All the experiments were conducted on 2x
NVIDIA RTX 4090 GPU server.

14https://huggingface.co/
15https://huggingface.co/docs/transformers/

main_classes/pipelines
16https://github.com/openai/CLIP
17dandelin/vilt-b32-mlm
18https://huggingface.co/models

G Details of evaluation metric

For a ‘Sentence-Object’ pair we calculate accuracy
in the following way. In the ground-truth, each
affordance class is treated as a binary value, where
a value of 1 represents a ‘positive affordance’ indi-
cating that the affordance can be performed on the
object, and a value of 0 represents a ‘negative af-
fordance’ indicating that the affordance cannot be
performed. Now, for a particular ‘Sentence-Object’
pair, let’s assume there are two positive affordances
(P1, P2) in the ground truth; then there will be 13
negative affordances (as we have a total 15 affor-
dance classes). In case of encoder-based models,
for each positive affordance, we compare its pre-
diction score against each negative affordance’s
score. If a positive affordance’s score is higher, we
increase the Correct count; otherwise, the Wrong
count. Accuracy is calculated as Correct / (Correct
+ Wrong).
In case of encoder-decoder or decoder-only models,
Due to the inherent difficulty in automatic evalu-
ation, we predict ’YES\NO’ for each affordance
class, mapping ’YES’ to 1 and ’NO’ to 0. Accuracy
is then measured in the same way as for encoder-
based models (assuming 1 or 0 as the score for each
affordance class).

H Dataset creation time

Annotating affordances about the object from a
text itself is a difficult and very subjective task. It
took approximately 5 months for completing the
extraction of noun-phrases from xnli data, filter-
ing objects, selecting skillful tolokers and training,
and then final phase-wise annotation after rigorous
review process.

I Sample dataset

Figure 10 shows a sample of TEXT2AFFORD

dataset

J Additional experiments

J.1 Qualitative analysis of generated images
We conducted a qualitative analysis on 50 randomly
sampled objects and their corresponding generated
images. Two annotators (one Phd student and one
undergrad student) marked each of the 5 gener-
ated images as 1 or 0 according to their relevance
and non-relevance to the object respectively. We
considered the image as relevant if both of the an-
notators marked that image as 1. We achieved an
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Instruction to fine-tune TEXT2AFFORD

Below is an instruction that describes a task. Write a response that appropriately completes the
request.

### Instruction:
You are an AI assistant that has strong reasoning capability. You are given a context containing
an object, and you are asked to answer a question about the object based on the context. Just
response ’Yes’ or ’No’.

### Context:
{context}

### Object:
{object}

### Question:
Can human {affordance} the {object}?

### Answer:
{answer}

Table 11: Instruction to fine-tune TEXT2AFFORD.

Instruction to fine-tune PIQA

Below is an instruction that describes a task. Write a response that appropriately completes the
request.

### Instruction:
You are an AI assistant that has strong reasoning capability. You are given a situation and asked
to choose the most appropriate option from given two options.

### Situation:
{situation}

### Options:
[0] {option0}
[1] {option1}

Only response the ‘answer id’. For example if the answer is [0] then response 0. DO NOT
respond anything other than <0, 1>.

### Answer:
{answer}

Table 12: Instruction to fine-tune PIQA.
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Instruction to fine-tune PROST

Below is an instruction that describes a task. Write a response that appropriately completes the
request.

### Instruction:
You are an AI assistant that has strong reasoning capability. You are given a question with 4
options and you have to choose the right option.

### Question:
{question}

### Options:
[0] {option_A}
[1] {option_B}
[2] {option_C}
[3] {option_D}

Only response the ‘answer id’. For example if the answer is [0] then response 0. DO NOT
respond anything other than <0, 1, 2, 3>.

### Answer:
{answer}

Table 13: Instruction to fine-tune PROST.
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Sentence Object Grasp Lift Throw Push Fix Ride Play Watch SitOn Feed Row PourFrom LookThrough WriteWith TypeOn
This diablo only comes out to 
slaughter the cattle . cattle 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0
Delivery points should include at 
least a bench and a locked storage 
compartment . bench 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0
There are four fences , and you can 
only go past the second one if you 
are a member of the imperial family , 
or a high-ranking priest . fences 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0
Users are excited about being able 
to share their own events on the 
calendar page . calendar page 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0
White ran towards where the people 
were hitting each other with swords . swords 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
The cat ate every kind of fish except 
tuna . fish 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
The snake was hissing underneath 
the deck . deck 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
On the higher levels of the town hall , 
Umbrian and Tuscan paintings are 
on show . the town hall 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
He couldn 't follow up because his 
mouth was gagged by a group of 
mercenaries . mercenaries 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0
A gristle gun is featured . gristle gun 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 10: Example snapshot of TEXT2AFFORD dataset.

Acc@1 of 0.2, Acc@5 of 0.88 and an MAP@5
of 0.36. Which suggests that in most of the cases
there are relevant images in the top-5 generated
images. In our pursuit of assessing the statistical
significance of our sampled data (i.e., the 50 ex-
amples), we embarked upon a rigorous hypothesis
testing procedure utilizing the binomial distribu-
tion. Within our specific context, we accorded
greater significance to the top-5 accuracy metric,
which demonstrated an impressive achievement of
0.88. This signifies that among the 50 selected
examples, in 44 instances, at least one of the five
generated images displayed relevance to the object
under consideration.

Guided by this success rate, we proceeded to con-
duct a meticulous hypothesis test employing the
binomial distribution. We assumed an expectation
of success at 0.75. The outcome of this statisti-
cal analysis revealed a p-value of less than 0.02,
thereby underscoring the statistical significance of
our success rate.
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Abstract

The ability to compare by analogy, metaphor-
ically or not, lies at the core of how humans
understand the world and communicate. In this
paper, we study the likelihood of metaphoric
outputs, and the capability of a wide range of
pretrained transformer-based language models
to identify metaphors from other types of analo-
gies, including anomalous ones. In particular,
we are interested in discovering whether lan-
guage models recognise metaphorical analo-
gies equally well as other types of analogies,
and whether the model size has an impact on
this ability. The results show that there are rel-
evant differences using perplexity as a proxy,
with the larger models reducing the gap when it
comes to analogical processing, and for distin-
guishing metaphors from incorrect analogies.
This behaviour does not result in increased diffi-
culties for larger generative models in identify-
ing metaphors in comparison to other types of
analogies from anomalous sentences in a zero-
shot generation setting, when perplexity values
of metaphoric and non-metaphoric analogies
are similar.

1 Introduction

Analogical reasoning is critical to deep language
understanding, as it is a core mechanism of human
generalization and creativity (Holyoak and Tha-
gard, 1996; Hofstadter, 2001). Analogical thinking
includes figurativeness (e.g. The mind is a sponge.),
in which humans naturally express relationships
based on non-literal connections. Traditionally,
metaphors have been challenging to model from
a computational perspective (Veale et al., 2016)
and in the context of NLP. This is due to their pro-
teiform nature, conventional or creative, concise or
structurally more complex.

Some limitations might have been lifted given
the new wave of language models (LMs) that
have revolutionalised the field of NLP and beyond

(Chowdhery et al., 2022; Ouyang et al., 2022; Tou-
vron et al., 2023). Indeed, recent studies on the last
generation of large transformer-based LMs show
enhanced abilities to perform analogical reasoning
(Webb et al., 2023), suggesting that models of a
larger size may gain the ability to process complex
analogies.

As a conceptual innovation device, figurative
analogies have also been studied in relation to the
fluency, creativity and originality of students’ writ-
ing (Kao, 2020). Creative writing support tools
specialising in metaphor generation have been de-
veloped, such as Metaphoria (Gero and Chilton,
2019). The emergence of LLMs as writing as-
sistants has further highlighted the importance of
understanding how metaphors are processed by
LMs, especially given some limitations pointed
by their users related to the generation of poor
metaphors and overly predictable endings, to name
a few (Chakrabarty et al., 2024).

Motivated by the recent advances in language
modeling and the need for understanding how LMs
process metaphors, we establish the following two
research questions:

Research Question 1 (RQ1). How do language
models distinguish metaphors from literal and
anomalous sentences? In particular, we are inter-
ested in determining if the likelihood of metaphors
compared to both literal and anomalous sentences
is consistent across models. For this, we are also in-
terested in analysing the differences among model
families and, particularly, sizes. This research ques-
tion is addressed in Section 5.

Research Question 2 (RQ2). Assuming dif-
ferences in the answer to RQ1, we aim to ad-
dress the following complementary questions: how
do metaphors impact the performance of lan-
guage models in general analogy tests? Are lan-
guage models capable of solving analogies when
metaphors are involved? Our findings are presented
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in Section 6.
In order to answer both research questions, we

evaluate a broad range of language models on their
ability to distinguish anomalous, metaphoric and
non-metaphoric sentences on datasets from psy-
cholinguistics, that were, to our knowledge, previ-
ously unused in NLP studies. The results clearly
show the marked differences in terms of perplex-
ity between attributive metaphors and other lit-
eral attributive structures, where, in some cases
metaphors are processed more similarly to anoma-
lies, whereas in other cases, they are processed
more similarly to literal examples. A last ex-
periment on the SAT analogy test dataset allows
a comparison of the models in open-generation
tasks for challenging metaphors and analogies.
We observed differences between perplexity and
generation-based approaches, with an enhanced
ability of the models to deal with metaphors in the
generation setting1.

2 Background

In this section, we provide more details on the rela-
tion between analogies and metaphors, and discuss
other terminology used across the paper.

Analogies. Analogy is a type of similarity in
which the same system of relations holds across
different sets of elements (Gentner and Smith,
2012). The analogies that we consider express
parallels across pairs of concepts captured min-
imally through attributive structures A is-a B or
more explicitly with comparisons of the form A
is to B what C is to D. Mapping conceptual struc-
tures to understand or create analogies comes natu-
rally to humans, but it is generally challenging for
computational models because it conveys implicit
semantic attributes and relations. For example, un-
derstanding the statement ketchup is to tomato what
guacamole is to avocado involves an internal rep-
resentation of the relation x is made of mashed y.

In two-word analogies, the relation of interest
is implicit. For example, from the sentence His
editing style was a chainsaw, one can reconstruct
an implicit 4-term analogy: His editing style was
to the text what a chainsaw is to a forest.2

1The code and datasets used in our experiments can be
found at https://github.com/Mionies/Metaphors_and_
Analogies.

2Such reconstructions may leave room for interpretation
as they are generally underdefined. For instance, forest may
not be the only choice in the example.

Metaphors. Within Conceptual Metaphor The-
ory (CMT), a metaphor is defined as a mapping
process between broad conceptual domains (Lakoff
and Johnson, 1980), which occur at the level of
thought and manifests through language. In order
to study the ability of models to identify metaphoric
mappings, we experiment on linguistic expressions
constrained in form. In this paper, a metaphor
is defined as a word (or a set of related words),
that can be understood through the prism of an-
other distant word (or another paired set of related
words), without relying on additional explicit con-
text. We feed minimal metaphoric sentences that
almost only contain the words forming mappings
into the models, to gain a better understanding of
how they are represented by the LMs.

According to Black (1977), all metaphors medi-
ate an analogy , but not all analogies are metaphors.
The relation between metaphors and analogies has
been much debated. Researchers who refer to
shared features and structural analogies as the ba-
sis of metaphors disagreed with some conceptual
mapping theorists who have argued that similarity
is not the basis for metaphors (Grady, 1999). Gen-
tner et al. (2001) and Bowdle and Gentner (2005)
introduce a framework that intends to unify both
views. The present study adopts this theoretical
framework. Metaphors are treated here as a species
of analogies. More recently, Wijesiriwardene et al.
(2023a) proposed a taxonomy of analogies where
the metaphors included in our dataset would be
classified as semantic and pragmatic analogies, i.e.
the two most complex types of analogies, which
require good semantic representations, and some-
times pragmatic knowledge, to be processed accu-
rately.

Among all analogies, we hypothesise that
metaphors might be even harder to process, because
they are more structurally variable than other types
of analogy. The attribute and relation conveyed
are partial matches. They can even violate struc-
tural consistency (Gentner et al., 1988). Accord-
ing to Tourangeau and Sternberg (1982), a good
metaphor is one that involves two very different
domains. It is not an absolute criterion, but good
metaphors are often cross-domain (far) analogies,
which adds to the complexity. Another specificity
of metaphors is that the mapping is not reversible
(Ortony, 1993), i.e., metaphors have directional-
ity. For example The acrobat is a hippopotamus
suggests a clumsy acrobat and The hippopotamus
is an acrobat suggests a graceful hippopotamus.
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For these two reasons, LMs may struggle to catch
capture the parallelism between the concepts in-
volved in a metaphor in comparison to other types
of analogies.

Anomalies. Semantic anomalies can resemble
metaphors in the sense that they may eventually
bring together concepts that are distant from each
other. Unlike metaphors, the two concepts do not
share any obvious properties. For example, A chair
is a syllogism can be considered to be an anomaly
(Black, 1977). Fallacious analogies made of two
word pairs in the A is to B what C is to D structures
are constructed by mapping words that are not con-
nected by the same relation. For example, having
the first pair linked by a part of relation and the
second pair by a made of relation.3

3 Related Work

Automatic metaphor processing research has seen
a garnered increased in recent years, partially due
to the encouraging performance of language mod-
els on existing benchmarks (Leong et al., 2020).
However, there have been almost no studies on
metaphors in the context of analogies.

3.1 Analogies

Czinczoll et al. (2022) compared the performance
of transformer-based language models on near
analogies and more creative ones. They reported a
large gap in the performance of the LMs between
the two categories and released the SCAN dataset
of creative analogies. In the context of the recent
multiplication of larger language models, we can
now say that their study is limited to relatively
small models, BERT and GPT2, and in the frame-
work of fine-tuning experiments. In contrast, we
study the zero-shot abilities of the model, which
allows us to conveniently scale up the experiments
with limited computing power. The SCAN dataset
does not contain anomalies or distinguish between
metaphoric and non-metaphoric analogies. There-
fore, integrating it into our our experimental setting
would require additional annotations.

Webb et al. (2023) studied the performance of
the GPT3-davinci models on a large range of dif-
ferent analogies, from geometric patterns to short
pieces of text. All the experiments are compared

3In the rest of this paper, we refer to the sentences that
are not figurative, and not semantically anomalous as literal.
Table 1 shows examples of 2-terms literal sentences, that are
not analogies, and 4-terms sentences that are analogies.

with the performance of humans on the same task.
The authors observed a sudden improvement with
the davinci-003 model, which corresponds to the
beginning of the release of instruction-tuned mod-
els by OpenAI (Ouyang et al., 2022). These results
also suggest that abstract analogical reasoning may
be an emergent ability of the larger models. This
was also demonstrated by Wei et al. (2022), who ob-
served a sudden improvement in the classification
of fine-grained figurative language when the mod-
els are scaled up. These works were a motivation
for the present study in the context of metaphorical
analogies. We tested a large number of models
of different sizes, including open-source ones, to
better understand how the sizes and model types
impact their ability to recognise complex analogies.

Wijesiriwardene et al. (2023b) and Sultan and
Shahaf (2023) recently released resources for the
identification of analogical pairs of short texts.
While Sultan and Shahaf (2023) do not distinguish
metaphors from other analogies, Wijesiriwardene
et al. (2023b) proposed a scale of complexity for
analogical relations, with metaphors occupying the
highest level. The open research topic of analogical
reasoning between documents explored in this pre-
vious study beyond the scope of our study. Instead,
we frame our experiments to explore the behavior
of the models when they are provided with the min-
imal linguistic information necessary to create an
analogy and a metaphor, in zero-shot settings.

While good performance can be achieved when
the models are fine-tuned on analogy datasets,
(Griciūtė et al., 2022; Yuan et al., 2023), we are
interested in understanding how LMs represent
metaphors without explicit fine-tuning. In this re-
spect, the present work is more in line of perplexity-
based experiments of Ushio et al. (2021b). In con-
trast, we do not focus on improving the perplexity
metrics but on the comparison between vanilla per-
plexity scores across models.

3.2 Metaphors
Metaphor processing in NLP comprises many
methods developed for metaphor identification
(Turney et al., 2011; Tsvetkov et al., 2014; Mao
et al., 2019; Wachowiak and Gromann, 2023), but
also generation (Veale, 2016; Stowe et al., 2021;
Chakrabarty et al., 2021b), textual (Mao et al.,
2018) and multimodal (Kulkarni et al., 2024) inter-
pretation, metaphor understanding through entail-
ment (Agerri et al., 2008; Chakrabarty et al., 2021a;
Stowe et al., 2022), among other tasks. Ge et al.
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Dataset Format n_sent n_set n_ins Labels Example

Cardillo 2-term 520 2 260 Literal The murder weapon was a chainsaw.
Metaphor His editing style was a chainsaw.

Jankowiak 2-term 360 3 120 Literal These marks are bruises.
Metaphor Failures are bruises.
Anomaly Bottles are bruises.

Green 4-term 120 3 40 Literal Answer is to riddle what solution is to problem
Metaphor Answer is to riddle what key is to lock
Anomaly Answer is to riddle what jersey is to number

Table 1: Analogy datasets included in the experiments: n_sent indicate the number of sentences; n_set, the number
of sentences per instance; and n_ins, and the number of instances. All datasets are balanced in terms of labels.

(2023) provide a comprehensive recent survey on
the topic.

An early approach to metaphoric mapping detec-
tion that resonates with our perplexity-based study
is the measurement of the preference of predicates
for semantic classes of arguments (Fass and Wilks,
1983), formalized by Resnik (1997) as a WordNet
based selectional preference (SP) and SP strength
measure. Mason (2004); Shutova et al. (2010); Li
et al. (2013) rely on the assumption that metaphoric
verb-object pairs will tend to appear with lower as-
sociation strength than literal compositions. More
recently, Zhang and Liu (2022) models SP viola-
tions as incongruity between target words and their
contexts.

In a similar work to ours, Pedinotti et al. (2021)
investigated the plausibility of metaphoric asso-
ciations for LMs. BERT’s ability to identify the
boundaries of metaphoric creativity is studied with
literal sentences, conventional metaphors, creative
metaphors and nonsensical sentences, and observed
that the average pseudo-likelihood scores decreases
in this order for the four considered categories, in
accordance with human ratings of semantic plausi-
bility. We expand the analysis to additional models
and datasets, including 4-term analogies, and com-
pare perplexity-based results to generation-based
results for instructed models.

4 Experimental Details: Model Selection
and Perplexity Computation

Our aim in this paper is to evaluate a wide range
of diverse LMs in terms of architecture and size,
which are presented below.

Models. In our experiments, we consider the
masked language models BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019), decoder-
only LM GPT-2 (Radford et al., 2019), GPT-J
(Wang and Komatsuzaki, 2021), OPT (Zhang et al.,

2022), OPT-IML (Iyer et al., 2022), Galactica (Tay-
lor et al., 2022), Bloom (Hasanain and Elsayed,
2022) and Bloomz (Muennighoff et al., 2023) ,
Llama-2 and Llama-3 (Touvron et al., 2023) , and
the encoder-decoder LM T5 (Raffel et al., 2020),
Flan-T5 (Chung et al., 2022), Flan-UL2 (Tay et al.,
2023). Finally, we consider the recent Mistral
(Jiang et al., 2023) and Sparse Mixture of Experts
Mixtral models (Jiang et al., 2024). All the model
weights are taken from HuggingFace, where the
complete list of the models we used can be found in
Appendix 6. In addition to those open-source LMs,
we consider the OpenAI commercial API models.
We use GPT-3 (Brown et al., 2020a), GPT-3.5 In-
struct (Ouyang et al., 2022), GPT-3.5 and GPT-4
(Bubeck et al., 2023).4

Perplexity. Perplexity measures how well a LM
predicts a given sentence. In that respect, this mea-
sure can provide a good proxy to compare how
natural or likely different types of sentences are.
Following previous work (Brown et al., 2020a;
Ushio et al., 2021b), for comparing the sentence
likelihood we compute perplexity on each candi-
date sentence and choose the one with the lowest
perplexity5. For decoder-only LMs such as GPT
(Radford et al.), we compute the perplexity of a
tokenized sentence x “ rx1...xms as

fpxq “ exp

˜
´ 1

m

mÿ

j“1

logPlmpxj |xj´1q
¸

(1)

where Plmpx|xq is the likelihood of the next token
given the precedent tokens. For masked language
models (MLM) such as BERT (Devlin et al., 2019),

4In the main body of the paper we provide results for the
largest models, as well as representative models for all families
in the size experiments, but in the appendix we include results
for all models.

5We use https://github.com/asahi417/lmppl to com-
pute perplexity.
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Figure 1: Medians of the ratios between the perplexities of the metaphoric and literal instances (solid lines) and
between the anomalous and metaphoric instances (dashed lines) for decoder only models on the left, masked and
encoder-decoder models on the right, for the Jankowiak dataset (upper plots) and Green dataset (lower plots).

pseudo-perplexity (Salazar et al., 2020) is used in-
stead, which replaces the likelihood P in Equa-
tion 1 by Pmaskpxj |xzjq, the pseudo-likelihood
(Wang and Cho, 2019) to predict the masked token
xj . For encoder-decoder LMs such as T5 (Raf-
fel et al., 2020), we compute Plm on the decoder,
which is conditioned by the encoder. We should em-
phasize that perplexity values are model-dependent.
Thus, in this work we have not attempted to mea-
sure perplexity values across LMs, but only for
comparing sentences within the same LM. 6

5 Language Model Representation of
Metaphoric Analogies

In this section, we aim to understand how LMs
identify metaphors in comparison to other types
of analogies or literal statements, and how models
can identify them from semantically anomalous
sentences. To this end, we rely on three datasets
containing sets of metaphoric and literal sentences,
which are presented in Section 5.1. Following this,
we rely exclusively on zero-shot experiments, first
by computing perplexity scores (Section 5.2) and
then by studying the abilities of the models to iden-
tify metaphors by following instructions (Section
5.3).

5.1 Metaphors and analogy datasets

In our evaluation, we focus on datasets that contain
metaphors. Because of this, we exclude other well-

6In the following experiments, due to computational re-
source limitation, we use the bitsandbytes python module to
load the models larger than 13B parameters with quantization.

known analogy datasets such as Google-analogies
(Mikolov et al., 2013) or BATS (Gladkova et al.,
2016), as they include analogies directly linked to
well-defined lexical relations (e.g. capital-of). The
three datasets considered in our experiments are
summarized in Table 1. They are all composed of
sets within which one element of the pairs remains
identical and the second one varies.

Our data have two different formats. The
Cardillo and Jankowiak datasets are sentences
formed from two concepts based on the pattern x
is-a y, where the problem to solve is the nature of
the relation between x and y. The Green data are
quadruples of the form tpxi, xjq, pyi, yjqu where
the relation of interest stands between pxi, xjq and
pyi, yjq. Green and Jankowiak contain metaphoric,
anomalous and literal sentences, while Cardillo
only contains metaphoric and literal sentences.

Cardillo. This dataset (Cardillo et al., 2010,
2017) was initially created for studies within ex-
perimental psychology and contains 260 pairs of x
is-a y instances. Each instance in the pair is com-
posed of one literal and one metaphoric sentence.7

We group the initial dataset from Cardillo et al.
(2010) with the extension released in Cardillo et al.
(2017). In addition to the set of instance pairs, each
sentence has been annotated by a large number of
participants on a scale of figurativeness that we also
consider in our perplexity analysis.

7Liu et al. (2022) created a large dataset of x is-a y
metaphoric pairs but they do not contain negative examples.
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Jankowiak. The Jankowiak dataset (Jankowiak,
2020) results from a similar study. In addition
to literal and metaphorical sentences, it contains
anomalous x is-a y sentences. It contains 120 sets
of three sentences sharing the same concrete end
word y, and the start words x are in the same range
of frequencies.

Green. The Green dataset (Green et al., 2010)
contains 120 quadruples organised in 40 sets. Each
set contains one incorrect analogy (referred to as
anomaly), one near analogy, and one far analogy
(metaphor in our context). 8 For this dataset con-
sisting of word pairs and not full sentences, we
construct minimal sentences of the form A is to B
what C is to D, where pA,Bq is the first pair and
pC,Dq is the second pair.

5.2 Perplexity analysis

The metaphoric, anomalous and literal sentences
from each dataset are fed into the model, and the
perplexity is computed over each sentence, as ex-
plained in Section 4.

Results. For all datasets and for the vast major-
ity of models, the median of the perplexities of
metaphoric examples is higher than the median
of literal ones, which is similar to the findings of
Pedinotti et al. (2021) when analysing BERT-like
models.9 Full results and statistical significance
of the difference in perplexity scores between the
three classes are shown in Tables 7,8 and 9 in Ap-
pendix, Section B.2.

Figure 1 shows the variation of the perplexity
ratios between metaphoric and literal examples
and between anomalous and metaphoric examples,
for the Jankowiak and the Green dataset. For
the Green dataset, model perplexities are closer
between metaphors and anomalies than between
metaphors and literal instances. The ratios re-
main relatively stable when the size of the mod-
els increase, but we observe that the gap between
metaphors and anomaly values increases for the
largest decoder-only models. In contrast, in the
Jankowiack dataset, metaphoric examples have
closer perplexity scores to the literal ones than to
the anomalous ones among most decoder-only mod-
els, and show unstable trends among the masked

8Kmiecik et al. (2019) released a similar corpus with 720
quadruples divided into near, far and incorrect analogies, but
unlike Green, the far analogies were not all metaphors.

9Perplexity scores distributions for Llama3-Inst70B can be
found in the Appendix Figure 5 as an example.

Figure 2: Correlation with human judgment for the
perplexity setting on the Cardillo dataset.

and encoder-decoder models.
Finally, as an example of the impact of instruc-

tion tuning on the representation of metaphors, we
see that T5 and Flan-T5 models show different
score distributions, particularly in the Jankowiak
dataset. More comparison between instructed and
non instructed version of the models can be found
in Section B.2 of the Appendix. Across all the con-
sidered datasets, Flan-T5 models score the literal
examples of each set lower than the other classes
in a large majority of cases. This specificity on
Flan-T5 models appears in the next experiment.

Correlation between perplexity and figurative-
ness. Humans perceive sentences as more or less
metaphoric, rather than merely as binary categories.
As explained in Section 5.1, Cardillo et al. (2010,
2017) enriched their dataset with human ratings for
each instance according to figurativeness. We study
the correlation between all the previously obtained
perplexities and the human judgments of figura-
tiveness using Spearman correlation ρ. As shown
in Figure 2, all models correlate positively with
figurativeness. This means that sentences which
are more figurative, tend to be have a lower pseudo
log-likelihood according to the LMs.

FLAN-T5XXL obtains the highest Spearman cor-
relation ρ of .41, and the Flan-T5 family correla-
tion improves with the model size. BERTBASE and
BERTLARGE also obtain competitive correlations,
respectively .37 and .35. There is a weaker correla-
tion for all other models including the largest ones
(see the complete results in the Appendix, Table
11). The relatively low correlation between per-
plexity and figurativeness can be explained by the
various levels of conventionality or creativity of the
metaphors in the Cardillo dataset. Some frequently
encountered metaphors are still perceived as very
figurative. For example The exhibition was a smash.
is both common and judged highly figurative.
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5.3 Can LMs identify metaphors from literal
and anomalous sentences?

In this setting, we explicitly ask the models spe-
cialised in generation to produce a response to iden-
tify literal, metaphoric and anomalous sentences
of each set at once with a prompt10, in the form
of multiple-choice question tasks. This allows us
to integrate OpenAI models for which perplexity
values are not accessible. We process the generated
answers by each model11 and provide the over-
all results based on accuracy. We run the exper-
iments with all possible permutations of the sen-
tences within each set (shuffling the order in which
literal, metaphoric and anomalous sentences are
presented in the prompt) because we identified a
bias toward the generation of some sequences of
labels in the models.12

Results. Accuracy scores for the models anal-
ysed in this setting are shown in Table 2. In this
setting, Flan-T5XXL loses its advantage over the
Llama2 and Mistral models. Unlike the other mod-
els, its generated answers do not always contain
distinct labels for the elements of a set, especially
for the Cardillo and Jankowiak datasets that contain
three sentences per set. For those two datasets, the
gap in accuracy with the other models is above 16
points. All the models have difficulties processing
the Green dataset, made of 4-term instances, with
the exception of GPT-4 that reaches an accuracy of
78.6%.

Error analysis. An error analysis of the results
on the Green and Jankowiak datasets evaluated
through the generation setting is shown in Table 3.
For both datasets and all models, we observe that
the confusion between literal and anomalous sen-
tences is significantly less frequent than the confu-
sion between metaphors and anomalies. With GPT-
4, the confusion between metaphors and anomalies
drops significantly for both datasets on all error
types.

10An example prompt is available in Appendix C.1.
11The default hyper-parameters are used for all models. The

minimum or maximum output length are adjusted to ensure
a complete answer. Generation answers are processed semi-
automatically, verifying manually those answers that do not
conform exactly with the expected output.

12This bias is reported in the Appendix (Tables 12 and 13).

Model Card. Jank. Green

FLAN-T5XXL 78.9 57.4 37.6
Llama2-chat70B 85.6 73.6 56.4
Llama3-Instr70B 88.7 89 64.3
Mixtral-Instr8x7B 76.5 84.1 55.3
Mixtral-Instr8x22B 82 81.9 67.1

GPT-3.5turbo-inst. 65.9 61.5 38.8
GPT-3.5turbo 70.5 59.8 41.2
GPT-4 91.8 91.4 78.6

Random 50.0 33.3 33.3

Table 2: Accuracy of the generated answers for the
three datasets Cardillo, Jankowiak and Green in the
instruction generation setting (gen).

Model Jank. Green

LM MA LA LM MA LA

FLAN-T5XXL 282 521 116 214 220 15
Llama2-chat70B 127 345 99 86 111 92
Llama3-Instr70B 80 117 41 111 92 54
Mixtral-Instr8x7B 127 141 75 130 123 60
Mixtral-Instr8x22B 90 253 45 37 153 35

GPT-3.5turbo-inst. 260 433 138 140 165 136
GPT-3.5turbo 179 450 234 137 140 143
GPT-4 79 89 18 92 48 14

Table 3: Error analysis for the Jankowiak and Green
datasets in the generation setting (gen). The non-
directional confusion between literal and metaphor
(LM), metaphor and anomaly (MA) and literal and
anomaly (LA) labels are shown for all the models evalu-
ation on generation.

6 Do Metaphors Have an Impact on How
LMs Solve Analogies?

In the previous section, we tested the capabili-
ties of language models in explicitly recognising
metaphors. The results show how models find them
less likely than literal sentences. A natural ques-
tion that may arise is whether this behavior has an
impact on how LMs solve analogies more gener-
ally. In particular, our aim is to understand whether
LMs are capable of solving analogies irrespective
of whether they are metaphorical or not.

6.1 Data

We rely on the SAT analogy dataset (Turney, 2006)
for our experiments. SAT is composed of 374
multiple-choice word analogy questions from the
SAT college entrance exam in the US. This dataset
has been used in the context of NLP to evaluate how
models recognise analogies (Brown et al., 2020b;
Ushio et al., 2021b,a; Chen et al., 2022; Kumar and
Schockaert, 2023). One advantage of this dataset
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Input: weave is to fabric what ... Label: Met.

1) illustrate is to manual 4) bake is to oven
2) hang is to picture ñ 5) write is to text
3) sew is to thread

Table 4: Example set of the SAT dataset where the
correct analogy 5) has been labeled as a metaphor.

over other benchmarks is that the dataset was not
openly available on the internet, which mitigates
possible concerns of data contamination in LMs.
Each set in the SAT contains a stem word pair, and
five other candidate pairs, forming a correct anal-
ogy and four anomalies with the stem pair. The
task consists of selecting the correct analogy.

SAT annotation Each of the 374 questions of
the SAT dataset contains a single correct analogy,
and a subset of them are metaphoric analogies, as
in the example presented Table 4. Our aim is to
divide SAT correct analogies between metaphoric
and non-metaphoric ones. This extended annota-
tion enables a new experiment in which we assess
the SAT performance of different types of analo-
gies, metaphorical or not. Moreover, in the unlikely
case that any of the closed language models that
we analysed had been trained with the original SAT
analogies, this information was not available to the
model. Given the difficulty of the task, the anno-
tation process required two rounds of annotation,
detailed in the Appendix Section E.1.

A common reason for disagreement after the first
round was that, sometimes, annotators could not
think of a context in which two pairs of concepts
could be used metaphorically. When one annotator
had a clear example in mind, he or she was usually
able to convince the others that an analogy was
metaphoric during the discussions. For instance,
the example playwright is to actor what composer
is to musician, is easier to label after seeing the
example The playwright made him the gong in the
symphony of his play. Disagreement often occurred
with the analogies when concrete domains were not
very distant from each other13. We therefore asked
all annotators to suggest and share examples prior
to the second round of annotations. In total, 103
instances were labelled as metaphoric, and 239 as
non-metaphoric.

13This difficulty is related to the practical delimitation and
granularity of domains.

Figure 3: Boxplot showing the distribution of the per-
plexity scores for the three classes literal sentences
(Lit), metaphor (Met) and anomalies (Ano) for the
Llama370B-instr model in SAT. Results for all models
can be found in the Appendix, Table 10.

Figure 4: Accuracy results of the perplexity setting ex-
periment on SAT. The results for the metaphoric class
are displayed in the dashed lines, while the results for
the non-metaphoric class are shown in the solid lines.

6.2 Experimental results

Experimental setting. The experimental setting
is similar to the ones set out in the previous section.
In particular, we test LMs using perplexity, follow-
ing the same methodology outlined in Section 5.2.
In this case, out of the five choices, the instance
with the lowest perplexity is selected as the correct
option. In addition, the large instructed LMs are
tested through text generation, prompted to output
the correct answer among the five choices14. Then,
we simply report the accuracy on the metaphoric
and non-metaphoric subsets of SAT.

14As in Section 5, experiments are run on all possible per-
mutations of the correct answer position to neutralise the effect
of sentence position bias in the prompt. The prompt used for
this experiment is available in Appendix E.3.
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Perplexity analysis. The SAT* perplexity scores
of the metaphoric and non-metaphoric analogies
are in the same range of values for most models
(Figure 3 shows the results for Llama370B-instr). A
Mann-Whitney U rank test on two independent
samples for the two classes (two-sided, p<0.05)
shows significance in the difference between the
two groups for only 6 of the 51 models tested (see
Table 10 in the Appendix). In fact, a majority of
models have slightly larger perplexity scores on av-
erage for the non-metaphoric analogies than for the
metaphoric ones. The SAT dataset is designed to
be a difficult test, containing infrequent words and
non-obvious analogies. This allows us to study the
behavior of the models and their ability to identify
correct analogies when presented with metaphoric
and non-metaphoric far analogies with a similar
level of perplexity.

Results. Figure 4 shows the accuracy on the
metaphorical and non-metaphorical subsets of SAT
in the perplexity setting.15 In general, model perfor-
mance improves with size. Smaller models show
a gap in accuracy between questions involving
metaphors and other types. This gap diminishes
when the model size increases until the accuracy
for the metaphor class becomes similar to that of
the simple analogy class in the larger models. We
observe a decrease of the performance of the largest
Llama370B-inst and Mixtral8x22B models that might
eventually be caused by more constrained expecta-
tions on the input format (e.g. special input tokens
for Mixtral models and system prompt for Llama3).

Table 5 shows the results of the generation ex-
periments for the large instructed models in com-
parison with the perplexity setting. While models
tend to perform better for non-metaphoric analo-
gies in the perplexity setting, they obtain better
results on the metaphors in the generation setting.
A possible explanation for this result is that the
metaphors of SAT* have in fact more chances to
appear in natural sentences than the artificially con-
structed non-metaphoric analogies. Llama370B-inst
and Mixtral8*22-inst perform better in the generation
than in the perplexity setting, reinforcing the hy-
pothesis that perplexity may not be the best metric
when using these models in applications, even for
the task of detecting plausible sentences or analo-
gies. Moreover, we can observe again that GPT-4
performed better than the other models, although
the conclusions that can be drawn from this model

15See Table 10 in the Appendix for the full results.

Model PPL GEN

Lit Met Lit Met

FLAN-T5XXL *55.6 42.7 41.6 44.5
Llama2-chat70B 59.4 56.3 41.0 *49.5
Llama3-Instr70B 46.9 43.7 55.8 *62.5
Mixtral-Instr8x7B 50.6 50.5 45.4 47.6
Mixtral-Instr8x22B 49.0 49.5 50.5 *55.7

GPT-3.5turbo 28.5 32.6
GPT-4 72.6 75.0

Table 5: Accuracy results in the perplexity (PPL) and
generation settings (GEN ) for the literal and metaphor
classes in SAT. Bold numbers show the highest accuracy
scores overall. The statistical significance of the gap
between literal and metaphoric accuracy scores is cal-
culated with a two independent samples t-test (p<0.05),
and indicated with * on the higher score in the table.

are limited due to its closed nature.

7 Conclusion

In this paper, we have analysed the capabilities of
LMs to perceive and identify metaphors. Using
perplexity as a proxy to measure plausibility in
LMs, we observe that, in general, LMs perceive
metaphors as less likely, and are often perceived
closer to anomalous sentences than literal ones. In
general, LMs struggle more often to distinguish
metaphors from anomalous sentences even when
instructed to do so, although this gap diminishes
with newer and larger models.

As a result of this finding, we also investigated
whether these results would be reflected in how
models can distinguish metaphors from anomalies
in a wider context. The results show that, at least
for the new generation of LM-based conversational
agents, this does not appear to be as problematic.

Several follow-up questions remain unaddressed
in spite of these findings. What is the role of
metaphors in generative models? Do LMs generate
(new) metaphors in the context of a conversation,
or do they resort to existing expressions and lit-
eral sentences? In the context of computational
linguistics and semantics, it would be interesting
to better understand how metaphors are internally
represented or encoded in this new generation of
LMs.

Limitations

There is a body of work in the literature that has
questioned analogy evaluation as a reliable way to
probe NLP models, and, in particular, word em-
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beddings (Linzen, 2016; Schluter, 2018; Nissim
et al., 2020). In our paper, we are not interested in
analogy as an evaluation benchmark, and rather as
input data to extract insights. Nonetheless, some
of the criticism of the aforementioned papers with
respect to word analogies can also be applied to
language models. In relation to this, we have not
attempted to perform extensive prompt engineer-
ing in this work, as we were interested in knowing
the trends and raw behaviour of models rather than
obtaining the best results. This was also prompted
due to computational constraints (see Appendix
F for details on the computational resources and
time). It is likely, however, that some results may
differ if other prompts or evaluation protocols were
considered.

In this work, we did not study the model be-
havior in relation to the frequency of the semantic
associations in corpora. Since some metaphors
are more common than other literal associations,
this extended control analysis may reveal other be-
havior patterns not captured in our experiments.
Our experiments focus solely on English corpora,
therefore findings may differ for other languages,
especially less-resourced and languages from other
families. Finally, data contamination may have an
impact on the results, which we could not anal-
yse extensively. To mitigate this, we considered
datasets that are not openly available and enriched
existing data, thereby ensuring that these new an-
notations had not been seen by any of the models.

Ethical considerations

We have not identified any potential misuse of this
research. No personal data was required in the
annotation of the SAT analogy dataset and all the
annotators are co-authors of this paper.
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Model Size Name on HuggingFace
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L
M BERTBASE 110M bert-base-cased

BERTLARGE 355M bert-large-cased

RoBERTaBASE 110M roberta-base
RoBERTaLARGE 355M roberta-large

E
nc

od
er

-D
ec

od
er

L
M

T5SMALL 60M t5-small
T5BASE 220M t5-base
T5LARGE 770M t5-large
T53B 3B t5-3b
T511B 11B t5-11b

Flan-T5SMALL 60M google/flan-t5-small
Flan-T5BASE 220M google/flan-t5-base
Flan-T5LARGE 770M google/flan-t5-large
Flan-T5XL 3B google/flan-t5-xl
Flan-T5XXL 11B google/flan-t5-xxl

Flan-UL2 20B google/flan-ul2
UL2 20B google/ul2

D
ec

od
er

-o
nl

y
L

M

GPT-2 124M gpt2
GPT-2MEDIUM 355M gpt2-medium
GPT-2LARGE 774M gpt2-large
GPT-2XL 1.5B gpt2-xl

GPT-J125M 125M EleutherAI/gpt-neo-125M
GPT-J2.7B 2.7B EleutherAI/gpt-neo-2.7B
GPT-J6B 6B EleutherAI/gpt-j-6B
GPT-J20B 20B EleutherAI/gpt-neox-20b

OPT125M 125M facebook/opt-125m
OPT350M 350M facebook/opt-350m
OPT1.3B 1.3B facebook/opt-1.3b
OPT13B 13B facebook/opt-13b
OPT30B 30B facebook/opt-30b
OPT66B 66B facebook/opt-66b

OPT-IML1.3B 1.3B facebook/opt-iml-1.3b
OPT-IML30B 30B facebook/opt-iml-30b
OPT-IMLM-1.3B 1.3B facebook/opt-iml-max-1.3b
OPT-IMLM-30B 30B facebook/opt-iml-max-30b

Bloom176B 176B bigscience/bloom
Bloomz176B 176B bigscience/bloomz

Llama27B 7B meta-llama/Llama-2-7b-hf
Llama213B 13B meta-llama/Llama-2-13b-hf
Llama270B 70B meta-llama/Llama-2-70b-hf

Llama2-chat7B 7B meta-llama/
Llama-2-7b-chat-hf

Llama2-chat13B 13B meta-llama/
Llama-2-13b-chat-hf

Llama2-chat70B 70B meta-llama/
Llama-2-70b-chat-hf

Llama3-Inst8B 8B meta-llama/
Meta-Llama-3-8b-Instruct

Llama3-Inst70B 70B meta-llama/
Meta-Llama-3-70b-Instruct

Mistral7B 7B mistralai/Mistral-7B-v0.1
Mistral- 7B mistralai/
Inst7B Mistral-7B-Instr.-v0.2

sM
oE

Mixtral8x7B 56B mistralai/Mixtral-8x7B-v0.1
Mixtral- 56B mistralai/
Inst8x7B Mixtral-8x7B-Instr.-v0.1
Mixtral- 176B mistralai/
Inst8x22B Mixtral-8x22B-Instr.-v0.1

Table 6: The model checkpoints used in the LM baselines on HuggingFace model hub. All the models can be
obtained at https://huggingface.co.
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B Perplexity setting experiments result

B.1 Graphics of the perplexity experiment
results

The boxplots of the metaphoric, literal and anoma-
lous instances for Llama3-Inst70B perplexity scores
for the three datasets are shown Figure 5.

B.2 Result tables for all models
Tables 7, 8 and 9 include the full experimental
results of Section 5.2. They show the proportions of
sets where sentences with literal, metaphoric, and
anomalous content exhibit the lowest perplexity
for all the datasets, and the statistical significance
test results for the differences in perplexity scores
obtained by the metaphoric, literal and anomalous
instances.

B.3 Correlation between perplexity scores
and human ratings of figurativeness

Table 11 shows the correlation with human ratings
of figurativeness for the Cardillo dataset with all
studied models.

C Generation experiments

In this section we provide details for the generation
experiments presented in Section 5.3.

C.1 Prompt used in the generation
experiments

An example prompt used for text generation in
order to label all the sentences of a set at once.

Example : Green

I will give you three sentences and I would like you
to tell me which one is "anomalous", which one is
"literal", and which one is a "metaphor". There is ex-
actly one anomalous sentence, one metaphor, and one
literal sentence among the three provided sentences.
Here are the three sentences:

1. flock is to goose what wolfpack is to wolf

2. flock is to goose what constellation is to star

3. flock is to goose what pond is to turtle

Please provide the answer in separate lines for each
sentence.
Answer:
Sentence 1) is

C.1.1 Specificities of the Mixtral and Llama-3
models prompts.

Mixtral models. The use of special tokens is
recommended in the Mixtral models prompts to

obtain the best performances 16. We modify the
prompt according to the guideline.

<s> [INST] I will give you three sentences and I
would like you to tell me which one is "anoma-
lous", which one is "literal", and which one is a
"metaphor". There is exactly one anomalous sen-
tence, one metaphor, and one "literal sentence among
the three provided sentences. Here are the three sen-
tences:

{SENTENCES LIST}

Please provide the answer in separate lines for each
sentence. [/INST] Answer:
Sentence 1) is

Llama3 models. The output of the Llama-3 mod-
els with the original prompt did not contain the
expected answer to the task. We added the fol-
lowing system prompt to the original prompt. The
results presented for Llama3 were all generated
after the integration of this system prompt.

You always answer in three lines, with one sentence
index (for example "1)","2)" or "3)" ) followed by the
words "is metaphoric", "is literal" or "is anomalous"
on each line.

C.2 Bias of the models toward label sequences

We run a first batch of generation experiments using
our generation prompt, and find that all the mod-
els are biased toward some sequences of sentence-
label pairs. For example, in the case of the Cardillo
dataset, all the models tend to answer that the first
sentence of the set is metaphoric and the second
is literal much more often than the opposite. This
bias of the models is presented in Appendix Ta-
bles 12 and 13. As a consequence, we ran the
experiments with all possible permutations of the
sentences within each set, making distribution of
label sequences uniform.

D Experiments on the SAT dataset

E Annotation Guidelines for Adding
Metaphorical Labels in SAT

The proportional analogies to label are made of
exactly four words xi, xj , yi and yj . The relation
between the four words can be paraphrased by the
sentence xi is to xj what yi is to yj . For example,
Dancing is to walking what singing is to talking.

16see https://huggingface.co/mistralai/
Mixtral-8x7B-Instruct-v0.1
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Model Family Model %Lit. is lowest pvalue p<0.05 Med.
M/L

BERT BERTBASE 73.5 .0 T 2.14
BERTLARGE 72.3 .0 T 1.7

RoBERTa RoBERTaBASE 64.6 .0 T 2.22
RoBERTaLARGE 70.0 .0 T 2.31

T5 T5SMALL 76.9 .0 T 2.62
T5BASE 66.5 .0 T .36
T5LARGE 67.7 .0 T .2
T53B 42.3 .9992 F 0.0
T511B 50.8 .2257 F 0.0

UL2 UL2 61.5 .0002 T 0.17

Flan-T5 Flan-T5SMALL 78.8 .0 T 2.49
Flan-T5BASE 77.7 .0 T 2.35
Flan-T5LARGE 80.0 .0 T 2.44
Flan-T5XL 77.3 .0 T 2.14
Flan-T5XXL 82.3 .0 T 2.59

Flan-UL2 Flan-UL2 80.8 .0 T 2.37

GPT-2 GPT-2 60.8 .0 T 1.5
GPT-2MEDIUM 62.7 .0 T 1.45
GPT-2LARGE 61.9 .0 T 1.43
GPT-2XL 63.8 .0 T 1.49

GPT-J GPT-J125M 56.5 .0039 T 1.39
GPT-J2.7B 57.3 .019 T 1.3
GPT-J6B 62.7 .0 T 1.6
GPT-J20b 61.5 .0 T 1.45

GPT-3 GPT-3ada 63.1 .0 T 1.54
GPT-3babbage 67.3 .0 T 1.63
GPT-3curie 67.7 .0 T 1.68
GPT-3davinci 67.7 .0 T 1.75

OPT OPT125M 64.2 .0 T 1.5
OPT350M 63.1 .0 T 1.4
OPT1.3B 68.5 .0 T 1.51
OPT13B 68.5 .0 T 1.53
OPT30B 68.5 .0 T 1.59
OPT66B 66.9 .0 T 1.54

OPT-IML OPT-IML1.3B 67.3 .0 T 1.54
OPT-IML30B 69.6 .0 T 1.54

OPT-IML OPT-IMLM-1.3B 65.8 .0 T 1.49
(MAX) OPT-IMLM-30B 70.4 .0 T 1.59

Bloom Bloom175B 61.9 .0 T 1.36
Bloomz Bloomz175B 66.5 .0 T 1.49

Llama2 Llama27B 63.1 .0 T 1.34
Llama213B 63.5 .0 T 1.38
Llama270B 60.8 .0 T 1.36

Llama2-Chat Llama2-Chat7B 57.3 .0007 T 1.26
Llama2-Chat13B 63.1 .0 T 1.32
Llama2-Chat70B 65.0 .0 T 1.45

Llama3-Inst Llama3-Inst8B 66.5 .0 T 1.51
Llama3-Inst70B 68.8 .0 T 1.88

Mistral Mistral7B 65.0 .0 T 1.4
Mixtral8x7B 62.7 .0 T 1.37

Mistral-Inst Mistral-Inst7B 64.6 .0 T 1.47
Mixtral-Inst8x7B 61.5 .0 T 1.28
Mixtral-Inst8x22B 66.9 .0 T 1.36

Table 7: Ratios of instances for which the literal sentences have a lower perplexity than the metaphoric sentences in
the Cardillo dataset according to model family and size (perplexity setting). The following two columns show the
significance in the difference of perplexity scores between the set of literal sentences and metaphoric sentences. A
paired samples Wilcoxon test is used (p<0.05). The last column shows the median of the ratios between the score of
the metaphoric and literal sentences in each set.
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Model %L
is lowest

%M
is lowest

%A
is lowest

%
L<M<A

pvalue
L-M

pL-M
<0.05

pvalue
M-A

pM-A
<0.05

Med.
M/L

Med.
A/M

BERTBASE 85.8 9.2 5.0 47.5 .0 T .102 F 5.156 1.192
BERTLARGE 80.0 12.5 7.5 45.8 .0 T .0362 T 4.118 1.543
RoBERTaBASE 53.3 34.2 12.5 32.5 .0002 T .0001 T 1.719 3.793
RoBERTaLARGE 43.3 43.3 13.3 30.0 .2513 F .0 T 1.012 4.894

T5SMALL 70.8 11.7 17.5 35.0 .0 T .6776 F 3.047 .887
T5BASE 79.2 11.7 9.2 44.2 .0 T .3309 F 3.541 1.209
T5LARGE 29.2 34.2 36.7 7.5 .9918 F .9646 F .483 .728
T53B 33.3 40.8 25.8 19.2 .6729 F .1363 F .779 2.145
T511B 49.2 34.2 16.7 25.8 .0602 F .0136 T 1.413 1.462
UL2 65.8 22.5 11.7 33.3 .0 T .0667 F 2.58 1.322

Flan-T5SMALL 85.8 9.2 5.0 56.7 .0 T .0011 T 2.529 1.278
Flan-T5BASE 84.2 9.2 6.7 47.5 .0 T .0806 F 3.505 1.207
Flan-T5LARGE 52.5 34.2 13.3 25.0 .002 T .085 F 1.585 1.279
Flan-T5XL 81.7 15.0 3.3 56.7 .0 T .0 T 2.3 1.704
Flan-T5XXL 77.5 19.2 3.3 55.0 .0 T .0 T 2.518 1.986
Flan-UL2 73.3 21.7 5.0 45.0 .0 T .0002 T 2.37 1.636

GPT-2 58.3 25.8 15.8 42.5 .0 T .0 T 1.592 1.945
GPT-2MEDIUM 36.7 50.8 12.5 26.7 .9724 F .0 T 0.755 2.911
GPT-2LARGE 41.7 44.2 14.2 30.0 .1797 F .0 T .979 2.698
GPT-2XL 35.8 52.5 11.7 25.8 .6566 F .0 T .87 3.006

GPT-J125M 21.7 62.5 15.8 15.8 .9999 F .0 T .662 3.269
GPT-J2.7B 31.7 55.8 12.5 22.5 .9956 F .0 T .593 4.341
GPT-J6B 38.3 52.5 9.2 28.3 .8928 F .0 T .763 3.795
GPT-J20b 50.0 37.5 12.5 37.5 .2047 F .0 T 1.047 2.885

GPT-3ada 54.2 35.8 10.0 40.0 .0013 T .0 T 1.427 2.517
GPT-3babbage 50.0 40.0 10.0 40.0 .0474 T .0 T 1.158 3.002
GPT-3curie 51.7 41.7 6.7 35.8 .0399 T .0 T 1.165 3.033
GPT-3davinci 49.2 43.3 7.5 34.2 .0806 F .0 T 1.122 3.273

OPT125M 44.2 30.0 25.8 21.7 .0001 T .3836 F 1.387 1.14
OPT350M 36.7 45.8 17.5 19.2 .585 F .0006 T .876 1.62
OPT1.3B 40.8 44.2 15.0 25.0 .3443 F .0 T 1.025 1.83
OPT13B 52.5 36.7 10.8 36.7 .0039 T .0 T 1.291 2.332
OPT30B 48.3 40.8 10.8 35.8 .0227 T .0 T 1.205 2.107
OPT66B 43.3 43.3 13.3 27.5 .2122 F .0 T 1.077 2.151

OPT-IML1.3B 40.0 42.5 17.5 26.7 .3224 F .0 T .99 1.684
OPT-IML30B 44.2 42.5 13.3 27.5 .0519 F .0 T 1.118 1.999
OPT-IMLM-1.3B 41.7 43.3 15.0 25.8 .3501 F .0 T 1.016 1.794
OPT-IMLM-30B 46.7 42.5 10.8 30.8 .0476 T .0 T 1.11 2.059

Bloom175B 52.5 39.2 8.3 34.2 .0079 T .0 T 1.225 2.524
Bloomz175B 60.8 30.0 9.2 37.5 .0 T .0041 T 1.928 1.558

Llama27b 52.5 33.3 14.2 29.2 .0022 T .0021 T 1.334 1.229
Llama213B 47.5 35.8 16.7 25.8 .0926 F .0012 T 1.192 1.398
Llama270B 50.0 35.0 15.0 27.5 .0283 T .001 T 1.259 1.35
Llama2-Chat7B 50.0 36.7 13.3 26.7 .0143 T .0004 T 1.195 1.685
Llama2-Chat13B 40.8 45.0 14.2 20.8 .8471 F .0 T .877 1.535
Llama2-Chat70B 50.8 33.3 15.8 35.0 .0094 T .0001 T 1.259 1.525

Llama3-Inst8B 52.5 39.2 8.3 37.5 .0114 T .0 T 1.293 2.119
Llama3-Inst70B 51.7 38.3 10.0 37.5 .0012 T .0 T 1.406 3.019

Mistral7B 45.0 37.5 17.5 26.7 .1122 F .006 T 1.133 1.413
Mixtral8x7B 48.3 38.3 13.3 27.5 .079 F .0065 T 1.171 1.473
Mistral-Inst7B 45.0 36.7 18.3 30.0 .0727 F .0006 T 1.118 1.901
Mixtral-Inst8x7B 45.8 38.3 15.8 27.5 .2222 F .0006 T 1.147 1.712
Mixtral-Inst8x22B 54.2 27.5 18.3 33.3 .0 T .0115 T 1.653 1.349

Table 8: The first three columns show the ratios of sets for which the literal (L), metaphoric (M) and anomalous
(A) sentences have the lowest perplexity in the Jankowiak dataset according to model family and size (perplexity
setting).%L<M<A shows the ratio of sets for which perplexity scores follow this order. The following four columns
show the significance in the difference of perplexity scores between the set of literal and metaphoric sentences, and
then between the set of metaphoric and anomalous sentences. A paired samples Wilcoxon test is used (p<0.05).
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Model %L
is lowest

%M
is lowest

%A
is lowest

%
L<M<A

pvalue
L-M

pL-M
<0.05

pvalue
M-A

pM-A
<0.05

Med.
M/L

Med.
A/M

BERTBASE 65.0 15.0 20.0 30.0 .0 T .592 F 2.277 0.765
BERTLARGE 70.0 12.5 17.5 47.5 .0001 T .0544 F 1.946 1.213
RoBERTaBASE 80.0 2.5 17.5 52.5 .0 T .4236 F 4.189 1.251
RoBERTaLARGE 80.0 10.0 10.0 45.0 .0 T .1702 F 2.654 1.139

T5SMALL 95.0 0.0 5.0 45.0 .0 T .6721 F 5.281 .907
T5BASE 62.5 17.5 20.0 27.5 .0 T .9016 F 7.618 .651
T5LARGE 72.5 10.0 17.5 45.0 .0 T .4709 F 4.287 1.335
T53B 70.0 7.5 22.5 25.0 .0 T .8841 F 4.242 .487
T511B 80.0 5.0 15.0 32.5 .0 T .9231 F 6.613 .677
UL2 57.5 12.5 30.0 32.5 .0 T .8298 F 4.139 .907

Flan-T5SMALL 87.5 0.0 12.5 40.0 .0 T .8587 F 4.807 .805
Flan-T5BASE 87.5 5.0 7.5 35.0 .0 T .805 F 4.261 .78
Flan-T5LARGE 85.0 5.0 10.0 30.0 .0 T .9861 F 5.106 .684
Flan-T5XL 92.5 2.5 5.0 40.0 .0 T .823 F 5.756 .91
Flan-T5XXL 80.0 7.5 12.5 45.0 .0 T .255 F 4.288 1.24
Flan-UL2 85.0 7.5 7.5 55.0 .0 T .0265 T 4.345 1.278

GPT-2 75.0 10.0 15.0 35.0 .0 T .6624 F 1.937 .913
GPT-2MEDIUM 70.0 15.0 15.0 42.5 .0 T .2996 F 2.096 1.057
GPT-2LARGE 72.5 12.5 15.0 45.0 .0 T .075 F 2.299 1.202
GPT-2XL 85.0 5.0 10.0 45.0 .0 T .2101 F 2.211 .98

GPT-J125M 60.0 12.5 27.5 27.5 .0 T .8733 F 1.98 .864
GPT-J2.7B 82.5 2.5 15.0 47.5 .0 T .408 F 1.959 0.975
GPT-J6B 87.5 5.0 7.5 55.0 .0 T .1668 F 1.891 1.202
GPT-J20b 85.0 7.5 7.5 47.5 .0 T .0916 F 1.945 1.315

GPT-3ada 77.5 12.5 10.0 45.0 .0 T .3425 F 1.984 1.078
GPT-3babbage 77.5 10.0 12.5 45.0 .0 T .3573 F 2.292 1.125
GPT-3curie 87.5 2.5 10.0 47.5 .0 T .3184 F 2.506 1.014
GPT-3davinci 92.5 2.5 5.0 62.5 .0 T .0341 T 2.203 1.414

OPT125M 77.5 7.5 15.0 37.5 .0 T .7741 F 2.197 .911
OPT350M 77.5 5.0 17.5 40.0 .0 T .6957 F 1.901 .913
OPT1.3B 92.5 2.5 5.0 52.5 .0 T .195 F 2.004 1.123
OPT13B 95.0 2.5 2.5 55.0 .0 T .085 F 2.166 1.194
OPT30B 97.5 .0 2.5 60.0 .0 T .0385 T 2.286 1.141
OPT66B 97.5 .0 2.5 57.5 .0 T .0879 F 2.212 1.107

OPT-IML1.3B 90.0 2.5 7.5 52.5 .0 T .2423 F 1.964 1.032
OPT-IML30B 90.0 2.5 7.5 52.5 .0 T .1159 F 2.246 1.121
OPT-IMLM-1.3B 85.0 2.5 12.5 45.0 .0 T .3279 F 1.951 .988
OPT-IMLM-30B 97.5 0.0 2.5 57.5 .0 T .0624 F 2.166 1.136

Bloom175B 80.0 5.0 15.0 52.5 .0 T .1877 F 2.084 1.167
Bloomz175B 87.5 2.5 10.0 55.0 .0 T .0446 T 2.161 1.185

Llama-27b 80.0 15.0 5.0 50.0 .0 T .0341 T 1.747 1.245
Llama-213B 82.5 10.0 7.5 60.0 .0 T .0184 T 1.713 1.202
Llama-270B 77.5 17.5 5.0 55.0 .0001 T .0011 T 1.785 1.322
Llama2-Chat7B 82.5 10.0 7.5 60.0 .0 T .0018 T 2.091 1.325
Llama2-Chat13B 90.0 5.0 5.0 62.5 .0 T .0204 T 1.975 1.132
Llama2-Chat70B 80.0 15.0 5.0 62.5 .0 T .0001 T 2.11 1.344

Llama3-Inst8B 95.0 2.5 2.5 65.0 .0 T .0043 T 2.147 1.314
Llama3-Inst70B 82.5 10.0 7.5 60.0 .0 T .0139 T 2.412 1.332
Mistral7B 82.5 7.5 10.0 52.5 .0 T .0191 T 2.153 1.136

Mixtral8x7B 82.5 10.0 7.5 60.0 .0 T .0041 T 1.976 1.313
Mistral-Inst7B 82.5 10.0 7.5 62.5 .0 T .0003 T 2.311 1.329
Mixtral-Inst8x7B 80.0 12.5 7.5 52.5 .0 T .0019 T 2.149 1.378
Mixtral-Inst8x22B 77.5 7.5 15.0 60.0 .0 T .0024 T 2.214 1.236

Table 9: The first three columns show the ratios of sets for which the literal (L), metaphoric (M) and anomalous
(A) sentences have the lowest perplexity in the Green dataset according to model family and size (perplexity
setting).%L<M<A shows the ratios of sets for which perplexity scores follow this order. The following four columns
show the significance in the difference of perplexity scores between the set of literal and metaphoric sentences, and
then between the set of metaphoric and anomalous sentences. A paired samples Wilcoxon test is used (p<0.05).
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Model pvalue
L<A

pL<A
<0.05

pvalue
M<A

pM<A
<0.05

pvalue
L<M

pL<M
<0.05

pvalue
Acc. L-M

pAcc. L-M
<0.05

%Lit.
is lowest

%Met.
is lowest

BERTBASE .0 T .0 T .6787 F .3057 F 34.7 29.1
BERTLARGE .0 T .0 T .1583 F .0879 F 34.3 25.2
RoBERTaBASE .0 T .0001 T .7688 F .083 F 39.7 30.1
RoBERTaLARGE .0 T .025 T .1813 F .555 F 42.3 38.8

T5SMALL .0 T .0 T .4271 F .6919 F 29.3 27.2
T5BASE .0 T .0 T .0973 F .0742 F 29.3 20.4
T5LARGE .0 T .0 T .6088 F .4069 F 32.6 28.2
T53B .0 T .0 T .862 F .2241 F 36.8 30.1
T511B .0 T .0 T .1066 F .0216 T 39.7 27.2

Flan-T5SMALL .0 T .0 T .2046 F .0981 F 29.7 21.4
Flan-T5BASE .0 T .0 T .0135 T .0425 T 33.9 23.3
Flan-T5LARGE .0 T .0 T .0024 T .0009 T 41.0 23.3
Flan-T5XL .0001 T .0016 T .8248 F .555 F 42.3 38.8
Flan-T5XXL .169 F .0473 T .9573 F .0286 T 55.6 42.7
Flan-UL2 .1298 F .2246 F .0963 F .606 F 50.6 47.6

GPT-2 .0 F .0 T .0398 T .1305 F 34.3 26.2
GPT-2MEDIUM .0 T .0 T .235 F .3371 F 36.4 31.1
GPT-2LARGE .0 T .0 T .2262 F .1503 F 38.1 30.1
GPT-2XL .0 T .0001 T .3808 F .6338 F 37.7 35.0

GPT-J125M .0 T .0 T .085 F .0342 T 37.7 26.2
GPT-J1.3B .0 T .0 T .236 F .3456 F 39.3 34.0
GPT-J6B .0127 T .0168 T .132 F .0609 F 49.8 38.8
GPT-J20b .0077 T .0153 T .4348 F .207 F 45.2 37.9

GPT-3davinci .0604 F .5223 F .7779 F .4249 F 50.6 55.3

OPT125M .0 T .0 T .9119 F .2114 F 36.0 29.1
OPT350M .0 T .0 T .293 F .0342 T 37.7 26.2
OPT1.3B .0024 F .0002 T .5922 F .0122 T 43.1 29.1
OPT30B .096 F .147 F .7362 F .5581 F 48.1 44.7
OPT66B .1401 F .3924 F .9563 F .9246 F 49.0 49.5

OPT-IML1.3B .0006 T .0003 T .7934 F .2951 F 43.9 37.9
OPT-IML30B .0666 F .0781 F .5541 F .3125 F 50.6 44.7
OPT-IMLM-1.3B .0003 T .0004 T .7761 F .1552 F 43.1 35.0
OPT-IMLM-30B .1221 F .0676 F .4202 F .2218 F 51.9 44.7

Llama-27b .5361 F .0685 F .0053 T .3357 F 52.3 46.6
Llama-213B .8903 F .3698 F .0985 F .3682 F 57.7 52.4
Llama-270B .7528 F .4882 F .0565 F .8109 F 54.8 53.4
Llama2-Chat7B .5661 F .4373 F .1395 F .7228 F 53.6 51.5
Llama2-Chat13B .9327 F .9185 F .298 F .8809 F 58.2 57.3
Llama2-Chat70B .946 F .6535 F .1786 F .5965 F 59.4 56.3

Llama3-Inst8B .8849 F .9923 F .7068 F .7263 F 58.2 60.2
Llama3-Inst70B .0089 T .0454 T .9355 F .5902 F 46.9 43.7

Mistral7B .2952 F .2511 F .0561 F .9628 F 49.8 49.5
Mixtral8x7B .1081 F .1586 F .0164 T .8135 F 48.1 49.5
Mistral-Inst7B .3453 F .4334 F .0385 T .3124 F 53.6 47.6
Mixtral-Inst8x7B .2714 F .3441 F .1188 F .9809 F 50.6 50.5
Mixtral-Inst8x22B .2538 F .2993 F .7561 F .9246 F 49.0 49.5

Table 10: The first four columns shows significance in the gap of perplexity scores between the anomalies that has
the lowest perplexity of the four incorrect options in each set (A) and the literal instances (L) or the metaphoric
instances (M). A paired samples Wilcoxon test is used (p<0.05). The next two columns show the the statistical
significance between the set of perplexity values of the literal and the metaphoric instances using a Mann-Whitney
U test. This test is used because metaphoric and non-metaphoric analogies are not paired in the SAT. The following
two columns , pvalue Acc. L-M show the result of two independent samples t-tests to show if the accuracy of the
models for non-metaphoric examples is significantly better than its accuracy on metaphoric examples. The last
two columns show the ratios of instances for which the non-metaphoric analogy on the left, and the metaphoric
analogy on the right, have the lowest perplexity of their set in the SAT dataset, according to model family and size
(perplexity setting).
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Figure 5: Boxplots of the Llama3-Inst70B perplexity scores for the three datasets and three classes: literal (Lit),
metaphoric (Met) and anomalous (Ano). Outliers with the highest scores do not appear in the plots.

We want to decide if xi and xj can form a
metaphoric mapping with yiand yj .

Given four words xi, xj , yi and yj :

1. Find the relation between the two elements
of each pair. You can imagine relevant con-
texts in which they can be used. For example,
dancing implies steps that follow a music, and
singing often implies saying words following
a music.

If a word has multiple senses, consider its
meaning in the context of the pair. For ex-
ample, in the following analogy, Abash is to
embarrassment what annoy is to irritation, the
word irritation is polysemic. It it may take the
meaning of an inflammation of the skin or be a
near synonym of annoyance. Here, in the con-
text of the word annoy, its emotional meaning
is the only one to consider. This usage of the
word may be a metaphoric sense, but it should
not influence the label. We are only interested
in the relation between the provided words.

(a) Try to infer the relation between xi and
xj

(b) Try to infer the relation between yi and
yj

The relations should be similar.

2. Consider the relation between the two pairs
pxi, xjq and pyi, yjq.

• Do they belong to the same domain? If
xi and yi or xj and yj are either near
synonyms or antonyms, then it is not
a metaphor. For example, worry is to
panic what happiness is to bliss is not a
metaphor.

• Try to recombine the pairs and form sen-
tences using xi and yj or yi and xj . If
one of the two combinations work, it may
be a metaphor. For example, given invest
money and pour liquid, you can construct
the metaphor pour money.

• Try to talk about xi and xj using yi and
yj and then to talk about yi and yj using
xi and xj . If you cannot think of a nat-
ural sentence, then do not label it as a
metaphor.

3. Label the quadruple :

• 0 : analogy that is not a metaphor
• 2 : analogy that is also a metaphor
• 1 : unsure

E.1 SAT annotations

First annotation round. Three annotators includ-
ing two native speakers and two with a background
in metaphor studies and linguistics labeled the 374
analogies of SAT after an initial training session
and presentation of the guidelines (Appendix E).
The labels were 0 for non-metaphoric, 1 for unsure
and 2 for metaphoric. At the end of this process, in
spite of the training sessions and provided guide-
lines, the pairwise agreement between annotators
was low (Spearman ρ “ 0.17; std“ 0.16).

Second annotation round. In the second anno-
tation round, we included an additional qualified
native speaker and first asked all participants to
place analogies in context. The source of disagree-
ment was mainly due to the difficulty of imagin-
ing a relevant context where the 4-term analogy
could be used to make a meaningful metaphor. The
four participants were asked to create sentences
whenever they thought that a metaphoric sentence
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Model Familly Model Spearman ρ

BERT BERTBASE .37
BERTLARGE .35

RoBERTa RoBERTaBASE .24
RoBERTaLARGE .29

T5 T5SMALL .32
T5BASE .11
T5LARGE .23
T53B -.14
T511B -.05

UL2 UL2 .09

Flan-T5 Flan-T5SMALL .33
Flan-T5BASE .34
Flan-T5LARGE .38
Flan-T5XL .38
Flan-T5XXL .41

Flan-UL2 Flan-UL2 .39

GPT-2 GPT-2 .2
GPT-2MEDIUM .19
GPT-2LARGE .22
GPT-2XL .21

GPT-J GPT-J125M .1
GPT-J2.7B .12
GPT-J6B .21
GPT-J20b .21

GPT-3 GPT-3ada .22
GPT-3babbage .25
GPT-3curie .25
GPT-3davinci .27

OPT OPT125M .29
OPT13B .29
OPT30B .32
OPT66B .3

OPT-IML OPT-IML1.3B .29
OPT-IML30B .3

OPT-IML OPT-IMLM-1.3B .28
(MAX) OPT-IMLM-30B .31

Bloom Bloom175B .19
Bloomz Bloomz175B .27

Llama2 Llama-27b .19
Llama-213B .19
Llama-270B .18

Llama2-Chat Llama2-Chat7B .11
Llama2-Chat13B .17
Llama2-Chat70B .22

Llama3-Inst Llama3-Inst8B .25
Llama3-Inst70B .27

Mistral Mistral7B .17
Mixtral8x7B .18

Mistral-Inst Mistral-Inst7B .17
Mixtral-Inst8x7B .14
Mixtral-Inst8x22B .21

Table 11: Spearman ρ correlation between human rat-
ings of figurativeness and peplexity scores for the in-
stances of the Cardillo dataset, according to model fam-
ily and size (perplexity setting).

Answer [M, L] [L, M] [M, M] [L, L]

Flan-T5XXL 61.2 29.4 9.4 0
Llama2-chat70B 57.1 42.9 0 0
Llama3-Instr.70B 58.7 38.3 3.1 0
Mixtral-Instr.8x7B 71.0 24.6 3.5 0.6
Mixtral-Instr.8x22B 67.3 31.3 1.3 0
GPT-3.5turbo-instr. 78.7 15.8 0.2 0
GPT-3.5turbo 78.1 21.7 0 0
GPT-4 57.9 41.5 0.6 0

Table 12: Imbalance of the models’ answers on the
Cardillo dataset. Experiments are run with all possible
permutations of sentence within each set, with each
correct sequence appearing an equal number of times in
each position.

could be created. For example, given the two pairs
psap, treeq and pblood,mammalq, one can imag-
ine telling a kid who is damaging a tree "Be care-
ful, you are hurting it. Look, it is bleeding". The
sentences were shared among all the participants
and a new labelling task was completed, leading
to a significant pairwise inter-annotator agreement
(Spearman ρ “ 0.48; std“ 0.17).

The final SAT labels were obtained by averaging
the scores of the four participants. We labeled as
non-metaphoric all the quadruples scoring lower
to 1 on average and metaphoric all those scoring
above 1. 32 instances with an average score of
1 were filtered out. Table 4 contains an example
of a metaphoric instance of the SAT dataset after
annotation. In total, 103 instances were labelled as
metaphoric, and 239 as non-metaphoric.

E.2 SAT* perplexity experiments

Table 10 shows a comparison of the models on the
task of solving the analogy questions of SAT in the
perplexity setting. The sentence in each set with
the lowest perplexity is selected as the correct anal-
ogy. Accuracy is shown in two distinct columns
for metaphoric and non-metaphoric analogies.

E.3 Generation experiment prompts

Prompt G2 . The correct answer of the exam-
ple below is 1., it is classified as non-metaphoric
in SAT. Identical modification to the prompt as
the ones described in Appendix section C.1.1 are
applied to Mixtral and Llama3 models.
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Answer [M, L, A] [M, A, L] [A, L, M] [A, M, L] [L, A, M] [L, M, A]

Green Flan-T5XXL 0 0 0.4 7.5 0 0.4
Llama2-chat70B 16.2 6.2 14.6 4.2 24.2 17.9
Llama3-Instr.70B 23.8 39.6 14.6 18.3 0.8 0.8
Mixtral-Instr.8x7B 42.5 35.0 4.6 6.2 0.8 2.1
Mixtral-Instr.8x22B 33.3 19.6 1.7 0.4 12.9 16.2
GPT-3.5turbo-instr. 75.8 17.1 0.4 0.4 1.2 4.6
GPT-3.5turbo 73.3 3.3 7.9 5.0 0.4 8.8
GPT-4 19.6 28.8 21.2 13.8 9.2 7.5

Jankowiak Flan-T5XXL 0.8 0.7 9.7 34.2 1.5 7.4
Llama2-chat70B 8.5 6.4 34.0 22.8 15.3 12.9
Llama3-Instr.70B 19.2 18.6 14.6 16.7 12.1 13.6
Mixtral-Instr.8x7B 20.1 18.5 18.9 16.9 8.1 13.9
Mixtral-Instr.8x22B 27.9 18.5 9.3 8.8 10.4 18.8
GPT-3.5turbo-instr. 46.5 25.6 1.7 3.1 6.7 11.5
GPT-3.5turbo 53.5 9.9 4.7 6.0 4.9 20.3
GPT-4 22.4 21.5 13.5 13.5 13.8 14.0

Table 13: Imbalanced distribution of the sequence of labels in the models’ answers on the Green and Jankowiak
datasets. Experiments are run with all possible permutations of the sentences within each set, with each possible
sequence of labels being the correct answer an equal number of times. Flan-T5XXL label distribution does not sum
to 100 in the table because the model outputs a large proportion of incorrect sequences such as [M,M,M], not shown
here.

Prompt 3: Find the correct analogy
Example: SAT

Answer the question by choosing the correct option.
Which of the following is an analogy?

1. beauty is to aesthete what pleasure is to hedo-
nist

2. beauty is to aesthete what emotion is to dema-
gogue

3. beauty is to aesthete what opinion is to sympa-
thizer

4. beauty is to aesthete what seance is to medium

5. beauty is to aesthete what luxury is to ascetic

The answer is

F Computational and Annotation Time

Computation time. In terms of experiments, we
have run a wide range of models of different sizes
and settings, leading to a high computational cost.
Most of the experiments have been run on a 4 40GB
A100 GPUs.

We estimate the total execution time to be 100
hours overall in this infrastructure, with some ex-
periments for small models having been run on
local GPUs as well.

Annotation time. In order to annotate the SAT
dataset, four annotators that have contributed as
authors of the paper have dedicated an overall 80
hours, which includes the annotation and discus-

sion processes.
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Abstract

Although pre-trained language models (PLMs)
are effective for natural language understand-
ing (NLU) tasks, they demand a huge computa-
tional resource, thus preventing us from deploy-
ing them on edge devices. Researchers have
therefore applied compression techniques for
neural networks, such as pruning, quantization,
and knowledge distillation, to the PLMs. Al-
though these generic techniques can reduce the
number of internal parameters of hidden layers
in the PLMs, the embedding layers tied to the
tokenizer are hard to be compressed, occupy-
ing a non-negligible portion of the compressed
model. In this study, aiming to further com-
press PLMs reduced by the generic techniques,
we exploit frequency-aware sparse coding to
compress the embedding layers of the PLMs
fine-tuned to downstream tasks. To minimize
the impact of the compression on the accuracy,
we retain the embeddings of common tokens
as they are and use them to reconstruct embed-
dings of rare tokens by locally linear mapping.
Experimental results on the GLUE and JGLUE
benchmarks for language understanding in En-
glish and Japanese confirmed that our method
can further compress the fine-tuned DistilBERT
models while maintaining accuracy.

1 Introduction

Transformer (Vaswani et al., 2017)-based language
models (LMs) have been extensively used to solve
natural language processing (NLP) tasks via pre-
train and fine-tuning (Devlin et al., 2019); the accu-
racy of the fine-tuned LMs can be improved by scal-
ing up the model and pre-training data sizes (Ka-
plan et al., 2020). Pre-trained LMs (PLMs) thereby
became larger and larger, which prevents us from
deploying them on resource-constrained environ-
ments. Thus, we cannot leverage powerful PLMs
to text with privacy concerns in end-user devices
or confidential documents in small businesses.

*Currently, he works for Mirai Translate, Inc.
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Figure 1: The number of parameters in BERT vari-
ants; these PLMs have similar numbers of parameters
in the embedding layers, which become more dominant
(34.9%) in distilbert-base-uncased.

To make PLMs faster and smaller while main-
taining the accuracy, researchers have utilized com-
mon compression techniques for neural networks
(surveyed in Zhu et al. (2023)); the techniques in-
clude pruning, quantization, and knowledge distil-
lation, mainly focusing on compressing hidden lay-
ers which occupy the largest part in the PLMs with
deep Transformer layers (Wan et al., 2024; Zhou
et al., 2024). In the distilled PLMs, however, pa-
rameters in those other than hidden layers account
for a large proportion of the entire parameters (Fig-
ure 1), and most of them are accounted for by the
embedding layers. For instance, the parameters of
the embedding layer account for about 34.9% of
distilbert-base-uncased1 (Sanh et al., 2019),
whereas they occupy about 21.4% of the origi-
nal 12-layer bert-base-uncased2 (Devlin et al.,
2019). Therefore, we subject the embedding layers
to further compression.

In this study, given a PLM fine-tuned to the tar-
get downstream task, we propose to compress the

1https://huggingface.co/distilbert/
distilbert-base-uncased

2https://huggingface.co/google-bert/
bert-base-uncased
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embedding layer of the PLM by using sparse cod-
ing of embeddings, which represents embeddings
with a sparse linear combination of basis embed-
dings (Faruqui et al., 2015). The issue here is that
the sparse coding introduces approximation errors,
or noises, into the fine-tuned embeddings. To re-
duce the impact of these noises on the PLM’s out-
puts, we perform a frequency-aware partial sparse
coding of embeddings; namely, we regard a small
number of common token embeddings as basis em-
beddings to reconstruct the remaining rare token
embeddings, as employed in Chen et al. (2016) for
recurrent neural network LMs.

Since the embeddings of the recent PLMs will
be contextualized through deep Transformer lay-
ers and noisy rare token embeddings will be sup-
plemented by intact embeddings of surrounding
common tokens, we adopt simple locally-linear
embeddings (Roweis and Saul, 2000; Sakuma and
Yoshinaga, 2019) to choose a few basis (common
token) embeddings for each rare token embedding,
thereby enabling sparser coding of embeddings.
Each rare token embedding is thereby represented
as a weighted linear sum of the nearest neighbor
common token embeddings. Finally, we save the
weight and the IDs of the common tokens to dynam-
ically reconstruct embeddings during inference.

We applied our method to English and Japanese
DistilBERT models fine-tuned to GLUE (Wang
et al., 2018) and JGLUE datasets (Kurihara et al.,
2022), respectively. We then compared our meth-
ods with three baselines; the two of them ap-
proximate the same rare token embeddings as our
method, by <unk> token embedding in the target
PLM and by common basis embeddings induced
by principal component analysis, respectively. The
other approximates the entire embedding layers us-
ing sparse vectors to select vectors to sum up from
shared chunks of vectors (additive quantization).

The contributions of this paper are as follows:

• We present a simple, frequency-aware partial
sparse coding to compress embedding layers
in the PLMs fine-tuned to downstream tasks.

• We confirmed an advantage of our method on
distilled LMs in two languages, fine-tuned to
various natural language understanding tasks.

• We confirmed the robustness of our frequency-
aware sparse coding of embeddings in that the
PLM retains the original accuracy even when
the reconstruction introduces noises.

2 Proposed Method

The major difficulty in compressing the embed-
dings of a fine-tuned Transformer-based PLM is
that if the compression introduces some approxima-
tion (noises) in the embeddings, they will severely
affect the latter processing in the deep Transformer
layers. Fukuda et al. (2020) confirmed on senti-
ment classification that the accuracy of BERT de-
creased greatly (>10%) when one or more words
take perturbations mimicking typos.

Motivated by this observation, we adopt partial
sparse coding, which reconstructs only a subset
of PLM’s embeddings whose approximation errors
(noises) will not severely affect the PLM’s behavior.
To reduce the memory footprint, we divert common
token embeddings to the candidate of basis embed-
dings that represent the rare token embeddings.

Our partial sparse coding consists of the follow-
ing two steps:

Step 1: Splitting vocabularies. We first split the
vocabulary of the PLM, V , into two portions,
VC (source vocabularies) and VR = V − VC
(target vocabularies), in which the embed-
dings of the source vocabularies (source em-
beddings are used as basis embeddings in
sparse coding to approximate the embeddings
of the target vocabularies (target embed-
dings).

Step 2: Reconstructing target embeddings. We
then compute compact representations for the
target embeddings, Y = {yi ∈ Rd}|VR|

i=1 (d is
the number of embedding dimensions), by ap-
proximating them as a weighted linear sum of
the source embeddings, X = {xi ∈ Rd}|VC |

i=1 .
To facilitate the compression, we choose a
small subset of size k, Ni, among the source
embeddings X to approximate each target
embedding yi ∈ Y . We then represent target
embedding yi by compact (sparse vector)
representations, ŷi = {(j, αij) |xj ∈ Ni},
namely, k pairs of embedding ID j ∈ Ni and
the weight αij ∈ R for the linear summation.

We then reduce the target embeddings Y by re-
placing them with their sparse vector representa-
tions and dynamically reconstruct the target embed-
ding yi during the inference by referring to ŷi, thus
obtaining a model with a smaller embedding layer.
The resulting embedding layer is composed of the
original parameters (embeddings) X for the source
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Figure 2: An overview of our frequency-aware partial sparse coding of embeddings. We represent embeddings of
rare tokens (e.g., “hugged”) with their nearest neighbor embeddings of common tokens.

embeddings and the compact representations for
the target embeddings Y . The modified model has
(d− 2k)|VR| fewer parameters,3 which greatly re-
duces the number of parameters in the embedding
layer when k ≪ d and |VC | ≪ |VR|.

2.1 Step 1: Splitting vocabularies
To retain the inference accuracy of the fine-tuned
PLMs, we need an effective criterion to split the
LM’s vocabulary into the source, basis embeddings,
and the target embeddings for reconstruction. We
thus leverage the frequency of tokens in the train-
ing data of the downstream task which are used to
fine-tune the target PLM. Specifically, we count the
frequency, fi, for each token, ti ∈ V in the training
data which is tokenized with the target PLM’s to-
kenizer. We set the top-n common tokens in V as
VC and the others as VR.

We should mention that a similar approach has
been explored by Chen et al. (2016) to compress
word embedding layers of recurrent neural network
(RNN) LMs. The essential difference is that our
method explicitly narrows down the candidate basis
(common token) embeddings to reconstruct each
rare token embedding, whereas Chen et al. (2016)
used ℓ1-regularization in learning a weight matrix
for linear combinations to promote the sparseness
of the weights implicitly, as described in § 2.2.

3Our method requires slightly more parameters (§ 2.2).

2.2 Step 2: Reconstructing target embeddings

To obtain the compact representations of the target
embeddings, we want to use only a small subset
of size k of the source embeddings to approximate
the target embeddings. Because we want to explic-
itly control the required memory footprint and the
PLM has a strong contextualization ability based
on the surrounding intact embeddings for common
tokens, we adopt a simple method of locally lin-
ear mapping (Roweis and Saul, 2000; Sakuma and
Yoshinaga, 2019), which selects for each target em-
bedding k nearest neighbor source embeddings for
approximation.

In the original locally linear mapping for task-
specific multilingual models (Sakuma and Yoshi-
naga, 2019), the authors first represent target em-
beddings (e.g., Japanese word embeddings) with
a weighted linear sum of top-k nearest neighbor
source embeddings (e.g., English word embed-
dings) in one semantic space (e.g., the semantic
space of the PLM), and use these weights to recon-
struct target embeddings in another semantic space
(e.g., the semantic space of the fine-tuned PLM) to
realize a task-specific multilingual model. In our
setting, however, since the target semantic space
(here, the semantic space of the fine-tuned PLM)
also has the target embeddings for the target tokens,
in contrast to Sakuma and Yoshinaga (2019), we
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do not need to consider two semantic spaces and
can compute a linear weighted sum in the semantic
space of the fine-tuned PLMs.4

In this study, we add a small fix to locally linear
mapping to use normalized embeddings instead of
raw embeddings, and force estimated embeddings
to have the same length as the original just fine-
tuned one. First, we normalize Y and X to make
all embeddings e to be ∥e∥ = 1, and obtain the nor-
malized embeddings as X n and Yn. We set Ni as
tokens with the top k nearest neighbor embeddings
in X n from each embedding yn

i in VR with cosine
similarity, and compute the weights αi to estimate
each ŷn

i by
∑

j∈Ni
α̂ijx

n
j . With locally linear map-

ping, we compute α̂i which approximate yn
i the

most by weighted linear sum of xn
j represented as

α̂i = argmin
αi

∥∥∥∥∥∥
yn
i −

∑

j∈Ni

αijx
n
j

∥∥∥∥∥∥

2

(1)

using Lagrange multiplier from xn
i , yn

i and a con-
straint of

∑
j αij = 1 by compute

α̂ij =

∑
l(C

−1
i )jl∑

j

∑
l(C

−1
i )jl

(2)

under Cijl = (yn
i − xn

j ) · (yn
i − xn

l ) to estimate
whole Ŷn (l ∈ Ni). We finally estimate each ŷi by
adjusting the length of ŷn

i same as yi with

ŷi = ∥yi∥
ŷn
i

∥ŷn
i ∥

(3)

We save necessary parameters to reconstruct
ŷi instead of the original embedding yi. To re-
construct ŷi, we need ID of embeddings in Ni,
weights αi and the length of embedding ∥yi∥. We
save these 2k + 1 parameters for every token in
VR as our compact representation, thus we reduce
(d − (2k + 1))|VR| parameters. In the inference,
we dynamically reconstruct ŷi upon request when
the tokenizer outputs those tokens.

3 Experimental Setup

We evaluate our frequency-aware sparse coding of
embeddings on distilled PLMs fine-tuned to NLU
tasks in terms of the model size and performance.

4Because the target rare token embeddings may not be
updated for the target task and are in the semantic space of
PLM instead of the fine-tuned PLM), we may be able to obtain
better embeddings by computing weights for the summation
in the semantic space of the PLM and by using the weights
to reconstruct the target embeddings in the semantic space of
the fine-tuned PLM. However, our preliminary experiments
revealed that the fine-tuning did not change the embeddings
much, this did not contribute to the accuracy improvements.

3.1 Datasets
For evaluation, we adopt GLUE (Wang et al., 2018)
and JGLUE benchmark (Kurihara et al., 2022)
for language understanding tasks in English and
Japanese, respectively.

GLUE is a benchmark consisting of nine natural
language understanding (NLU) tasks. It contains
datasets of acceptability (CoLA), sentiment anal-
ysis (SST-2), paraphrase (MRPC, QQP), textual
similarity (STS-B), and natural language inference
(NLI; MNLI, QNLI, RTE, and WNLI). The sizes
of the datasets range from <1k to over 500k. In
the experiments, we adopted the common metrics
used in the evaluation of BERT (Devlin et al., 2019)
and DistilBERT (Sanh et al., 2019); F1 for MRPC
and QQP, Spearman Correlation for STS-B, and
accuracy for the others.

Since we experimented on the diverse settings of
k and VR resulting in plenty of results, it was not
possible to upload all of our results to test on the
website5 because of its limitation of submission.
Hence, for every task, we used the original valida-
tion set as the test set. Instead of the original vali-
dation set, we split the train set into 90% and 10%
shuffling randomly using a fixed random seed 42
and treated the latter as a validation set. We did not
evaluate our method on QQP and WNLI since these
tasks have different label distributions between the
validation set and the test set, which means that
the results of experiments on these datasets may
be misleading.6 In addition, we did not conduct
experiments on MNLI due to the computational
cost of running experiments on this large dataset.

JGLUE is a benchmark consisting of seven NLU
tasks in Japanese. It contains datasets of text clas-
sification (MARC-ja and JCoLA), sentence pair
classification (JSTS and JNLI), and QA (JSQuAD
and JCommonsenseQA). Because the MARC-ja
dataset is no longer available at this time, we evalu-
ated our method on the other tasks. We used only
Spearman’s Correlation for the evaluation of JSTS
following STS-B, and accuracy on the other tasks,
following Kurihara et al. (2022).

Since the test sets of JGLUE have not been re-
leased yet, we employed the same process as we
did for GLUE, except for JCoLA (we used the
“validation_out_of_domain” subset as the test
data). We experimented on JCoLA, JSTS, and
JNLI datasets of the benchmark.

5https://gluebenchmark.com
6https://gluebenchmark.com/faq
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3.2 PLMs for embedding compression

We applied our method to fine-tuned DistilBERT
models whose hidden layer of BERT is compressed
by knowledge distillation. Specifically, we exper-
imented on distilbert-base-uncased7 for En-
glish and line-distilbert-base-japanese8 for
Japanese. In what follows, we report the averages
and standard deviations of three fine-tuning trials.

The English PLM has 23M parameters in the
embedding layer, which consist of 30,522 token
embeddings of 768 dimensions and account for
34.9% of the parameters (67M in total). This PLM
employs WordPiece as the tokenizer. In fine-tuning,
we trained for three epochs with a learning rate of
2e-5, except for five epochs on MRPC.

The Japanese PLM has 25M parameters of the
embedding layer, which consist of 32,768 token
embeddings of 768 dimensions and account for
36.6% of the parameters (68M in total). The tok-
enization of this model is done in two stages; pre-
tokenization by MeCab9 (unidic-lite) and tokeniza-
tion by unigram LM of SentencePiece (Kudo and
Richardson, 2018). In fine-tuning, we trained for
four epochs with a learning rate of 5e-5.

3.3 Embedding compression

Threshold for common tokens We initially treat
all PLM vocabularies that appear during the fine-
tuning as VC and the others as VR. Then, we trans-
fer common tokens in VC to VR to see the trade-off
between the compression rate and the performance.
In these settings, the top 50% to 90% of the to-
kens with the higher frequency remain as VC , and
the others are transferred to the VR. In the ex-
periments, we compare our method while varying
the retention rate of VC , r(VC), for each task; for
example, r(VC) = 1.0 means all the tokens that
appeared during the fine-tuning are kept in VC and
r(VC) = 0.5 means the half of the tokens that ap-
peared during the fine-tuning are transferred to VR.

The number of the source embeddings We also
compare our method while varying k, the number
of the source embeddings used to represent each
target embedding, ranging from one to five for each
task. We tune k to minimize the inference error on
the validation set and report the results of the best-

7https://huggingface.co/distilbert/
distilbert-base-uncased

8https://huggingface.co/line-corporation/
line-distilbert-base-japanese

9https://taku910.github.io/mecab/

performing k. We will later confirm that the choice
of k does not affect the PLM performance, thanks
to its strong contextualization capabilities.

3.4 Baselines

We compare our model with three baselines: i) re-
placing VR with <unk> token learned by the PLM,
ii) Principal Component Analysis (PCA)-based ap-
proximation and iii) Additive Quantization.

“unknown” token (<unk>) replaces all of the tar-
get tokens in VR with a special token <unk>
to leverage the unknown token embedding
learned by the PLM.

Principal Component Analysis (PCA) uses the
bases of the embedding space obtained by
PCA as the source embeddings, instead of
VC , to reconstruct VR. We compute the coor-
dinate in k-dimensional space with this basis
for each target token, and we treat the coordi-
nate as the weight like our method. We save
the same number of the source embedding,
k, to reconstruct VR, and the coordinate of
k dimension for each token in VR instead of
the original embeddings. We show the results
from a single k selected with the same criteria
as the proposed method, while ranging k from
one to ten.

Additive Quantization (AQ) represents the orig-
inal embeddings with the sum of basis em-
beddings which are shared across the target
tokens with similar meanings (Babenko and
Lempitsky, 2014; Shu and Nakayama, 2017).
Although AQ reconstructs the original em-
beddings by a sum of a small subset of the
basis embeddings as in our method, it is de-
signed to reconstruct all embeddings using the
independently-learned basis embeddings. We
have used the official implementation of Shu’s
method (Shu and Nakayama, 2017)10 with
hyperparameters of K = 16 and M = 32.

The former two baselines approximate the same
VC as ours to see the effectiveness of choosing
the source embeddings from the nearest neighbors,
while the last baseline compresses the entire set of
embeddings to see the impact of frequency-aware
partial sparse coding.

10https://github.com/zomux/neuralcompressor
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CoLA SST-2 MRPC STS-B QNLI RTE Average
|VC | 5585 11570 11561 10794 26180 13863

r(VC) = 1.0
<unk> 37.16±1.12 90.18±0.23 87.95±0.39 83.67±0.15 86.96±0.10 57.76±1.42 73.95
PCA 41.79±0.48

k=2 89.72±0.05
k=7 87.72±0.54

k=1 81.08±0.41
k=1 86.97±0.09

k=1 53.19±2.20
k=2 73.41

proposed 41.91±0.20
k=5 89.87±0.40

k=4 87.75±0.47
k=3 85.45±0.14

k=1 86.99±0.09
k=2 57.88±0.53

k=1 74.98

r(VC) = 0.5
<unk> 29.12±1.05 89.56±0.14 88.18±0.40 81.54±0.21 86.16±0.20 54.99±1.88 71.59
PCA 33.29±0.27

k=2 89.30±0.20
k=10 86.29±0.44

k=1 75.23±0.91
k=10 83.85±0.32

k=1 53.79±1.55
k=10 70.29

proposed 32.33±0.62
k=5 90.18±0.38

k=5 87.25±0.43
k=4 82.67±0.23

k=3 86.19±0.05
k=1 56.92±0.15

k=1 72.59

original 48.74±0.38 90.02±0.35 88.75±0.12 85.77±0.12 87.06±0.12 57.40±1.84 76.29

Table 1: The results of GLUE benchmark. The numbers in brackets show the number of the source embeddings, k,
chosen by using the validation set.

JCoLA JSTS JNLI Average
|VC | 3558 4576 4403

r(VC) = 1.0
<unk> 74.60±0.58 84.70±0.09 87.69±0.36 82.33
PCA 75.33±0.00

k=1 84.73±0.12
k=8 87.83±0.28

k=2 82.63
proposed 76.50±0.10

k=2 84.65±0.11
k=1 87.85±0.24

k=2 83.00

r(VC) = 0.5
<unk> 70.61±1.55 83.55±0.03 86.72±0.19 80.29
PCA 75.67±0.49

k=1 83.46±0.13
k=10 86.52±0.25

k=1 81.88
proposed 75.67±0.47

k=5 84.30±0.12
k=3 87.47±0.08

k=1 82.48

AQ 28.81±1.48 46.95±11.21 −2.34±1.14 24.47

original 77.08±0.31 84.67±0.10 87.96±0.29 83.24

Table 2: The results of JGLUE benchmark. The numbers in brackets show the number of the source embeddings, k,
chosen by using the validation set.

4 Results

4.1 Main results

We first compared the results of the proposed
method and the three baselines. <unk> and PCA
baselines approximate the same target embeddings
as ours, under the settings of r(VC) = 1.0 and
r(VC) = 0.5. We also compared to AQ in JGLUE,
it approximates the entire embeddings regardless
of r(VC).

Tables 1 and 2 show the results on the GLUE and
JGLUE benchmark datasets, respectively. From
the results, we can observe that our method outper-
forms the baselines on average and exhibits stable
performance across tasks. Our method outperforms
the PCA baseline in all tasks except for CoLA of
r(VC) = 0.5 and JSTS of r(VC) = 1.0, thus con-
firming the importance of target-dependent source
(basis) embeddings. Meanwhile, our method
slightly underperforms the <unk> baseline in SST-
2, MRPC, and JSTS of r(VC) = 1.0, and MRPC of
r(VC) = 0.5. However, the token and sentence cov-
erage by only common tokens are higher in those

datasets as we will later confirm in Tables 5 and 6;
all the three frequency-aware methods exhibit sim-
ilar performance to the original model even un-
der r(VC) = 0.5. Overall, our method mitigates
performance degradation compared to only replac-
ing such tokens with <unk> tokens, especially for
r(VC) = 0.5 in both languages.

The relationship between performance and |VC |
Tables 3 and 4 show the results of our method while
varying r(VC). From the tables, there is a weak ten-
dency that setting a lower value to r(VC) results
in lower performance. Thus, rare tokens weakly
affect the PLM’s performance, and it is reason-
able to compress only rare token embeddings while
keeping the original common token embeddings.

We compare the token and sentence coverage by
VC in the following three GLUE datasets: CoLA,
which has the largest performance drop at small
r(VC), MRPC, which has a small performance
drop despite being the similar training data size to
CoLA, and QNLI, which has a small performance
drop because more tokens are preserved (§ 4.2) at
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r(VC) CoLA SST-2 MRPC STS-B QNLI RTE

0.5 32.33±0.62
k=5 90.18±0.38

k=5 87.25±0.43
k=4 82.67±0.23

k=3 86.19±0.05
k=1 56.92±0.15

k=1

0.6 35.27±0.32
k=5 89.68±0.29

k=5 87.80±0.42
k=3 83.80±0.17

k=2 86.27±0.12
k=1 56.80±0.30

k=1

0.7 37.50±0.12
k=4 89.60±0.25

k=5 88.09±0.45
k=5 84.03±0.16

k=2 86.63±0.10
k=1 57.04±0.26

k=1

0.8 39.56±0.15
k=5 89.99±0.26

k=5 88.55±0.91
k=4 84.29±0.15

k=3 86.86±0.21
k=1 57.76±0.26

k=1

0.9 39.72±0.44
k=5 90.02±0.37

k=3 88.10±0.84
k=5 85.01±0.11

k=1 87.02±0.09
k=1 58.24±0.39

k=1

1.0 41.91±0.20
k=5 89.87±0.40

k=4 87.75±0.47
k=3 85.45±0.14

k=1 86.99±0.09
k=2 57.88±0.53

k=1

original 48.74±0.38 90.02±0.35 88.75±0.12 85.77±0.12 87.06±0.12 57.40±1.84

Table 3: The results of modified models with our method under different r(VC) in the GLUE benchmark. The
numbers in brackets show the number of the source embeddings, k, chosen by using the validation set.

r(VC) JCoLA JSTS JNLI

0.5 75.67±0.47 84.30±0.12 87.47±0.08

0.6 76.79±0.36 84.50±0.14 87.55±0.23

0.7 76.93±0.10 84.53±0.14 87.57±0.31

0.8 76.45±0.47 84.66±0.14 87.80±0.18

0.9 77.13±0.33 84.65±0.13 87.76±0.21

1.0 76.50±0.10 84.65±0.11 87.85±0.24

original 77.08±0.31 84.67±0.10 87.96±0.29

Table 4: The results of modified models with our method
under different r(VC) in the JGLUE benchmark.

r(VC) CoLA MRPC QNLI

0.5 99.37 96.00 98.27
0.6 99.47 96.66 98.72
0.7 99.55 97.06 99.14
0.8 99.60 97.52 99.52
0.9 99.64 97.92 99.74
1.0 99.69 98.30 99.90

Table 5: Token coverage in the GLUE test data by
tokens in VC .

r(VC) = 0.5.
Tables 5 and 6 show the token and sentence cov-

erage by VC for these three characteristic datasets,
respectively. From the results, VC of CoLA has
high token and sentence coverage even though VC
of CoLA is much smaller than QNLI and MRPC
(Table 7). CoLA, however, has a large performance
drop despite high coverage. We guess that the dif-
ferences in performance degradation are explained
by differences in the information required by the
tasks, rather than by the rate of affected sentences.

The overhead to recover rare token embeddings
It requires 142 ms to recover rare token embedding
(r(VC) = 1.0, k = 5) for JCoLA “validation”
datasets using a server with Intel Xeon 2.40-GHz
CPU. This is negligible (< 5%) against the infer-
ence time (3010 ms) of the same datasets with the
original PLM, which uses an additional NVIDIA
P6000 GPU for matrix multiplication.

r(VC) CoLA MRPC QNLI

0.5 56.66 9.31 22.84
0.6 61.38 15.44 33.15
0.7 66.35 18.63 47.34
0.8 68.65 23.53 64.67
0.9 72.00 28.43 79.15
1.0 75.17 34.07 91.10

Table 6: Sentence coverage in the GLUE test data only
by tokens in VC . In covered sentences, the model per-
forms exactly the same as the original model.

r(VC)
GLUE JGLUE

CoLA MRPC STS-B QNLI JSTS

0.5 10.15 19.05 17.71 43.13 10.17
1.0 18.85 36.76 34.16 85.88 16.65

Table 7: The rate of parameters (%) that our method
requires compared to the original embedding layer. We
also list the result of CoLA and MRPC, for the analysis
related to Tables 5 and 6.

4.2 Sensitivity to compression rate

Using our method, we can explicitly control the
compression rate of embedding by varying r(VC).
We thus investigate the relation between the com-
pression rate of the fine-tuned PLMs by our method
and the PLM’s performance (Tables 1 and 2),
among three datasets: STS-B and QNLI in GLUE,
and JSTS in JGLUE. These datasets have different
training data sizes (5.2k examples for STS-B, 94.3k
for QNLI, and 11.2k for JSTS in our settings), as
shown in Table 7.

We can see that the compression rates of CoLA
and JSTS of r(VC) = 1.0 and MRPC and STS-B
of r(VC) = 0.5 are similar but their performance
drops differ greatly, as shown in Tables 1 and 2.
This will be because individual tasks require dif-
ferent degrees of information, and we thus need to
tune the compression rate depending on the target
downstream tasks.
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r(VC)

GLUE JGLUE

STS-B QNLI JSTS

all (emb.) all (emb.) all (emb.)

0.5 47.7M (4.15M) 53.7M (10.11M) 46.1M (2.56M)
1.0 51.6M (8.01M) 63.7M (20.13M) 47.7M (4.19M)

orig. 67.0M (23.44M) 67.0M (23.44M) 68.7M (25.17M)

Table 8: The number of parameters in the DistilBERT
models with vocabulary compressed by our method.

CoLA JCoLA

r(|VC |) = 1.0
<unk> 35.55 5.63
k = 1 70.56 29.14
k = 2 75.60 34.59
k = 3 77.51 37.41
k = 4 78.53 39.21
k = 5 79.16 40.48

AQ (VC ∪ VR) 77.89 65.27
AQ (VC ) 70.16 54.73
AQ (VR) 79.55 66.55

Table 9: Cosine similarity of the approximated embed-
dings to the original embedding.

4.3 Sensitivity to k

In our method and the PCA baseline, we can obtain
a better approximation by increasing the number
of the source embeddings, k. In this section, we
investigate the relation between the quality of ap-
proximation and the PLM’s performance.

Table 9 shows the cosine similarity between the
original and the reconstructed embeddings in the
PLMs fine-tuned to the CoLA and JCoLA datasets.
From the table, we can confirm that more similar
embeddings to the original can be reconstructed
when we increase the number of the source embed-
ding, k, in both CoLA and JCoLA. However, the
higher similarity does not always lead to higher per-
formance as lower k are chosen in most datasets in
Table 1 and 2. Meanwhile, AQ achieves compara-
ble (CoLA) or much better (JCoLA) similarity for
rare tokens but performs poorly (Table 2). These
results confirm that the noises in common token
embeddings are vital and the PLMs have a strong
contextualized ability to guess the meanings of rare
tokens from their surrounding contexts, we do not
need to care much about tuning k to obtain a better
approximation of embeddings.

5 Related Work

In the development of neural network-based NLP,
how to embed a sequence of discrete symbols in

languages into the continuous space has been an
important issue, and various compact representa-
tions of embeddings have been explored. In what
follows, we first review approaches to compress-
ing word embeddings (§ 5.1). We next introduce
finer-grained tokenization than words, which re-
sults in compact embedding layers (§ 5.2). We
then discuss a method of predicting embeddings of
out-of-vocabulary words (§ 5.3).

5.1 Compressing Word Embeddings

Classical approaches to neural language mod-
eling leverage word-level embeddings such as
CBoW (Mikolov et al., 2013) and GloVe (Penning-
ton et al., 2014), which are learned via shallow
neural networks. Since out-of-vocabulary (OOV)
words cause serious issues in word-based embed-
dings, the embeddings are often trained to cover as
many words as possible, which makes embedding
layers larger. Hence, researchers have worked to
compress word embeddings during or after training
neural models.

Matrix (Tensor) factorization decomposes a large
matrix (tensor) by a product of low-rank matrices
(tensors) and has been used to compress word em-
beddings (Chen et al., 2018a; Acharya et al., 2019;
Winata et al., 2019; Lan et al., 2020; Hrinchuk et al.,
2020; Lioutas et al., 2020; Lee et al., 2021; Wang
et al., 2023). In particular, ALBERT (Lan et al.,
2020) learns to represent the embedding layer of a
PLM with a product of two small matrices during
pre-training; although the factorized vocabulary
reduces the memory footprint, it involves matrix
multiplications that slow the inference and is not
adopted in other PLMs.

Sparse coding has been thereby explored to ad-
dress the aforementioned issue in matrix factoriza-
tion (Faruqui et al., 2015; Chen et al., 2016; Shu
and Nakayama, 2017; Chen et al., 2018b; Tissier
et al., 2019; Ma et al., 2019; Kim et al., 2020).
The sparse coding represents embeddings using
a sparse linear combination of basis embeddings;
each embedding is represented by a short sparse
vector, which has pairs of IDs for basis embeddings
and weight (optional). In particular, Chen et al.
(2016) adopted frequency-aware partial sparse cod-
ing as ours and applied it to embedding layers of
RNN-LMs with word tokenization. To choose
a small subset of basis (common token) embed-
dings for each rare token embedding, they used
ℓ1-regularization. However, the sparsity is limited
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since ℓ1 regularization does not directly minimize
the number of basis embeddings for reconstruction.

In this study, focusing on the recent subword-
based Transformer-based PLMs that have strong
contextualization abilities of embeddings, we de-
velop a lightweight method that chooses a fixed
number of basis embeddings to represent each rare
embedding from its nearest-neighbor common to-
ken embeddings and confirms that it attains high
sparsity while retaining the original accuracy.

5.2 Finer-grained Tokenization
To address the issue of OOV words, researchers
leveraged finer-grained tokenization based on sub-
words (Sennrich et al., 2016; Kudo, 2018) to back-
off embeddings of OOV words to those of sub-
words (ultimately, characters or bytes). The finer-
grained tokenization allows us to reduce the vo-
cabulary size dramatically. Furthermore, to han-
dle massive vocabularies in multilingual models,
character- (Clark et al., 2022) and byte-level tok-
enization (Xue et al., 2022) have been used. These
finer-grained tokenizations, however, incur high
computational costs, because they heavily rely on
the hidden layers of PLMs to recover (sub)word-
level representations. Meanwhile, recent large lan-
guage models (LLMs) are trained with a larger
set of subwords; Takase et al. (2024) reported that
larger vocabulary contributes to the performance
of LLMs. Meanwhile, when we adopt pretrain-and-
fine-tune paradigm, we need to stick to the original
tokenizer of the PLMs, since it is difficult to ob-
tain a different set of fine-grained vocabularies that
replace the existing subword-level vocabularies in
the PLMs. We thus need to address large subword
vocabularies of PLMs to compress PLMs.

5.3 Predicting OOV Embeddings
As stated in § 5.1, out-of-vocabulary (OOV) words
had been a problem in the word-level embeddings,
before the subword-based tokenization becomes
a de-facto standard in neural text processing via
Transformer-based PLMs. Several researchers thus
attempted to reconstruct OOV embeddings from
subword embeddings (Pinter et al., 2017; Zhao
et al., 2018; Sasaki et al., 2019; Fukuda et al., 2020;
Chen et al., 2022). Although these methods can
compute OOV embeddings from subword embed-
dings, they usually leverage a neural network to ac-
curately predict OOV embeddings, which not only
requires an additional memory footprint but also
slows down the inference. In this study, we resort

to the strong contextualization abilities of PLMs to
handle OOV words, and focus on reconstructing
rare token embeddings by abusing common token
embeddings, to minimize the space and time cost
to compute the embeddings in the inference.

6 Conclusions

We proposed a simple yet effective sparse coding
method to compress the embedding layer of a given
fine-tuned PLM. We keep common tokens that ap-
pear frequently in the fine-tuning data and only
compress the embeddings of rare tokens that do
not appear in the fine-tuning data. We select only a
small subset of the nearest neighbor source (com-
mon token) embeddings to approximate the target
(rare token) embeddings so that we represent the
target embeddings with only a small number of
parameters. Our experimental results confirmed
that our frequency-aware partial sparse coding can
greatly compress the embedding layer while pre-
venting performance degradation. Our method
works effectively without carefully choosing the
number of the source embedding for compression.

In future work, we will apply a method to se-
lect the target tokens for compression from the
vocabulary while considering the easiness of recon-
struction as well as the frequency. We also plan
to apply our method to decoder-only and encoder-
decoder LMs, although there are issues as stated in
the Limitations section.

Limitations

Since our method discards the original embed-
dings for rare tokens and dynamically reconstructs
those embeddings upon request, the application to
decoder-only and encoder-decoder PLMs has some
challenges. First, If the PLMs do not adopt the
weight tying, which shares the weights of the em-
bedding and softmax layers, then our method is
applicable to the embedding layers. If the PLMs
adopt the weight tying, a naive application of our
method to those PLMs will result in outputs with-
out rare tokens. However, we will be able to gener-
ate rare tokens, by remembering neighboring rare
tokens for each common token with embeddings;
we first choose a common token as the next token,
by greedy decoding or some decoding strategy, and
then reconstruct the neighboring rare token embed-
dings to include those rare tokens as the candidates
of the next token. We will plan to evaluate this
method on recent decoder-only large LMs.
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Abstract

LLMs are increasingly being deployed for mul-
tilingual applications and have demonstrated
impressive translation capabilities between sev-
eral low and high-resource languages. An as-
pect of translation that often gets overlooked is
that of cultural adaptation, or modifying source
culture references to suit the target culture.
While specialized translation models still out-
perform LLMs on the machine translation task
when viewed from the lens of correctness, they
are not sensitive to cultural differences often re-
quiring manual correction. LLMs on the other
hand have a rich reservoir of cultural knowl-
edge embedded within its parameters that can
be potentially exploited for such applications.
In this paper, we define the task of cultural
adaptation and create an evaluation framework
to evaluate the performance of modern LLMs
for cultural adaptation and analyze their cross-
cultural knowledge while connecting related
concepts across different cultures. We also ana-
lyze possible issues with automatic adaptation.
We hope that this task will offer more insight
into the cultural understanding of LLMs and
their creativity in cross-cultural scenarios.

NOTE: This paper contains examples that may
be offensive.

1 Introduction

Recent progress in NLP is largely driven via LLMs,
which have shown great promise in a variety of
tasks including text generation, language under-
standing, question answering, code generation, and
even machine translation. Though LLMs have not
achieved state-of-the-art performance for machine
translation (Zhu et al., 2023), their instruction-
following ability makes them suitable for tasks
involving more creativity and customization dur-
ing generation. Many translation applications
require literal translations for which specialized
transformer-based models trained on parallel data

Rachel Green: Wow, this is so cool, you 
guys. The entire city is blacked out!

Monica Geller: Mom says it's all of 
Manhattan, parts of Brooklyn and 
Queens, and they have no idea when it's 
coming back on.

Rachel Green: Wow, you guys, this is 
big.

Monica Geller: Pants and a sweater? 
Why, mom? Who am I gonna meet in a 
blackout? Power company guys? 
Eligible looters? Could we talk about 
this later? OK.

Phoebe Buffay: Can I borrow the phone? 
I want to call my apartment and check 
on my grandma. What's my number?

Rachel Green: Wow, this is so cool, you 
guys. The entire city is blacked out!

Monica Geller: Mom says it's all of 
Mumbai, parts of Thane and Navi 
Mumbai, and they have no idea when 
it's coming back on.

Rachel Green: Wow, you guys, this is 
big.

Monica Geller: Salwar kameez and a 
dupatta? Why, mom? Who am I gonna 
meet in a blackout? Electricity board 
guys? Eligible neighbors? Could we 
talk about this later? OK.

Phoebe Buffay: Can I borrow the 
phone? I want to call my apartment and 
check on my naani. What's my number?

Original Dialog 
(Source Culture - US) 

Adapted Dialog 
(Target Culture - India) 

LLM

Figure 1: Cultural Adaptation using LLM

SL Emphasis TL Emphasis

Word-for-word 
Translation

Literal Translation

Faithful Translation

Semantic Translation Communicative Translation

Idiomatic Translation

Free Translation

Adaptation

Figure 2: Newmark (1988)’s V diagram of translation
methods. SL: Source Language, TL: Target Language

are ideal. However, there are other facets of transla-
tion (see Figure 2), such as adaptation, also called
the ‘freest’ form of translation (Newmark, 1988)
wherein the original text is rewritten to make it
more appropriate for the target audience belong-
ing to a specific age group or culture (See Fig-
ure 1). Applications of adaptation (Appendix E)
include adapted transcriptions for plays, poetry,
and movie subtitles where the plot, characters and
central theme are usually kept intact but the text
is rewritten to ensure the output is sensitive to the
target culture. Adaptation can either be done within
the same (intralingual adaptation) or in different
languages (interlingual adaptation).
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Polizzotti (2018) in his book “Sympathy for the
Traitor: The Translation Manifesto" describes how
in 17th century France, a sexist term belles infidèles
(the beautiful, unfaithful ones) was used to describe
the prevalent approach to French translations at the
time, which involved “updating" ancient Greek and
Latin texts by removing vulgar language or sex-
ual content and replacing outdated references with
modern equivalents to make the texts more eas-
ily understandable and socially acceptable. These
translations were considered “beautiful" because
they were smooth to read and met contemporary ex-
pectations, but they were not faithful to the original
texts in a strict sense. The debate between "liter-
alism" and "adaptation" persists, with proponents
of each arguing their merits. Yet, adaptations of
existing texts continue to serve diverse purposes
including cross-cultural communication.

In this study, we steer clear of this debate and
explore this task purely from an NLP perspective
particularly investigating the power of large lan-
guage models. We define a specific version of
the task along with clear goals and an evaluation
framework for assessing the effectiveness of these
adaptations considering factors such as localisation,
preservation, naturalness, and appropriateness. The
motivation behind this work stems from the need to
transcend the constraints of literal translation and
explore freer forms of translation such as adapta-
tion. Due to the rising creativity, multilinguality,
cross-cultural knowledge and instruction-following
ability of modern language models, they have the
potential to generate culturally resonant adaptations
of the source text.

We limit our study to cultural adaptation with
English as the source and target language i.e. In-
tralingual adaptation. As Hershcovich et al. (2022)
argues, although language and culture are intercon-
nected, they are not synonymous. For example,
English, being the lingua franca for many parts
of the world, can carry views and concepts from
different parts of the world. By sticking to English,
we can specifically evaluate how well cultural as-
pects are adjusted in adaptation without the added
complexity of translating between languages. As
LLMs become more multilingual (in generation
and understanding), their ability can better be eval-
uated for interlingual adaptation and related aspects
of this study can be applied there. We can also view
Interlingual Cultural Adaptation as a combination
of Intralingual Cultural Adaptation and Machine
Translation.

We explore the following research questions and
contribute along these: RQ 1) How do we define
what constitutes adaptation in terms of modifica-
tions to the source text i.e. what is changed during
adaptation and for what purpose? RQ 2) Based
on the goals of adaptation, what are the optimal
criteria/aspects for evaluation? RQ 3) Given the
evaluation, how proficient are modern language
models at adaptation? What strategies do they em-
ploy, and to what extent do they adapt based on
provided instructions? RQ 4) What insights does
this offer into their parametric cross-cultural knowl-
edge?

2 Related Work

Yao et al. (2023) discusses the aspect of using
cultural knowledge to support LLM-based transla-
tion. They focus on literal translation and create
a culture-specific parallel corpus, to evaluate the
cultural awareness of MT systems. They explored
different prompting strategies using external and
internal knowledge for LLM-based machine trans-
lation and created an automatic evaluation metric,
to measure the translation quality of cultural con-
cepts.

Recent works on evaluating cultural awareness
in LLMs have centred primarily around measuring
cultural value alignment (Durmus et al., 2023; Cao
et al., 2023; Masoud et al., 2023; Ramezani and
Xu, 2023). While this is important, it does not
necessarily indicate that LLMs are aware of culture-
specific items or concepts from different cultures.
More research is needed to assess whether LLMs
truly understand these culture-specific items and
concepts and can use them coherently in text. Our
research aims to address this question.

Jiang and Joshi (2023) created a ranking-based
statistical QA task that compared cultural concept
popularity across countries. Wang et al. (2024)
examined the cultural dominance of concrete (e.g.,
holidays and songs) and abstract (e.g., values and
opinions) cultural objects in LLM responses.

Peskov et al. (2021) introduced the idea of au-
tomatic cultural adaptation by adapting named en-
tities across cultures and languages, however, it
focused on simpler entities in standalone sentences.
Cao et al. (2024) constructed resources for cul-
tural adaptation of recipes and also evaluated their
method against LLM-based adaptation. More re-
cently, Zhang et al. (2024) created Chinese-English
menu corpora and defined an evaluation for the task
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of adapting restaurant menus.

3 Task Definition

For the task of adaptation, we use a corpus of
dialogs from a TV show and adapt it to the tar-
get culture. We choose adaptation of dialogs in-
stead of standalone sentences as done by Peskov
et al. (2021) since they provide richer context
and are more representative of a true use case
of adaptation. The original corpus of dialogues
is denoted as Do = {do1, do2, . . . , don}. We ob-
tain an adapted version of these dialogues denoted
as Da = {f(do1, c), f(do2, c), . . . , f(don, c)}, where
f represents the language model that adapts the
original dialogues to the target culture and c is
the specific cultural context or prompt represent-
ing the cultural context for adaptation. Each di-
alogue d consists of a number of utterances i.e.
d = {u1, u2, . . . , um}. Each utterance ui =
speaker(ui) : text(ui), where speaker(ui) is the
speaker or participant name and (ui) is the textual
content for utterance ui. Our task is to evaluate how
well dialogues in the adapted set Da are culturally
aligned to the target culture while maintaining the
intent and essence of the original dialogue. Sec-
tion 4 provides details on the exact aspects along
which we assess these adaptations.

4 Annotating Cultural References

Corpus Description: We choose the ‘Friends
Dialogs’ corpus for this study. We filter the data
to choose dialogues with utterances between 1
and 15. The corpus includes 1110 conversations
(or dialogs) containing 11812 utterances by 363
speakers. The reason for choosing such a corpus
is that ‘Friends TV Show’ is deeply rooted in
American culture offering a distinct contrast that
highlights the need for adaptation when targeting
a new cultural context, specifically India1 in our
study. Here, adaptation ensures that the message is
not only understood but also embraced and valued
in a different cultural environment.

Culture is a multi-faceted concept. Many
scholars have tried to define culture. One such
theory which is very relevant here and is also
mentioned in cultural translation studies is Hall’s

1We choose country as a proxy for culture (Adilazuarda
et al., 2024). While a country such as India has many subcul-
tures, still, many aspects and items are still universal and are
relatable to a national audience. Those remain the key focus
of our study and our annotation task.

Hall's triad:

Technical

Formal

Informal

Music, art, food and
drink, dress,
architecture,

institutions, visible
behaviour.  

LANGUAGE

Appropriacy,
rituals,
customs,
ways/styles (of
discourse, dress)

Orientations
Action
Communication
Environment
Time
Space
Power
Individualism
Competitiveness
Structure
Thinking

Figure 3: Hall’s Iceberg Theory and Triads

Iceberg Model of Culture (or the Triad of Culture)
which divides aspects of culture into three levels:
visible (above the waterline), semi-visible and
invisible (see Figure 3) which are referred as the
technical, formal and informal level of culture,
respectively. As Katan (2014) describes, these
levels also relate to how we grasp culture: technical
culture can be taught by an expert, formal culture
through trial-and-error while informal culture is
learned unconsciously.

At the tip of the iceberg i.e. the technical level,
the goal of translation is to transfer the terms and
concepts of the source text to the target text with
minimal loss. The terms and concepts are usu-
ally referred to as “culture-bound” terms, or “cul-
turemes”. Hall’s second level, i.e., the Formal level
of culture focuses on rituals, customs, and accepted
or appropriate ways of doing things. This level
follows the ‘Skopos Theory’ (Vermeer, 1989) i.e
translation should be oriented towards achieving
the desired function in the target culture, rather
than being faithful to the source text. Hall’s third
level, i.e., the Informal level cannot be taught or
learned but is acquired ‘out-of-awareness’ or un-
consciously. This is what makes a translation more
artistic rather than mechanistic.

RQ 1: How do we define what constitutes
adaptation in terms of modifications to the
source text i.e. what is changed during adap-
tation and for what purpose? In this study, we
mainly focus on the first two levels of culture. In or-
der to evaluate whether an adaptation navigates dif-
ferent levels of culture, we need to annotate culture-
related references in the source text and look at
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how they are being adapted in the corresponding
adaptation. We call these items adaptable items or
Culture-Specific Items(CSI) used by Newmark
(1988).

Items which can undergo adaptation include ref-
erences to concepts and realities which are foreign
to the target culture, socially sensitive and taboo
topics, colloquialisms, slang, idioms, figures of
speech, humour, or content which can be consid-
ered offensive in the target culture. We manually
annotate these items in our corpus of dialogues. We
also categorise these items into the following cat-
egories : 1) Ecology ((flora, fauna, winds etc.) 2)
Material Culture (artefacts, food, clothes, houses,
towns, transport etc.) 3) Social Culture (work and
leisure) 4) Institutions, Organizations and ideas
(political, social, religious, social, artistic, admin-
istrative, ideas etc.) 5) Gestures and Habits (name
of regular behaviour and movements), as proposed
by Newmark (1988). Additionally, we introduce
four more categories which reflect the need for
adaptation: 6) Slang or Figure of Speech, 7) Offen-
sive Content, 8) Socially Sensitive or Taboo Topics
and 9) Humour (Since ‘Friends’ is a sitcom). We
use the descriptions from Newmark (1988) plus
descriptions of the other four categories as our an-
notation guidelines.

While Yao et al. (2023) demonstrates an auto-
mated approach to annotating culture-bound items,
however, for our use case, we observed that it only
identifies a fraction of items which can undergo
adaptation. Also, CSI are culture-specific not due
to their origin but also due to their foreignness to
the target culture. For example, sausage is common
in both the USA and the UK but still foreign in
Indian culture, so manually annotating these items
based on the foreignness to the target culture is
desired. This is especially important due to the
“McDonaldization of Society" (Ritzer, 1996) where
cultural boundaries are becoming blurred and the
notion of foreignness is constantly evolving due to
migration and cultural exchange. Therefore, we
also annotate the degree of foreignness to the target
audience to provide a more accurate depiction and
expectation since items that are more foreign to
the target culture should be more likely to undergo
adaptation. We define 3 foreignness levels: 1,2
and 3 for our annotation. Foreignness level 1
consists of items/behaviours which have traceable
foreign origin/usage however they are common (in
terms of familiarity, integration and perception) in
the target culture. For example, pizza, chocolate,

cricket and coffee are fairly common in India.
We omit items in foreignness level 1 from our
analysis. For items with foreignness level 2, they
may be recognized in the target culture, but their
usage or significance is somewhat foreign or less
familiar. For example, sushi, tacos, k-pop and beer
are not very common and not fully assimilated or
mainstream in India. Items in foreignness level 3
are largely unfamiliar or perceived as distinctly
foreign within the target culture. Some examples
include kimono, rodeo, thanksgiving etc. which
are largely unknown to the Indian audience.

Human annotation: We hired three human
annotators from India for our study (both anno-
tation and human evaluation (Section 7.2)), who
were able to understand different aspects and
sensitivities of Indian culture expressed through
English. The annotators were aware of the source
(“USA" as a proxy) culture and good at identifying
what aspects of it are foreign to India and to what
extent. They were instructed to annotate2 for these
cultural items in the corpus, their categories and
foreignness level.
Recent studies (Schaekermann et al., 2018; Dra-
peau et al., 2016) have indicated that deliberation
can enhance the quality of answers and even
a small number of debates can outperform the
wisdom of large crowds (Navajas et al., 2017).
Therefore, in this study, annotations were carried
out using deliberation through verbal discussion
until a consensus was reached.

Some examples of CSI for different cate-
gories or foreignness levels are given in Table 1.
The number of occurrences of these CSI for each
category/foreignness is shown in Figure 4. The
corpus is publicly accessible3.

5 Evaluation of Cultural Adaptation

In order to design an evaluation framework for
adaptation, we need to understand the motivation
and goals behind it. In the following section, we
mention some goals of adaptation which are as-
pects along which we assess the quality of cultural

2Although we acknowledge subjectivity in terms of anno-
tation on aspects like foreignness, offensive content, taboo
topics, etc., the instructions for annotations were made as spe-
cific and unambiguous as possible. Annotators were asked
to consider a wider target audience to avoid any personal
bias when annotating these cultural items in the corpus, their
categories, and their level of foreignness.

3https://github.com/iampushpdeep/CulturalAdaptEval
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CSI Category CSI Examples

Ecology sage branches, Vail, Alps, Grand Canyon, San Diego Zoo, Capuchin etc.
Material Culture meatball sub, MonkeyShine Beer poster, hamburger, Soap Opera Digest etc.
Social Culture Another World, Thanksgiving, Days of Our Lives, bridesmaids, Halloween etc.
Institutions, Organisations and Ideas Alan Alda, Mattress King, Wendy’s, FICA, Fortunata Fashions etc.
Gestures and Habits “You licked and you put", “honk honk", “Cha-ching", “step-ity step and jazz hands" etc.
Offensive Content “go to hell", dumb ass, bitch, “climb out of my butt", “third nipple" etc.
Socially Sensitive and Taboo topics porn, naked, lust, have sex, undressing etc.
Humour knock-knock jokes, “get him something like a wrecking ball, or a vile of smallpox" etc.

Foreignness Level CSI Examples
2 Christmas, Superman, cheesecake, wok, “spill coffee grounds", Porsche etc.
3 graham cracker, Archie and Jughead Double Digest, barca lounger, Swing Kings etc.

Table 1: Examples of CSI along different categories/foreignness levels found in ‘Friends’ Corpus.
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Figure 4: Number of Occurrences of CSI by a) Category,
b) Foreignness level. A total of 3192 occurrences were
found.

adaptation.

5.1 Aspects of Evaluation

RQ 2: Based on the goals of adaptation, what
are the optimal criteria/aspects for evaluation?
Adaptation can be used for a variety of applica-
tions4 and the goals will vary for each application
be it marketing, children’s literature, or creative
content translation. However, the main goal of
adaptation is to serve the target audience, even if
it means being unfaithful to the original text. This
means that one of the goals is to achieve a shift
in cultural levels to make the text more familiar
and appropriate to the target culture by adapting
more items in the source text. The greater the Ex-
tent of Cultural Adaptation or Localisation, the
higher the chances it will be accepted by the target

4In this study, we are exploring the creative side of adapta-
tion however for more serious applications like adapting legal
or medical content, factuality is the most important aspect of
evaluation which these language models may not guarantee.

audience. Another obvious goal of adaptation is
Cultural Appropriateness and Sensitivity i.e. re-
specting the sensitivities of the target culture with-
out being offensive and avoiding propagation of
harmful stereotypes. Sometimes, items adapted to
the target culture may not fit well or might appear
forced or unnatural. Thus, another goal is Natural-
ness i.e. that adaptation must appear natural and
coherent. Changes done to the source text should
not disrupt the flow of the text. As mentioned ear-
lier, adaptation used for plays, poetry, drama etc
keeps the characters and the central theme intact
and only modifies cultural elements. This means
that another goal of adaptation is Content Preser-
vation. We want adaptation to preserve the original
meaning and intent of the dialogue and it should
not distort the main message. Since we are dealing
with intralingual cultural adaptation, it is very sim-
ilar to text style transfer (Mir et al., 2019) which
also uses metrics like style transfer intensity (in our
case, extent of cultural adaptation), content preser-
vation and naturalness. In order to evaluate cultural
adaptations along these aspects, we perform two
types of analysis: 1) edit level analysis, 2) dialogue
level analysis.

5.2 Edit Level Analysis

% CSI edited: We define a proxy metric to
measure the extent of cultural adaptation i.e. %
Of CSI edited. We use the annotations in our
source corpus and using fuzzy string matching5,
we calculate what percentage of cultural elements
that we have annotated in source text also appear
in translation. If they do that means they aren’t
adapted/edited. Using this we can calculate % CSI
edited as :

% CSI edited = 100 - % of CSI found in adaptations

This metric is not very informative of the
5https://github.com/seatgeek/thefuzz

404

https://github.com/seatgeek/thefuzz


quality of edits performed on items or whether
that edit was correct or appropriate, however, it
does quantify the extent of change or adaptation.
We also report %CSI edited for each category and
foreignness level.

Aspect Evaluation: For aspect-based evalu-
ation at the edit level, we rate each individual
edit on 3 aspects: localization, correctness in
context and offensiveness. During adaptation,
many edits are also performed on items which are
culturally neutral. This is usually done to make
the text more localized by creating new cultural
items. Therefore we need to identify all edits
whether they are on CSI or non-CSI. While there
are libraries which can help to identify edits, we
observed that LLMs are more suitable for such
a task given their language understanding ability.
We use Mixtral6(Jiang et al., 2024) for automatic
evaluation in our experiments including identifying
edits in each utterance for all the dialogues. Then
we ask the LLM to rate each edit on 3 aspects :
1) Correctness (0 or 1), 2) Localization (0 or 1 or
2), 3) Offensiveness(0 or 1) The prompts used for
obtaining edits and rating them on these aspects
are given in Appendix B. These aspects somewhat
relate to the aspects described in Section 5.1.
Correctness relates to Naturalness, Localization to
Extent of Cultural Adaptation and Offensiveness to
Cultural Appropriateness. However, it’s important
to note that aspect evaluation at the edit level may
not account for the entire context of the dialog
but for the edit and the context in which it is used.
Once we obtain these ratings, we can analyze and
compare adaptations from different LLMs in terms
of 1) percentage of correct edits, 2) Average edit
localization score and 3) percentage of offensive
edits.

Translation Strategies: For each edit corre-
sponding to source culture CSI, we determine the
strategy used for adaptation. According to Davies
(2003), the following strategies can be used while
translating CSI: 1) Preservation, 2) Addition, 3)
Omission, 4) Localisation, 5) Globalisation, 6)
Transformation and 7) Creation. The prompt for
determining the translation strategy for a given
CSI edit is given in Appendix B, which also
contains a description of these strategies. In the

6https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-
v0.1

context of intralingual adaptation, ‘preservation’
corresponds to no edit. ‘Creation’ corresponds to
edits where non-CSI are edited to CSI. We perform
the analysis for CSI edits and classify them based
on the strategy used.

5.3 Dialog Level Analysis

For dialog level analysis, we directly ask the LLM
to rate the adapted dialog given the original dialog
on a scale of 1 to 5, along five aspects : 1) Localiza-
tion, 2) Naturalness, 3) Offensiveness, 4) Content
Preservation and 5) Stereotypical behavior all of
which fall under the aspects/goals of adaptation
described in Section 5.1. The prompt used to score
the adapted dialogs is given in Appendix B. We
report average aspect scores over all dialogues.

6 Prompting for Cultural Adaptation

In this study, based on our goals, we use a simple
prompt which includes our goals and exemplars
to guide the LLM for expected adaptations of the
dialogs. The adaptation prompt is given in Table 2.

You have to adapt the given dialogue to align with In-
dian culture and audience while keeping the response in
English. Adapt culture-specific references/items (do not
change character names) which are foreign to Indian
culture to align with Indian cultural context, norms, and
sensitivities, while maintaining the correctness, coher-
ence and keeping original intent intact. Also adapt very
foreign humour, slang or figure of speech unfamiliar to
Indian English audiences, offensive and socially sensi-
tive or taboo content while making sure that the intensity
of emotions like humour don’t get affected. Ensure that
code-mixing is avoided, and output remains in English.
Every utterance in the original dialogue should have a
corresponding utterance in the adapted version, don’t
add or delete utterances or don’t change speakers.

{2 shot example (In Appendix C)}

What is the adapted version for the following dialogue :
{Dialog}

Table 2: Prompt for getting cultural adaptation

We experimented with a few prompts on a small
scale to finally select the prompt for this study.
We opine that the correct prompt can unlock cer-
tain dimensions and improve creativity, however,
a detailed study involving large-scale experiments
with different prompts would involve working at
a deeper level of culture (especially the informal
level) and evaluating related aspects as described in
Section 4, which is beyond the scope of the present
study.

Models: We explore adaptations obtained from
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Figure 5: Percentage of CSI edited in a) total, b) along
different categories and c) foreignness level.

3 LLMs : Llama-2 70B7(Touvron et al., 2023),
Llama-3 8B8 and Llama-3 70B9. These models are
state-of-the-art open source LLMs and are cheaply
available for inference.

Examples of adaptation from these models
for a given dialog and several utterances are given
in Appendix D (Table 12 and Table 14).

7 Results and Analysis

RQ 3: Given the evaluation, how proficient are
modern language models at adaptation? What
strategies do they employ, and to what extent do
they adapt based on provided instructions?

7.1 Edit level Analysis
% CSI Edited As shown in Figure 5, %CSI Edited
is lowest for Llama-2 70B (45%). This suggests a
lower extent of adaptation. Llama-3 8B (82.8%)
and Llama-3 70B (79.7%) seem to perform equally
well in editing CSI. Items from the ‘Ecology’ cat-
egory have the highest percentage of items edited
due to items that are easier to edit. A higher fraction
of items with foreignness level 3(very foreign) were
edited compared to items with foreignness level 2
indicating that adaptation is prioritizing changing
of more foreign items preferably into localized,
more relatable items/expressions.

Aspect level evaluation : The results for aspect
level evaluation are given in Table 3. Using Mixtral,

7https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
8https://huggingface.co/meta-llama/Meta-Llama-3-8B-

Instruct
9https://huggingface.co/meta-llama/Meta-Llama-3-70B-

Instruct

Aspect Llama-2 70B Llama-3 8B Llama-3 70B

# Edits 3256 12177 5747

Correctness(%) 99.05 99.79 99.87
Localisation(Average) 1.52 1.55 1.74
Localisation(%(0,1,2)) 0.5, 46.7, 52.8 0.1, 54.5, 45.4 0, 27.6, 72.4
Offensiveness(%) 0.43 0.30 0.00

Table 3: Edit level scores

0 20 40 60 80 100
Percentage

Llama-2-70B

Llama-3-8B

Llama-3-70B Strategy
localization
addition
transformation
omission
globalization

Figure 6: Translation strategies used for adapting CSI
by percentage for different models

we extracted significant edits (edits causing signif-
icant token change) from each adapted dialogue
at an utterance level. Llama-3 8B, surprisingly,
uses a large number of edits to get the adaptation,
compared to other models. All models used in our
evaluation have a high percentage of correct edits,
the highest for Llama-3 70B, followed by Llama-3
8B and Llama-2 70B. Also, Llama-3 70B exhibits
the highest average localization score per edit, pri-
marily due to a larger proportion of edits being
highly localized (score 2). Furthermore, Llama-3
70B displays no instances of offensive behaviour
in our evaluation. Based on the edit-level analysis,
Llama-2 70B performs slightly worse than other
models. Nevertheless, LLMs are prone to perform
incorrect edits, examples of which are given in
Appendix D (Table 13). As shown, LLMs often
struggle with instances that involve understanding
and reasoning about cultural objects.

Translation Strategies used : We also obtain
the type of strategy used for adapting CSI. Since the
adaptation is intralingual, ’preservation’ is already
in use whenever CSI is not adapted, as captured by
%CSI Edited. Figure 6 shows strategies used by
percentage. We observe similar behaviour across
all models: most percentage of CSI edits using
localization, followed by transformation and then
very closely, globalization. Addition and omission-
related edits are very rare during adaptation. Some
examples of CSI edits and the corresponding trans-
lation strategy used are given in Table 4.
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Edit Strategy Used

sexually→ romantically globalisation
Jimmies→ tamarind chutney transformation
Poulet→ Dhoni transformation
FICA→ Income Tax localisation
predicament room→ waiting lounge globalisation
“Son of a bitch" is back→ he is back omission
Wendy’s→ Haldiram’s localisation
gumball ring→ gumball ring. It’s not
even a real diamond! addition

Table 4: Examples of extracted CSI edits and the trans-
lation strategy used

Aspect Llama-2 70B Llama-3 8B Llama-3 70B

Localisation 3.53 4.36 4.44
Naturalness 4.32 3.97 4.05
Content Preservation 4.56 4.03 4.27
Offensiveness 1.01 1.01 1.00
Stereotypical 1.18 1.62 1.37

Table 5: Dialog level scores

7.2 Dialog level Analysis

Aspect level evaluation : Aspect level scores are
shown in Table 5. We report average aspect scores
over all the dialogs. In terms of localization, Llama-
3 70B clearly outperforms other models. Llama-2
70B performs the worst in terms of localization,
which was also indicated by a lower %CSI edited
number as observed in Section 7.1. However, for
other aspects like naturalness, content preservation
and stereotypical behaviour, Llama-2 70B outper-
forms other models by a significant gap. One con-
tributing factor to this gap is the comparatively
lower score for localization and lower no of ed-
its (also CSI edits) for Llama-2 70B. Since fewer
items are localized, more content is likely to get
preserved, fewer edits are less likely to disrupt the
naturalness of the dialogue and cause stereotypical
behaviour in outputs.

We verify this hypothesis based on the cor-
relation score (using Kendall’s τ 10) between
different aspects. Figure 7 shows that for Llama-2
70B, localization is significantly correlated
to naturalness(negative) and stereotypical be-
haviour(positive). A strong correlation between
content preservation and naturalness suggests
that with content preserved, it is unlikely that
the natural flow of the dialogue is compromised.
However, Llama-3 70B shows no correlation
between localization and naturalness indicating

10According to Botsch (2011), |τ | ∈ [0, 0.1) - very
weak correlation, |τ | ∈ [0.1, 0.2) - weak correlation, |τ | ∈
[0.2, 0.3) - moderate correlation, and |τ | ∈ [0.3, 1.0] - strong
correlation.

that more localized edits don’t necessarily impact
naturalness, which is desirable.

Human Evaluation: LLM-based evalua-
tion correlates well with human evaluation in
all aspects. Since we are using Mixtral (Jiang
et al., 2024) to automatically evaluate edits and
score adapted versions of dialogs on various
aspects, to justify whether an automatic evaluation
is plausible, we perform human evaluation on 100
dialogs (≈ 9% of total number of dialogs to ensure
statistical significance of the test) from our corpus.
Mixtral11 has shown remarkable performance on
a number of benchmarks often outperforming
closed-source LLMs like GPT-3.512(Jiang et al.,
2024). We take 100 dialog pairs (original and
an adapted version from Llama 2 70B model) at
random and ask human raters to score the adapted
version given the original version on a scale of
1-5 on each aspect using the same criteria as
given in the LLM prompt for dialog level aspect
evaluation (Appendix B). Taking an average of
scores from human annotators, we measure the
correlation (Kendall’s τ ) between average human
rating and LLM rating. Taking inspiration from
Amidei et al. (2019), we opted to use correlation
rather than agreement. The agreement primarily
focuses on whether two annotators exactly agree
on their ratings, whereas the correlation coefficient
addresses whether, “when annotator A rates an
adaptation higher on an aspect, annotator B also
rates that adaptation higher." The results are
shown in Table 6. For all aspects, human ratings
significantly correlate with LLM ratings (all with
p-value < 0.05), which validates the reliability
of using LLM-based scoring in assessing dialog
quality along these aspects for ‘India’ as the target
culture.

For aspects like Naturalness and Content
Preservation, this is not surprising due to the
superior language understanding ability of these
models, however for aspects like localisation,
identifying stereotypes and offensiveness, a
strong correlation can be attributed to the model’s
knowledge of Indian culture along with the specific
instructions in the prompt. However, for target
cultures with lower representation in NLP, better
(culturally well-informed) models need to be used

11https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-
v0.1

12GPT-3.5-Turbo-0125
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Figure 7: Correlation between aspects

in order to scale this evaluation and achieve better
performance at this task.

Aspect kendall’s τ

Naturalness 0.63
Localisation 0.60
Content Preservation 0.39
Stereotypical 0.47
Offensiveness 1.00

Table 6: Correlation between Human and LLM dialog
level scores

RQ 4: What insights does this offer into their
parametric cross-cultural knowledge?
Through these results, it can be observed that
LLMs can localize different CSI in a cross-cultural
setting for the case of “USA to India” adaptation,
although, the quality of content may be com-
promised. In many cases, efforts of localization
compromise naturalness and content preservation
which is not desired, and can introduce general-
izations or stereotypes about the target culture.
Models getting high localisation scores without
much impact on other aspects like naturalness,
stereotypical behaviour and content preservation
indicate that the quality of localised edits is better
i.e the edits are less stereotypical/offensive and
they fit well in the context of the dialog, without
changing the original intent or disrupting the flow
of the dialog. The quality of localised edits is
indicative of whether the model truly understands
the technical aspects of a culture or just has a
superficial knowledge of terms and concepts
without much idea of how they can be used in
cross-cultural scenarios such as this task of cultural
adaptation.

8 Conclusion

In this paper, we explored the task of cultural adap-
tation within the realm of NLP. We defined the
cultural elements likely to undergo transformation
during adaptation. We curated a corpus of dia-
logues, annotating culture-specific elements across
various categories and levels of foreignness, and
defined the goals and aspects of cultural adapta-
tion employing both edit-level analysis and broader,
more contextual dialogue-level analysis for evalu-
ation. We assess the performance of several open-
source LLMs for cultural adaptation and analyse
how these aspects tie together. We found that while
modern language models are able to localise con-
text to a target culture to a significant extent, they
often struggle with reasoning over these cultural
artefacts resulting in a lack of coherence within the
context of dialogue which often leads to loss of
original message. The ability of LLMs to localize
text for a specific target culture provides a good
starting point for adaptation experts to take ideas
from and further refine and enhance.

References
Muhammad Farid Adilazuarda, Sagnik Mukherjee,

Pradhyumna Lavania, Siddhant Singh, Ashutosh
Dwivedi, Alham Fikri Aji, Jacki O’Neill, Ashutosh
Modi, and Monojit Choudhury. 2024. Towards mea-
suring and modeling "culture" in llms: A survey.

Jacopo Amidei, Paul Piwek, and Alistair Willis. 2019.
Agreement is overrated: A plea for correlation to
assess human evaluation reliability. In Proceedings
of the 12th International Conference on Natural Lan-
guage Generation, pages 344–354, Tokyo, Japan.
Association for Computational Linguistics.

R Botsch. 2011. Chapter 12: Significance and mea-
sures of association. Scopes and Methods of Political
Science.

Yong Cao, Yova Kementchedjhieva, Ruixiang Cui, An-
tonia Karamolegkou, Li Zhou, Megan Dare, Lucia
Donatelli, and Daniel Hershcovich. 2024. Cultural
adaptation of recipes. Transactions of the Associa-
tion for Computational Linguistics, 12.

Yong Cao, Li Zhou, Seolhwa Lee, Laura Cabello, Min
Chen, and Daniel Hershcovich. 2023. Assessing
cross-cultural alignment between ChatGPT and hu-
man societies: An empirical study. In Proceedings of
the First Workshop on Cross-Cultural Considerations
in NLP (C3NLP), pages 53–67, Dubrovnik, Croatia.
Association for Computational Linguistics.

Eirlys E. Davies. 2003. A goblin or a dirty nose? The
Translator, 9(1):65–100.

408

http://arxiv.org/abs/2403.15412
http://arxiv.org/abs/2403.15412
https://doi.org/10.18653/v1/W19-8642
https://doi.org/10.18653/v1/W19-8642
https://doi.org/10.18653/v1/2023.c3nlp-1.7
https://doi.org/10.18653/v1/2023.c3nlp-1.7
https://doi.org/10.18653/v1/2023.c3nlp-1.7
https://doi.org/10.1080/13556509.2003.10799146


Ryan Drapeau, Lydia B. Chilton, Jonathan Bragg, and
Daniel S. Weld. 2016. Microtalk: Using argumen-
tation to improve crowdsourcing accuracy. In AAAI
Conference on Human Computation & Crowdsourc-
ing.

Esin Durmus, Karina Nyugen, Thomas I. Liao,
Nicholas Schiefer, Amanda Askell, Anton Bakhtin,
Carol Chen, Zac Hatfield-Dodds, Danny Hernan-
dez, Nicholas Joseph, Liane Lovitt, Sam McCan-
dlish, Orowa Sikder, Alex Tamkin, Janel Thamkul,
Jared Kaplan, Jack Clark, and Deep Ganguli. 2023.
Towards measuring the representation of subjective
global opinions in language models.

Daniel Hershcovich, Stella Frank, Heather Lent,
Miryam de Lhoneux, Mostafa Abdou, Stephanie
Brandl, Emanuele Bugliarello, Laura Cabello Pi-
queras, Ilias Chalkidis, Ruixiang Cui, Constanza
Fierro, Katerina Margatina, Phillip Rust, and Anders
Søgaard. 2022. Challenges and strategies in cross-
cultural NLP. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 6997–7013,
Dublin, Ireland. Association for Computational Lin-
guistics.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts.

Ming Jiang and Mansi Joshi. 2023. Cpopqa: Ranking
cultural concept popularity by llms.

David Katan. 2014. Translating Cultures: An Intro-
duction for Translators, Interpreters and Mediators.
Routledge.

Reem I. Masoud, Ziquan Liu, Martin Ferianc, Philip
Treleaven, and Miguel Rodrigues. 2023. Cultural
alignment in large language models: An explanatory
analysis based on hofstede’s cultural dimensions.

Remi Mir, Bjarke Felbo, Nick Obradovich, and Iyad
Rahwan. 2019. Evaluating style transfer for text. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 495–504,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Joaquin Navajas, Tamara Niella, Gerry Garbulsky, Ba-
hador Bahrami, and Mariano Sigman. 2017. Aggre-
gated knowledge from a small number of debates
outperforms the wisdom of large crowds.

Peter Newmark. 1988. A textbook of translation, vol-
ume 66. Prentice hall New York.

Denis Peskov, Viktor Hangya, Jordan Boyd-Graber, and
Alexander Fraser. 2021. Adapting entities across
languages and cultures. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2021,
pages 3725–3750, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Mark Polizzotti. 2018. Sympathy for the Traitor: A
Translation Manifesto. The MIT Press.

Aida Ramezani and Yang Xu. 2023. Knowledge of
cultural moral norms in large language models.

G. Ritzer. 1996. The McDonaldization of Society: An
Investigation Into the Changing Character of Con-
temporary Social Life. Pine Forge press titles of
related interest. Pine Forge Press.

Mike Schaekermann, Joslin Goh, Kate Larson, and
Edith Law. 2018. Resolvable vs. irresolvable dis-
agreement: A study on worker deliberation in
crowd work. Proc. ACM Hum.-Comput. Interact.,
2(CSCW).

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

H. Vermeer. 1989. Skopos and commission in transla-
tional action.

Wenxuan Wang, Wenxiang Jiao, Jingyuan Huang, Ruyi
Dai, Jen tse Huang, Zhaopeng Tu, and Michael R.
Lyu. 2024. Not all countries celebrate thanksgiving:
On the cultural dominance in large language models.

Binwei Yao, Ming Jiang, Diyi Yang, and Junjie Hu.
2023. Empowering llm-based machine translation
with cultural awareness.

Zhonghe Zhang, Xiaoyu He, Vivek Iyer, and Alexandra
Birch. 2024. Cultural adaptation of menus: A fine-
grained approach.

409

https://api.semanticscholar.org/CorpusID:3637018
https://api.semanticscholar.org/CorpusID:3637018
http://arxiv.org/abs/2306.16388
http://arxiv.org/abs/2306.16388
https://doi.org/10.18653/v1/2022.acl-long.482
https://doi.org/10.18653/v1/2022.acl-long.482
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2311.07897
http://arxiv.org/abs/2311.07897
https://doi.org/10.4324/9781315759692
https://doi.org/10.4324/9781315759692
http://arxiv.org/abs/2309.12342
http://arxiv.org/abs/2309.12342
http://arxiv.org/abs/2309.12342
https://doi.org/10.18653/v1/N19-1049
http://arxiv.org/abs/1703.00045
http://arxiv.org/abs/1703.00045
http://arxiv.org/abs/1703.00045
https://doi.org/10.18653/v1/2021.findings-emnlp.315
https://doi.org/10.18653/v1/2021.findings-emnlp.315
https://doi.org/10.7551/mitpress/10744.001.0001
https://doi.org/10.7551/mitpress/10744.001.0001
http://arxiv.org/abs/2306.01857
http://arxiv.org/abs/2306.01857
https://books.google.co.in/books?id=hHoahsM3o_oC
https://books.google.co.in/books?id=hHoahsM3o_oC
https://books.google.co.in/books?id=hHoahsM3o_oC
https://doi.org/10.1145/3274423
https://doi.org/10.1145/3274423
https://doi.org/10.1145/3274423
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://api.semanticscholar.org/CorpusID:151092226
https://api.semanticscholar.org/CorpusID:151092226
http://arxiv.org/abs/2310.12481
http://arxiv.org/abs/2310.12481
http://arxiv.org/abs/2305.14328
http://arxiv.org/abs/2305.14328
http://arxiv.org/abs/2408.13534
http://arxiv.org/abs/2408.13534


Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu,
Shujian Huang, Lingpeng Kong, Jiajun Chen, and Lei
Li. 2023. Multilingual machine translation with large
language models: Empirical results and analysis.

410

http://arxiv.org/abs/2304.04675
http://arxiv.org/abs/2304.04675


A Limitations

English as a medium We acknowledge the fact
that language strongly reflects culture. Our selec-
tion of English (for Intralingual adaptation) enabled
us to focus on identifying culture-related modifi-
cations in adaptation without the complexities of
translation.
Country as a proxy for culture In this study, we
have selected "nation" as a proxy for culture as a
proof of concept. While this choice is often made
for addressing a broader national audience in such
applications, it inevitably emphasizes popular as-
pects of culture while potentially neglecting local
subcultures.
Prompt Analysis Our analysis of prompts is not
exhaustive. This is due to evaluation limits as we
go deeper down the levels of culture, where culture
becomes less technical and more abstract as dis-
cussed in Section 4.
Single Source-Target Culture pair Our study
is confined to a single source-target culture pair.
While we hope to extend our study, it requires CSI
annotations from people belonging to the target
culture.
Evaluation on State-of-the-art LLMs We did not
evaluate on state-of-the-art closed source models
like GPT-3.5 and GPT-4. While comparing mod-
els is not the main goal of this study, due to our
budgetary limitations as well as our commitment to
open science, we decided not to evaluate on these
models.
Human Evaluation Another limitation is limited
human evaluation. While we have shown a cor-
relation between human and LLM judgements on
various aspects of evaluation, we still believe there
is no substitute for human evaluation. However,
the associated costs make large-scale studies across
different cultures prohibitively expensive and un-
scalable.
Extent of Localisation For this study, we mea-
sured the extent to which LLMs can adapt cultural
items, however, in many applications, not all CSI
need to be adapted. The selective adaptation ap-
proach allows for a balance between preserving
cultural authenticity and ensuring relevance and
comprehension within new or diverse cultural set-
tings.

B Prompts for LLM Evaluation

The prompt used to extract edits(at an utterance
level) is given in Table 7. Using this prompt, we

can find edits corresponding to all edited CSI along
with the rest of the significant edits.

The prompt used for finding translation strategy
for a given CSI edit is given in Table 8.

The prompt used for scoring edits is given in
Table 9.

The prompt used for scoring adapted dialog
given the original dialog is given in Table 10.

C Examples used in the prompt for
obtaining adaptation

The examples used in the adaptation prompt as
described in Table 2 are given in Table 11.

D Example adaptations and Edits

Examples of adaptations from different models for
a single dialog are given in Table 12. Table 14
shows examples of original and adapted versions
of several utterances. Table 13 shows examples of
Incorrect Edits found in cultural adaptations using
LLM evaluation.

E Applications of Adaptation

Following are some (non-exhaustive) applications
of adaptation:

Literary Translation and Entertainment
Media : Literary works and Entertainment Media
(Subtitles and dubbing) are adapted to maintain
the original’s emotional impact, and humor while
replacing cultural references with equivalents that
make sense to the target audience.

Advertising or Marketing : Multinational
companies adapt their marketing materials to align
with local values and consumer behaviour.

Training and Education Materials : Cor-
porate training materials are often adapted to suit
the cultural context of international employees.
Even educational materials like storybooks are
adapted to cater to different age groups.

Legal and Healthcare Documents : Medi-
cal documents are adapted to ensure patients
understand their rights and the procedures. Legal
Contracts are often tailored to comply with local
laws.
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Identify all occurrences of the lexically edited words or phrases in original vs modified form :

Examples:

Original text : “Joey Tribbiani: What are you talking about? ’One woman’? That’s like saying
there’s only one flavor of ice cream for you. Lemme tell you something, Ross. There’s lots of flavors
out there. There’s Rocky Road, and Cookie Dough, and Bing! Cherry Vanilla. You could get ’em
with Jimmies, or nuts, or whipped cream! This is the best thing that ever happened to you! You got
married, you were, like, what, eight? Welcome back to the world! Grab a spoon!”

Modified text : “Joey Tribbiani: What are you talking about? ’One woman’? That’s like saying
there’s only one flavor of biryani for you. Lemme tell you something, Ross. There’s lots of flavors out
there. There’s Butter Chicken, and Paneer Tikka, and Paan! You could get ’em with Naan, or rice, or
raita! This is the best thing that ever happened to you! You got married, you were, like, what, eight?
Welcome back to the world! Grab a spoon!”
Edits:
ice cream→ biryani
Rocky Road→ Butter Chicken
Cookie Dough→ Paneer Tikka
Bing! Cherry Vanilla→ Paan
Jimmies→ Naan
nuts→ rice
whipped cream→ raita

Original text : “Emily: Yes, I went there due to the crowd at the vegan cafe in the arts district.”
Modified text : “Emily: Yes, I went there due to the crowd at the chai stall near the temple.”
Edits:
vegan cafe→ chai stall
in the arts district→ near the temple

Original text : “Rason: Want to relax by the nude beach?”
Modified text : “Rason: Want to relax by the beach and do yoga?”
Edits:
nude→ # deletion
→ and do yoga # addition

Original text : “Joey: What’s the matter with you?”
Modified text : “Joey: What’s the matter with you?
Edits:
No edit found.

Extract edits for following :
{Original utterance}
{Adapted utterance}

Table 7: Prompt for extracting relevant edits
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You are a translator performing an adaptation from a foreign culture to Indian culture. Given an
original dialog from a show called ‘Friends’ and an intralingual adapted version for the Indian
audience, your task is to determine which translation strategy is used in the given edit in the context
of adapted version.

In the translation of Culture-specific items, Davies defines the following translation strategies:

1. Addition is when more information is added simultaneously with the transfer from source culture
to target culture, for example: eating at Wendy’s→ eating at Wendy’s, an American international fast
food restaurant chain

2. Omission is a strategy when a word or a phrase is omitted from the target culture when no
equivalents can be found, for example: getting a taco from taco bell→ getting a taco

3. Globalization is a strategy of exchanging cultural elements of the text with more general and
neutral words, to match it with the target language culture, for example: Kimono → Traditional
garment; Hamburger→ Burger; Greek yoghurt→ Curd etc.

4. Localization is trying to find an appropriate equivalent of the CSI in the target language, for
example, sausage→ kebab; mentos→ paan; etc.

5. Transformation is an alteration of a CSI to another CSI which is not a local equivalent but an
altered/distorted version, familiar to the target language audience, for example: football game→
Local cricket match; mentos→ namkeen (alteration of CSI); pastry→ halwa (no close equivalent so
altered the CSI); etc.

Original Dialog:
{o}

Adapted Dialog:
{a}

Based on the original dialog, adapted dialog and the given translation strategies, the strategy used in
the following edit based on its context in the adapted dialog is:
{edit}

Table 8: Prompt for finding translation strategy used for a given edit
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You are from India. Given an original dialog from a show called ’Friends’ and an adapted version for
Indian audience, your task is to rate the given edit in the context of adapted version based on the
given aspects :

Scores for each aspect is either 0 or 1 except localisation (score can be 0,1 or 2), representing either
that aspect is absent(0) or present(1) in the adapted version.

Aspects:

1. correctness (0 or 1): This aspect evaluates whether the edits made in the adapted version make
sense in the context of the conversation. A score of 1 indicates that the edit seamlessly integrates into
the dialogue, maintaining its natural flow, practicality and coherence. A score of 0 suggests that the
edit feels out of place, forced, or does not fit well in the context.
2. localisation (0, 1, 2): This aspect assesses the degree to which the adapted version is tailored
for the Indian audience. A score of 0 implies that the edit lacks any localization efforts and feels
completely foreign or unrelated to the Indian context. A score of 1 signifies that the changes reflect
some level of localization but are more of a globalized edit that resonates with the global audience
beyond just the Indian context. A score of 2 indicates that the edit is highly localized, seamlessly
integrating elements specific to the Indian culture.
3. offensiveness (0 or 1): This aspect determines whether the adapted version contains any offensive
content(i.e score: 1) that is clearly inappropriate or disrespectful within the Indian cultural framework,
such as mockery of Indian traditions or values, propagation of harmful stereotypes or depiction of
sensitive topics without appropriate cultural sensitivity. A score of 0 indicates that no offensive content
is present, while, an offensiveness score of 1 indicates the presence of offensive content that should be
addressed or revised.

Original Dialog:
{}

Adapted Dialog:
{}

Based on the original dialog, adapted dialog and the aspects, please give the rating for the following
edit based on its context in the adapted dialog along each aspect in Python dictionary format (no
explanation) ’aspect1’: scorevalue1,...,:
{Edit}

Table 9: Prompt for scoring edits on different aspects.
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You are from India. Given an original dialog from a show called ’Friends’ and an adapted version for the Indian audience, your task is to rate the
adapted version along the following aspects, scores for each aspect ranges from 1 to 5.

Aspects:

1. naturalness(1-5): This aspect assesses the fluidity and coherence of the adapted dialogue within the context of the conversation. It evaluates whether
the adapted version feels natural and seamlessly integrates cultural modifications without appearing forced or disrupting the flow of the conversation.
2. localisation(1-5): This aspect assesses the degree to which the adapted version is localized/adapted for the Indian audience. A high score signifies
that the changes reflect cultural nuances, language preferences, and social norms relevant to the Indian setting. A lower score means more presence of
foreign items or the edits are done in a globalised/generalised way.
3. offensiveness(1-5): This aspect determines whether the adapted version contains offensive content that is clearly inappropriate or disrespectful
within the Indian cultural framework, such as mockery of Indian traditions or values, propagation of harmful stereotypes or depiction of sensitive
topics without appropriate cultural sensitivity. The offensiveness score ranges from 1 (least offensive) to 5 (most offensive).
4. stereotypical(1-5): This aspect evaluates the presence of stereotypical representations of Indian culture or its people. A high score indicates a high
degree of stereotypical content, while a low score suggests a more accurate and nuanced portrayal. Some common stereotypes about India and its
people include - "All Indians are vegetarians.", "All Indian women wear sarees, and all Indian men wear turbans.", "All Indian cuisine is extremely
spicy and hot.", "All Indians live in extreme poverty and deprivation.", "All Indians are obsessed with Bollywood movies and stars.", "All Indians
work in call centres or IT support.", etc.
5. content preservation (1-5): This aspect gauges how effectively the essence, message, and emotional undertones of the original dialogue are
maintained in the adapted version, irrespective of cultural style. A higher score reflects a faithful preservation of the original dialogue’s message,
humour, and emotional impact, while a lower score suggests significant alterations that may compromise the original intent or emotional resonance.

Scoring Criteria:

naturalness (1-5):
5: The adapted dialog flows seamlessly, maintaining a natural and coherent conversation.
4: The adapted dialog feels mostly natural and contextually fitting, with minor deviations.
3: Some parts of the adapted dialog may feel slightly forced or unnatural, affecting its coherence.
2: The coherence of the adapted dialog is disrupted by noticeable inconsistencies or unnatural phrasing.
1: The adapted dialog appears completely out of place or nonsensical, lacking coherence and natural flow.

localisation (1-5):
5: The adaptation demonstrates a deep understanding of Indian cultural nuances, language, and social norms, resulting in a highly localized portrayal.
4: Cultural elements are effectively integrated, enriching the adaptation with a blend of local flavour.
3: Localization attempts are noticeable, albeit with some inconsistencies in maintaining cultural authenticity.
2: Minimal localization efforts are evident, appearing globally adapted rather than localized.
1: The adaptation lacks any reflection of Indian culture, appearing very foreign rather than localized.

offensiveness (1-5):
5: Contains highly offensive material that is disrespectful and inappropriate within the Indian cultural framework.
4: Includes offensive content that is likely to offend or cause discomfort.
3: Some potentially offensive elements are present, requiring careful revision.
2: Minor offensive aspects that may need adjustment.
1: No offensiveness

stereotypical (1-5):
5: Contains highly stereotypical representations of Indian culture or its people.
4: Includes noticeable stereotypes that may perpetuate cultural biases.
3: Some stereotypical content is present, but not overly pervasive.
2: Minimal stereotypical content, with occasional instances.
1: No stereotypes present.

content preservation (1-5):
5: The adapted version faithfully retains the essence and significance of the original content.
4: The majority of the original content is preserved, albeit with minor adjustments.
3: While some changes are evident, the overall meaning remains largely intact.
2: Significantly altered content leads to a noticeable shift in meaning.
1: The original content is either lost entirely or severely distorted in the adaptation.

Original Dialog:
{}

Adapted Dialog:
{}

Based on the original dialog and the adapted dialog, please rate the adapted dialog, and give a score along each aspect with an explanation only in a
JSON format {aspect: {score:, explanation:},...,}:

Table 10: Prompt for scoring adapted dialogs on different aspects.
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Original Dialog 1:
Angela: Did you see the Beatles concert last night?
Mary: No, I was catching up baseball game last night on TV.
Angela: Oh! Did you eat the meatball spaghetti I made ?
Rosy: Totally! I also added some oregano and rosemary to it.
Mary: Ohkay Angela tell me, what should I wear for the date, is this skirt good?
Angela: Nope, wear the gown I gave you on last Thanksgiving.
Rosy: Yeah totally wear that. That was beautiful.
Angela: And where are you going for the date?
Mary: A nice restaurant near the White House.
Angela: Bring me gelato.
Rosy: Bye Mary!
Mary: Bye! Wish me luck, Hope I score tonight!
TRANSCRIPT NOTE: (Mary and her date meet and greet each other with a kiss)

Adapted Version 1:
Angela: Did you see Shreya Ghoshal’s concert last night?
Mary: No, I was catching up cricket game last night on TV.
Angela: Oh! Did you eat the sevai I made? Rosy: Totally! I also added some gunpowder and coriander
to it.
Mary: Ohkay Angela tell me, what should I wear for the date, is this kurta good?
Angela: Nope, wear the kurta I gave you on Diwali last time.
Rosy: Yeah totally wear that. That was beautiful.
Angela: And where are you going for the date?
Mary: A nice restaurant near the Red Fort.
Angela: Bring me kulfi.
Rosy: Bye Mary!
Mary: Bye! Wish me luck, Hope it goes well!
TRANSCRIPT NOTE: (Mary and her date meet and greet each other with a handshake)

Original Dialog 2:
Mark: Have you been to the new Italian restaurant downtown?
Emily: Yes, I went there due to the crowd at the vegan cafe in the arts district.
Mark: Oh! Did you try their tiramisu?
Emily: Yes, it was delicious! Nice touch of coco powder to it.
Mark: Good! Emily, I have been thinking about applying for the post of editor for Harvard Business
Review.
Emily: Great Mark! Good luck, you totally deserve it.

Adapted Version 2:
Mark: Have you been to the new Kerala restaurant in the market?
Emily: Yes, I went there due to the crowd at the chai stall near the temple.
Mark: Oh! Did you try their Rava Kesari? Emily: Yes, it was delicious! Nice touch of cardamom to it.
Mark: Good! Emily, I have been thinking about applying for the post of editor for The Times of India.
Emily: Great Mark! Good luck, you totally deserve it.

Table 11: 2-shot example used in adaptation prompt
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Original Dialog Llama-2 70B Llama-3 8B Llama-3 70B

Franny: Hey, Monica!
Monica Geller: Hey Frannie, welcome
back! How was Florida?
Franny: You had sex, didn’t you?
Monica Geller: How do you do that?
Franny: Oh, I hate you, I’m pushing my
Aunt Roz through Parrot Jungle and you’re
having sex! So? Who?
Monica Geller: You know Paul?
Franny: Paul the Wine Guy? Oh yeah, I
know Paul.
Monica Geller: You mean you know Paul
like I know Paul?
Franny: Are you kidding? I take credit
for Paul. Y’know before me, there was no
snap in his turtle for two years.

Franny: Hey, Monica!
Monica Geller: Hey Frannie, welcome
back! How was Goa?
Franny: You had sex, didn’t you?
Monica Geller: How do you do that?
Franny: Oh, I hate you, I’m pushing my
Aunt Roz through Anjuna Flea Market and
you’re having sex! So? Who?
Monica Geller: You know Rohan?
Franny: Rohan the Yoga Guy? Oh yeah, I
know Rohan.
Monica Geller: You mean you know Ro-
han like I know Rohan?
Franny: Are you kidding? I take credit for
Rohan. Y’know before me, there was no
spark in his chakra for two years.

Riya: Hey, Nalini!
Nalini Goyal: Hey Riya, welcome back!
How was Goa?
Riya: You got married, didn’t you?
Nalini Goyal: How do you do that?
Riya: Oh, I hate you, I’m pushing my
Chachi through the beach and you’re get-
ting married! So? Who’s the lucky guy?
Nalini Goyal: You know Rohan?
Riya: Rohan the IT guy? Oh yeah, I know
Rohan.
Nalini Goyal: You mean you know Rohan
like I know Rohan?
Riya: Are you kidding? I take credit for
Rohan. Y’know before me, there was no
spark in his eyes for two years.

Franny: Hey, Monica!
Monica Geller: Hey Frannie, welcome back! How
was Goa?
Franny: You had a romantic getaway, didn’t you?
Monica Geller: How do you do that?
Franny: Oh, I hate you, I’m pushing my Aunt Roz
through the spice plantation and you’re having a
romantic time! So? Who?
Monica Geller: You know Rohan?
Franny: Rohan the Cafe Owner? Oh yeah, I know
Rohan.
Monica Geller: You mean you know Rohan like I
know Rohan?
Franny: Are you kidding? I take credit for Rohan.
Y’know before me, there was no spark in his life
for two years.

Table 12: Example of adaptations from different models for a single dialog

Original Adaptation Reason (LLM Verbal Rationale)

· · ·
Paul the Wine Guy: Well, you might try accidentally
breaking something valuable of hers, say her-
Monica Geller: -leg?
Paul the Wine Guy: That’s one way! Me, I- I went
for the watch.
· · ·

· · ·
Paul the Wine Guy: Well, you might try accidentally
breaking something valuable of hers, say her-
Monica Geller: -Bindi?
Paul the Wine Guy: That’s one way! Me, I- I went for
the watch.
· · · # (Llama 2 70B)

A bindi is typically a decorative mark or dot applied
to the forehead, commonly used in South Asian cul-
tures. It is usually made from a small adhesive sticker,
kumkum (vermilion), or other cosmetic materials.
Technically, a bindi itself cannot be "broken". It
might be peeled off or damaged, but not broken.

· · ·
Paul the Wine Guy: Ever since she walked out on
me, I, uh...
Monica Geller: What?..... What, you wanna spell it
out with noodles?
· · ·

· · ·
Raj: Ever since she walked out on me, I, uh...

Monica: What?.. What, you want to spell it out
with naan?
· · · # (Llama 2 70B, Llama 3 8B)
· · ·
Raj: Ever since she walked out on me, I, uh...

Monica: What?.. What, you want to spell it out
with gulab jaamun?
· · · # (Llama 3 70B)

The original phrase "spell it out with noodles" is a
humorous expression that makes sense as noodles
might be used to spell out words as a playful or
whimsical act. "Naan" is a type of bread commonly
eaten in South Asian cuisine. Spelling out something
with naan is not common or intuitive, making the
adaptation feel forced.

Gulab jamun is a popular Indian dessert, but
it is a round, syrup-soaked sweet that doesn’t lend
itself to being used to spell out words. This makes
the phrase less intuitive and relatable.

Table 13: Few examples of Incorrect Edits (in red) found in cultural adaptations by LLM evaluator. These mistakes
often arise due to a lack of understanding and reasoning about cultural objects.
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Original Lines Adapted Lines

· · ·
Chandler Bing: I can’t believe you would actually
say that. I would much rather be Mr. Peanut than
Mr. Salty.
Joey Tribbiani: No way! Mr.Salty is a sailor, all
right, he’s got to be, like, the toughest snack there is.

Ross Geller: I don’t know, you don’t wanna
mess with corn nuts. They’re craaazy.
· · ·

· · ·
Chandler Bing: I can’t believe you would actually say
that. I would much rather be Haldiram’s than Bikano.

Joey Tribbiani: No way! Bikano is a strong
brand, all right, they’ve got to be, like, the toughest
snack there is.
Ross Geller: I don’t know, you don’t wanna mess with
murmure. They’re craaazy.
· · · # (Llama 3 70B)

· · ·
Chandler Bing: Dehydrated Japanese noodles un-
der fluorescent lights... does it get better than this?
· · ·

· · ·
Chandler Bing: Maggi under the streetlights... does it
get better than this?
· · · # (Llama 3 8B)

· · ·
Monica Geller: Are these the shoes?
Rachel Green: Yes. Paolo sent them from Italy.
· · ·

· · ·
Monica Geller: Are these the sandals?
Rachel Green: Yes. Rohan sent them from Jaipur.
· · · # (Llama 3 8B)

· · ·
Joanna: Oh. And Rachel has been really incredible
in getting my morning bagel for me. It’s amazing
how she gets it right almost every time! · · ·

· · ·
Joanna: Oh. And Rachel has been really incredible in
getting my morning chai for me. It’s amazing how she
gets it right almost every time!
· · · # (Llama 2 70B)

· · ·
Rachel Green: Alright, c’mon! Let’s play Twister!
· · ·

· · ·
Rachel Green: Alright, c’mon! Let’s play Antakshari!
· · · # (Llama 2 70B)

· · ·
Joey Tribbiani: Well, Chandler’s old roommate was
Jewish, and these are the only candles we have, so...
Happy Chanukah, everyone. · · ·

· · ·
Joey Tribbiani: Well, Chandler’s old roommate was
Hindu, and these are the only diyas we have, so...
Happy Diwali, everyone.
· · · # (Llama 3 70B)

· · ·
Monica Geller: He is so cute. So, where did you
guys grow up?
Angela Delveccio: Brooklyn Heights.
Bob: Cleveland.
· · ·

· · ·
Monica Geller: He is so cute. So, where did you guys
grow up?
Angela Delveccio: Bandra.
Bob: Ahmedabad.
· · · # (Llama 3 70B)

Table 14: Few examples of original and adapted versions of several utterances in the corpus of dialogs. Major edits
are highlighted.
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Abstract

We seek to explain the causes for the misclas-
sification of the most challenging documents,
namely those that no classifier using state-of-
the-art, very semantically-separable contextual
embedding representations managed to predict
accurately. To do so, we propose a taxonomy
of incorrect predictions, which we used to
perform qualitative human evaluation. We
posed two research questions, considering
three sentiment datasets in two different do-
mains – movie and product reviews. Evaluators
with two different backgrounds evaluated
documents by comparing the predominant
sentiment assigned by the model and the label
in the gold dataset in order to decide on a likely
misclassification reason. Based on a high inter-
evaluator agreement (81.7%.), we observed
significant differences between domains, such
as the prevalence of ambivalence in product
reviews and sarcasm in movie reviews. Our
analysis also revealed an unexpectedly high
rate of incorrect labeling in the gold dataset (up
to 33% ) and a significant amount of incorrect
prediction by the model due to a series of
linguistic phenomena (including amplified
words, contrastive markers, comparative
sentences, and references to world knowledge).
Overall, our taxonomy and methodology allow
us to explain between 80%-85% of the errors
with high confidence (agreement) – enabling
us to point out where future efforts to improve
models should be concentrated.

1 Introduction

In a scenario where the amount of user-generated
content is growing exponentially, automatic
text classification (ATC) plays a vital role in
enabling automatic categorization of texts into
different semantic groups based on their distinctive
characteristics (Li et al., 2022; Galke and Scherp,
2022). The state-of-the-art in ATC is currently
provided by Attention-Based Transformer methods
(e.g., BERT (Devlin et al., 2019), RoBERTa (Liu

et al., 2019), BART (Lewis et al., 2020)), which
produce contextual representations of words and
documents. Indeed, in de Andrade et al. (2023), the
authors show that these contextual representations
are so (semantically) separable in the embeddings
space that any classifier using them achieves
similar effectiveness, no matter how simple (e.g.,
a Nearest-Centroid classifier) or complex it may
be (e.g., a Gradient Boosted Decisions Tree or a
Support Vector Machines). Some of the results
obtained in that study are the highest (state-of-the-
art) ever reported in the literature for effectiveness
(e.g., Macro-F1) in several experimented datasets.

With such powerful text representations and
results, sometimes achieving or even exceeding
human parity (Hassan et al., 2018; Yan et al., 2023),
a main question that arises is: Are we approaching
the limits of what can be automatically classified
by a machine learning model? This article delves
deep into this question by analyzing the reasons
for misclassification by classifiers using these
powerful contextual representations. We go one
step further to advance the literature and look into
the hardest cases, i.e., documents that none of
the strongest classifiers explored in the aforemen-
tioned study, using contextual embedding-based
representations, was able to classify correctly.

A thorough review evidenced that this type of er-
ror or misclassification analysis is rarely performed
in the literature, with a few exceptions (Martins
et al., 2021). Misclassification analysis serves
the purpose of revealing the how’s and why’s
behind model (or human) failure. One of the main
difficulties in performing such an analysis is the
lack of standardized methodologies and methods
for doing so. Accordingly, one of our contributions
is the proposal of a misclassification taxonomy
capable of categorizing incorrect predictions upon
classifiers application.

We propose and evaluate an error taxonomy
using a document sample for which no classifier
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was able to produce correct predictions. Due to
the very complex nature of the error analysis task,
we adopt BERT to generate contextual document
representations1. We evaluated the proposed
taxonomy with a different sample of erroneous
documents, using human evaluators with different
backgrounds to assess how effective and useful the
taxonomy is in explaining the errors.

Unlike previous work (Martins et al., 2021) –
which focuses on assessing the impact of “hard”
instances on the effectiveness of polarity detection
using a single dataset (movie reviews) and not
concerned with textual representation – here we
focus on analyzing and quantifying the reasons
for the misclassification of the hardest documents
by all machine learning methods using some of
the most separable representations in the literature.
For this, we used datasets from two domains:
movie and product reviews. We also compare and
contrast the results in these two domains, gathering
insights into the differences in the type of errors
found in each of them.

The main questions we seek to answer are:
[RQ1] Is the proposed taxonomy effective for
misclassification analysis? To answer RQ1, we
analyze evaluators’ responses regarding their level
of agreement – the higher the agreement, the more
effective the taxonomy. We analyze inter-evaluator
agreement and correlate that with hardness in
classifying; and [RQ2] Can the proposed taxonomy
be used to reveal the main reasons for misclassi-
fication? Are there significant differences in the
results between different domains? In RQ2, draw-
ing on the consensus achieved, we quantify and
analyze the main reasons for the misclassification,
highlighting the differences between domains.

Our experiments engaging eight human evalu-
ators with two different backgrounds (Computer
Science and Linguistics) and three datasets, two in
the movie reviews domain and one in the product
reviews domain, revealed that (i) the developed
taxonomy proved effective, with an inter-evaluator
agreement of over 81% for error category – this
suggests that evaluators find it relatively easy to
identify classification errors using the proposed
taxonomy; (ii) between 50%-80% of the errors
can be ascribed to the model for reasons further
explained below; (iii) the evaluators found a sig-

1We ran experiments in our datasets comparing BERT with
other transformers such as RoBERTa (Liu et al., 2019) and
BART (Lewis et al., 2020). The differences are minimal (if
any) and potentially not influential in our work.

nificant amount of incorrect labels in the dataset –,
i.e., there were incorrect labels in the gold datasets –
around 33% of the documents in the product dataset
and 16% in one of the movie datasets; (iv) in movie
reviews, sarcasm2 (> 23% of the cases) is consid-
ered a major reason for incorrect prediction by the
model, while (v) in product reviews, the main rea-
son is ambivalence (40% of the cases) – we believe
this is a particular characteristic of this domain.

The remaining model errors were consid-
ered instances of “incorrect prediction despite
available textual cues” ascribable to a series of
language phenomena, including amplified words,
contrastive markers, comparative sentences, and
world-knowledge regarding named entities. While
for product review, the model errors are mostly
associated with comparisons and contrastive cases,
for movie scenarios, world knowledge, use of
amplifiers and idiomatic/new expressions are
issues in the model’s incorrect predictions. Our
results can be potentially leveraged for model
enhancement focused on the application domain.

In sum, our main contributions include: (i) the
development and evaluation of a taxonomy for
categorizing the main causes for misclassification
of the hardest documents; ii) a fine-grained anal-
ysis of the results of a comprehensive qualitative
experiment applying the taxonomy to 3 different
datasets in 2 different domains, with relevant impli-
cations for the improvement of the next generation
of textual classifiers and representations; and (iii) a
release of a new dataset of challenging documents
manually annotated by humans.

2 Related Work

In Lee et al. (2017), five categories for misclas-
sification of objects in images are explored (See
Appendix A.3 for Evaluation Schema). Meek
(2016) categorized prediction failures in textual
documents by defining four error categories (see
Appendix A.3 for schema), focusing on the lack of
training information. Pandey et al. (2022) assesses
the impact on labeling of (i) time allocated to
evaluators; and (ii) the order of annotations in the
labeling task. Unlike these works, we propose a
taxonomy for ATC test errors and investigate a
more comprehensive set of reasons, focusing on the
hardest cases for classifiers using state-of-the-art,

2Unlike (Frenda et al., 2023), we group irony and sarcasm
under a single category as instances of figurative use of lan-
guage intended to produce an effect on the reader.
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Figure 1: Methodological steps flowchart.

very separable (contextual) representations by
means of qualitative human assessment.

Bras et al. (2020) remove bias in training to re-
duce misclassification. Pleiss et al. (2020) propose
adapting the Area Under the Margin to identify
training data that preclude generalization. Both
focus on the training set to identify (challenging)
documents that do not contribute to the learning
process. Instead, we focus on misclassification at
inference time (test set), aiming to identify com-
mon characteristics of misclassified documents.

Swayamdipta et al. (2020) present a tool to
characterize and diagnose datasets regarding the
behavior of the model on individual instances dur-
ing training. Ethayarajh et al. (2022) seek to find
challenging documents using V-usable information.
Differently, we find challenging documents based
on their incorrect classification by four classifiers
using a very separable contextualized representa-
tion as input. Moreover, unlike Ethayarajh et al.
(2022), who do not provide qualitative experiments
involving human evaluation and Swayamdipta et al.
(2020), who evaluate human mislabeling only, we
evaluate both automatic and human mislabeling.

Martins et al. (2021) analyze a set of hard
instances (evaluation schema in Appendix A.3) but,
unlike ours, their study centers on evaluating the
influence of challenging cases on the classifier’s
effectiveness when performing polarity detection
using one single movie review dataset. Our study
focuses on analyzing and quantifying the factors
contributing to the misclassification of the hardest
documents using multiple datasets in two domains
with a more detailed taxonomy. We also have ad-
ditional goals such as validating our taxonomy and
contrasting the results in multiple different datasets
and domains, running qualitative experiments
engaging evaluators with different backgrounds.

Barnes et al. (2019) propose categories to under-
stand model misclassifications. Unlike ours, their
study: (i) did not focus on the hardest cases; (ii) did
not detail how the data was evaluated; (iii) did not
provide information on inter-rater agreement; and
(iv) did not examine domain impact on results – all
results for all datasets are analyzed in conjunction.
We drew on their taxonomy, though, to develop
the categories we used for focused (hierarchical)
evaluation, as described in section 3.8.

3 Experimental Methodology

Our methodology, which comprises seven steps,
is summarized in Figure 1. The text and label for
each document are used as input for fine-tuning
a Transformer model, resulting in an encoder that
produces contextual embedding vectors represent-
ing the documents using the CLS approach. We
employ various classifiers with these embeddings
as input, exploring different underlying techniques.
From this set of classifiers, we select the set of doc-
uments for which none of the classifiers was able to
produce correct predictions (according to the labels
assigned in the datasets). Within this set, we sample
documents for analysis to outline misclassification
categories (“Development of the misclassification
taxonomy” in Figure 1), which human evaluators
will apply to evaluate documents in a second
sample different from the first one (“Application
of the misclassification taxonomy to evaluate
documents” in Figure 1). Upon applying the
taxonomy, we quantify the results and evaluate its
efficiency. A detailed account of the steps follows.

3.1 Datasets

Our study draws on 3 datasets developed for binary
sentiment classification. Although this task is con-
sidered less complex than, for instance, multi-label
topic classification, our choice was strategically
purposeful due to the very complex endeavor we
made in our work to identify the potential reasons
for misclassifications of the hardest cases - those
that no classifier is able to predict correctly using
state-of-the-art representations. Thus, even though
current solutions for sentiment analysis are highly
effective, with some solutions achieving F1=̃90,
one of our main goals is precisely to evaluate the
current technologies’ limits. With such high effec-
tiveness, what are the reasons for the few errors still
made by the very effective sentiment classifiers?
Answers to this question, which our methodology
helps clarify by pointing out and quantifying the
main sources of misclassifications, are what we
believe will provide necessary grounds for the
improvements of the next generation of methods.

Each dataset was constructed with text and an
associated sentiment label. The first dataset com-
prises customers’ reviews of purchased products
on Amazon’s website (Keung et al., 2020), which
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are assigned a rating from 1 to 5 stars by customers.
We collected reviews containing ratings of 1 and
2 stars and labeled them as negative, while reviews
containing ratings of 4 and 5 stars were labeled
as positive. We discarded reviews with 3 stars
(deemed neutral). The second (PangMovie (Pang
and Lee, 2004)) and the third (VaderMovie (Ribeiro
et al., 2016)) datasets were used in (de Andrade
et al., 2023) and we obtained the representations
directly from the authors. These datasets compile
movie reviews comprising a text and a sentiment
label (positive or negative). Table 3 in the
Appendix presents some statistics of the datasets.
As it can seen, class distribution into positive and
negative instances is balanced in the three datasets.

3.2 Data Representation
We fine-tuned BERT, adapting this Transformer
to the specific domain of sentiment classification
using the texts and labels in our datasets. The aim
is to improve the representation and enhance the
model’s effectiveness for sentiment classification.
The model’s fine-tuning produces an encoder,
which generates CLS-based 768-dimensional
embedding vectors to represent the documents. As
discussed in (de Andrade et al., 2023), this fine-
tuning process is fundamental to ensure the quality
of the representation and the separability (into se-
mantic classes) of the generated embedding space.

To perform fine-tuning, we used the literature´s
suggested hyper-parameterization (Cunha et al.,
2021), fixing the learning rate with the value
2x10−5, the batch size with 64 documents, adjust-
ing the model to five epochs, and setting the maxi-
mum size of each document to 256 tokens. We used
differentiable heads by fine-tuning with AutoMod-
elForSequenceClassification. In our experiments,
we employ a five-fold stratified cross-validation
procedure – fine-tuning, training, and optimizing
the classifiers’ parameters with the validation sets
that are repeated five times. The reported results
correspond to the average of the five test folds.

Although we used BERT in our study, other
Transformers can be easily applied within our
methodology. Indeed, experiments in (de Andrade
et al., 2023) showed that the contextual represen-
tations produced by different transformers (e.g.,
RoBERTa, BART) are quite similar in terms of
class separability, the main aspect driving our eval-
uations. To confirm that, we run experiments of our
own in the tested datasets comparing BERT with
RoBERTa (Liu et al., 2019) and BART (Lewis et al.,

2020). The results are shown in Appendix A.8. As
we can see, the effectiveness of these transformers
is very similar – BERT is statistically tied as
the best method with Roberta in Amazon and
marginally loses (by at most 1-2 pp) in the other
two datasets3. These differences, which mean
just a few documents in practice, are potentially
not relevant in a qualitative study as ours, which
uses a sample of the documents that all classifiers
predicted incorrectly. We believe the intuitions and
insights gathered with the current methodology,
representations, and models would not be substan-
tially different if we used other Transformers4.

3.3 Text Classifiers Used along with
Contextual Embeddings

For document classification, we used the textual
representations generated by the Transformer as
input to four of the strongest classifiers used in
(de Andrade et al., 2023), namely KNN, Random
Forests (RFs), Support Vector Machines (SVMs)
and Logistic regression (LR), as well as BERT
model with the classification head as one of the
classifiers. Indeed, despite using different rules and
heuristics, the effectiveness of these classifiers (and
of all other classifiers tested in (de Andrade et al.,
2023)) is basically the same in all tested datasets
when using the contextual embedding representa-
tions. This is due to the fact that these represen-
tations are already so semantically separated (by
class) in the embeddings space that the employed
classifier has no little effect in the classification
process. For a detailed comparison among these
classifiers (taken from (de Andrade et al., 2023))
in two of the tested datasets check Appendix A.8.

We decided to explore classifiers based on
different approaches – decision rules (RFs), local
neighborhoods (kNN), global maximum margins
(SVMs and LR) – so that if all of them misclassify
the same document, this can be ascribed to the
misclassified document being hard to classify. And
we do want to understand the reasons why!.

Hence, we selected the set of documents that all
classifiers misclassified in the three datasets, as pre-
sented in Table 6. A sub-sample from this set was
used as a basis for devising our taxonomy, and a
different (disjoint) sub-sample was used for actual

3Indeed, some benchmarks such as GLUE do not make
clear even if recent LLMs are better than RoBERTa, a remark-
able sentiment classifier, see a discussion in the Appendix.

4We will evaluate different pre-trained representations in
future studies to find out if the same error type, in similar
proportions, occurs across different representations.
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evaluation, as described next. Table 6 in the Ap-
pendix shows the number of misclassified instances
by all classifiers – there is no significant skewness
in the distribution of positive and negative misclas-
sified documents. We took a random sample of 60
misclassified documents from each dataset for eval-
uation, and the results are presented in Section 4.
3.4 Taxonomy Development

We conducted a preliminary round of assessment
using a set of 15 randomly selected documents
from PangMovie and Amazon. During this round,
we convened to discuss potential sources of
misclassification, aiming to better comprehend
the reasons behind incorrect predictions. Drawing
on the literature, we assumed that there could be
incorrect labels in the gold datasets and hence
decided to include human mislabelling as a poten-
tial reason for the mismatch between the model’s
prediction and our ground truth. Through this
process, we agreed upon a set of potential reasons
representing the bulk of the categories in our
taxonomy of errors. We conducted a subsequent
evaluation with another set of 15 documents from
each dataset, refining definitions, instructions,
and the evaluation process. Upon concluding
this iteration, we excluded all documents used in
the preliminary stage and proceeded with a new
evaluation. We randomly selected 60 samples from
each dataset for manual human evaluation.
3.5 Distribution of documents

To evaluate the selected texts, we recruited 8 partic-
ipants, 4 with expertise in Computer Science and
4 in Linguistics, all with prior experience in NLP
annotation tasks. The participants comprised two
professors holding a PhD in CS, one with a PhD in
Linguistics, and five students pursuing their bache-
lor’s or master’s degrees, who performed the work
voluntarily out of curiosity and with learning goals.

Each participant was assigned 30 out of the 60
documents in each of the three datasets, totaling
90 documents per evaluator. Each document was
assigned to be evaluated by four participants, two
having a computer science background and the
other two having a linguistics background. The
decision to assess each document by two evaluators
from each field was meant to enable quantification
of agreement within the same background groups
and between the two groups with different back-
grounds. Section 4 presents results considering
all four evaluators – the impact of evaluators’
background is analyzed in Appendix A.6.

3.6 Evaluation Form

Individual forms were created for each evaluator
and shared on a web cloud provider, ensuring
evaluators could not access each other’s forms.
Our evaluation form comprised four tabs, the first
containing instructions on how to evaluate the
documents and the remaining ones having one
sample of documents per tab, each line containing
a document and the categories to be assigned to it.

The form provided to evaluators presents
columns for text ID, text to be evaluated, label
assigned by a human, and label assigned by the
machine model. Two additional columns were
assigned to be filled in by evaluators with their an-
swer to two questions: (i) “Who misclassified the
text? ”, for which one out of three options could be
chosen: “Model”, “Human”, and “I don’t know”;
and (ii) “Based on your answer to question 1,
“why do you think the text was misclassified?”, for
which 1 out of 6 options could be chosen. Table 1
provides a description of the available options.
3.7 Categories To Evaluate Misclassification

The second question in our evaluation form
required the evaluator to choose a category that
could account for the misclassification. The
instructions tab provided evaluators with examples
of each category, some of which are presented in
Table 1. The first row shows an example of a text
misclassified due to the model’s incorrect predic-
tion despite available textual cues. In this case, the
model assigned a negative sentiment, though the
text contains positive cues: “precious increments
artfully.....”. The second row shows an example
of misclassification due to an incorrect label in
the dataset. The wording “completely broke off”
indicates a negative opinion, but it is labeled as pos-
itive. The third row is a misclassification ascribed
to sarcasm, where “seen it before” is a negative
opinion ironically expressed. The fourth row
exemplifies a misclassification due to ambivalence,
having both negative ("expensive") and positive
cues (“won’t oxidize” and “better than soap”).

It should be noted that the categories "Sarcasm"
and "ambivalence" are designed to capture very
different instances of language use. "Sarcasm"
refers to instances of language use when a user
makes a statement that is meant to be understood
figuratively. For instance, if a movie is assessed
as being "a sleeping pill that works wonders",
the statement is meant to be understood as "a
very boring film to the point it makes you fall
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Category Description and Example
Sarcasm Description: Text contains irony (words that express the opposite of what one means), humorous

expressions, and figurative language (metaphors)
Example: Final verdict: you’ve seen it all before.

Ambivalence Description: Text contains both positive and negative opinions, neither being predominant over the
other
Example: Expensive but won’t oxidize metal. Maybe better than soap

Lack of textual cues for label prediction Description: Text is very brief or provides no cues for a human and a model to assign a predominant
sentiment
Example: Big biggg large shoes as expected and loose fitting

Incorrect prediction despite available textual cues Description: Text provides textual cues but model fails to correctly assign the predominant sentiment
Example: A film of precious increments artfully camouflaged as everyday activities

Incorrect label in the dataset Description: Text has an incorrect gold label in original dataset
Example: Rope completely broke off after a couple of months (positive in the gold standard)

None of the above Description: None of the above categories can account for the misclassification

Table 1: First-level categories and their description with examples

Category Description and Example
Amplifier Description: Words such "really", "very", "super", "incredibly", "so", "pretty", "definitely", "too" tend to co-occur with instances of

very negative or very positive sentiment and can be interpreted by the model as conveying a sentiment contrary to what they actually
amplify.
Example: Secretary is just too original to be ignored.

Comparative Description: Comparisons ("more", "less", "higher", "lower", etc.) establish a relationship of inequality between two elements,
requiring the model to interpret which of the two is being evaluated as positive or negative.
Example: LaBute was more fun when his characters were torturing each other psychologically and talking about their genitals in
public.

Contrastive Description: Two distinct sentiments are expressed and explicitly signaled by conjunctions ("but", "yet", "on the other hand",
"however", "yet", "still", "though", "despite this", "all the same"), one sentiment being dominant over the other.
Example: Uneven, self-conscious but often hilarious spoof.

Idiom Description: Meaning cannot be inferred from the meaning of each individual word in an expression.
Example: A pleasurably jacked-up piece of action moviemaking.

Modality Description: Modal expressions such as may, could, should, must, can, might, etc. imply that something is other than expected or
desired.
Example: Cattaneo should have followed the runaway success of his first film, the full monty, with something different.

Negation Description: Polarity and negative markers (no, not, never, neither, etc) as well as negative words may be used in texts with positive
sentiment.
Example: Can’t turn off the unit the fast charger work perfect.

Non-standard spelling Description: Symbols such as #, words written together instead of apart, use of all caps, etc., may not be recognized as words by the
model.
Example: Much monkeyfun for all.

Reducer Description: Reducers such as “kind of”, “less”, "lot less", "sort of", "so so", "about", "more or less", may shift classification towards
a particular sentiment.
Example: A subtle variation on i spit on your grave in which our purported heroine pathologically avenges a hatred for men.

World knowledge Description: Facts, events, people, characters, etc., associated to positive and negative sentiment.
Example: Granddad of Le Nouvelle Vague, Jean Luc Godard continues to baffle the faithful with his games of hide and seek.

New word / expression Description: Newly-coined, mostly hyphenated words and expressions that may not be recognized by the model.
Example: Even in this less-than-magic kingdom, reese rules.

None of the above Description: None of the above categories can account for the misclassification

Table 2: Categories for fine-grained analysis of “Incorrect prediction despite available textual cues”

asleep". "Ambivalence", on the other hand, refers
to instances of language use where two contrasting
sentiments are worded. Hence, if a movie is
assessed as "having an excellent cast despite being
very slow-paced," both a positive and negative
sentiment are expressed. "Ambivalence" does not
inherently implicate figurative language.

We created the taxonomy based on an extensive
survey of works seeking to categorize misclassi-
fication and held discussions until we reached a
consensus on the taxonomy´s categories. These
categories may apply to several ATC tasks besides
sentiment analysis when there is some type of
opinionated comment. We believe that our method-
ology is robust enough to be applied to other tasks
beyond sentiments, as several categories pertain to
general ATC problems, regardless of the domain.

3.8 Focused (Hierarchical) Categorization

The final step in our methodology comprises
further evaluation of some of the “most complex
errors”, namely, those identified in the previous
step as being incorrect prediction despite available
textual cues could have led to assigning the
correct sentiment. In this final analysis, we aim
to identify reasons for those incorrect predictions.
We opted for an increasingly focused evaluation
process in order to manage the complexity of the
annotation task, cognizant of the effort required by
assessing documents with increasingly fine-grained
categories. Hence, our methodology moved from
a general, binary query (Question 1) to a more dis-
tilled, six-category query (Question 2), concluding
with a ten-category query (Focused categorization).

In this last assessment round, all instances of
incorrect prediction despite available textual cues
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were evaluated using a fine-grained category set
pertaining to linguistic phenomena reportedly
not adequately captured by models. We designed
a taxonomy based on ten particular linguistic
phenomena potentially impacting a model’s
predictions. They cover words modifying the
sentiment intensity (Amplifiers and Reducers);
explicitly signaled comparisons which require
identifying which of the two elements is decisive
for a sentiment (Comparatives); explicitly con-
trasted arguments or aspects (Contrastive), with
one of them being dominant; idiomatic expressions
(Idiom); expressions of probability and obligation
(Modality); negative polarity scope and negative
words (Negation); symbols and characters render-
ing unrecognizable words (Non-standard spelling);
newly-coined and idiosyncratic words unknown to
the model (New word / Expression); and mentions
to entities requiring world-knowledge to assign
a correct sentiment (World-Knowledge). These
categories are detailed described in Table 2 , along
with the instructions provided to the evaluators,
with a definition of each category and examples.

4 Results

Documents were assessed by 4 evaluators. Ques-
tion 1 required selecting 1 out of 3 alternatives,
whereas Question 2 had 6 alternatives. Focused
categorization comprised 10 categories. Consensus
was defined as one of the alternatives having the ma-
jority of votes – 4, 3, or 2 5. If there was no majority,
a document was classified as “No consensus”.

4.1 Taxonomy effectiveness

High consensus was achieved for the three levels of
assessment: 86.7% for Question 1; 81.2% for Ques-
tion 2 and 86.5% for focused assessment, allowing
us to state that the taxonomy was effective for
evaluation purposes6. We present a detailed effec-
tiveness (consensus) analysis in the Appendix A.4.

4.2 Response Analysis

Given that a high consensus had been achieved, we
proceeded to analyze the responses of the evalu-
ators. Half of the misclassifications in the Amazon
dataset were ascribed to the model (see Figure 5

5In case of two votes, provided that the remaining two
alternatives have one vote each.

6An effective taxonomy has high consensus among eval-
uators upon the defined categories and low consensus in a
category that has no definition, in our case, “Don’t know” for
Question 1 and “None of the above” for Question 2

in Appendix). This is even higher in the movie
datasets, emerging as the main misclassification
reason in 65% of the cases in PangMovie and
almost 80% in VaderMovie. Percentages for the
option “Don’t know” were very low in all datasets.
Together with the option “No consensus”, they
achieved at most 18.3% in PangMovie (and 16.3%
and 15% in Amazon and VaderMovie, respectively)
of all analyzed documents in all datasets.

Though lower than errors ascribed to the model,
the percentage of errors ascribed to the “Human”
category is significant, mainly in the Amazon
dataset (33%) (See Appendix A.5). This means that
in 33% of the misclassifications, 3 or 4 evaluators
(majority of the cases) considered that the model
classified the document correctly and there was
an error in the gold dataset. Though lower in the
movie domain, human mislabeling is not negligible
– 16.7% in PangMovie and 6.7% in VaderMovie.
This relatively high percentage of human mislabel-
ing merits further investigation in future studies,
though manual labeling has been acknowledged as
a complex and prone to errors (Zhu et al., 2023).

Figure 2 presents the results for Question 2. Con-
sensus cases show clear differences between the
two domains. The main reason for misclassification
in Amazon was “Ambivalence”, with 30% of the
cases, whereas “Sarcasm” is almost non-existent.
This can be accounted for by the fact that in
product reviews, texts tend to be more focused on
features of a product, so-called aspects, there being
less irony or sarcasm in the reviews. Most misclas-
sifications occurred when the text concomitantly
expressed both positive and negative opinions
about product aspects (“Ambivalence”). This is
a challenge both for the model and the human to
predict the “correct polarity” for the document.
This raises the question as to whether there is a
single correct polarity label for these documents or
whether different product aspects should be given
different polarities (Brauwers and Frasincar, 2022).

We see a different result in the movie domain,
with “Sarcasm” as the main reason for misclassi-
fication in VaderMovie and the second main one
in PangMovie, almost tied with “Ambivalence“.
We believe sarcasm is a particular characteristic
of the movie review domain, possibly due to the
fact that reviewers assess artistic productions and
feel the need to use figurative language to express
their opinions about them. As in the Amazon
dataset, “Ambivalence” is a major reason for
misclassifications, especially in PangMovie. This

425



(a) Amazon (b) Pang Movie (c) Vader Movie

Figure 2: Percentages for answers to Question 2 in the three datasets.

(a) Amazon (b) Pang Movie (c) Vader Movie

Figure 3: Percentages for answers when breaking down the category “Incorrect prediction despite available textual cues”.

suggests that in the movie domain, reviewers also
tend to point out both positive and negative aspects,
bringing a challenge both for models and humans
to ascribe polarity to the texts. In this sense,
sarcasm detection (Verma et al., 2021) and aspect
analysis (Brauwers and Frasincar, 2022) are both
interesting lines of investigation worth pursuing.

4.2.1 Focused (Hierarchical) Analysis
A major reason for errors in both movie datasets
(36.7% in Vader and 26.7% in PangMovie) and
the second most frequent for products (25% of the
cases) for Question 2 was “Incorrect Prediction De-
spite Available Textual Cues” (Figure 2). Indeed,
if we look at the reasons why evaluators selected
Model failure in Question 1 (Figure 10 in the Ap-
pendix), almost half of the errors are ascribed to
this category for the three datasets. Evaluators con-
sidered textual cues were available to predict the
correct sentiment, but for reasons other than “Am-
bivalence” or “Sarcasm”, the model failed to do it.

The final step in our methodology was devoted
precisely to understanding the reasons for those
errors. In a new round of assessment, we evaluated
52 documents that had been assigned this category
in the first round: 14 in Amazon, 16 in Pang
Movie and 22 in VaderMovie. Like the first round,
we also obtained a high overall percentage of
agreement– 86.5% – which can be considered
quite high considering that (i) there are more
categories to assign (10 in total) and (ii) these are
some of the hardest cases to evaluate.

Figure 3 shows the results of this final focused
(hierarchical) analysis. As we can see, in Amazon,
54.6% of the model errors are due to explicit
comparisons and contrastive cases where one
aspect is dominant over the other. This is expected
as these are product reviews. Negation (e.g., “Can’t
turn off the unit the fast charger work perfect.”
in Table 2) is also a major reason for errors. The
remainder of the errors are roughly evenly spread
over the categories related to idiomatic expressions,
modality (e.g., “Cattaneo should have followed the
runaway success of his first film with something
different.” in Table 2) and errors due to amplifiers.

The case is more complex in the Movie domain,
where the errors evidence a different pattern. In
the Vader dataset, lack of world knowledge (e.g.
a movie name, a director/actor, a real-world event
(e.g., “Granddad of Le Nouvelle Vague, Jean Luc
Godard continues to baffle the faithful with his
games of hide and seek.” in Table 2) accounts for
1
3 of the errors, followed by amplifiers, which are
popular among movie reviewers. In the PangMovie
dataset, we see a more complex, almost even
distribution of errors among all categories with
a high impact (37.6% of the cases) of idiomatic
expressions (e.g. “A pleasurably jacked-up piece of
action moviemaking.” in Table 2) and newly coined
words/expressions, also popular among movie
reviewers, which may occur in a single or just a
few documents and do not have enough support
in the training data for the model to learn properly.

426



The few errors that remain unexplained may be
due to distinct reasons, such as lack of training
data and borderline cases. Although it is possible
to perform this analysis in open models such as
BERT, which is not the case for closed-source
solutions such as GPT, it is hard due to Transformer
complexity. We will devote our attention to this
challenging issue in future work. Nevertheless,
to give initial insights for analyses, Figure 12
(Appendix A.11) presents the TSNE visualization
of the misclassified BERT-based document vectors
– many of them lie on class borders.

In this work, we investigated the reasons for mis-
classification, highlighting the issues found and
enabling the implementation of strategies to ad-
dress these problems. For example, if an instance
is found to be wrongly classified due to sarcasm,
this implies that before the actual classification,
the sentiment classifier should be given informa-
tion that this message is possibly sarcastic (using,
for instance, a sarcasm/irony classifier) so that the
sentiment classifier can use this information in the
decision process. If a document is found to be
ambivalent, segments with polarity clash should
be located and assigned a separate label for each
polarity, or the full sentence be assigned the po-
larity of the stronger sentiment. If a sentence has
two polarities and there is an overt contrasting con-
nector, polarity inversion may be performed, as it
is done in Vader’s shell. If an instance is incor-
rectly classified due to idiomatic expressions, lack
of world knowledge, or the occurrence of newly
coined words, the solution involves enhancing the
model with further training instances that provide
the missing knowledge, including idioms and new
expressions. Similar strategies can be developed
regarding the other categories.

As a final remark, we would like to emphasize
the complexity of the performed analysis. Our mis-
classification assessment prioritizes fine-grained
analysis of a representative sample of documents.
Several rounds of discussions were held till a
taxonomy was reached. Our study is exploratory
and involves human evaluation, demanding careful
manual data analysis. Evaluators had to answer
2 questions for each document in 3 datasets in
2 domains and were requested to comment on
dubious cases. The focused (hierarchical) catego-
rization required yet, a new round of evaluation
considering 10 linguistic categories. Each of the 8
evaluators was requested to evaluate 90 documents
and compare the predominant (sentiment) model

assignment to that in the gold human standard in
order to decide whether misclassification was due
to the model or the human and the likely reason
for such misclassification. This very complex task
constrains sample size and number of participants,
a not uncommon issue in qualitative experiments
(Sharp et al., 2019) and justifies our current choice
of a single task - - sentiment analysis.

5 Conclusion
We addressed the hard task of unveiling the reasons
why models misclassified the hardest documents,
those which no classifier using very separable
contextual representations could correctly classify.
For this, we devised an error taxonomy and ran
qualitative experiments requesting 8 evaluators
with distinct backgrounds to use the taxonomy to
qualify the errors using 3 datasets in 2 domains –
prior work has been limited to a single domain or
dataset. The high consensus among the evaluators
emerged as an interesting finding. We have
found significant differences regarding reasons
for misclassification in the product and movie
review domains. Sarcasm is very pronounced
in movie reviews, while Ambivalence is more
prevalent in product reviews. There is a high
proportion of wrong labels in the gold dataset
and a noteworthy number of incorrect model
predictions due to various linguistic phenomena,
including comparisons, contrastive constructions,
negation and instances requiring world knowledge.
No single category emerged as dominant.

Future work includes explaining the few
remaining unexplained cases; applying our
methodology/taxonomy to other domains (e.g.,
topic classification); and using acquired knowledge
to improve models. Additionally, we intend to in-
vestigate current models, such as Large Language
Models (LLMs), in classification tasks, assessing
the potential of these models to address the issue
of misclassification presented in this paper.
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A Appendix

A.1 Limitations

Despite relevant contributions, our study has
some limitations. Our evaluation targeted two
domains, three datasets, and the task of sentiment
analysis. Increasing the number of dataset domains
and expanding our analysis to the task of Topic
Classification will provide new valuable insights.
The size of our evaluation group is relatively small,
although this is common in qualitative studies (Sil-
verman, 2004). We will increase the number
of evaluators in future studies. Our work uses
BERT’s contextual representations. Although (de
Andrade et al., 2023) shows BERT produces rep-
resentations that are as (semantically) separable in
the embedding space as representations produced
by other Transformers (e.g., RoBERTa, BART),

we intend to test our methodology with different
Transformers in the future.

While our current work covers only one clas-
sification task, in our study, we devise a general-
purpose taxonomy for text classification designed
to be useful in more than one scenario. Our first
question aims to answer whether the source of the
misclassification is human or the model—a ques-
tion that applies to any ATC task where we have a
label and a model’s prediction. Our second ques-
tion inquires about the reason for the misclassi-
fication - Incorrect Prediction Despite Available
Textual Cues; or incorrect label in the dataset - lack
of textual cues for label prediction, ambivalence,
and sarcasm. Likewise, the first two categories are
not restricted to the sentiment analysis task but ap-
ply to other ATC tasks. At the first level of the
proposed taxonomy, two categories (ambivalence
and sarcasm) can be said to be task-related, but
the taxonomy needs them for analytical purposes;
otherwise, it would be too general. Nonetheless, if
used for evaluation in other tasks, these two more
task-oriented categories may be adapted, the core
of the taxonomy remaining as it is.

Our spreadsheet validation only allowed
annotators to choose a single category to answer
each question. A column for annotators to freely
state their Remarks was available in case the
categories should present any annotation problem.
No remarks were placed by annotators, which
suggests no overlapping was felt by them. While
theoretically some of the categories could be felt
to overlap, our results did not support this.

A.2 Datasets Statistics

Table 3 presents statistics of the datasets in terms
of the number of documents and average document
length, and the class distribution into positive and
negative instances is balanced in the three datasets.

Dataset Documents Avg
words

Positive Negative

Amazon 168000 33 84000 84000
PangMovie 10662 19 5331 5331
VaderMovie 10568 19 5242 5326

Table 3: Datasets Statistics

A.3 Summary of Evaluation Schemas
Reported in Related Work

Table 4 shows a summary of the evaluation schemas
reported in related work. Compared to them, our
schema is much more robust and comprehensive.
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Related Work Taxonomy categories
(Meek, 2016) “Mislabeling errors”: human labeling errors;

“Representation errors”: limitations in the feature set used for evaluation;
“Learner errors’’: prediction errors when there is sufficient information for accurate classifica-
tion;
“Boundary errors”: correct predictions could be achieved by adding more examples, indicating
an absence of labeled examples for a specific class in the training set.

(Lee et al., 2017) “Similar Labels”: the term representing the predicted object in the image is not in the ground
truth (GT) but is semantically similar to the GT. The set of true labels is the set of terms that
textually describe the objects in the image.
“Not Salient”: the predicted object exists in the image but is not present in the GT;
“Challenging Images”: the GT is challenging even for a human being;
“Incorrect GT”: incorrect annotation by humans; and 5) “incorrect prediction class”: machine
prediction is incorrect but with sufficient information in the image for humans to detect.

(Martins et al., 2021) “Neutral”: when polarity is not clearly defined
“Discrepant”: when polarity differs from its associated labeling

Table 4: Summary of Evaluation Schemas Reported in Related Work.

Figure 4: Consensus and No Consensus on Q1 (left) and Q2 (right).

A.4 Taxonomy Effectiveness (Consensus)
Analysis

To answer our first research question: “Is the
proposed taxonomy for misclassification effective
to be used for misclassification analysis?”, we
analyzed the responses from questions 1 and 2
provided by the evaluators.

Figure 4 shows the consensus percentages ob-
tained for Questions 1 and 2 in the three evaluated
datasets. For Question 1, out of 60 documents,
54 attained high inter-evaluator agreement in Va-
derMovie, and 52 in Amazon and PangMovie. In
other words, in at least 86.7% of the cases (52/60),
consensus was achieved in some category defined
for Question 1 in the three evaluated datasets,
implying low difficulty for evaluators to define a
type of misclassification. We break down those
numbers in Section A.4.1 to show the consensus
distribution per document and A.6 per evaluator
background. As shown there, the vast majority
of the documents had the same categorization
assigned by 4 or 3 evaluators, emphasizing high
agreement and taxonomy effectiveness.

Figure 4 (b) shows the consensus percentages for
Question 2. It is important to bear in mind that in
Question 2, six options were available, likely lead-
ing to a higher difficulty in achieving agreement.
Nonetheless, we can observe a high consensus in
all datasets for this question, with the lowest value

being obtained in the Amazon dataset, 49 out of 60
documents reaching at least 81.7% consensus. As
also shown in Figure 5, “No Consensus” was below
14% for Question 1 and below 19% for Question
2. In Section A.4.1, we show examples (in Table 5)
of documents that posed difficulties for evaluators.

A.4.1 Consensus Distribution
This subsection presents the evaluator consensus
distribution for Questions 1 and 2, which is
analyzed in Section 4.1. Regarding Question 1, as
can be seen in Figure 6a, out of the 52 documents
that achieved evaluator consensus in the Amazon
dataset, 33 reached full agreement among all four
evaluators, 16 documents reached full agreement
among three, and 3 documents reached full
agreement between two evaluators. This points
to documents with full agreement among three or
four evaluators representing a significant portion
of the total number of documents with consensus,
demonstrating the robustness of our final results.
Similar results were obtained for VaderMovie and
PangMovie regarding the joint proportion (i.e., the
sum of the proportions) of evaluations with 4 and
3 agreements.

Regarding Question 2, results show less con-
sensus among the evaluators, which may be due to
the number of categories they had to choose from.
This is reflected in the graphs in Figure 7. The
Amazon dataset showed higher consensus among
a higher number of evaluators, possibly accounted
for by the type of review - product review. As
movie reviews assess artistic productions and
implicate more sarcasm and figurative language,
the full consensus is harder to achieve, though
still attainable. Similarly to Figures 6 and 7,
Figure 8 shows the distribution of consensus
among evaluators for hierarchical categorization.
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(a) Amazon (b) Pang Movie (c) Vader Movie

Figure 5: Percentages for answers to Question 1 in the three datasets.

(a) Amazon (b) Pang Movie (c) Vader Movie

Figure 6: Consensus for Question 1.

(a) Amazon (b) Pang Movie (c) Vader Movie

Figure 7: Consensus for Question 2.

(a) Amazon (b) Pang Movie (c) Vader Movie

Figure 8: Consensus for hierarchical categories.

Text Dataset
They are ok except. The fitted pops off. Amazon
I tried a few LED harnesses and none were bright enough to see my black dog at night running through the woods. This vest, as long
as not directly in front of head/tail, is super visable.

Amazon

Very short on the sides. Overall, good fit but I do not like to show my belly. Too bad lad got that. Fabric very soft. Amazon
The script kicks in, and mr. hartley’s distended pace and foot-dragging rhythms follow. Pang Movie
Eastwood winces, clutches his chest and gasps for breath. it’s a spectacular performance - ahem, we hope it’s only acting. Pang Movie
Parts seem like they were lifted from terry gilliam’s subconscious , pressed through kafka’s meat grinder and into buñuel’s casings Pang Movie
The recording session is the only part of the film that is enlightening and how appreciative you are of this depends on your level of
fandom.

Vader Movie

It shows that some studios firmly believe that people have lost the ability to think and will forgive any shoddy product as long as
there’s a little girl on girl action.

Vader Movie

A light, engaging comedy that fumbles away almost all of its accumulated enjoyment with a crucial third act miscalculation. Vader Movie

Table 5: Texts illustrating the “No consensus” category
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Regarding documents for which there was
no consensus among the evaluators (Figure 4 -
Left), there are 8 for the Amazon dataset, 8 for
the PangMovie dataset and 6 for the VaderMovie
dataset. As for question 2 (Figure 4 - Right), there
are 11, 9, and 9 documents without consensus for
Amazon, Pang Movie, and Vader Movie datasets,
respectively. To exemplify challenging documents,
we provide three examples from each dataset in
the “No consensus” category for Question 2, as
shown in Table 5.

The first row in Table 5 shows an Amazon
product review where the text begins positively but
then brings in an issue with the product. Row 4
shows a movie review from the Pang Movie dataset,
where the reviewer uses the words “distended” and
“dragging”, creating uncertainty for categorization.
Row 6 shows a series of references to other movies
and directors, which requires previous knowledge
of those movies and their evaluations. Therefore,
we believe that the methodology of this study
serves to identify challenging documents based on
evaluator agreement.

A.5 Inter-evaluator agreement for Question 2
in cases of “Human Mislabeling”

In Figure 9, similar to Figure 10, we have the quan-
tification of Question 2, but now restricted to the
documents that were evaluated as human mislabel-
ing in Question 1. In other words, documents the
evaluator considered to have been correctly clas-
sified by the Model but which had been incorrectly
labeled by the human (positive or negative). We
can observe that, in general, the number is lower;
for instance, in the Amazon dataset, we have 20
documents evaluated as errors in the gold standard.

Additionally, we can observe a high prevalence
of the category Incorrect label in the dataset,
which corresponds to 65% in the Amazon and
70% in the Pang Movie datasets. This means
that the evaluator considered the document to
have been mislabeled by the human, despite there
being sufficient information in the text for the
human to choose the “right” label according to the
evaluator’s assessment.

Regarding the VaderMovie dataset, numbers
are low, which may bias some proportions – there
are only four mislabeled documents evaluated
as human mislabeling, and only 1 sample was
considered Incorrect label in the dataset.

A.6 Differences in Evaluation carried out by
Computer Scientists and Linguists

We carried out an additional analysis focusing
on the evaluators’ backgrounds. Since two
evaluators rated each document with a Linguistics
background and two with a Computer Science one,
we examined our data to investigate differences
ascribable to evaluators’ backgrounds. Figure 11
represents the quantification of the responses
to question 1 by evaluators having a Computer
Science background (11a, 11b, 11c) and a
Linguistics one (11d, 11e, 11f), in which there was
inter-evaluator agreement of the two evaluators.
We can notice that evaluators’ backgrounds had
little impact on the results for all datasets.

A.7 Set of misclassifications by all classifiers

Dataset Misclassification Positive Negative
Amazon 216 115 101
PangMovie 120 54 66
VaderMovie 85 37 48

Table 6: Set of misclassifications by all classifiers.

A.8 Comparison between BERT and the
Classifiers using the Contextual
Representations (from de Andrade et al.
(2023))

For the sake of self-containedness, in Table 7, we
show the results reported by (de Andrade et al.,
2023) for the comparison between BERT and classi-
fiers that used the textual representations generated
by the Transformer as input. Here, we consider the
results of four of the strongest classifiers used in
(de Andrade et al., 2023), namely: KNN, Random
Forests (RFs), Support Vector Machines (SVMs),
and Logistic regression (LR) applied to two of the
datasets we exploit – PangMovie and VaderMovie.
Indeed, despite using different rules and heuristics,
the effectiveness of these classifiers (and of all
other classifiers tested in (de Andrade et al., 2023))
is basically the same in all tested datasets when
using the contextual embedding representations.
This is due to the fact that these representations
are already so semantically separated (by class) in
the embedding space that the employed classifier
has little effect on the classification process.

A.9 Comparison Among Transformers

We run experiments in the tested datasets compar-
ing BERT with RoBERTa (Liu et al., 2019) and
BART (Lewis et al., 2020). Results are shown in
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(a) Amazon (b) Pang Movie (c) Vader Movie

Figure 9: Results for Question 2 in cases where Response to Question 1 was “Human Failure".

(a) Amazon (b) Pang Movie (c) Vader Movie

Figure 10: Response analysis for Question 2 in cases where “Model Failure” was selected for Question 1.

(a) Amazon (b) Pang Movie (c) Vader Movie

(d) Amazon (e) Pang Movie (f) Vader Movie

Figure 11: Percentages for answers to Question 1 by evaluators with a Computer Science background (a, b and c) and a
Linguistics background (d, e and f).

Dataset BERT RF SVM KNN LR

Amazon 94.2(0.7) 94.2(0.1) 94.1(0.1) 94.3(0.1) 94.2(0.1)
PangMovie 87.0(0.6) 86.8(0.8) 87.2(1.0) 87.1(0.6) 87.1(0.8)
VaderMovie 89.1(0.7) 89.4(0.6) 89.4(0.5) 89.3(0.7) 89.5(0.6)

Table 7: Macro-F1 (%) and confidence interval of 95%. Best
results (including statistical ties) are marked in bold. BERT
is the original method while the other columns correspond to
the respective classifiers run using the contextual embeddings
produced by BERT.

Table 8. As we can see, these transformers’ effec-
tiveness are very similar – BERT is statistically tied
as the best method with Roberta in Amazon and
marginally loses (by at most 1-2 pp) in the other
two datasets. These differences, which means
just a few documents in practice, are potentially
irrelevant in a qualitative study as ours, which
uses a sample of the documents that all classifiers
predicted incorrectly. We believe that the intuitions
and insights we got with the current methodology,
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representations, and models would not be substan-
tially different if we used other Transformers.

Dataset BART BERT RoBERTa
Amazon 93.0 (0.2) 94.2 (0.7) 94.5 (0.3)
PangMovie 88.1(0.5) 87.0(0.6) 89.0(0.4)
VaderMovie 90.4(0.6) 89.1(0.7) 91.3(0.5)

Table 8: Results regarding the evaluation metric Macro-F1.

A.10 Comparison between Transformers and
LLM’s

Applying our methodology to other stronger LLMs
would be interesting and we will do it in the near
future. However, we would like to call the reader’s
attention to the fact in GLUE’s benchmark, for the
sentiment analysis task, SST-2, a dataset similar to
the ones used in our work, has an accuracy of 97.9
(Vega v1), whereas RoBERTa obtains 96.7 (Face-
book AI). Without a statistical method for compari-
son, these results are not enough to claim that Vega
V1 is clearly superior to RoBERTa. In other words,
it is not always true that LLMs are better than 1st
or 2nd generation Transformers for all tasks.

Several studies show that RoBERTa is a very
strong model for sentiment analysis (Cunha et al.,
2023b; Bai et al., 2023). Indeed, recent bench-
marks (Cunha et al., 2023a) have shown that the
differences among the latest versions of these
Transformers (including RoBERTa, BERT, Distil-
BERT, BART, AlBERT, and XLNet) in some of
the datasets we use in our experiments are very
small. More specifically, in (Cunha et al., 2023b),
RoBERTa achieved the highest effectiveness on 12
out of 22 datasets compared to other Transformer-
based alternatives. On the remaining datasets,
RoBERTa’s performance was statistically equiv-
alent to the best method, with marginal differences
ranging from 0.10% to 1.09% (on average, 0.82%).

Furthermore, our proposed endeavor of analyz-
ing the hardest misclassification cases (those that
no classifier can correctly assign using very sep-
arable contextual embeddings (de Andrade et al.,
2023)) is a challenging one. So we decided to start
with strong methods for the (sentiment analysis)
task, which is better documented, allowing us to un-
derstand certain premises, over which we also have
better control regarding training and fine-tuning.
Moreover, these analyses can be done at a much
reduced cost than used Large Language Models.

A.11 TSNE Visualization of the Errors in the
Dataset

Figure 12 presents the TSNE visualization of the
documents in the analyzed datasets using the BERT-
based vectors. We marked in red the misclassified
documents. We can see that many misclassified
documents lie on the class borders, but there are
other cases demanding further investigation.

(a) Amazon

(b) Pang Movie

(c) Vader Movie

Figure 12: TSNE three datasets. In red, it is the set of docu-
ments misclassification by all classifiers used in this study.
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Abstract 

This study employs the classical 

psycholinguistics paradigm, the visual 

world eye-tracking paradigm (VWP), to 

explore the predictive capabilities of 

LLAVA, a multimodal large language 

model (MLLM), and compare them with 

human anticipatory gaze behaviors. 

Specifically, we examine the attention 

weight distributions of LLAVA when 

presented with visual displays and English 

sentences containing verb and gender cues. 

Our findings reveal that LLAVA, like 

humans, can predictively attend to objects 

relevant to verbs, but fails to demonstrate 

gender-based anticipatory attention. Layer-

wise analysis indicates that the middle 

layers of the model are more related to 

predictive attention than the early or late 

layers. This study is pioneering in applying 

psycholinguistic paradigms to compare the 

multimodal predictive attention of humans 

and MLLMs, revealing both similarities 

and differences between them.  

1 Introduction 

Recent psycholinguistic research has shown that 

human language processing involves multimodal 

predictions, especially between language and 

vision (e.g., Altmann & Kamide, 1999; see Huettig 

et al., 2011, for a review). For instance, numerous 

visual world paradigm (VWP) studies have 

demonstrated that when people hear an utterance, 

they predict upcoming mentions, which direct their 

looks to the visual objects. For example, in Corps 

et al. (2022), participants heard a sentence featuring 

either male or female characters and looked at the 

visual display of four objects at the same time 

(Figure 1). They found that: (1) participants used 

 
* Joint first authors. 

verb semantics to predict upcoming mentions (e.g., 

looking at wearable objects such as a tie or dress at 

hearing Tonight, James/Kate will wear …); (2) they 

further used the gender of the subject to refine their 

prediction (e.g., more looks to a tie than a dress 

following James, and more looks to a dress than a 

tie following Kate ). 

The finding that humans use linguistic (verb and 

gender) information to make predictive fixations of 

a visual scene led us to ask whether LLAVA (Liu et 

al., 2023), a multimodal large language model 

(MLLM), exhibits similar cross-modal predictive 

behaviors. Previous studies have found parallels 

between model attention weights and human 

attention (measured by eye-tracking movements) 

in text reading (Gao et al., 2023; Kewenig et al., 

2024; Sood et al., 2020). Kewenig et al. (2024) 

recently provided tentative evidence that 

multimodal models like CLIP (Radford et al., 2021) 

may also resemble human predictive visual 

attention in video viewing. However, there is a gap 

in our understanding of whether MLLMs like 

LLAVA can predictively “look at” a target object 
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Based on Verb Information but Not Gender 
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Figure 1: Sample visual display adapted from Corps 

et al. (2022) 
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(e.g., a wearable object like “dress”) upon 

encountering relevant linguistic cues (e.g., the verb 

“wear”) before the object is explicitly mentioned.   

The current study employs the widely adopted 

VWP in psycholinguistics to investigate whether 

LLAVA, an open-source MLLM, shows similar 

linguistically-guided predictive visual attention as 

humans. By analyzing the model's attention weight 

distribution on the task used by Corps et al. (2022), 

we found that LLAVA can predictively attend to 

relevant objects based on verb information, similar 

to humans, but not gender information. In addition, 

layer-wise analysis shows that the middle layers of 

LLAVA are primarily responsible for the 

predictions. These findings indicate both 

similarities and differences between the model and 

humans in multimodal predictions. 

2 Methods 

2.1 Design and materials 

Our study adapted the materials and experimental 

design of Corps et al. (2022). We used 28 pairs of 

sentences featuring either male or female 

characters (e.g., Tonight, James/Kate will wear the 

nice tie/dress), each with a visual display of four 

objects (Figure 1). We tested whether LLAVA can 

predictively attend to a visual object according to 

whether the object is verb-congruent (e.g., dress 

and tie for the verb wear) or verb-incongruent (e.g., 

drill and hairdryer), and whether this prediction (if 

any) is further modulated by the object’s 

congruency with the gender of the sentential 

subject (e.g., for  James,  tie and drill are gender- 

congruent and dress and hairdryer are gender-

incongruent; for Kate, the conditions are reversed). 

The object images are 200×200 pixels, with their 

locations counterbalanced across items. 

2.2 Model 

We utilized LLAVA 1.5 (7B parameters, Liu et al., 

2023), a transformer-based MLLM that encodes 

images using CLIP's vision encoder and maps them 

into the linguistic embedding space of Vicuna 

(Chiang et al., 2023), allowing cross-modal 

attention to be computed. This model was chosen 

for its open-source availability and its state-of-the-

art performance on 11 benchmarks (Liu et al., 

2023). 

2.3 Pre-tests 

We first conducted three pre-tests to explore if 

LLAVA can recognize the basic information in 

sentences and pictures as humans do. 

(1) Name gender detection. To investigate if 

the model can distinguish gender based on names 

(James vs. Kate), we asked the model to continue 

a sentence preamble (e.g., Although James/Kate 

was sick…) and calculated the proportions of 

female (she/her/hers) or male pronouns (he/his) 

used in the continuations following Cai et al. 

(2023, experiment 2). We found that all sentences 

with James were continued with male pronouns 

and all sentences with Kate were continued with 

female pronouns. This indicates that the model 

can perfectly distinguish between typical male 

and female names in sentences. 

(2) Object gender evaluation. To assess 

whether the model can identify pictured objects as 

stereotypically male (e.g., tie, drill) or female (e.g., 

dress, hairdryer), we asked the model to evaluate 

the masculinity or femininity of each object on a 

5-point Likert scale and calculated the “femininity 

score” of each object where 1 represents strongly 

masculine and 5 represents strongly feminine.  

The results show that the femininity score of 

stereotypically female objects is significantly 

higher than that of stereotypically male objects 

(3.13 vs. 2.67; t(5641.6) = 11.20, p < .001), 

indicating that the model can identify the 

stereotypical gender associations of the objects. 

(3) Multimodal sentence completion. To 

examine whether the model can complete the 

sentence with verb-and-gender-congruent nouns 

in a multimodal setting, we removed the final 

noun from the sentence and asked the model to 

complete the fragments according to the 

sentence’s corresponding visual display. As 

shown in Figure 4 in Appendix A, the model 

produced more verb-congruent completions than 

incongruent ones (83.77 vs. 12.52; t(109.29) = -

11.84, p < .001), and also more gender-congruent 

completions than incongruent ones (64.61 vs. 

29.52; t(109.83) = -4.28, p <.001). This indicates 

that the model can predict verb-and-gender-

congruent nouns in a multimodal sentence 

completion task. 

2.4 Procedure 

To simulate human incremental sentence 

comprehension, we presented the sentence in an 

unfolding fashion, ending first with the name (e.g., 

Tonight, James/Kate), then with the verb (e.g., 

Tonight, James/Kate will wear), then with the pre-
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noun adjective (e.g., Tonight, James/Kate will wear 

the nice), and finally the whole sentence ending 

with the target noun (e.g., Tonight, James/Kate will 

wear the nice tie/dress). Each text presentation was 

accompanied by the same visual display of four 

objects. We used the prompt: "Please read carefully 

and look at the objects in the picture," which 

mirrors the instructions given to human 

participants, ensuring that the model's task closely 

parallels the one performed by human subjects. 

3  Analyses and results  

3.1 Analysis 

We extracted the max-pooled attention weights of 

each layer mapping from the last word (name, verb, 

pre-noun adjective, or target noun) of each 

sentence segment to the four images in the visual 

display. Following Manning et al. (2020), if the last 

word had multiple tokens, we combined the 

weights across the tokens. We then calculated the 

proportion of attention allocated to each object 

relative to the total attention across all four objects, 

similar to fixation proportions in VWP studies (e.g., 

Corps et al., 2022).  

For statistical analysis, we used linear mixed-

effect models, with attention proportion as 

dependent variable, verb congruency and gender 

congruency as independent variables. For the 

whole-model analysis, we included both layer and 

item as random effects. In the layer-wise analysis, 

only item was treated as a random effect. Following 

Matuschek et al. (2017), we used forward model 

comparison with an alpha level of 0.2 to determine 

whether a random slope should be included in the 

final model.  

3.2 Results 

3.2.1 Main results of the whole model 

Figure 2 (top panel) shows the attention 

proportions to four objects across sentence 

segments. Initially, when the name was read, 

LLAVA showed no preference for gender-

congruent objects (β = 0.00, SE = 0.00, t = 0.33, p 

= 0.744), suggesting that the model did not 

associate specific objects with the gendered name 

in the absence of further contextual information.  

As the sentence unfolded to the verb (e.g., wear), 

there is a significant preference for verb-congruent 

objects (e.g., tie and dress) over incongruent ones 

(e.g., drill and hairdryer; β = 0.01, SE = 0.00, t = 

4.17, p < .001), indicating that LLAVA can use verb 

semantics to direct attention similar to humans. 

Nevertheless, there was still no effect of gender 

congruency (β = 0.00, SE = 0.00, t = 0.19, p = .852), 

suggesting that the model still does not 

preferentially attend to gender-congruent objects at 

this stage.   

As the model received more input (e.g., Tonight, 

James/Kate will wear the nice …), the difference 

between verb-congruent and verb-incongruent 

objects remained (β = 0.04, SE = 0.00, t = 8.60, p 

< .001) and the absence of a gender congruency 

effect persisted (β = -0.00, SE = 0.00, t =- 0.86, p 

= .389).  

Finally, when the sentence was fully presented , 

the pattern remained unchanged, with a significant 

effect of verb congruency (β = 0.02, SE = 0.00, t = 

9.49, p < .001), but no evidence of a gender 

congruency effect (β = 0.01, SE = 0.02, t = 0.64, p 

= .527).  

We compared LLAVA’s attention with human 

eye fixation data in Corps et al. (2022) (see 

Appendix B for detailed methods). During the 

prediction window (verb and adjective before 

noun), we found a significant difference between 

humans and LLAVA in gender-specific attention (β 

= -0.59, SE = 0.18, t = -3.20, p < .001), but not in 

verb-related attention (β = 0.30, SE = 0.18, t = -1.66, 

p = .098). This is because humans predictively 

attended to both verb-relevant (β = 0.09, SE = 0.01, 

t = 9.11, p < .001) and gender-relevant objects (β = 

0.03, SE = 0.02, t = 2.15, p = 0.040), while LLAVA 

only predictively attended to verb-relevant objects. 

Figure 2: Compare attention proportion of LLAVA 

(top panel) and fixation proportion of humans (bottom 

panel; data from Corps et al., 2022) 
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3.2.2 Results of layer-wise analysis 

In addition to analyzing the overall behavior of the 

model across all layers, we conducted a more fine-

grained, layer-wise analysis to identify the layers 

that were primarily responsible for the verb-based 

predictive visual attention in LLAVA. As shown in 

Figure 3, our results indicate that the middle layers 

of the model play a crucial role in generating visual 

predictions based on verb information. 

During the verb segment of the sentence (e.g., 

James/Kate will wear), we found a significant main 

effect of verb (ps < .05) in layers 10, 12, and 17 (see 

the second panel in Figure 3). As the sentence 

unfolds (e.g., James/Kate will wear the nice), the 

main effect of verb becomes more widespread, 

occurring in layers 7 through 26 (ps < .05, see the 

third panel in Figure 3). This indicates that a larger 

portion of the model's architecture is engaged in 

verb-based predictions as more linguistic context 

becomes available.  

4 Discussion 

This study uses the VWP to investigate the 

predictive capabilities of LLAVA, a specific 

MLLM. The findings reveal that the model exhibits 

human-like behavior in using verb information to 

predict the upcoming object in a visual display. 

This aligns with previous research demonstrating 

that both humans and models can utilize 

multimodal information to predictively attend to 

relevant features (Kewenig et al., 2024). 

However, unlike humans, the model does not 

predictively attend to relevant objects based on 

gender information, consistent with the lack of 

gender bias in CLIP, which is the basis for 

LLAVA's vision encoder (Hall et al., 2024; Radford 

et al., 2021). However, attributing this lack of 

gender prediction solely to CLIP's characteristics 

requires further investigation. Future studies 

should conduct more fine-grained comparisons 

between unimodal (text-only) and multimodal 

models to isolate the source of this behavior and 

better understand the interplay between linguistic 

and visual information in gender-based predictions. 

The difference between the model and humans 

may be explained by the nature of the stimuli, as 

our study used cartoon-like images while LLAVA 

is mainly trained and evaluated on real-world 

objects (Liu et al., 2023; Thrush et al., 2022). To 

investigate this hypothesis, we replaced the 

cartoon-like objects with real-world ones. As 

shown in Figure 7 in Appendix C, we observed a 

main effect of gender in the verb segment (β = 0.01, 

SE = 0.00, t = 4.12, p < .001), suggesting that the 

model processes real-world objects in a more 

human-like way than cartoon objects. This is 

consistent with the idea that models lack the 

perceptual flexibility of humans, leading to lower 

performance in recognizing atypical objects (Zang 

et al., 2023). 

The study also found that the middle layers play 

a significant role in multimodal predictions, 

aligning with previous studies showing that 

attention weights in middle layers better fit neural 

signals (Lamarre et al., 2022). However, the 

discrepancy with some studies showing that late 

layers correlate most significantly with human eye-

tracking data (Kewenig et al., 2024) may be 

attributed to task differences: comprehension tasks 

(as in our and Lamarre et al.’s studies) require more 

high-level semantic processing in middle layers, 

while production tasks (as in Kewenig et al., 2024) 

focus more on low-level features of individual 

words in later layers. Further detailed experiments 

are needed to explore this hypothesis. 

5 Conclusion 

In conclusion, our study utilizes the VWP from 

psycholinguistics to probe whether LLAVA shows 

similar multimodal predictive patterns to humans. 

We found that LLAVA can predictively attend to 

verb-relevant objects in visual displays similar to 

humans, but they do not show the same predictive 

attention for gender-relevant objects. These verb- 

related predictive behaviors are predominantly 

driven by the middle layers of the model.   

Figure 3: Attention results by layers 
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Limitations 

This study has several limitations that should be 

addressed in future research. Firstly, we 

investigated only one model — LLAVA-1.5 7B — 

and conducted a thorough comparison between its 

attention weights and human eye movements. With 

more MLLMs being released (see Yin et al., 2024 

for a comprehensive review), it is crucial to 

compare different models horizontally to 

understand the key factors contributing to their 

differences and similarities with human cognition. 

Secondly, our study lacks image variation due to 

our adherence to Corps et al. (2022)’s experimental 

design, as noted by an anonymous reviewer. 

Although we conducted complementary tests with 

real-world objects, future research should 

incorporate systematic image variations to 

thoroughly explore how image type influences 

LLAVA's predictions.  

Lastly, caution is needed when comparing 

human and model attention. Although both use the 

term "attention," they may refer to different 

underlying mechanisms. For instance, model 

attention is more evenly dispersed, while human 

attention tends to be focused (Kewenig et al., 2024; 

also see Figure 2). More detailed studies are needed 

to explore the similarities and differences between 

model attention mechanism and human attention. 
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A Prompts and results of pre-tests 

(1) Name gender detection. The prompt is: 

“Repeat the sentence preamble and continue it into 

a full sentence. Use just one sentence. Here is the 

sentence:” 

(2) Object gender evaluation. For half of the 

runs, the prompt is: “Evaluate the masculinity or 

femininity of the object, activity, or job depicted in 

the picture. Use the following scale: 1 = strongly 

masculine, 2 = moderately masculine, 3 = neutral, 

4 = moderately feminine, 5 = strongly feminine. 

Only respond with a number.” For the other half, 

the location of "feminine" and "masculine" is 

exchanged.  

(3) Multimodal sentence completion. The 

prompt is: “Please carefully read the beginning of 

the sentence and examine the objects in the picture. 

The sentence will mention one of the four objects. 

Complete the sentence with one or two words 

based on the objects you see. Don't repeat the 

sentence. Only provide your answer.” 

The results of this test are shown in Figure 4. 

B Compare with human data 

Since eye movement data in Corps et al. (2022, 

accessible at https://osf.io/nkud5) were analyzed at 

50ms intervals, we need to transform the data into 

four segments to align with the model data. 

According to the R scripts available at 

https://osf.io/nkud5/, the four segments are  

defined as follows: 

- Before verb: < 0ms (before verb onset) 

- Verb: 0-350ms (from verb onset to verb 
offset) 

 

Figure 4: Results of sentence completion task 
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- Pre-noun adjective: 350-850ms (from verb 

offset to target onset) 

- Target: >850ms (after target onset) 

Within each segment, we aggregated fixation 

points and calculated the fixation proportion of 

each object. These aggregated data were then used 

for further analysis and plotting. This 

transformation ensures the human data is 

comparable with the model data. From Figure 5, we 

can observe that the reshaped data exhibit a similar 

pattern to the original data. 

C Attention to real-world objects 

For each object picture in the stimuli, we 

search for a similar picture in Google Images (the 

same source as Corps et al., 2022) but with a real-

world object. We replaced each object picture 

with the new real-world one and conducted the 

experiment again. The results are shown as in. 

Figure 6 provides an example of the real-world 

images used in this follow-up study. The 

outcomes of this complementary experiment are 

presented in Figure 7. 

 

 

Figure 5: Compare plots of humans in our study (top 

panel) and Corps et al. (2022, bottom panel) 

 

Figure 6: Sample of visual display with real-world 

objects 

Figure 7: Compare model attention proportions 

using real-world stimuli in LLAVA (top) and 

fixation proportions of humans (bottom) 
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Abstract

We introduce the Principled Reasoning and
Acting (PRAct) framework, a novel method
for learning and enforcing action principles
from trajectory data. Central to our approach
is the use of text gradients from a reflection
and optimization engine to derive these action
principles. To adapt action principles to spe-
cific task requirements, we propose a new opti-
mization framework, Reflective Principle Op-
timization (RPO). After execution, RPO em-
ploys a reflector to critique current action prin-
ciples and an optimizer to update them accord-
ingly. We develop the RPO framework under
two scenarios: Reward-RPO, which uses en-
vironmental rewards for reflection, and Self-
RPO, which conducts self-reflection without
external rewards. Additionally, two RPO meth-
ods, RPO-Traj and RPO-Batch, is introduced to
adapt to different settings. Experimental results
across four environments demonstrate that the
PRAct agent, leveraging the RPO framework,
effectively learns and applies action principles
to enhance performance.

1 Introduction

Large language model (LLM) agents enable the
action execution (Gravitas, 2023; Goodman, 2023;
Yao et al., 2023a; Wang et al., 2023a) and con-
secutive reasoning ability (Nakajima, 2023; Shinn
et al., 2023; Yao et al., 2023b) of LLM. Specifi-
cally, an LLM agent has both memory (Shinn et al.,
2023; Li et al., 2023; Liu et al., 2024) and action
space (Chase, 2023; Wu et al., 2023; Liu et al.,
2023). Adding those information into prompt ex-
tends the inference of LLM to be multi-turn action
execution. Therefore, an LLM agent is able to de-
cide next actions based on its previous execution
observations (Wang et al., 2023b; Xu et al., 2023;
Goodman, 2023; Song et al., 2023).

*zhiweiliu@salesforce.com
†Equal contribution.

Available Actions: search(product: str), 
click(entity: AppButton), Finish()

Thought: I should first use Search to 
search for black lounge pants with an 
elastic waistband.
Action: search["black lounge pants with 
elastic waistband"]
Observation: Webpage [item 1] [item 2] .
Thought: Item 2 is most relevant though 
the color is not available
Action: click(item 2)

...

ReAct Agent 

The order is complete

Agent Reasoning
& Action

Search: Consider size, color, price, and other 
attributes, before initiating the search process. 
Be flexible in refining search criteria if initial 
results do not meet the specified requirements. 
Consider alternative products when the specific 
product is not available.

Click: Ensure the product meets price, size, 
color, and other attributes, before proceeding 
with the purchase. Consider adjusting search 
criteria or exploring alternative products when 
the specific product is not available. Seek 
technical assistance when encountering 
recurring errors in action execution.

Get me black lounge pants with an elastic 
waistband, and price lower than 30.00 dollars

Principles PRAct Agent

Thought: I should first use Search to 
search for black lounge pants with an 
elastic waistband.
Action: search["black lounge pants with 
elastic waistband"]
Observation: Webpage [item 1] [item 2]
Thought: Though Item 2 is most 
relevant, the color is not available. Based 
on my principles, I need to refine my 
search query. 
Action: search(black lounge pants)

Figure 1: Comparison of ReAct and PRAct agents.

Optimizing the reasoning framework (Yao et al.,
2023a; Liu et al., 2023; Wang et al., 2023b) of
agent is crucial in generating correct action execu-
tion. As of now, customizing an LLM agent with
existing open-source packages (Liu et al., 2024;
Wu et al., 2023; Chase, 2023; Liu, 2022) requires
the designing of action spaces, such as function
calls (Patil et al., 2023) and code execution (Wu
et al., 2023, 2024). Along with a well-designed
agent reasoning framework, i.e. the prompts of
agent, an LLM is able to consecutively generate
correct actions. ReAct (Yao et al., 2023a) frame-
work achieves wide successes via adding one-step
think actions to enhance the reasoning ability of an
agent. Additionally, Reflection (Shinn et al., 2023;
Yao et al., 2023b; Paul et al., 2023) mechanism
is proposed to improve the agent self-correction
capability. Plan (Xu et al., 2023; Liu et al., 2023)
before execution is also verified to be beneficial.

Despite many successes, agent execution can fail
to make decisions when faced with contradictory
observations, particularly during the execution of
long-step tasks. To address it, we propose a new
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type of reasoning strategy, PRAct, for the LLM
agent. Intuitively, we associate each action with
principles that describe the conditions for using
that action. During execution, an agent can check
these principles before generating the next action.
Compared to simple action descriptions, princi-
ples provide more detailed conditions on when to
use the action and offer specific instructions on
how to generate the parameters for an action. We
demonstrate the benefits of PRAct in Figure 1 via
comparing with ReAct agent in WebShop (Yao
et al., 2022) where an agent uses search and click
actions to interact with a shopping website. The
ReAct agent searches a query and, despite item 2
not having the available color, still clicks it as it
appears most relevant. In contrast, the PRAct agent
refines the search based on both search and click
principles. Consequently, the PRAct agent decides
to search with an improved query, enhancing its
decision-making process.

To reduce the labor involved in prompt design
and to cover more complex scenarios, we propose
a new principle optimization framework, Reflec-
tive Principle Optimization (RPO). RPO operates
in three stages: execution, reflection, and optimiza-
tion. During the execution stage, an agent performs
tasks using predefined or null principles and mem-
orizes the task trajectories. In the reflection stage,
the agent reviews its task executions, evaluating
how actions were selected and whether they met
the task requirements. Finally, in the optimization
stage, an optimizer refines principles to enhance
agent performance. We investigate two optimiza-
tion methods: RPO-Traj, which individually op-
timizes principles for each trajectory, and RPO-
Batch, which concatenates all reflections in a batch
for optimization.

We summarize our contributions as follows: 1)
PRAct is the first work that considers the action
principles for LLM agent; 2) we propose two opti-
mization methods to adapt the principles to tasks.

2 PRACT: Optimizing Principled
Reasoning and Acting

2.1 Formulation

Given a task query, an agent is able to consec-
utively execute actions [a1, a2, . . . , an] and col-
lects observations [o1, o2, . . . , on] from environ-
ments, where oi is the execution results of ai. A
policy function π(at|ct) predicts the next action
at given the execution trajectory context ct =

[(a1, o1), (a2, o2), . . . , (at−1, ot−1)]. An Executor
agent utilizes a language model to determine the
policy function. It requires textual trajectory infor-
mation for the prompt Intrinsically, those context
information are text-based, including action names,
action parameters and observations.

PRAct constraints the reasoning of LLM to fol-
low a set of principles P as follows:

π(at|ct) = Executor(at|T (ct);P), (1)

where T is the prompt template to organize context
information and the principlesP are guidelines that
help shape the decision-making process of an LLM
agent. Principles provide instructions on the usage
of the action such as how to generate parameters
for the action. Additionally, principles reduce the
set of potential actions by eliminating those that do
not conform to the defined guidelines, thereby nar-
rowing the search within the action space. In this
paper, we simplify the principles space to be the
same as actions space, i.e. each ai ∈ A associated
with a pi ∈ P .

2.2 Reflective Principle Optimization (RPO)
Although the principles could be predetermined, as
in the action descriptions, it is challenging to com-
prehensively cover all possible conditions without
an automatic optimization paradigm. Therefore,
we propose a new algorithm, Reflective Principle
Optimization (RPO), to adapt principles for com-
plex scenarios. RPO operates in three stages: 1)
Execution, 2) Reflection, and 3) Optimization.

2.2.1 Execution
Given a set of tasks, the executor agent performs
actions based on the current set of principles, col-
lecting observations from the environment. This
stage involves prompting the LLM agent to gen-
erate actions, which regressively calls Eq. (2) un-
til reaching the final actions or maximum steps.
Given a task query q, we denote the trajectory as
cq = [(a

(1)
q , o

(1)
q ), (a

(2)
q , o

(2)
q ), ·, (a(n)q , o

(n)
q )]. Note

that those actions may be some inner actions, such
as think or plan (Yao et al., 2023a; Liu et al., 2024)
, which do not forward to the environment and are
associated with a default or null observation. Ex-
ecutor collects a set of trajectory context sequences
C for those queries Q during execution stage.

2.2.2 Self-Reflection
After executing the actions, a reflector agent re-
flects on trajectories C by analyzing the collected
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You are an intelligent agent. Take your next 
action based on the execution results and follow 
your actions principles.
# Actions Description {actions}
# Action Principles {principles}
# Example {example}
# Execution {Trajectory}
Action:

Execution

You are completing a task through multiple rounds of 
action executions. Reflect on whether the current action 
principles were effective and if new principles should be 
introduced to improve the action decision making.
# Actions Description {actions}
# Actions Principle {principles}
# Execution {trajectory}
Refection:

Reflection

Trajectories

PRAct Agent

Tasks

Reflector Optimizer

Reflections

You are an intelligent agent. You have already 
completed several tasks and gathered 
reflections on their execution. Optimize your 
action principles to improve future performance.
# Actions Description {action_desc}
# Current Actions Principle {principles}
# Reflections {reflections}
New Principle for {action i}:

Optimization
Reflective Principle Optimization (RPO)

Figure 2: PRAct and RPO overview. Each iteration three stages: execution, reflection and optimization. During
execution, an agent executes tasks with previous principles. The trajectories are saved. Then, the agent reflects on
those tasks executions. Finally, the agent leverages those self-reflection results to optimize the principle.

Table 1: Overall comparison results. Bold denotes the best performance.

GPT-3.5-turbo GPT-4-turbo
WebShop Academia Movie Weather WebShop Academia Movie Weather

Act 0.4542 0.5304 0.5483 0.5869 0.5257 0.6704 0.5875 0.6882
ReAct 0.4742 0.5504 0.5416 0.5973 0.5667 0.7428 0.5583 0.6990
Reflexion 0.5539 0.6024 0.5728 0.5876 0.5723 0.7796 0.6072 0.7197
ExpeL 0.5823 0.6318 0.6215 0.6475 0.6329 0.8084 0.6847 0.7583
PRAct-T 0.6012 0.6798 0.6595 0.6953 0.6323 0.9207 0.7132 0.7796
PRAct-B 0.5904 0.7396 0.6625 0.7042 0.6413 0.8254 0.7250 0.8331

observations. This stage involves evaluating the
effectiveness of the actions in each trajectory and
the adherence to the principles as follows:

rq = REFLECTOR(cq,P), (2)

for all cq ∈ C. The reflection process identifies
conditions or guidelines where the principles need
adjustment to better handle the observed tasks. If
an environment provides rewards toward the exe-
cution, it is a reward-based reflector aligning the
executions with reward feedback. Instead, if no
rewards present for execution, it is a self-reflector.

2.2.3 Optimization

Based on the reflection results, we leverage the
generation ability of LLM to refine the principles
for improving the performance of agent in similar
future scenarios. This stage involves refining the
principles to better align with the observed condi-
tions and enhance decision-making. We investigate
two types of optimization methods.
RPO-Traj. This approach individually considers
each trajectory and its reflection to optimize princi-
ples. Then a batch of principles are summarized as
a new set of tailored principles P∗. We formulate

RPO-Traj as follows:

P∗ =
∑

Q
OPT(rq,P), (3)

where
∑

Q denotes a summarizor of all principles
generated from optimizer OPT for all queries Q.
RPO-Batch. We use a prompt template to con-
catenate all the reflections in a batch. Then the
optimizer directly generates new principles via con-
sidering all those reflections, which is formulated
as follows:

P∗ = OPT(CONCAT{rq|q ∈ Q},P), (4)

where CONCAT denotes using a prompt template
to concat those reflections. In comparison, RPO-
Traj requires generating principles for |Q|+1 times,
while RPO-Batch only needs one time principles
generation but with |Q| times longer context length.
Hence, long context reasoning ability is necessary
for an optimizer in RPO-Batch method.

3 Experiment

3.1 Experiment Setup
Baselines. We compare our PRAct agent with
existing Act, ReAct (Yao et al., 2023a), Reflex-
ion (Shinn et al., 2023) agent reasoning methods
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and Expel (Zhao et al., 2024) prompt optimization
framework. In this paper, we employ GPT-3.5-
Turbo-0125 and GPT-4-Turbo-2024-04-09 (Ope-
nAI, 2023) as two foundation LLMs. And for
simplicity, the executor, reflector and optimizer
in PRAct are of the same language model.
Benchmarks and Evaluation. Following Agent-
Board (Ma et al., 2024), we evaluate PRAct agent
on three tool environments and one WebShop envi-
ronment. Tool environments support the designing
of WEATHER, MOVIE, and ACADEMIA agents.
Tasks are 60 queries and actions are a set of func-
tion calls. The reward score is the recall of ground
truth actions. Webshop environment is a web
browser simulation. Agent performs either search
and click actions to complete 251 online shopping
tasks. Reward is attributes coverage ratio between
final shopped items and ground truth item.

3.2 Optimization setup

For optimizing the WebShop agent with a Reward-
based reflector, we randomly split the query tasks
into training, validation, and test tasks with a ratio
of 3:1:1. During each training step, we sample a
batch of training tasks to execute and use RPO to
optimize the principles. Performance on validation
tasks is used for early stopping, and results are
reported on test tasks. For tool agents, we use a self-
reflector without rewards, making reflection tasks
the same as test tasks. Since there is no ground
truth, no data leakage problem exists. We tune the
training batch size in [10,20,40] for WebShop and
[2,4,6] for tool environments.

3.3 Experiment Results

Overall Performance. We present comprehen-
sive comparisons of our methods against the agent
baselines in Table 1. PRAct-T and PRAct-B are
our methods with RPO-Traj and RPO-Batch opti-
mization methods, respectively. We observe con-
sistently better performance of PRAct agent, which
demonstrates the effectiveness of principles in im-
proving agent performance. Between the two op-
timization methods, i.e. PRAct-T and PRAct-B,
PRAct-B generally performs better than PRAct-T.
The reason is that summarizing principles from
a batch of reflections enables potential reasoning
across trajectories. However, PRAct-T outperforms
PRAct-B due to the potential weaker long context
understanding ability of GPT-3.5-Turbo, which in-
dicates batch-wise optimization is more suitable
for larger models.

Reflector GPT-3.5 GPT-4

Self-T 0.5871 0.6172
Self-B 0.5763 0.6238
Reward-T 0.6012 0.6323
Reward-B 0.5904 0.6413

Table 2: Different reflectors of PRAct. Self and Reward
stand for self and reward-based reflectors, respectively.
T and B denote RPO-Traj and RPO-Batch, respectively.

An additional variant is PRAct with self-reflector
on Webshop. We compare it on both RPO-T and
RPO-B optimization methods, and report the re-
sults in Table 2. Compared with both results,
reward-based reflector, demonstrates its superiority
in optimizing principles with rewards.

Optimization Curve. We present the training
curves in Fig. 3. Although at each step, we did not
pick the best principle out of the sampled action
principles on the validation set, we still observe
consistent improvement over time. Notably, with
action principles optimized by PRAct, LLM agents
under GPT-3.5-Turbo can match the performance
of GPT-4-turbo in Webshop environment.

Figure 3: Training curves in Webshop and Academia
with different LLMs and data splits. The reported scores
are the average across 5 random seeds.

4 Conclusion

We propose a novel agent reasoning framework,
PRAct, which provides principles of actions and
thus benefits the action understanding of agent. Be-
sides, we introduce two optimization algorithm,
RPO-Traj and RPO-Batch for adapting the action
principles with task executions. Experimental re-
sults on four environments demonstrates the effec-
tiveness of PRAct framework. And the training
curve illustrates the learning efficacy of RPO. In
conclusion, PRAct opens a new discussion on how
to regularize the agent actions while RPO shades
the light on how to optimize the agent prompts.
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Abstract

Large language model (LLM)s’ next-word pre-
dictions have shown impressive performance
in capturing human expectations during real-
time language comprehension. This finding
has enabled a line of research on psycho-
metric benchmarking of LLMs against hu-
man language-comprehension data in order to
reverse-engineer humans’ linguistic subjective
probability distributions and representations.
However, to date this work has exclusively
involved unimodal (language-only) compre-
hension data, whereas much human language
use takes place in rich multimodal contexts.
Here we extend psychometric benchmarking
to visual language models (VLMs). We de-
velop a novel experimental paradigm, Image-
Conditioned Maze Reading, in which partici-
pants first view an image and then read a text
describing an image within the Maze paradigm,
yielding word-by-word reaction-time measures
with high signal-to-noise ratio and good local-
ization of expectation-driven language process-
ing effects. We find a large facilitatory effect of
correct image context on language comprehen-
sion, not only for words such as concrete nouns
that are directly grounded in the image but even
for ungrounded words in the image descrip-
tions. Furthermore, we find that VLM surprisal
captures most to all of this effect. We used
these findings to benchmark a range of VLMs,
showing that models with lower perplexity gen-
erally have better psychometric performance,
but that among the best VLMs tested perplex-
ity and psychometric performance dissociate.
Overall, our work offers new possibilities for
connecting psycholinguistics with multimodal
LLMs for both scientific and engineering goals.

1 Introduction

Human language comprehension is highly incre-
mental. Our minds integrate linguistic input with
context very rapidly: words within sentences, and
even phonemes or letters within spoken or writ-

ten words, to update our understanding of linguis-
tic input (Tanenhaus et al., 1995; Rayner, 1998).
This process involves the rapid update of expecta-
tions about the interpretation of what has already
been said and predictions about what might be said
next. These predictions affect how we process the
language we encounter, helping us to recognize
and correct errors (Marslen-Wilson, 1975; Levy,
2008b) and to analyze input more rapidly.

The fundamental operation of large language
models (LLMs) is similar: LLMs put probability
distributions over the next tokens given the preced-
ing context. This convergence has made it natu-
ral to compare LLM distributions with human lin-
guistic behavior. In unimodal language processing,
LLM predictions have been shown to align fairly
well with those generated by humans in the Cloze
task (Goldstein et al., 2022). Furthermore, there
is a linear relationship between the surprisal of a
word in linguistic context (negative log-probability;
(Hale, 2001; Levy, 2008a)) and how long compre-
henders take to read it (Smith and Levy., 2013;
Wilcox et al., 2023). These findings have gener-
ated interest in psychometric benchmarking of lan-
guage models (LMs): comparing LMs in terms
of how well their autoregressive probabilities pre-
dict human reading times or other types of linguis-
tic behavior (Frank and Bod, 2011; Fossum and
Levy, 2012; Goodkind and Bicknell, 2018; Oh and
Schuler, 2023; Shain et al., 2024).

Psychometric benchmarking of LLMs has exclu-
sively involved unimodal, language-only data and
models. However, human language use generally
involves a rich multimodal context. For this reason,
there is growing interest in multimodal language
models. The most advanced such type of model
is vision-language models (VLMs), which relate
visual content (most commonly static images) to
linguistic content. For example, models like BLIP-
2 (Li et al., 2023) can generate text associated with
an image; to do this, it autoregressively places con-
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ditional probability distributions over next linguis-
tic tokens given an image in context plus preceding
linguistic context. However, evaluation techniques
for VLMs are less developed than for unimodal
LLMs, and we are aware of no work to date on
psychometric benchmarking for VLMs.

Here we present a framework and experimental
results on psychometric evaluation of visual lan-
guage models using a novel yet simple psycholin-
guistic experimental paradigm. In an experimental
trial, a participant first previews an image, then
reads a sentence describing an image, with word-
by-word reading times measured (Figure 1). The
image may be the one that the sentence describes
(the Correct Image condition), a different image
that the sentence does not describe (the Wrong
Image condition), or simply a black screen (the
No Image condition). Intuitively, previewing the
correct image should prepare the participant for the
sentence description and facilitate them reading it
more quickly and accurately. However, there are
different forms that this facilitation could take, cor-
responding to different theoretical accounts of how
visual context shapes language processing. Addi-
tionally, we can compare VLMs in terms of how
well they capture how different image contexts in-
fluence the participant’s reading behavior. We can
thus use this experimental paradigm both to gain
insight into the role of visual context in language
processing in the human mind and to psychometri-
cally benchmark visual language models. All the
experiment codes, analysis, and datasets used in the
project are made available at the linked repository.
1.

2 Related Work

2.1 Human vision and language processing

There is considerable psycholinguistic literature
on the vision-language interface, with emphasis
on visual context effects on spoken word recogni-
tion, syntactic disambiguation, and predictive pro-
cessing.Much of this work uses the Visual World
Paradigm (VWP), which investigates eye move-
ments in visual scenes during spoken language un-
derstanding. Allopenna et al. (1998) and Dahan
et al. (2001) used the VWP to demonstrate rapid,
fine-grained effects of sub-word phonetic informa-
tion on word-level interpretations, demonstrating
incrementality of spoken language processing at

1https://github.com/snpushpi/Image-creates-linguistic-
expectation

the sub-word level. (Tanenhaus et al., 1995) used
the VWP to demonstrate that the language pro-
cessing system utilizes visual context to quickly
interpret an ambiguous prepositional phrase, inte-
grating lexical, syntactic, visual, and pragmatic rea-
soning. (Altmann and Kamide, 1999) showed how
visual context aids predictive processing, support-
ing the idea that sentence comprehension involves
anticipating the relationships between verbs, their
syntactic components, and the real-world context
they describe. For a broader review see Huettig
et al. (2011).

2.2 Psychometric benchmarking of LLMs

It has long been known that words predictable
in context are read faster (Ehrlich and Rayner,
1981) and elicit distinctive brain responses (Kutas
and Hillyard, 1980; Kutas and Federmeier, 2011).
Smith and Levy. (2013) found a linear relation-
ship between n-gram word surprisal (negative log-
probability) and reading time, a relationship that
has held up with neural language models (Good-
kind and Bicknell, 2018; Wilcox et al., 2023) and
has been widely used to psychometrically bench-
mark LLMs (Oh and Schuler, 2023; Shain et al.,
2024). There is also some evidence for a linear re-
lationship between surprisal and the N400 ERP re-
sponse (Heilbron et al., 2022, though see Szewczyk
and Federmeier, 2022), and the best alignment of
LM internal representations with brain activation
patterns during language comprehension seems to
be achieved by autoregressive LM architectures
(Schrimpf et al., 2021; Caucheteux and King, 2022;
Antonello et al., 2023). These results raise the
prospect of reverse-engineering human subjective
probabilities active during language processing
through psychometric LLM benchmarking.

2.3 The Maze paradigm

Our experiment involves a simple adaptation of the
Maze paradigm for studying word-by-word read-
ing (Forster et al., 2009; Witzel et al., 2012; Boyce
et al., 2020). In the Maze paradigm, experimen-
tal participants read a text passage through a se-
quence of two-alternative forced-choice tasks, one
per word in the passage. Each word is coupled with
an alternative distractor, one randomly assigned on
the left and the other on the right, and the partici-
pant has to choose which word is correct (i.e., fits
with the preceding linguistic context). The partici-
pant’s reaction time (RT) and whether they chose
the correct word are recorded. These reaction times
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Correct Image Preview No Image Preview Wrong Image Preview

Figure 1: Schematic of image-description A-maze reading in each of the three experimental conditions. Participants first briefly
view an image and then read a description by successively choosing the word fitting the preceding linguistic context and rejecting
a foil word (example selections marked in blue). A mistake triggers an error message, and the participant moves on to the next
trial sentence.

and accuracies carry information about the word’s
difficulty in a context that can be revealed through
statistical analysis. The Maze paradigm has a num-
ber of methodological advantages: it is easily de-
ployable over the web, it has a good signal-to-noise
ratio, and processing difficulty is highly localized:
that is, if a word is difficult for the comprehender,
that difficulty shows up predominantly in RT and
accuracy on that word, rather than "spilling over"
to subsequent words as is often seen with other
reading-time measurement techniques such as eye
tracking or self-paced reading. Boyce and Levy
(2023) showed that a linear relationship between
surprisal and RT holds in the Maze paradigm as it
does for other reading time-measuring paradigms.

3 Experimental Methodology

We developed an Image-Conditioned Maze experi-
mental paradigm which is like the original Maze,
but participants preview an image before reading
each text passage. We chose 108 images and their
corresponding descriptions from the validation split
of Microsoft COCO (Lin et al., 2014). In each ex-
perimental trial, participants were first shown an
image for 5 seconds, and then the image disap-
peared from the screen and they read an image
description word by word in the Maze task. We
generated distractor words using the A(uto)-Maze
software of Boyce et al. (2020), which uses an
LSTM RNN based model (Gulordava et al., 2018)
to generate contextually unlikely words. Reaction
time and response for each word choice (correct vs.
distractor) were recorded. We recruited 69 US na-
tive English speaker participants (a quantity deter-
mined using power analysis based on a pilot study
with a different set of images and descriptions) on
Prolific, showed them some examples, and paid
them 12$/hour for their participation. Each of them

participated in 36 trials, 12 in each of the three
conditions described before in figure (1), with trial
order randomized for each participant. No partici-
pant saw the same image description twice.

In a separate study with different participants,
we collected groundedness ratings for each word
in each description in the context of the correct im-
age associated with the description (Figure 2). We
recruited 42 US native English speaker participants
on Prolific for this study. Each sentence was rated
by 7 participants on average. Participants used a
slider to indicate how "present" each word was in
the image, ranging from −10 (Not Present) to +10
(Surely Present).

4 Psycholinguistic hypotheses

Under wide circumstances, visual input automati-
cally activates corresponding linguistic representa-
tions; a famous example is the Stroop effect, where
a word naming one color but presented in another,
such as blue, is difficult to say due to the inter-
ference between the words activated by the color
versus orthographic information. We thus hypothe-
size that previewing the image will tend to activate
at least some of the linguistic content in the image’s
description, so that reaction times will be faster and
accuracy higher more quickly and accurately in the
Correct Image condition than in the Wrong Image
and No Image conditions. We also hypothesize
that the Wrong Image condition may slow reaction
times and reduce accuracy relative to the No Image
condition, since the linguistic content that the im-
age activates may conflict with the content in the
subsequent text.

We distinguish between two versions of these
hypotheses. One possibility is that activation of
linguistic content may be restricted to content that
is straightforwardly grounded in the image. For
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Figure 2: Example experiment page for a trial in the groundedness rating study. The circle indicates the slider the participant is
currently manipulating. Once a participant chooses the vertical slider, the slider turns green. A participant must rate each word in
the description to continue to the next trial. The scale on the right is a reminder of how the rating works.

example, in the Correct Image example of Figure 1,
the words woman, red, and dress are straightfor-
wardly grounded: the meaning of each word is
prominent in the image without extensive reason-
ing or search for complex linguistic descriptions.
In contrast, the rest of the words in that description
are less straightforwardly grounded. Our lexical-
grounding hypothesis is that linguistic facilitation
or interference effects from the image will be lim-
ited to relatively straightforwardly grounded words.
In cognitive terms, objects, properties, events, and
states in the scene are visually identified, and the
corresponding lemmas are activated so that when
those lemmas are encountered in the image de-
scription, they are processed more effectively. We
operationalize groundedness in two different ways:
first as open-class (generally more grounded) ver-
sus closed-class (generally less grounded) parts of
speech; second, through our grounding study as
described in Section 3.

The second possibility, the comprehensive-
grounding hypothesis, is that images evoke expec-
tations over complete possible descriptions. This
hypothesis predicts that facilitation or interference
will affect all types of words in the sentence, re-
gardless of part of speech or groundedness. A
particularly strong version of the comprehensive-
grounding hypothesis is that all facilitation and
interference effects from the image will be medi-
ated by this change in linguistic expectations. If
this strong version of the hypothesis is correct, and

if visual language models do a good job of captur-
ing this shift in expectations, then visual language
model surprisal should fully account for the effect
of experimental conditions in the human behavioral
data in our experiment.

5 Modelling Approach

We created a set of predictor variables including
Condition_ID, frequency, word length, grounded-
ness, open vs. closed part of speech, and surprisals
from six Transformer-based LLMs: four visual lan-
guage models with a variety of objectives regarding
language-vision alignment (BLIP2, Li et al., 2023;
KOSMOS2, Peng et al., 2023; LLAVA-7b, Liu
et al., 2023; and IDEFICS-9b, Laurençon et al.,
2024) and two language only models (GPT2, Rad-
ford et al., 2019; and LLAMA2 Touvron et al.,
2023). Condition_ID indicates whether a certain
image description was seen in Correct, Wrong, or
No Image condition, which could be extracted from
the experiment setup on IBEXZehr and Schwarz,
2018. For length, we used the length in characters
excluding end punctuation. We obtain word fre-
quencies from SUBTLEX_US (Brysbaert and New,
2009); for the words not in the database, we use the
minimum frequency of any word in that database.
Groundedness comes from our norming study. For
open versus closed class part of speech, we ran
the Stanford POS tagger on our image descriptions
and considered all nouns, adjectives, adverbs, and
non-auxiliary verbs, as open-class, and the rest as
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Figure 3: Coefficent Estimates and 95% CI of the fixed effects with theoretical interests for models fitted with open and closed
class respectively. Condition_ID was Helmert encoded making comparisons between wrong vs no and correct vs wrong and no
mean

closed-class. Surprisal does not vary across condi-
tions for LLMs, but does so for VLMs for image
conditioning. (Note that for the No Image con-
dition, we used a black screen as the image, and
additionally added "Ignore the image context" as
a prompt preceding the description.) Using these
predictors, for both testing our psycholinguistic
hypotheses and psychometric benchmarking, we
fitted mixed effects regression models to predict
the reading time data that we collected, using the
brms and lmer package in R. These models give
us estimates and statistical significance of coeffi-
cients for all the predictor variables, which we can
later analyze to distinguish between psycholinguis-
tic hypotheses. For psychometric benchmarking,
we fitted many models, each only varying at the
kind of surprisal estimate it’s using. For each fit-
ted model, we then analyze the likelihood of the
ground truth reading time data.

5.1 Regression predictor encoding

Unless otherwise specified, we used Helmert cod-
ing for Condition_ID, set up so that one coeffi-
cient encodes the wrong and no difference and
another coefficient encodes the difference between
correct and (wrong and no) mean. We used sum-
encoding for open vs. closed part of speech (POS).
Unless the model is condition specific, in which
case Condition_ID can’t be used as a predictor,
we also assumed an interaction between Condi-
tion_ID and groundedness and Condition_ID and
POS. Assuming this interaction makes sense since
one would intuitively expect that one reads words
in the correct condition even faster especially when
the words are more highly grounded. For all the

models, we use the maximal random effects struc-
ture justified by the design, so we have included
correlated by-subject, by-sentence, by-word, and
by-wordtoken random slopes for Condition_ID,
the fixed effect of our primary theoretical inter-
est. An example of a mixed effect model fitted for
reading time prediction using data from all con-
ditions and parts of speech(open vs. closed) is
the following - RT ∼ Condition_ID.helm*POS
+ surprisal + Frequency + Length +
(Condition_ID.helm*POS + surprisal |
Subject_ID)+ (Condition_ID.helm | Group)
+ (Condition_ID.helm | WordToken) +
(Condition_ID.helm | Word).

6 Results

6.1 Reading Time Prediction

Consider figure (3), which plots the coefficient
estimates and 95% confidence interval of the ef-
fects of theoretical interests from the model fit-
ted with equation RT ∼ Condition_ID.helm
+ surprisal + Frequency + Length
+ (Condition_ID.helm + surprisal |
Subject_ID)+ (Condition_ID.helm | Group)
+ (Condition_ID.helm | WordToken) +
(Condition_ID.helm | Word), individually for
open and closed class words. Now note the second
rows in both panels for models fitted with text-
based surprisals(indicated in light blue in the fig-
ure). For the left panel, the second row is saying
that on average people need 125 ms less to read
an open class word in the correct condition com-
pared to other conditions. Similarly, for the right
panel, the second row indicates that on average peo-

451



ple need 30ms less to read a closed class word in
the correct condition compared to other conditions.
So there is a very significant facilitation for both
open and closed-class words when people get a pre-
view of the relevant image compared to when they
don’t. This evidence strongly suggests that peo-
ple’s facilitation of reading image descriptions after
having a relevant visual preview can be explained
by Comprehensive Grounding Hypothesis and
not by Lexical Grounding Hypothesis. Note that

Surprisal(ms/bit)

Change in RT in 
Correct vs wrong

 &no mean for
change in POS
        level (ms)

Change in RT in
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change in POS
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Figure 4: Coefficent Estimates and 95% CI of the fixed ef-
fects with theoretical interests. Note that the model had a
Condition_ID*POS term, where Condition_ID was Helmert
encoded making comparisons between wrong vs no and cor-
rect vs mean of wrong and no and POS was sum encoded with
two levels, resulting in 2 interaction terms and 2 main effect
terms for Condition_ID

we want to consider only the text surprisal fitted
models’ condition-related effects to distinguish be-
tween lexical and comprehensive grounding hy-
potheses. It is because in this scenario the only
image-related information we want to use for RT
prediction should be through Condition_ID/POS
levels. In both panels of Figure (3), we can see that
the impact of condition ID-related effects is no-
ticeably smaller—or even non-existent—in VLM
surprisal-fitted models compared to text surprisal-
fitted models. However, the overall effect of sur-
prisal itself is quite similar across both types of
models. To gain a complete understanding of the
differences between these models, we fit reading
time data from all three conditions and parts of
speech in Figure (4). From the coefficient esti-
mates and their significance in the first and second
rows, we observe significant facilitation—around
30 ms and 90 ms on average respectively in the
"no" condition compared to the "wrong" condition,
and in the "correct" condition compared to the oth-
ers, in models fitted with text-based surprisals. This
indicates that people are significantly faster in cor-
rect condition compared to other conditions and
wrong condition significantly slows people down

compared to not seeing any image at all. As be-
fore, we see that these effects, however, tend to
shrink or disappear in models fitted with VLM sur-
prisals(indicated with orange-pink on the diagram),
while the impact of surprisal itself (along with other
fixed predictors not shown in the figure) remains
consistent across all models. This strongly sug-
gests that the notable difference in condition ID-
related effects can only be explained by how the
nature of surprisal changes when transitioning
from text-based to multimodal models. All this
evidence also strongly indicates that Correct Image
preview substantially affects comprehenders’ ex-
pectations and that visual-language model surprisal
captures a substantial part (though not all) of this
effect.

6.2 Error Prediction
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Figure 5: X axis indicates the conditions and correctness status
of words(whether or not someone made a mistake in that
word) and Y axis indicates mean and standard error of BLIP2
surprisal for words in a certain condition and correctness status

To investigate if the errors that people make have
anything theoretically interesting to tell us, we first
look into a univariate analysis showing the sur-
prisal distribution across words in different condi-
tions and correctness status. Consider the distribu-
tion of BLIP2 surprisal, which is a VLM, in figure
(5). There is a very clear trend of high average
contextual surprisal values for words that people
got wrong. To prove this claim rigorously with a
multivariate analysis, we fit a logistic regression
model, so the goal is to predict the log-likelihood
of making an error. Figure(6) shows the coeffi-
cient estimates and 95% confidence intervals of
theoretically interesting predictors of this logistic
regression model. From this figure, three things
become evident - 1. From the first two rows, we
see that the error occurrence likelihood does not
vary much across different conditions, 2. From row
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the model had a Condition_ID*POS term, where the encoding
of these terms is similar to before, resulting in 2 main effects
of Condition_ID and 2 interaction terms, which is what we
showed in the figure, along with surprisal.

4, we see that people are less likely to make errors
for open parts of speech in the correct condition
compared to other conditions (since the blue bars
are on the negative side of the plot) and 3. From
row 5, we see that the effect of surprisals is con-
sistent across all models and increasing surprisal
leads to more likelihood of error occurrence.

6.3 Can surprisal difference be explained as a
function of groundedness?
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Figure 7: Every word token in every sentence in the dataset is
indicated with a dot here. X coordinate of that dot indicates
the GPT2 surprisal of that word given the previous words in
that sentence and the Y coordinate of that dot indicates the
KOSMOS2 surprisal of that word given the previous words
and the image that sentence is describing, i.e, the KOSMOS2
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determined by the groundedness rating of the word, noted as
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Consider the figure (7). We can notice that most
dots below the dark blue line, the best-fitted lin-
ear relationship between GPT2 and KOSMOS2
surprisals, are light blue dots indicating highly

grounded words. This motivation suggests that a
lot of highly grounded words exhibit notably lower
surprisal values in VLMs when contrasted with
those derived solely from textual models. Intu-
itively speaking, ImageConditionedTextSurprisal
minus TextSurprisal for a word roughly indicates
the reduction of surprisal for the presence of the
image. Hence, we expect that the more negative Im-
ageConditionedTextSurprisal minus TextSurprisal
is for a word, the more the effect of the image is
on that word, hence the more grounded that word
should be in the image. To formally analyze this
nuance, in figure (8) we predicted the surprisal
difference between two conditions from the same
model using POS type, POS type and groundedness
interaction, frequency and length as fixed effect
predictors. In addition, we incorporated a random
effect predictor that encompasses all fixed predic-
tors, with the sentence type serving as the grouping
variable. The significance of the groundedness ef-
fect on the surprisal difference for each type of POS
is indicated such that “ns” means "not significant";
* means p < 0.01 and ** means p < 0.001.
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fits for each type of POS(open/closed) are shown in the plots.
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Note that when comparing correct condition to
no condition, we notice a consistent pattern of open
class words’ groundedness significantly contribut-
ing to the surprisal difference for all models. But
we don’t notice the same for closed class words,
which makes sense given that they are mostly not
strongly grounded in the image and hence the pres-
ence of an image doesn’t give much extra infor-
mation about them. These findings highlight a
strong correlation between human judgment of
a word’s degree of grounding in an image and
the reduction in that word’s surprisal for the
presence of that image, as measured by recent
VLMs.

However, we notice a significant contribution
of open class words’ groundedness on surprisal
difference between wrong and no conditions for
BLIP2 and IDEFICS(but in the opposite direction
of what we saw in the other comparison). At first,
it might seem counter-intuitive but it just tells us
that models like BLIP2 and IDEFICS struggle to
ignore the image context in the wrong image condi-
tion, hence for the open class words in a sentence
that would otherwise be grounded in the image
in the ’Correct Image’ context, they have signif-
icantly high surprisal due to those words’ visual
absence in the ’Wrong Image’ context, resulting in
the significance we observe in figure (8).

7 Perplexity and psychometric accuracy

In recent years, there has been an effort to study
the increase of log-likelihood for including LLM
surprisal estimate from models as a function of
perplexity(Oh and Schuler, 2023). To investigate
what traits in a VLM give them better predictive
power for human RT, we ran a similar analysis
with different-sized open-sourced versions of all
the models we used in the work - two versions of
all the VLMs except for KOSMOS-2 and a new
VLM that improved upon Llava, Llava-Next. The
baseline regression model was considered with all
baseline predictors such as main effects of helmert
encoded Condition_ID and sum encoded POS and
interaction between them, frequency, length and
full regression models additionally contained each
LM surprisal predictor. Both the baseline and full
regression models had the same random effects
structure; a random intercept and slope for Condi-
tion_ID within each subject, sentence, word, and
word token type was included. After fitting the
regression models, we determined the increase in

log-likelihood (∆LL) for each model by subtract-
ing the log-likelihood of the baseline model from
that of the full model. Finally, the perplexity of
each model type was calculated in our dataset of
all items. Figure (9) shows the resultant plots.
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different shades of the same color and connected with a line
for ease of interpretation.

Note that the increase of log-likelihood for
adding surprisals from different-sized versions of
the same model isn’t very different, however dif-
ferent models can have very different predictive
power regardless of the size, consider Llava and
Llava-Next for example, both versions considered
for these models have the same sizes(7B and 13B
parameter) but Llava-Next has a lot more predictive
power compared to Llava. This strongly indicates
that training diet and objective are more important
than the model size when it comes to psychomet-
ric predictive power. However, all the smaller-size
versions except for Llava-Next are better than the
bigger-size versions. Although this needs further
exploration, the observations indicate that for each
type of training objective and diet, there is possibly
an optimal number of parameters that make the
model most aligned with human expectations, and
beyond that alignment decreases.

8 Conclusion

In this work, we have developed a novel experi-
mental paradigm, Image-Conditioned Maze Read-
ing, to study human linguistic expectations during
real-time language comprehension when a visual
context is involved. Our results demonstrate a sub-
stantial facilitatory effect of correct image context
on language comprehension. This effect is evident
not only for concrete nouns, adjectives, or verbs
directly present in the image but also extends to
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words not explicitly grounded in the visual con-
text. We extended psychometric benchmarking to
visual language models and found that VLM sur-
prisals capture most to all of the facilitator effect
that occurs due to the presence of a relevant vi-
sual context. We discovered that as one goes from
text based model surprisal to VLM surprisal, the
effect of surprisal on reading time doesn’t change
much, but the huge Condition_ID related effects
mostly disappear for VLM surprisal based mod-
els. So, the explanation is in how the nature of the
surprisal changes. We also found a strong corre-
lation between the human judgment of a word’s
degree of grounding in the image and the reduc-
tion of that word’s surprisal for the presence of that
image. We showed empirical support indicating
that heightened contextual surprisal significantly
contributes to errors in maze tasks. Finally, our
findings reveal compelling evidence that the train-
ing objectives and diet of Vision-Language Models
(VLMs) significantly impact their psychometric
predictive power, more so than their size. However,
this observation warrants further investigation.

9 Limitations

In this study, we used images and descriptions from
the validation split of the COCO dataset. At that
time, we were uncertain about the specifics of inves-
tigating Vision-Language Models (VLMs). Upon
further examination down the line, we discovered
that Llava and BLIP-2 had COCO in their pre-
training data, indicating that these models may have
encountered some of our items before. In future
work, we plan to use images and descriptions from
a dataset that has not been used for pre-training any
of the models.

Another challenge we faced was the limited
availability of different-sized versions of open-
sourced VLMs for comprehensive analysis. There
are typically only 2-3 versions available for each
model. This limited our analysis compared to stud-
ies like (Oh and Schuler, 2023), which utilized
many versions of Pythia models (Biderman et al.,
2023) for interpretability analysis and understand-
ing the development of knowledge in autoregres-
sive transformers. The scarcity of multiple versions
of open-sourced VLMs hindered our ability to per-
form a similarly comprehensive analysis.
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Abstract

State of the art models in automatic speech
recognition have shown remarkable im-
provements due to modern self-supervised
(SSL) transformer-based architectures such as
wav2vec 2.0 (Baevski et al., 2020). However,
how these models encode phonetic informa-
tion is still not well understood. We explore
whether SSL speech models display a linguis-
tic property that characterizes human speech
perception: language specificity. We show
that while wav2vec 2.0 displays an overall lan-
guage specificity effect when tested on Hindi
vs. English, it does not resemble human speech
perception when tested on finer-grained differ-
ences in Hindi speech contrasts.

1 Introduction

Human listeners become attuned to the speech
sounds of their native language already in their first
year of life (Werker, 1995; Jusczyk, 2000; Kuhl
et al., 2006). By adulthood, nonnative contrasts
which they were once able to discriminate are no
longer discriminable (Miyawaki et al., 1975; Cutler,
2000; Best and Tyler, 2007). Acquiring a second
language as an adult can thus be marred by dif-
ficulty acquiring certain phonetic contrasts. This
language specificity effect is a core property of
human speech perception.

For human listeners, the difficulty of acquiring
a particular non-native contrast depends both on
whether the acoustic-phonetic dimension used to
distinguish the contrasts is used in the native lan-
guage and on the perceptual similarity of the non-
native categories to native categories (see Best and
Tyler, 2007). For example, while English only has
two categories for the coronal stop series (/t/ and
/d/), Hindi has eight (/ã/,/ãh/,/ú/, /úh/,/t”/,/t”h/,/d”/,/d”h/).
Because of the relationship between the acoustic
dimensions used and the perceptual similarity to ex-
isting English categories, Hindi contrasts that differ
along aspiration (/t/ vs. /th/) are easier for English

listeners to acquire than along place of articulation
(dental vs. retroflex; /t/ vs. /ú/) or voicing (/t/ vs.
/d/) (Werker et al., 1981; Tees and Werker, 1984;
Pederson and Guion-Anderson, 2010; Hayes-Harb
and Barrios, 2022).

Whether computational models of speech per-
ception share certain properties with humans has
been a subject of recent interest. Previous work
has suggested that like humans, some speech mod-
els with non-transformer architectures display lan-
guage specificity effects (Millet et al., 2019; Matu-
sevych et al., 2020; Schatz et al., 2021).

However, less work has examined this effect
in transformer architectures. Millet and Dunbar
(2022) suggest that self-supervised speech trans-
formers do not display a cross-linguistic differ-
ence in predicting human performance, but their
measures aggregate across all contrasts, and given
the complex relationship between native and non-
native contrasts, this makes interpretation of the
results difficult. In fact, previous work with non-
transformer speech models found that for vow-
els, while the model displayed an overall language
specificity effect, the direction of the effect was in
the opposite direction than expected (Millet et al.,
2019): a non-native model better predicted native
speakers’ discrimination. It is not known to what
extent the specific perceptual similarity space in
transformers is similar to humans.

In this paper, we test whether self-supervised
transformer speech models (wav2vec 2.0) display
an effect of language specificity. We do so by ex-
amining specific patterns of cross-linguistic differ-
ences, using Hindi contrasts as a case study. We
explore a series of contrast that are known be be
difficult for native English listeners. For these lis-
teners, as noted above, place (/t/ vs. /ú/) and voicing
(/t/ vs. /d/) are more difficult dimensions to dis-
criminate along than aspiration (/t/ vs. /th/) (Werker
et al., 1981; Tees and Werker, 1984; Pederson and
Guion-Anderson, 2010; Hayes-Harb and Barrios,
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2022). These behavioral results provide a test case
to explore targeted fine-grained categorization pat-
terns of speech models to determine whether the
models’ representations are structured similarly to
human listeners.

In Experiment 1, we find that wav2vec 2.0 dis-
plays an overall language specificity effect: a
native-trained model performs better on native cat-
egorization task than a non-native model. In Ex-
periment 2, we examine specific contrasts where
second language learners are attested to struggle,
and find that both the native and non-native model
show high accuracy in categorization across the
most difficult dimensions for humans – place and
voicing. We additionally find that where human lis-
teners have been shown to have the least difficulty
overall, the models show the largest cross-linguistic
difference in accuracy. This suggests that wav2vec
2.0 is encoding language specific information, but
structured in ways that differ from human listeners.

2 Experiments

2.1 Models
The following experiments were performed on two
models based on the wav2vec 2.0 architecture with
7 CNN encoder layers and 12 transformer layers
(Baevski et al., 2020). Throughout this paper we
display results from all 12 transformer layers, as
previous work has shown that different layers may
produce different results depending on the task
(Pasad et al., 2021).

The first model we use is the English pre-trained
wav2vec 2.0 base model available through the
fairseq repository.1 This model is pre-trained
on approximately 1000 hours of English from the
Librispeech Corpus of read English (this model is
referred to as wav2vec-english).

The second is a Hindi pre-trained model avail-
able through the Vakyansh toolkit (Chadha et al.,
2022).2 The Hindi model is trained on 4200 hours
of Hindi starting from the base fairseq wav2vec 2.0
model with continued pre-training (this model is
referred to as wav2vec-hindi).

2.2 Data Preparation and Classifier Setup
For Hindi evaluation, we used the Hindi Common
Voice corpus,3 a crowd-sourced corpus of read

1https://github.com/facebookresearch/fairseq/
tree/main/examples/wav2vec

2https://github.com/Open-Speech-EkStep/
vakyansh-models

3https://commonvoice.mozilla.org/en/datasets

speech. To acquire time-aligned phoneme tran-
scriptions, we force-aligned the speech with the
Montreal Forced Aligner (McAuliffe et al., 2017).
We used the validated subset of the corpus which
totaled 13 hours. For English evaluation, we used
the Wall Street Journal corpus (Paul and Baker,
1992), a read corpus of English. To match the sizes
of the corpora, we randomly sampled utterances
until we reached 13 hours.

For each utterance in both Hindi and English,
we extracted embeddings from each of the 12
transformer layers from both the Hindi-trained
and English-trained models. For each embedding,
we average over the frames composing a single
phoneme according to the forced alignments. Thus,
each phoneme is represented by a single embed-
ding vector of size 768.

Given all the Hindi and English embedded
phonemes, we additionally sub-sampled both
datasets to get roughly an equal number of in-
stances in each target category. We performed
this step because the distribution of phonemes dif-
fers between English and Hindi, especially for the
phonemes of interest. The number of individual
tokens was determined by the smallest class of in-
terest (N=67 for Hindi /ãh/). Taking the entire set
of embeddings and phoneme labels, we randomly
sampled from the set of phoneme embeddings until
the desired number of tokens was reached. In all
experiments, each phone category contains at most
67 tokens.4 This step was performed to ensure that
any difference in classification accuracy was due to
the learned representations, and not to a frequency
effect in the classifier.

Classification was performed using sklearns’s
Logistic Regression function with a multinomial
loss to get a measure of overall phone multi-way
classification accuracy across layers. The classifier
is trained to predict the correct phone label from
all possible labels (English=42 labels, Hindi=72
labels). In order to get a measure of standard error,
we utilized 5-fold cross validation.

2.3 Experiment 1: Global Language
Specificity

In the first experiment, we explored whether the
models display an overall global language speci-
ficity effect by examining the cross-linguistic clas-
sification accuracy aggregated over all phonemes

4Some rare phonemes (e.g., /Z/) occurred fewer than 67
times but were not the focus of the current work
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Figure 1: Wav2vec-hindi performs better than wav2vec-
english on global multi-way classification for Hindi test
(A) as well as for Hindi dental and retroflex sounds (B)

for the Hindi- and English-trained models’ perfor-
mance on both Hindi and English test data.

If the models display a native language speci-
ficity effect, we would expect that the aggregated
classification accuracy across phonemes for the
Hindi-trained model should be higher on Hindi test
data than the English-trained model on Hindi test
data and vice versa for English test data.

2.3.1 Results

Examining the overall classification accuracy in
the best performing layer (layer=8), we find that
the wav2vec-hindi has 10% higher categorization
accuracy than wav2vec-english on Hindi test data.
When tested on English, wav2vec-english outper-
forms wav2vec-hindi by 3% (Figure 1a). This sug-
gests that the models do display a language speci-
ficity effect at a global level.

To determine whether the cross-linguistic dif-
ferences are due to predicted difficulty in place of
articulation for Hindi test data, we further exam-
ined the multi-way classification results averaged
across only the set of Hindi dental and retroflex
test phonemes (Figure 1b). As expected, the effect
remains. The non-native wav2vec-english displays
more difficulty with the dental and retroflex sounds
in Hindi than the native model (wav2vec-hindi).

2.3.2 Discussion
In the global classification, we found an overall
difference in wav2vec-english and wav2vec-hindi
cross-linguistic classification accuracy collapsed
across phonemes for Hindi and English test data.
When we examined the aggregated classification
accuracy of dental and retroflex sounds in the Hindi
test data only, the effect remains – the Hindi model
performs better on both dental and retroflex classi-
fication than the English model.

This suggests that through self-supervised train-
ing, wav2vec 2.0 is encoding language specific
information. This has downstream consequences
on phoneme encoding causing language-dependent
patterns of categorization. However, the current
experiment is limited to multi-way classification in
which the model identifies the correct phoneme out
of all possible labels (e.g., /d/ vs all other labels
{/dh/, /th/, /ã/, /b/, /p/,...}).

To determine whether the model is encoding in-
formation in a similar way to human listeners, it is
of interest what the possible errors in this catego-
rization are. For example, while the model makes
errors in classification of dental or retroflex sounds,
it is unknown whether the error is due to mistaking
a dental sound as a retroflex sound or for some
unrelated sound such as a vowel or fricative.

Therefore, in the following experiment, we ex-
amine finer-grained categorization performance
limited to just the distinctions across dimensions
of interest in the Hindi test data: place (dental or
retroflex), voicing (voiced or unvoiced), and aspi-
ration (aspirated or unaspirated). This task is also
more directly comparable to the kind of perceptual
tasks used with human listeners.

2.4 Experiment 2: Local Language Specificity
We simulate a two-alternative forced choice task
where the model must categorize a sound into one
of two categories while other features are kept con-
stant. In a behavioral two-alternative forced choice
task, listeners are given a sound, and asked to de-
termine whether the sound belongs to category A
or B. We simulate this by reducing the multi-way
classification of Experiment 1 to a two-way classi-
fication task where the probability of a class y for
a feature vector xl from layer l is equal to

p(y = A) =
exp(W T

Axl)

exp(W T
Axl) + exp(W T

Bxl)
(1)

WA refers to the classifier weights for class A and
WB refers to the weights for class B in the classifier
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trained on representations from a given layer l.

2.4.1 Results
If the models are encoding language specific infor-
mation during training, we would expect the En-
glish model to struggle in classification of the Hindi
sounds relative to the Hindi model primarily along
the dimensions of place (dental vs. retroflex), sec-
ondarily along voicing, and rarely along aspiration,
as these are the relative difficulties experienced by
human second language learners of Hindi whose
native language is English (Werker et al., 1981;
Tees and Werker, 1984; Pruitt et al., 2006; Hayes-
Harb and Barrios, 2022). What we found instead is
that both the English and the Hindi trained models
perform well in correctly categorizing sounds as
either dental or retroflex (Figure 2, top plot). Thus,
despite the cross-linguistic difference for the global
multi-way classification task from Experiment 1,
this effect is no longer present when we compare
between only dental and retroflex sounds, where
human data would most predict it. Similarly, both
the Hindi and English models perform well when
tested on categorization along voicing (Figure 2,
middle plot). While voicing seems to be marginally
easier to categorize along, this holds for both the
English and the Hindi-trained models. Therefore,
unlike human English listeners who perform worse
than native Hindi listeners when categorizing these
sounds, the monolingual native English model and
the Hindi-trained model perform well overall on
the Hindi contrasts regardless of training language.

Further, when testing categorization accuracy
along aspiration, where we expect the least amount
of language specificity (i.e., best performance for
the wav2vec-english), we find the opposite effect.
In the best performing layer (layer=7), we find the
largest cross-linguistic difference in which the the
categorization accuracy for wav2vec-hindi is 25%
higher than the wav2vec-english. Further exami-
nation of the pattern of classification errors in the
multi-way classification from Experiment 1 shows
that the confusions for both wav2vec-hindi and
wav2vec-english were indeed primarily across as-
piration and only secondarily across place Figure 3.

2.4.2 Discussion
In this experiment, we limited the task to a two-
alternative forced choice in order to explore clas-
sification accuracy across specific phonetic dimen-
sions. We found that neither the monolingual
wav2vec-english nor wav2vec-hindi displayed any

Figure 2: There is no difference in performance for the
models on contrasts differing along place or voicing.
Wav2vec-hindi outperforms wav2vec-english only on
contrasts differing along aspiration.

Figure 3: Confusion matrix of Hindi phoneme classifi-
cation for English and Hindi trained models
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difficulty in distinguishing between the Hindi con-
trasts of place (dental vs. retroflex) or voicing
(voiced vs. unvoiced) in phoneme classification.
We also found that for distinctions along aspiration
(aspirated vs. unaspirasted), wav2vec-hindi outper-
forms wav2vec-english, displaying a fine-grained
effect of language specificity. These results show
that the effect of overall language specificity that
was found in Experiment 1 was driven primarily by
the wav2vec-english model’s errors along aspira-
tion when categorization the Hindi phonemes.

Native English listeners who are learning Hindi
as a second language primarily struggle with place
and voicing distinctions rather than aspiration
(Werker et al., 1981; Tees and Werker, 1984; Pruitt
et al., 2006; Pederson and Guion-Anderson, 2010;
Hayes-Harb and Barrios, 2022). The difficulty in
discrimination along place for native English lis-
teners is thought to be due to issues in attending to
the relevant acoustic cues differentiating the con-
trast (Flege and Bohn, 2021; Strange, 2011). The
models’ performance suggests they are not weight-
ing the relevant cues to category identification in
a way similar to humans. This is in line with re-
cent work that has found that wav2vec 2.0 displays
different weighting of dimensions than humans in
noisy listening environments (Jurov, 2024).

While large speech models may have high per-
formance on downstream speech recognition tasks,
they are not learning speech representations in a
way comparable to humans. The difference in
the learned representations could be because the
current pre-trained models are trained in a self-
supervised manner without any information re-
garding category identity, unlike human learners
who have knowledge the phonological structure of
their native language. This could indicate that the
necessary information for creating native-like cue-
weighting patterns is guided by higher-level cate-
gory knowledge that is not present in the current
models. Of interest in future work is investigating
this differential weighting of acoustic cues to better
understand how the learned perceptual spaces differ
between humans and speech models and how this
may impact global and fine-grained cross-linguistic
in categorization and discrimination performance.

3 Conclusion

In this work we explored both global and fine-
grained cross-linguistic patterns of categorization
in wav2vec 2.0. We found that models perform

better overall at test on a language they have been
trained on, displaying a global language specificity
effect similar to humans. However, when we ex-
amined specific contrasts differing along certain
phonetic features, the models pattern differently
than humans. This result provides evidence of fun-
damental differences in the structure of representa-
tions learned by wav2vec 2.0 and human listeners.

4 Limitations

One limitation of the current work is the reliance
on pre-trained models which limited the balance
between amount and kind of training data for the
wav2vec-hindi and wav2vec-english. Wav2vec-
hindi was trained on a greater amount of data
than wav2vec-english, but had been trained using
the weights from the wav2vec BASE as the start-
ing point for continued pre-training. Thus, the
model may be better described as a bilingual Hindi-
English model. The current work also displayed
results from only wav2vec 2.0, leaving open the
question of whether transformer models trained
with a different objective would display the same
patterns of language specificity.
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Abstract

Grapheme-to-Phoneme (G2P) correspondences
form foundational frameworks of tasks such
as text-to-speech (TTS) synthesis or automatic
speech recognition. The G2P process involves
taking words in their written form and gener-
ating their pronunciation. In this paper, we
critique the status quo definition of a grapheme,
currently a forced alignment process relating
a single character to either a phoneme or a
blank unit, that underlies the majority of mod-
ern approaches. We develop a linguistically-
motivated redefinition from simple concepts
such as vowel and consonant count and word
length and offer a proof-of-concept implemen-
tation based on a multi-binary neural classifi-
cation task. Our model achieves competitive
results with a 31.86% Word Error Rate on a
standard benchmark, while generating linguis-
tically meaningful grapheme segmentations.

1 Introduction

Segmenting words into graphemes is crucial for ac-
curate and reliable text-to-speech systems (Le et al.,
2020; Taylor, 2022; Ying et al., 2024), as well as
providing a tokenisation framework for training lan-
guage models for use by varied segments of society
(Raškinis et al., 2019; Basher et al., 2023). The
currently predominant approach to G2P, which ex-
tracts phonemes from a list of graphemes, is one of
forced alignment (Williams et al., 2024; Gao et al.,
2024; Cheng et al., 2016; Rao et al., 2015). In this
approach, a grapheme is defined as a single char-
acter that either does or does not have a respective
phoneme when using G2P correspondences. This
process is illustrated in Table 1 (a) with blank units
denoted as φ. However, from a linguistic perspec-
tive, a grapheme is not just a single character, but
a representation of a phoneme, consisting of up to
four characters (Brooks, 2019). Redefining the no-
tion of grapheme could therefore change sub-word
tokenisation, allowing for models to be trained on

a set of compound graphemes in addition to pro-
viding a more linguistically correct method to split
words into phonemes. This is shown in Table 1 (b).

The contributions of this paper are as follows:

• We redefine the concept of graphemes in
G2P segmentation, aligning it with Referential
Conception theory (Kohrt, 1986).

• We present a novel twin-staged method for
(a) G2P segmentation and (b) phoneme cor-
respondences that approaches the results of
leading techniques on a standard CMUDict
benchmark.

• We release a new dataset to the community,
EngGraph, a subset of CMUDict, with 9,641
pre-transcribed British English graphemes
to enable future grapheme segmentation re-
search.

2 Related Work

LSTM-based G2P Significant advances in
LSTM models for G2P have commonly relied
on a one-to-one mapping between graphemes and
phonemes. Rao et al. (2015) introduced a unidi-
rectional LSTM with output delays, achieving a
word error rate (WER) of 25.8% on the CMUDict
benchmark by ensuring 1:1 phoneme-grapheme
alignment (e.g., "google" transcribed to g, u, g, @,
l, ϕ, where ϕ is a placeholder). Mousa and Schuller
(2016) addressed the many-to-many alignment is-
sue with a bidirectional LSTM (BLSTM), achiev-
ing a 23.23% WER on the same task by adding a
linear projection layer, splicing window, and de-
coding beam to a 4-layer BLSTM network to im-
prove alignment. Yao and Zweig (2015) achieved
a 23.55% WER with a BLSTM and character-to-
phoneme alignment that allowed for single, multi-
ple, or no corresponding phonemes (e.g., "tangle"
transcribed to T, AE, NG, G, AH: L, NULL).

Attention-based G2P Recent advances in atten-
tion mechanisms and transformers have largely
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Word Grapheme Transcription (a) Phoneme Transcription (a) Grapheme Transcription (b) Phoneme Transcription (b)
accuse a-c-c-u-s-e @-k-φ-U-z-φ a-cc-u-se @-k-U-z
commercial c-o-m-m-e-r-c-i-a-l k-ah-m-φ-e-r-s-h-ah-l c-o-mm-er-ci-a-l k-ah-m-er-sh-ah-l
boulevard b-o-u-l-e-v-a-r-d b-φ-uh-l@-φ-v-φ-ar-d b-ou-le-v-ar-d b-ou-l@-v-ar-d

Table 1: Current (a) and proposed (b) linguistic Grapheme transcription examples

kept to the same definition of a grapheme. Tosh-
niwal and Livescu (2016)’s early ensemble model
with global attention achieved a 20.24% WER on
the CMUDict task, struggling with foreign names,
a common issue in G2P models (Waxmonsky and
Reddy, 2012). Řezáčková et al. (2021)’s Text-to-
Text Transfer Transformer showed a 0.96% WER,
but similarly struggled with unseen words, increas-
ing errors to 33.8%. Dong et al. (2022)’s BERT
model had a 23.36% WER on Dutch due to English
complexities, making it a less comparable baseline.

We advocate for a precise linguistic definition
of graphemes, as accurate G2P conversion is vital
for natural and clear speech synthesis. Mousa and
Schuller (2016)’s models adopt a many-to-many
alignment, but still miss the essential graphemic
units of trigraphs (e.g., "ear" in "research" for
the /E:/ phoneme), quadgraphs (e.g., "ough" in
"thought" for the /c:/ phoneme), and split digraphs,
a non contigous two character grapheme, (e.g.,
"a.e" in "rationale" for the /eI/ phoneme).

3 Linguistic Definitions of Graphemes

In NLP areas, a grapheme is currently defined as
a single character, with G2P models aligning each
character with a phoneme or a blank unit. Out-
side of NLP research, there are two linguistic theo-
ries on graphemes. Referential conception (Kohrt,
1986) defines a grapheme as the smallest written
unit corresponding with phonemes, like "ph" in
"phonetics" for the /f/ phoneme. This theory sug-
gests writing depicts speech. The analogical con-
cept (Lockwood, 2000) uses minimal pairs to show
phoneme differences based on spelling, such as "t"
and "k" in "parts" and "parks," arguing that writing
and speech should be studied separately.

G2P correspondences balance these theories by
viewing graphemes as influencing pronunciation
but also as distinct from phonemes in TTS research.
This hybrid approach presents challenges. Given
the focus on TTS in G2P models, we propose adopt-
ing the referential conception for computational lin-
guistic applications as in these applications, writing
is being used to mimic and create spoken language.
We rely on Brooks (2019), who conducted a de-

tailed analysis of British English spelling, identify-
ing 284 graphemes: 89 in the ‘main system’ and
195 in the ‘extended system,’ corresponding to 43
phonemes. Brooks notes that while the number of
graphemes remains the same in American English,
correspondences differ to reflect pronunciation dif-
ferences.

Grapheme
Length

Main
System

Extended
System

Single
Character 26 0

2 Characters 53 118
3 Characters 10 57
4 Characters 0 20

Table 2: Grapheme lengths for the main and extended
system (Brooks, 2019)

Analysing grapheme lengths highlights flaws in
current G2P models, see Table 2. Current models,
which use only single or digraph graphemes, fail
to handle the complexities of English, leading to
mispronunciations. For instance, without recog-
nising trigraphs, TTS systems can add an extra
phoneme in the G2P stage, such as an additional /d/
in "acknowledge." Proper grapheme segmentation
transcribes the word as "a-ck-n-o-w-le-dge" with
the "dge" grapheme represented with a single /g/
sound with the d being silent, enhancing pronunci-
ation accuracy for simple and complex words.

4 Case Study

4.1 Data Analysis
The initial task of this project was to compile a
comprehensive corpus of English words along with
their grapheme transcriptions. The Oxford English
Dictionary states that the 7,000 most common En-
glish words account for 90% of word use (Oxford
Dictionaries, 2023), which we used as lower bound
of coverage for our resource. Given that there are
no existing linguistically transcribed British En-
glish grapheme resources, we selected a large set
of common English words, specifically, the 10,000
most indexed British English words on web-pages
indexed by Google (WorldlyWisdom, 2021) as a
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basis for a new resource. All words were tran-
scribed into grapheme form based on the guidelines
in Brooks (2019). All words in this new British
English dataset are also found in the American En-
glish CMUDict benchmark, although transcribed
to British English pronunciation correspondences
instead of American English correspondences.

Our new corpus EngGraph includes 9,641 words
annotated with grapheme transcriptions, grapheme
counts, and basic linguistic features such as word
length, vowel and consonant count. In this dataset,
all characters are consonants except for the vow-
els [a,e,i,o,u].1 Figure 1 illustrates the number of
graphemes against characters, consonants and vow-
els. While the feature counts plotted approximate
Gaussian distributions, some grapheme distribu-
tions exhibit significant skew and overlap. These
deviations pose challenges for mathematical mod-
els by distorting data representation and compli-
cating decision boundaries. Specifically, skewness
results in asymmetric distributions, affecting mem-
bership function evaluations, while overlap makes
class distinction difficult, leading to less precise
classification and increased ambiguity. This skew
proved a challenge for classical mathematical mod-
elling approaches such as Fuzzy Inference Sys-
tems (Rose and Kambhampati, 2024), having a
grapheme count classification accuracy of 50.18%,
with an accuracy of 95.51% if a margin of ± 1 is
given, highlighting the issue of class overlapping.

4.2 One-vs-Rest (OvR) Model

As our key aim is to evaluate the effectiveness
of our new linguistically-motivated definition of
grapheme, we opt for a simple, easy-to-replicate
One-vs-Rest (OvR) architecture: a set of ten identi-
cal binary feedforward neural networks. Each net-
work has three inputs (word length, vowel count,
consonant count), two dense layers with 128 units,
and 30% dropout, with a binary output. The models
were trained for 150 epochs with ADAM optimisa-
tion, a learning rate of 0.001, a batch size of 8, and
early stopping with a patience of 20 epochs.

The architecture was trained on curated subsets
of our EngGraph corpus, ensuring all elements are
also present in the CMUDict benchmark dataset
for comparability. We generated 10 balanced data
subsets by selecting all examples with a specified
number of graphemes (from 1 to 10) and augment-

1This dataset can be found at: https://github.com/
SamuelRoseAI/EngGraph-Dataset/tree/main

Figure 1: Character, consonant, and vowel count distri-
butions for different numbers of graphemes.

ing each subset with an equal number of examples
featuring a different number of graphemes. For
instance, the subset for one grapheme includes all
records with one grapheme, alongside an equal
number of randomly selected records with 2-10
graphemes. This approach ensures an equal dis-
tribution of true and false records for each OvR
model, with a random 30% of the data reserved
as a testing set. Earlier experiments with a single
multi-class architecture failed with low accuracy,
arguably due to complexities shown in Figure 1.

Following the classification of grapheme counts,
we developed a word-to-grapheme mapping
method to established word error rates. This
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One-vs-Rest Neural Network OutputsWord Input One Two Three Four Five Six Seven Eight Nine Ten
Grapheme

Count
labelled [8,3,5] 0.0002 0.0001 0.0217 0.3746 0.6110 0.8101 0.1190 0.0237 0.0097 0.0057 6
ribbon [6,2,4] 0.0009 0.0028 0.1512 0.7157 0.7987 0.2549 0.0023 0.0021 0.0016 0.0018 5
study [5,1,4] 0.0054 0.0129 0.5885 0.8390 0.3667 0.0003 0.0001 0.0002 0.0006 0.0006 4
strengthen [10,2,8] 0.0001 0.0000 0.0001 0.0085 0.0611 0.4718 0.8796 0.8622 0.4068 0.6171 6

Table 3: One-vs-Rest Networks Input and Output Examples

OvR Model n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
Accuracy 0.9531 0.9238 0.8744 0.7976 0.7844 0.7855 0.8402 0.8878 0.9255 0.9466
F1-Score 0.95 0.93 0.86 0.82 0.81 0.80 0.85 0.89 0.93 0.95
Recall 0.94 0.99 0.88 0.91 0.89 0.89 0.96 0.97 0.94 0.98
Precision 0.97 0.88 0.85 0.74 0.74 0.73 0.77 0.83 0.92 0.93

Table 4: One-vs-Rest Neural Network classification results, where n equals the number of graphemes.

method uses the OvR classifier with the highest
confidence to identify grapheme mappings. If no
valid mapping of graphemes is possible using the
classified number of graphemes, the class with the
next highest confidence is selected. This process
is repeated until a valid grapheme mapping and
phonetic transcription are obtained. To achieve
this, an iterative approach was employed. The list
of graphemes was ordered from largest to small-
est, and the largest grapheme matching the first
n characters of the word was selected. This pro-
cess continued with the remaining characters until
all characters in the word were mapped to a valid
grapheme representation. The procedure iterates
recursively, ruling out certain grapheme combina-
tions when a valid mapping is not found for the cur-
rent branch. This approach was validated against
the ground truth phonetic transcriptions, yielding
a Word Error Rate (WER) of 31.86%, comparable
to the models discussed in Sec. 2. This indicates a
significant opportunity for future refinements to en-
hance the accuracy of G2P transcriptions using our
proposed new redefinition of graphemes in NLP.

4.3 Results and Discussion

The performance of these ten networks is notably
high, see Table 4, and approaching the WERs pre-
sented in Sec. 2, despite our simple architecture.
The system is computationally efficient despite
maintaining ten neural networks. Our OvR format
ensures each model is trained on a balanced dataset,
distinguishing the characteristics of words with a
specified number of graphemes, which adds trans-
parency to grapheme analyses. Our multi-network
system is easily extendable, e.g. new datasets can
accommodate longer, more linguistically complex
words, and more complex neural architectures may

further enhance classification performance. Ta-
ble 3 shows examples of network inputs and out-
puts, where 3/4 predictions matched the correct
grapheme count, while the fourth was off by one.

5 Conclusion

Our redefinition of graphemes, inspired by the ref-
erential conception theory, has profound implica-
tions for the task of G2P. Already approaching
results given in state-of-the-art methods using a
simple architecture, our research challenges cur-
rent methodologies, highlighting the limitations of
single-character graphemes, and offering a more
inclusive framework for text representation and se-
mantic research. This shift paves the way for more
accurate, culturally-sensitive language processing
systems. This paper advances NLP research by
advocating for hybrid graphemes, addressing crit-
ical gaps in existing methods. It provides practi-
tioners with tools to improve the performance and
adaptability of their applications, and encourages
exploration of the phonetics-semantics connection,
influencing text tokenisation, segmentation, and
feature extraction in NLG applications. Addition-
ally, the application of hybrid graphemes will aid
in speech recognition tasks, such as differentiat-
ing homophones, and modelling dialect differences
in English, reflecting true linguistic diversity and
additionally allowing for more culturally sensitive
models.

Limitations

Our study has several limitations that should be
noted. The dataset, while comprehensive, includes
only 9,641 words and focuses on British English
pronunciation, potentially limiting its applicability
to other English dialects and languages. In addition,
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while all elements of EngGraph are present in the
standard CMUDict Dataset, our study is looking
at British English compared to American English
and additionally our dataset is not as expansive
as the CMUDict dataset which has over 134,000
words with their phonetic transcription. The prepro-
cessing steps and basic feature set, including word
length, vowel count, and consonant count, may
not fully capture the nuances required for accurate
grapheme segmentation, particularly for irregular,
slang, borrowed, or complex words. Additionally,
the model’s simple architecture, though computa-
tionally efficient, may not perform as well as more
advanced architectures like transformers.

The use of Word Error Rate (WER) as the pri-
mary evaluation metric, while standard, does not
fully reflect linguistic accuracy, particularly for par-
tial matches. Ethical considerations include po-
tential biases in the dataset, which overlooks re-
gional dialects and minority languages, impacting
accessibility and fairness in applications. Further-
more, our study has not been extensively tested
in real-world scenarios, which may present chal-
lenges not accounted for in controlled experiments.
Future work should explore more advanced archi-
tectures, a wider range of linguistic features, and
larger, more diverse datasets, as well as extend the
approach to other languages, English dialects, and
real-world applications.
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Abstract

Counterspeech presents a viable alternative to
banning or suspending users for hate speech
while upholding freedom of expression. How-
ever, writing effective counterspeech is chal-
lenging for moderators/users. Hence, develop-
ing suggestion tools for writing counterspeech
is the need of the hour. One critical challenge
in developing such a tool is the lack of qual-
ity and diversity of the responses in the ex-
isting datasets. Hence, we introduce a new
dataset - CROWDCOUNTER containing 3,425
hate speech-counterspeech pairs spanning six
different counterspeech types (empathy, humor,
questioning, warning, shaming, contradiction),
which is the first of its kind. The design of
our annotation platform itself encourages an-
notators to write type-specific, non-redundant
and high-quality counterspeech. We evaluate
two frameworks for generating counterspeech
responses - vanilla and type-controlled prompts
- across four large language models. In terms
of metrics, we evaluate the responses using rel-
evance, diversity and quality. We observe that
Flan-T5 is the best model in the vanilla frame-
work across different models. Type-specific
prompts enhance the relevance of the responses,
although they might reduce the language qual-
ity. DialoGPT proves to be the best at following
the instructions and generating the type-specific
counterspeech accurately.

1 Introduction

The proliferation of hate speech and offensive lan-
guage has become a significant problem in the
current society (Israeli and Tsur, 2022). Efforts
to moderate such content using banning and sus-
pension are ineffective as users might shift to
other platforms (Russo et al., 2023). Further, ban-
ning/suspension hampers the principles of freedom
of speech (Ullmann and Tomalin, 2020). Hence,
social scientists are focusing on alternative forms
of mitigation strategies, one of which is counter-

speech. It is a response to abusive or hateful lan-
guage in the form of constructive and persuasive
responses. While counterspeech presents itself as a
viable alternative following the principles of free-
dom of expression, it comes with challenges. A
major challenge is the onus on the moderators or
the users to write a good counterspeech (Chung
et al., 2021b).

Hence, researchers across the globe are attempt-
ing to develop NLG-based suggestion tools to help
moderators craft counterspeech. One major chal-
lenge of building such tools is a good quality and
diverse abusive speech-counterspeech pair dataset.
Few of the past datasets use synthetically gener-
ated hate speech(Chung et al., 2019; Fanton et al.,
2021), while others are not very diverse in terms
of abusive speech targets (Chung et al., 2019) or
types of counterspeech (Qian et al., 2019). Few
of the approaches require experts (Chung et al.,
2019; Fanton et al., 2021), which makes them less
scalable. Hence, we prepare a dataset - CROWD-
COUNTER following the steps listed below.

• We use HateXplain (Mathew et al., 2021) to
collect the abusive samples which has diverse
targets and social media dialect.

• Our crowd-based annotation platform is de-
signed to avoid common pitfalls, which re-
duces the dependence on experts.

• We encourage the annotators to write a par-
ticular type of counterspeech for each hate
speech. This ensures diversity of responses.

Based on this, we curate a dataset having 3425
hate speech-counterspeech pairs from 1325 unique
hate speech which amounts to 2.58 counterspeech
per hate speech. The dataset contains six different
types of counterspeech as suggested by Benesch
(2014). To the best of our knowledge, this is the
first benchmark for evaluating type-specific coun-
terspeech generation across various types and tar-
gets.

Using this dataset, we built two prompting frame-
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works – vanilla and type-specific prompts, for gen-
erating counterspeech using four models. In the
vanilla prompt approach, we also compare two par-
allel hatespeech-counterspeech datasets - Gab and
Reddit (Qian et al., 2019). We evaluate the gen-
erated responses using three different categories
of metrics - referential, diversity and quality. We
make the following observations.

• Our dataset has a higher quality in terms of di-
versity, readability and quality metrics com-
pared to other crowd-sourced datasets - Gab
and Reddit.

• Flan-T5-base emerges as the top model in the
vanilla generation - generating more relevant
(meteor and gleu), better quality (gruen) and
diverse responses (div, dist-2). The Llama
models are better in terms of bleurt, while the
DialoGPT generates counterspeech with high
counter-argument quality.

• Type-specific generation enhances the coun-
terspeech quality and relevance (bleurt), de-
teriorates the language quality, and increases
toxicity. Flan-T5-base generates the most di-
verse counterspeech and has better language
quality. DialoGPT responses follow the type
to be generated more accurately in terms of
precision and recall. (Examples in Appendix)

We make our annotation framework, code and
dataset public at this link1 for reproducibility and
future research.

2 Related works

Counterspeech (Benesch, 2014) has been pro-
posed as an effective mitigation strategy for hate
speech (Cypris et al., 2022; Saha et al., 2022; Li
et al., 2022; Zhu and Bhat, 2021). One of the earli-
est works (Qian et al., 2019) collected abusive lan-
guage from Gab and Reddit and asked the crowd
annotators to provide the counterspeech. Few other
datasets (Chung et al., 2019; Fanton et al., 2021)
rely on expert annotations. One of the key prob-
lems of both these datasets is that the hate speech in-
stances are generated synthetically; hence, a coun-
terspeech generation system built on this cannot be
deployed on actual social media platforms.

As highlighted by Benesch et al. (2016), dif-
ferent strategies/types are helpful while writing
an effective counterspeech. Mathew et al. (2019)
curated a dataset of counterspeech, where each
instance was annotated by the type(s) they cor-

1https://github.com/hate-alert/CrowdCounter

responded to. Another dataset (Chung et al.,
2019) also contains types annotated along with
the counterspeech provided; however, it is only
limited to Islamophobic content. Recently, Gupta
et al. (2023) re-annotated the counterspeech in-
stances from a past work (Fanton et al., 2021)
with type-specific annotation. We had diffi-
culty accessing the dataset for our benchmark-
ing. The data was not available in the mentioned
repository- https://github.com/LCS2-IIITD/
quarc-counterspeech, and we did not receive
responses to our emails requesting it. Another pa-
per (Saha et al., 2024a) focused on creating counter-
speech in zero-shot setting and tries to create type-
specific counterspeech using type-specific prompts.
Although this is a step in the right direction, prompt
based control provides limited flexiibility. Finally,
we were dismayed by not being able to retrieve
the dataset and use it for our benchmarking exper-
iments. We did not find the dataset (as claimed
by the authors) in the repository associated with
the paper - https://github.com/LCS2-IIITD/
quarc-counterspeech; moreover, the authors did
not respond to our e-mails requesting the data.

In our paper, we attempt to address the limita-
tions of the past research and present a dataset
of abusive speech-counterspeech pairs CROWD-
COUNTER. The abusive speech in this dataset is
naturally occurring (from either X or Gab) and is
diverse in terms of the number of targets. While
the counterspeech is crafted by crowd annotators,
we introduced a series of techniques to avoid the
pitfalls of crowd-based annotations. The annotators
were tasked to craft the counterspeech instances of
different types (warning of consequences, sham-
ing/labeling, empathy/affiliation, humor, contradic-
tion and questions) unlike in (Gupta et al., 2023)
where the annotators had to label an existing coun-
terspeech with a type thus severely limiting the
expression of their own opinion.

3 Dataset curation

In this section, we discuss the details of how
CROWDCOUNTER was curated. Specifically, we
discuss how we sampled the abusive language
dataset, the design of the annotation platform, the
selection of annotators and the final dataset cura-
tion. We employ annotators from Amazon Me-
chanical Turk (https://www.mturk.com/), one of
the popular annotation platforms. The following
subsections provide an in-depth overview of the
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key steps and considerations in our dataset curation
process.

3.1 Hate speech sampling

In order to create an abusive speech-counterspeech
pairs dataset, we first need to sample the hate
speech. Since we wanted the abusive speech to rep-
resent speech from the online world, we chose one
of the past datasets – HateXplain (Mathew et al.,
2021). This dataset has abusive speech from two
different platforms and targets 10 different com-
munities like African, Islamic, etc. To collect au-
thentic abusive speech samples, we remove all the
samples considered normal by two or more anno-
tators. This amounts to around 12k data points
already labeled as abusive, i.e., hate speech or of-
fensive. We consider only the samples from Gab,
around 9k data points, since Twitter recently put
strict guidelines against making their data public2.
Finally, we removed all the slur heavy posts (“Nogs,
jews and dykes >>> how enriching ”) having less
than ten non-slur words. Slur-heavy posts have
less context, discourage diversity and can be easily
countered using template-based denouncing strate-
gies. After applying these filtering conditions, we
are left with 7474 samples, out of which we select
around 1325 random samples for our annotation.

3.2 Definitions

Here, we note the definitions used in the anno-
tation framework which includes the definitions
used for identifying something as abusive, i.e., hate
speech/offensive and writing counterspeech of dif-
ferent types.

3.2.1 Abusive language
This section outlines the definitions used in the an-
notation framework for identifying abusive content
and writing counterspeech. The authors emphasize
the importance of annotators personally identifying
content as abusive before writing counterspeech,
as this is crucial for effective moderation. We
adopt definitions from a previous study (Mathew
et al., 2021) who categorize abusive content into
two types:
Hate speech: Hate speech is a language used to ex-
press hatred toward a targeted individual or group
or is intended to be derogatory, to humiliate, or to
insult the members of the group, based on sensi-

2https://developer.twitter.com/en/
developer-terms/more-on-restricted-use-cases

tive attributes such as race, religion, ethnic origin,
sexual orientation, disability, or gender.
Offensive speech: Offensive speech uses profan-
ity, strongly impolite, rude or vulgar language ex-
pressed with fighting or hurtful words to insult a
targeted individual or group.

3.2.2 Counterspeech
Counterspeech is an expression which aims to pro-
vide a positive response to hate speech with the
aim to diffuse/dilute the conversation. In addition,
counterspeech should further aim to influence the
bystanders to act and the perpetrators to change
their views using a counterspeech post (Benesch,
2014). Moreover, there are different recommended
strategies to write a counterspeech as mentioned in
the literature (Mathew et al., 2019; Benesch et al.,
2016; Chung et al., 2021a). We summarise the
strategies used in this work here (see Appendix
section B for more details)

• Warning of consequences - Cautioning hate
speakers about potential repercussions like
harm caused, online consequences, etc.

• Shaming - Explicitly calling out hate speech
as racist, bigoted, etc. and denouncing it.

• Empathy/affiliation - Responding with a
friendly, empathetic tone to de-escalate hostil-
ity.

• Humor - Using humor to defuse tensions and
shift the conversation dynamics.

• Contradiction - Highlighting contradictions in
the hate speaker’s stance to discredit them.

• Questions - Probing the hate speaker’s sources
and rationale to encourage self-reflection.

We add the examples of each of these types in
the Appendix Table 9. We further ask the annota-
tors not to write hostile counterspeech and not to
include factual counterspeech as a type since it is
not a recommended strategy (Benesch et al., 2016).

3.3 Design of the annotation platform

We developed an annotation platform which was
a web page providing task descriptions, instruc-
tions, and examples. Annotators were shown ten
examples of abusive speech samples. For each sam-
ple, they had to write a counterspeech of a spec-
ified required type (Benesch et al., 2016) if they
found the sample abusive. They could addition-
ally mark any other counterspeech types employed
in their response, as one hate speech sample may
warrant multiple counterspeech strategies. Several
checks were implemented to ensure quality and
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diversity in the collected counterspeech. A word
counter check requires the response to have more
than five words to avoid single-word or very short
responses. An open-source grammar checker 3 was
used to verify the grammatical correctness of the
counterspeech. Additionally, a similarity check
was performed to prevent excessive repetition. Fre-
quently occurring counterspeech (over ten times)
were identified, and their embeddings were created
using bert-base-uncased and indexed efficiently
using FAISS (Douze et al., 2024). For each new
counterspeech, if its cosine similarity to a frequent
response exceeded 0.95, it was flagged as a re-
peated instance. If any of these three checks failed,
the annotator had to re-write their counterspeech
response. This rigorous annotation process and cri-
teria aimed to collect diverse, grammatically sound,
and substantive counterspeech responses, ensuring
a high-quality dataset.

3.4 Selection of annotators

We employ annotators from Amazon Mechan-
ical Turk (AMT)4 using a pilot study. We
design the pilot study by collecting the hate
speech-counterspeech pairs from three of the past
datasets (Qian et al., 2019; Chung et al., 2019). An
expert selected these based on the complexity of
the hate speech. We selected 10 for such pairs for
the pilot study. Each annotator had to respond with
a counterspeech if (s)he thinks the post is abusive.
One expert manually checks the counterspeech in
terms of relevance and the presence of the type
mentioned. The expert is an experienced researcher
in content moderation research, particularly expe-
rienced in counterspeech writing for a period of
5+ years. (S)he is selected if (s)he writes good
counterspeech in at least 8 − 10 posts. We only
allow the annotators having a high approval rate
(93%) and approved HITS (> 1000) to participate
in this task. In this task, the annotators are paid 20
cents if they complete the pilot task. For the main
task, we selected 91 annotators out of the 194 who
participated in the pilot study.

3.5 Main annotation task

From the set of 1325 abusive samples, we select
50 samples in each batch for the main annotation
task. For each sample, we choose three types of
counterspeech. Each hate speech and type is shown

3https://languagetool.org/
4https://www.mturk.com/

to a different annotator, and the annotators are ex-
pected to write a counterspeech of the designated
type. So, we should have three different counter-
speech of three different types from three different
annotators. For some of the cases, however, we did
not get the annotators’ responses; therefore, some
of the hate speech instances have less than three re-
sponses. After completing each batch of such data,
an expert checks three samples for quality control
and adds the batch to the main dataset. The quality
check further removes some of the annotators who
still give wrong responses in the main task. The
annotator has been paid $ 1 if they completed one
HIT.

3.6 Final dataset
Our final dataset contains 3435 abusive speech-
counterspeech pairs obtained from 1325 abusive
speech. Out of the 91 users selected, 44 annota-
tors took part in the annotations. The annotators
further added additional types to 1115 of their writ-
ten counterspeech. Overall, the average length of
the counterspeech is 20.64 words (with standard
deviation σ = 10.88). Among the types, 980 are
of type warning of consequences, 853 are of type
questions, 803 are of type shaming, 699 are of type
contradiction, 687 are of type empathy/affiliation,
and 664 are of type humor. Based on the types, we
perform multi-label stratification (Sechidis et al.,
2011) to divide this dataset into train and test sets
of sizes 2147 and 1288 data points. We make sure
the hate speech in the test and train sets are mutu-
ally exclusive. We note the keyword distribution
and targets of the abusive speech associated with
different types of counterspeech in the Appendix
(Tables 10 and 11 respectively).

4 Other datasets

Here, we note the other crowd-sourced hate speech-
counterspeech pairs (HS-CS) datasets that were
used to compare with our dataset. We also note the
curation of an additional dataset, which was used
to build the multilabel type classifier (section 7).

4.1 HS-CS datasets
In order to evaluate the effectiveness of CROWD-
COUNTER as a benchmark dataset, we compare
it with two crowd-sourced public datasets (Qian
et al., 2019) - Reddit and Gab that contain hate
speech and its corresponding counterspeech. Red-
dit and Gab datasets contain 5, 257 and 14, 614
hate speech instances, respectively. We randomly
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take 500 hate speech samples from both these
datasets and collect the corresponding counter-
speeches to make the test dataset. In order to main-
tain size parity across all the datasets, we sampled
2000 data points and used them for training for
each of these datasets. The test sizes are left intact.
The details of these datasets (in terms of HS-CS
pairs) are noted in Table 1.

Dataset #train #test

Gab 40106 1474
Reddit 12839 1384
CROWDCOUNTER 2147 1288
Type data 4136 1018

Table 1: Training and testing splits for each dataset.

4.2 Type classification dataset

We use two datasets from Mathew et al. (2020) and
Chung et al. (2021a) where each counterspeech
is associated with one or more types. We merge
these two datasets to create a pool of 9963 sam-
ples. We remove all the samples with one label as
“hostile”, primarily present in the dataset (Mathew
et al., 2020). Finally, for each datapoint, we remove
the labels which are not one of the six types that
we have considered. Finally, we are left with 5154
samples. Based on the types, we perform a multi-
label stratification (Sechidis et al., 2011) to divide
the dataset into train, validation and test in the ratio
of 60:20:20, respectively. We use this dataset to
train a model that can classify the counterspeech
type(s) given a (generated) counterspeech. We note
the statistics in table 2.

5 Models

Here, we briefly mention the models utilized
in this work for counterspeech generation or
counterspeech-type classification.
BERT (Devlin et al., 2019):BERT is a pre-trained
language model that has revolutionized natural lan-
guage processing tasks. Developed by Google
AI researchers, BERT’s bidirectional training ap-
proach allows it to understand the context better,
leading to improved performance (Devlin et al.,
2019). We use the bert-base-uncased5 model
having 110M parameters. This model is used for
counterspeech-type classification.
DialoGPT (Zhang et al., 2020): DialoGPT (Zhang
et al., 2020) is a dialogue-centric language model

5https://huggingface.co/google-bert/
bert-base-uncased

developed by Microsoft, derived from the GPT-2
architecture and fine-tuned on a large dataset of
Reddit conversations. It generates human-like, con-
textually relevant responses in multi-turn dialogues,
making it well-suited for conversational AI appli-
cations like chatbots and dialogue systems. We
use the DialoGPT-medium6, which has 250M pa-
rameters. This model is used for counterspeech
generation.

Flan-T5 (Chung et al., 2022): FlanT5 is a large lan-
guage model developed by Google that builds upon
the T5 encoder-decoder architecture. It was trained
on a vast and diverse corpus using a unified text-
to-text framework, enabling strong performance
across a wide range of natural language processing
tasks. FLAN-T5’s massive scale and innovative
training approach have pushed the boundaries of
few-shot learning, allowing it to adapt quickly to
new tasks with just a few examples. We use the
flan-t5-base7 having 250M parameters. This
model was used for both counterspeech generation
and counterspeech type classification.

Llama (Touvron et al., 2023): Llama is a finely-
tuned generative text model designed by Meta.
These are trained on a diverse mix of pub-
licly available online data between January 2023
and July 2023, and this model utilizes super-
vised fine-tuning (SFT) and reinforcement learning
with human feedback (RLHF) to align with hu-
man preferences for helpfulness and safety. We
used the Llama-2-7b-chat-hf8 and the recent
Meta-Llama-3-8B-Instruct9 for counterspeech
generation. While the former is tuned for chat-
specific scenarios, the latter is better in following
instructions. We use the 4-bit quantized version of
these models along with LoRA (Hu et al., 2021) to
train these models.

6 Metrics

Broadly, the metrics in this paper can be divided
into three parts - referential, diversity and quality
metrics. Diversity and quality metrics do not re-
quire the ground truth.

6https://huggingface.co/microsoft/
DialoGPT-medium

7https://huggingface.co/google/flan-t5-base
8https://huggingface.co/meta-llama/

Llama-2-7b-chat-hf
9https://huggingface.co/meta-llama/

Meta-Llama-3-8B-Instruct
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Dataset #hs #hs-cn len fk (↓) dc (↓) div arg c-arg cs tox (↓)

Gab 13678 41580 15.54 8.67 (-13%) 8.55 (-2%) 0.73 (-14%) 0.17 (-19%) 0.47 (-17%) 0.48 (-6%) 0.15
Reddit 5203 14223 16.03 8.80 (-15%) 8.70 (-4%) 0.72 (-15%) 0.17 (-19%) 0.44 (-20%) 0.49 (-4%) 0.14
CROWDCOUNTER 1325 3435 20.65 7.64 8.35 0.85 0.21 0.55 0.51 0.16

Table 2: Comparison of dataset statistics using quality metrics like counterspeech (cs), argument (arg), counter-argument (c_arg), toxicity (tox) scores, readability
metrics - Fleisch Kincaid (fk) and Dale Chall (dc) and semantic diversity (div).

6.1 Referential metrics

In terms of traditional referential metrics, we use
gleu (Wu et al., 2016) and meteor (Banerjee and
Lavie, 2005) to measure how similar the generated
counterspeech are to the ground truth references.
In addition, we also report two of the recent gen-
eration metrics, bleurt (Sellam et al., 2020) and
mover-score (Zhao et al., 2019). These metrics
correlate better with human ratings than traditional
metrics like gleu or meteor.

6.2 Quality metrics

Argument quality: One basic characteristic of the
counterspeech is that it should be argumentative.
To measure this, we use the confidence score of
a roberta-base-uncased model10 fine-tuned on
the argument dataset (Stab et al., 2018) on the gen-
erated counterspeech.
Counter-argument quality: One can say that a
counterspeech should not only be an argument but,
more appropriately, a counter-argument to the abu-
sive speech. To measure this, we use the confidence
score of a bert-base-uncased11 model (Saha
et al., 2024b) trained to identify if the reply to an
argument is counter-argument or not.
Counterspeech quality: This metric is beneficial
when either ground truth is absent or only a single
ground truth is present, which might not be the only
way to counter. We use the confidence score from a
bert-base-uncased (Saha et al., 2024b)12 model
trained to identify something as counterspeech or
not.
Toxicity: As highlighted by Howard (2021), coun-
terspeech should aim to diffuse the toxic language.
Hence, inherently, the language of the generated re-
sponse should be non-toxic. We use the HateXplain
model (Mathew et al., 2021) trained on two classes
– toxic and non-toxic13 to estimate toxicity of the

10https://huggingface.co/chkla/
roberta-argument

11https://huggingface.co/Hate-speech-CNERG/
argument-quality-bert

12https://huggingface.co/Hate-speech-CNERG/
counterspeech-quality-bert

13https://huggingface.co/Hate-speech-CNERG/
bert-base-uncased-hatexplain-rationale-two

generated response. We report the confidence in
the toxic class. Higher scores in this metric corre-
spond to a higher level of perceived toxicity.
Readability: Readability measures how easily and
effectively a written text can be understood by its
intended audience, which might determine its en-
gagement (Pancer et al., 2019). We use two of the
common metrics – Fleisch Kincaid (Flesch, 2007)
and Dale Chall (Dale and Chall, 1948) that have
been used in the previous literature and are shown
to be correlated with social media engagement.
GRUEN: The GRUEN (GRammaticality, Uncer-
tainty, and ENtailment) metric14 (Zhu and Bhat,
2020) is designed to evaluate text quality by as-
sessing four dimensions of language generation –
grammaticalilty, focus, non-redundancy and coher-
ence.

6.3 Diversity metrics
Diverse responses show their linguistic expanse.
It is important as the abusive language has differ-
ent targets, and various counterspeech types are
possible. We employ two traditional diversity met-
rics: dist-2 (Li et al., 2016) and ent-2 (Baheti
et al., 2018). While dist-2 measures the propor-
tion of distinct bigrams within the generated text,
ent-2, or bigram entropy, calculates the text’s un-
predictability and richness of word pairings. Fi-
nally, we also employ a semantic diversity (div)
metric. In this metric, we first calculate the average
pairwise cosine-similarity across all the generated
responses and subtract this value from 1.

6.4 Type-classification metrics
We utilized five metrics used in the previous
work (Mathew et al., 2019) – accuracy, precision,
recall, f1-score and hamming score for evaluating
the type classification. We note the description of
these metrics in the Appendix. The metrics are
used in two different settings. In Table 3, we com-
pare the predicted output with the ground truth of
the test dataset of the counterspeech type data. In
Table 6, we try to classify the responses generated
by the models. Intuitively, if the type asked to be

14https://github.com/WanzhengZhu/GRUEN
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generated is the same as the type classified, then
the model can generate that type accurately. We
use the Flan-T5 (base) for calculating precision and
GPT-4 for calculating recall based on the results of
Table 3. While precision measures how accurately
the model can generate the given type of counter-
speech, the recall measures if the given type is one
of the predicted types.

7 Experiments

Model Ham. Loss (↓) Accuracy Precision Recall F1 Score

BERT 0.25 0.27 0.31 0.27 0.29
Flan-T5 (b) 0.18 0.47 0.50 0.47 0.49
GPT-4 0.27 0.37 0.38 0.66 0.49

Table 3: This table shows the comparison of different models trained and
tested on the counterspeech type dataset for the task of type classification. GPT-
4 is used in zero-shot setting. We use the accuracy, precision, hamming loss,
recall, and F1-score.

Here, we discuss our experimental setup.
Data statistics: We compute different metrics to
understand the quality and diversity of responses
in our dataset. We compare our dataset’s argument
quality, counterspeech quality, toxicity, readability,
and semantic diversity (div) with the Reddit and
Gab datasets. For uniform comparison, we sample
3435 points from all datasets.
Type classification: To perform type classification,
we use bert-base-uncased, flan-t5-base mod-
els trained on the training part of the type dataset.
We use validation loss to select the best model.
Hyperparameters and the instruction prompt for
flan-t5-base are in Appendix. We also use GPT-
4 15 in a zero-shot setting on the test set. We report
accuracy, precision, recall, f1-score, and hamming
score.
Counterspeech generation: There are two frame-
works for counterspeech generation. The first
uses a vanilla prompt, training the model on the
hate speech-counterspeech dataset from a particu-
lar dataset and testing on the same. We use 100
data points for validation and evaluate generated
responses using referential, diversity, and quality
metrics (Table 4). The second framework deals
with type-specific counterspeech generation. We
use type-specific prompts with both hate speech
and counterspeech types. We train on the CROWD-
COUNTER dataset, using 100 data points for val-
idation. After training, we generate type-specific
counterspeech for each hate speech and type. Hy-
perparameters and prompts are in Appendix. We

15https://openai.com/index/gpt-4-research/

evaluate using reference-based and reference-free
settings. In the reference-based setting, we select
responses matching ground truth counterspeech
types for each hate speech. We report type-specific
response scores and changes from vanilla responses
for bleurt, gruen, argument/counter-argument qual-
ity, counterspeech score, and toxicity (Table 5). In
the reference-free setting, we use semantic diver-
sity (div), dist-2, ent-2, gruen, argument/counter-
argument quality, counterspeech score, toxicity,
and precision from Flan-T5 and recall from GPT-4
considering the generated type as ground truth.

8 Results

Comparison among datasets: We find that
CROWDCOUNTER has a higher average length of
counterspeech and readability than Reddit and Gab
datasets. Due to the mandatory type requirement,
CROWDCOUNTER also has a higher diversity of
counterspeech. CROWDCOUNTER scores higher
on argument, counter-argument quality, and coun-
terspeech quality. While toxicity is slightly higher,
it is overall comparable. Table 2 demonstrates
CROWDCOUNTER’s superiority as a counterspeech
benchmark.
Type classification: For type classification, Flan-
T5 has the highest performance for hamming loss,
accuracy, and precision, while GPT-4 has the high-
est recall (Table 3). BERT is the worst performer.
We use Flan-T5 predictions for precision and GPT-
4 for recall when evaluating generated responses
(Table 6).
Vanilla generation: Across datasets and metrics
(referential, diversity, quality in Table 4), Flan-
T5 performs best for meteor, mover’s score, div,
dist-2, and gruen. Llama models are better for
bleurt and generating novel counterspeech. Di-
aloGPT excels in counter-argument quality and
ent-2 while having low counterspeech scores for
Reddit and Gab.
Type-specific generation: For reference-based
metrics (Table 5), bleurt improves for most types
except humor for Llama models. Language qual-
ity decreases except for DialoGPT’s contradiction.
Counterspeech quality improves for contradiction,
empathy, and shaming. Toxicity increases for con-
tradiction, humor, and questions but decreases for
empathy and shaming. If we further compare the
performances of different models across types, we
find that the Llama models produce better bleurt
scores, hence generating more relevant counter-
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Model gleu meteor bleurt mover nov div dist-2 ent-2 gruen arg c-arg cs tox (↓)
Gab

DialoGPT 0.01 0.11 -0.62 0.01 0.68 0.65 0.60 11.07 0.61 0.15 0.46 0.42 0.17
Flan-T5 (b) 0.03 0.18 -0.59 0.08 0.51 0.69 0.77 10.84 0.80 0.17 0.42 0.50 0.14
Llama-2 0.02 0.13 -0.59 0.04 0.67 0.62 0.68 9.87 0.68 0.08 0.42 0.22 0.18
Llama-3 0.01 0.10 -0.63 0.00 0.71 0.66 0.57 10.42 0.54 0.09 0.42 0.23 0.19

Reddit
DialoGPT 0.01 0.10 -0.64 0.01 0.65 0.68 0.59 11.32 0.61 0.14 0.47 0.32 0.26
Flan-T5 (b) 0.03 0.19 -0.62 0.08 0.50 0.68 0.78 10.76 0.80 0.17 0.43 0.44 0.16
Llama-2 0.02 0.11 -0.51 0.04 0.69 0.60 0.62 9.72 0.70 0.11 0.41 0.24 0.20
Llama-3 0.01 0.10 -0.54 0.04 0.65 0.59 0.57 9.91 0.63 0.09 0.41 0.28 0.16

CROWDCOUNTER
DialogGPT 0.01 0.10 -0.75 -0.03 0.70 0.81 0.59 11.94 0.67 0.20 0.53 0.59 0.15
Flan-T5 (b) 0.02 0.14 -0.94 -0.02 0.62 0.85 0.75 11.73 0.79 0.17 0.50 0.45 0.15
Llama-2 0.02 0.11 -0.75 -0.02 0.78 0.80 0.61 11.51 0.67 0.19 0.51 0.42 0.21
Llama-3 0.02 0.10 -0.67 -0.03 0.80 0.78 0.55 11.61 0.64 0.20 0.49 0.57 0.18

Table 4: Evaluation of vanilla responses in terms of referential, diversity and quality metrics. For evaluating referential metrics, we measure the average gleu,
meteor (met), bleurt novelty (nov). For diversity, we measure average diversity (div), dist-2, ent-2. For quality, we utilize the counterspeech (cs), argument (arg),
counter-argument (c_arg), and toxicity (tox) scores, and gruen. Bold denotes the best scores, and higher scores denote better performance except for toxicity.

Type Model bleurt gruen arg c-arg cs tox(↓)

con

DialoGPT -0.75 (2.6%) 0.65 (6.56%) 0.21 (-8.7%) 0.55 (10.0%) 0.68 (9.68%) 0.15 (7.14%)
Flan-T5 (b) -0.89 (7.29%) 0.74 (-5.13%) 0.21 (31.25%) 0.55 (5.77%) 0.55 (19.57%) 0.17 (30.77%)

Llama-2 -0.65 (14.47%) 0.62 (-1.59%) 0.26 (36.84%) 0.54 (5.88%) 0.62 (31.91%) 0.21 (0.0%)
Llama-3 -0.66 (5.71%) 0.54 (-6.9%) 0.29 (31.82%) 0.5 (2.04%) 0.72 (16.13%) 0.19 (26.67%)

emp

DialoGPT -0.69 (8.0%) 0.65 (6.56%) 0.22 (4.76%) 0.57 (9.62%) 0.7 (20.69%) 0.17 (13.33%)
Flan-T5 (b) -0.77 (18.09%) 0.75 (-3.85%) 0.18 (-5.26%) 0.55 (7.84%) 0.69 (76.92%) 0.16 (14.29%)

Llama-2 -0.54 (26.03%) 0.67 (6.35%) 0.21 (10.53%) 0.57 (11.76%) 0.67 (52.27%) 0.1 (-54.55%)
Llama-3 -0.59 (9.23%) 0.65 (10.17%) 0.2 (-4.76%) 0.52 (10.64%) 0.73 (7.35%) 0.1 (-37.5%)

hum

DialoGPT -0.8 (3.61%) 0.65 (4.84%) 0.23 (15.0%) 0.57 (5.56%) 0.67 (11.67%) 0.17 (0.0%)
Flan-T5 (b) -0.94 (4.08%) 0.73 (-7.59%) 0.18 (5.88%) 0.5 (-1.96%) 0.61 (38.64%) 0.18 (12.5%)

Llama-2 -0.82 (-3.8%) 0.63 (5.0%) 0.21 (16.67%) 0.54 (3.85%) 0.42 (-16.0%) 0.25 (47.06%)
Llama-3 -0.79 (-9.72%) 0.59 (1.72%) 0.21 (-8.7%) 0.59 (15.69%) 0.58 (-6.45%) 0.23 (35.29%)

que

DialoGPT -0.76 (2.56%) 0.61 (0.0%) 0.17 (-22.73%) 0.49 (-10.91%) 0.58 (0.0%) 0.23 (76.92%)
Flan-T5 (b) -0.99 (-4.21%) 0.77 (-1.28%) 0.09 (-52.63%) 0.48 (-11.11%) 0.53 (23.26%) 0.19 (18.75%)

Llama-2 -0.69 (8.0%) 0.6 (-1.64%) 0.14 (-22.22%) 0.52 (0.0%) 0.43 (-15.69%) 0.25 (25.0%)
Llama-3 -0.67 (4.29%) 0.52 (-11.86%) 0.17 (-22.73%) 0.53 (6.0%) 0.46 (-25.81%) 0.3 (87.5%)

sha

DialoGPT -0.72 (2.7%) 0.63 (1.61%) 0.21 (10.53%) 0.52 (0.0%) 0.67 (11.67%) 0.15 (7.14%)
Flan-T5 (b) -0.72 (21.74%) 0.76 (-3.8%) 0.2 (11.11%) 0.51 (-1.92%) 0.63 (34.04%) 0.16 (14.29%)

Llama-2 -0.56 (22.22%) 0.6 (-3.23%) 0.22 (15.79%) 0.53 (6.0%) 0.63 (53.66%) 0.15 (-28.57%)
Llama-3 -0.59 (6.35%) 0.49 (-18.33%) 0.23 (9.52%) 0.44 (-2.22%) 0.61 (5.17%) 0.15 (-16.67%)

war

DialoGPT -0.64 (13.51%) 0.61 (0.0%) 0.19 (-9.52%) 0.53 (-3.64%) 0.63 (8.62%) 0.1 (-28.57%)
Flan-T5 (b) -0.81 (11.96%) 0.77 (-1.28%) 0.16 (0.0%) 0.49 (-7.55%) 0.37 (-21.28%) 0.06 (-60.0%)

Llama-2 -0.55 (25.68%) 0.62 (-1.59%) 0.17 (-5.56%) 0.47 (-9.62%) 0.52 (10.64%) 0.11 (-45.0%)
Llama-3 -0.56 (16.42%) 0.51 (-15.0%) 0.21 (0.0%) 0.46 (-11.54%) 0.59 (-6.35%) 0.06 (-64.71%)

Table 5: This table shows the evaluation of type specific responses with respect to vanilla responses for all the six categories of counterspeech. We report the
type-specific scores and changes compared to vanilla generation. We measure bleurt, counterspeech (cs), argument (arg), counter-argument (c_arg), toxicity (tox)
scores and gruen. Bold denotes the best scores, and higher scores denote better performance except for toxicity.

speech.

For reference-free metrics (Table 6), Flan-T5
has the best semantic diversity (div), dist-2,
gruen, and precision. DialoGPT excels in ent-2.
Llama-3 is best for argument quality except for
empathy-affiliation. DialoGPT has the highest pre-
cision for questions and warning-of-consequences
types. In terms of recall, DialoGPT has again the
highest scores for empathy-affiliation, questions,
shaming and warning-of-consequences. The Llama
family models are less diverse which might high-
light the issue of size vs steerability for such sub-
jective tasks. Overall, we find that no model out-
performs in all counterspeech metrics. One can
choose Llama for relevancy, Llama/DialoGPT for
high counterspeech scores, or Flan-T5 for language

quality. Further research is needed to develop a
more comprehensive solution.
Human judgement: We took 10 generated coun-

terspeeches each with best and worst bleurt scores
for each type thus making a set of 120 samples and
got them annotated by 4 experts who have long ex-
perience of research and publications on this topic.
Each annotator rated each generated counterspeech
on a scale of 1-5 with 1 being the worst and 5 being
the best. We did the exact same exercise for 10
generated counterspeeches, but now, each with best
and worst cs-scores. We measure the Pearson’s
correlation between the bleurt/cs-scores and the
human judgement ratings. The results from these
evaluations are presented in Table 7. Not surpris-
ingly we observe (as was also observed in (Saha
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Type Model div dist-2 ent-2 gruen arg c-arg cs tox(↓) prec rec

con

DialoGPT 0.79 0.54 12.04 0.64 0.22 0.55 0.67 0.16 0.04 0.82
Flan-T5 0.83 0.70 12.00 0.74 0.21 0.54 0.57 0.19 0.05 0.87
Llama-2 0.79 0.55 11.63 0.62 0.25 0.57 0.60 0.22 0.05 0.70
Llama-3 0.78 0.50 11.53 0.54 0.27 0.52 0.67 0.18 0.02 0.79

aff

DialoGPT 0.78 0.54 12.09 0.64 0.22 0.56 0.69 0.16 0.32 0.84
Flan-T5 0.80 0.66 11.62 0.74 0.16 0.56 0.65 0.16 0.20 0.66
Llama-2 0.71 0.56 10.99 0.67 0.21 0.53 0.67 0.13 0.26 0.50
Llama-3 0.71 0.54 11.23 0.64 0.19 0.52 0.68 0.11 0.11 0.37

hum

DialoGPT 0.79 0.54 12.14 0.64 0.21 0.55 0.67 0.16 0.28 0.13
Flan-T5 0.85 0.70 12.10 0.74 0.18 0.53 0.60 0.17 0.31 0.17
Llama-2 0.83 0.58 11.85 0.62 0.21 0.53 0.47 0.26 0.28 0.13
Llama-3 0.82 0.53 11.96 0.57 0.22 0.56 0.58 0.21 0.25 0.06

que

DialoGPT 0.83 0.53 11.84 0.59 0.16 0.51 0.56 0.22 0.92 0.96
Flan-T5 0.83 0.76 11.37 0.77 0.08 0.48 0.51 0.19 0.81 0.91
Llama-2 0.85 0.54 11.56 0.60 0.15 0.52 0.42 0.27 0.84 0.95
Llama-3 0.83 0.50 11.48 0.52 0.16 0.49 0.46 0.29 0.68 0.89

sha

DialoGPT 0.78 0.55 12.02 0.64 0.22 0.57 0.68 0.15 0.00 0.43
Flan-T5 0.75 0.70 11.39 0.76 0.21 0.53 0.68 0.13 0.00 0.38
Llama-2 0.72 0.54 11.17 0.60 0.23 0.53 0.64 0.17 0.00 0.27
Llama-3 0.71 0.50 11.04 0.51 0.25 0.47 0.66 0.16 0.00 0.30

war

DialoGPT 0.71 0.53 10.83 0.61 0.19 0.54 0.62 0.10 0.94 0.99
Flan-T5 0.70 0.78 9.26 0.78 0.17 0.49 0.38 0.06 0.85 0.98
Llama-2 0.63 0.56 10.62 0.62 0.15 0.48 0.52 0.11 0.89 0.97
Llama-3 0.59 0.49 9.91 0.49 0.20 0.46 0.61 0.06 0.76 0.92

Table 6: This table shows the evaluation of type specific responses. We measure semantic diversity (div), dist-2, ent-2, counterspeech (cs), argument (arg), counter
argument (c_arg), toxicity (tox) scores, gruen, precision (prec) using Flan-T5 and recall (rec) using GPT-4. Bold denotes the best scores, and higher scores denote
better performance except for toxicity.

Type Bleurt CS-score

con 0.66 0.66
aff 0.31 0.52
hum 0.18 0.77
que 0.17 0.77
sha 0.71 0.58
war 0.37 0.52

Table 7: This table shows the Pearson’s correlation
between the bleurt/cs-scores and the human judgement
ratings.

et al., 2024a)) that across all the types the correla-
tions are positive (always > 0.5 for at least one of
the two metrics) thus reinforcing the utility of the
automatic metrics we chose.

9 Conclusion

In conclusion, we create the first ever type-specific,
diverse and crowd-sourced abusive-counterspeech
pairs - CROWDCOUNTER. We trained four lan-
guage models in two different frameworks i.e.,
vanilla and type-specific prompting. We evalu-
ated the responses generated by these models along
the dimensions of relevance, diversity and quality.
We notice that compared to other crowd-sourced
datasets, i.e., Gab and Reddit, CROWDCOUNTER

has higher diversity and quality. In terms of vanilla
generation, finetuned Flan-T5 is quite superior to
even larger models from the Llama family while be-
ing 32x smaller than them. Constraining the mod-
els to generate a particular type of counterspeech

does improve the relevance of their outputs but also
reduces the language quality to some extent. Fi-
nally, DialoGPT is quite proficient at following the
type-specific instructions better than all the other
models. Examples of generations are added in Ap-
pendix table 12 and 13. Overall, this work opens
up new avenues towards generating and evaluating
type-specific counterspeech.

10 Limitations

Our work has a few limitations. Our dataset is only
based on the English language, but our framework
is general enough to extend to other languages as
per requirement. We select the abusive content
from only one specific platform - Gab, owing to
various stringent policies regarding data-sharing in
other platforms. Due to resource constraints, we
had to run the Llama family models in quantized
settings, which might have led to inferior perfor-
mance compared to other models. Many of our
automatic metrics are based on particular datasets,
which might carry the bias of those datasets. How-
ever, we have to rely on these models to do a large-
scale evaluation.

11 Ethics statement

As part of data ethics, we anonymize the worker
IDs before sharing the data with the public. Al-
though our paper proposes fine-tuned large lan-
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guage models as counterspeech generators, we ad-
vocate against the fully automated usage of such
models. We built these models as an active aid
for moderators or users who wish to write counter-
speech. Even then, appropriate guardrails should
be applied to these models before making them
public for such a sensitive task. Further, we en-
courage active monitoring of such counterspeech
suggestion tools if deployed.
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A Annotation details

We note the pilot questions from the annotations
tasks in the Table 8 and the examples of the partic-
ular counterspeech in the Table 9.

Hate speech Counterspeech Type

Minorities vote to strip wealth
and power from White people
and they are organised to do
this by the J*ws

Where is the evidence for this
claim ?

que

It is enough to burn down
mosques and the Koran to
solve all our problems.

That sounds a lot like terrorism
to me.

sha

All Muslims are incompatible
with any Western society.

Millions of Muslims live in
western nations.

con

Our national flag cannot be
shown as it could annoy a Mus-
lim.#fitinorfuckoff.,

I am really good at making
up stories, believing only the
things I want to and then rant-
ing about it too.

hum

We must send Islamics back to
their native countries. They are
too different from us.

I have met so many Muslim
people adhering to British val-
ues. What do you base your
view on?

emp

The Jews did: USS Liberty At-
tack, the King David hotel at-
tack, New York 9/11, London
7/7

Where is the proof of this?
Looks like assumptions as op-
posed to facts...

que

The world would be a better
place without Muslims. They
are only killing and raping our
children.

There is a problem in every
community, what are you do-
ing to stop it in yours?

con

The vast majority of Muslims
are unemployed and refuse to
work.

All Muslim people I know are
employed and hardworking in-
dividuals. Stereotyping much?

emp

Muslim invasion is the new
plague of London. They must
be repatriated to their home
countries!

Invasion? Don’t you think this
expression is slightly over dra-
matic? People simply want to
live in one of the best cities in
the world!

sha

Never break bread with a
Quranimal. You risk catching
HIV and/or Ebola.

If you do not think Muslims
have ever done anything for
’us’ I think you need to do
a quick google search. The
evidence of Muslims contribu-
tions to society is everywhere!

con

Table 8: This table shows the expert-written hate speech
and counterspeech pairs along with their types.
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Figure 1: The annotation platform which was used in MTurk.

Type Hate speech Counterspeech

Warning of
consequences

The world would be a better place without Mus-
lims. They are only killing and raping our chil-
dren.

Online communication is permanent, so please
choose your words carefully.

What if our entire ruling class consisted of J-
controlled paedophiles? That would explain a
lot.

You might be banned for making such harmful
and questionable claims, so please be aware.

Shaming
Islam is characterized by hate! When the first
Muslim set foot in Britain, racism started in Eng-
land!

Perhaps you should monitor your own hate
speech before pointing the finger at others?

Islam is all about hate! When Muslims first set
foot in Britain was when race hate started in
England!

Perhaps you should monitor your own hate
speech before pointing the finger at others?

Empathy/
Affiliation

I think that Muslims can be a problem for our
society, because they do not want to conform to
our customs. They want their religion respected,
but are they respecting our laws? One day they
will oppress us with the Sharia and polygamy.

I do not share your opinion, but I do acknowl-
edge that opinions, mine or yours, do not have to
be based on fact or knowledge. My ’experience’
of Muslims, as neighbours, colleagues, friends
hasn’t led me to view them as a problem.

Gays are perverts.
Sexual orientation is a deeply personal aspect
of a person’s identity, and it’s important to re-
spect each individual’s right to express their true
selves.

Humor
Is this Afghanistan or Pakistan? You would
never say this is an English town. #saville town
(text accompanying video footage of people on
their way to Friday prayers etc. ).

So these families came in to do cheap labor at
textile mills in Saville and then made a life for
themselves? Shocking! How could they?

Muslims in China were forced to eat pork and
drink alcohol during the recent Chinese New
Year celebration - At least China is doing it
right!!

Being forced to eat my peas when I was a kid
just made me hate them even more. Still cannot
stomach the damn things.

Contradiction
Children should not be taught about LGBT per-
version. Families, due to their cultural or reli-
gious backgrounds, have the right to be against
it.

By this reasoning, no subject of importance
should be taught in school, because there is al-
ways someone against a certain topic.

"Islam does not help science progression, be-
cause it does not have useful elements and it
isn’t rational."

Apart from all the scientists that are also Mus-
lim?

Questions
The world would be a better place without Mus-
lims. They are only killing and raping our chil-
dren.

There is a problem in every community, what
are you doing to stop it in yours?

What if our entire ruling class consisted of J-
controlled paedophiles? That would explain a
lot.

What would it explain? This comment is very
vague I wonder if you have any facts that make
you wonder this.

Table 9: Examples of counterspeech strategies that are shown to the annotators, so that they can write appropriate
responses.
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aff hum que sha hyp war

African 258 244 311 283 242 358
Islam 189 162 235 218 209 284
Jewish 148 165 217 185 169 245
Women 123 140 198 160 167 201
Arab 124 113 155 142 133 184
Hom 98 98 129 131 100 152
Men 73 72 99 81 88 100
Cau 73 63 88 73 67 103
Refugee 70 63 90 78 69 88
Hispanic 55 44 65 47 47 66

Table 10: Target information of CROWDCOUNTER. The column headers
refer to different types of counterspeeches – affiliation (aff), humor (hum),
questions (que), shaming (sha), hypocrisy (hyp), warning (war), and row headers
refer to the targets. Abbreviated targets - Caucasian (Cau), Homosexual (Hom).

Type Top 5 keywords

Contradiction

problem (1.16%)
apart (1.15%)
also (1.01%)

black (0.89%)
actually (0.85%)

Empathy-affiliation

opinion (1.90%)
share (1.64%)

understand (1.42%)
feel (1.22%)
live (1.14%)

Humor

hatred (1.40%)
solve (1.27%)
wow (1.23%)

poverty (1.17%)
homelessness (1.15%)

Questions

comment (1.88%)
wonder (1.68%)

make (1.60%)
facts (1.60%)

vague (1.51%)

Shaming

others (1.75%)
hateful (1.29%)

offensive (1.27%)
someone (1.17%)
without (1.15%)

Warning of consequences

online (3.31%)
banned (3.07%)

permanent (2.22%)
choose (1.76%)

remember (1.71%)

Table 11: The table shows the top 5 keywords associ-
ated with different types of counterspeech, ranked by
their TF-IDF scores. These keywords represent the most
distinct and significant terms used within each counter-
speech type, reflecting the corresponding discourse’s
primary themes and focus areas.

B Definitions

B.1 Counterspeech type definition

Here we define the counterspeech types in more
details.

• Warning of consequences: Counterspeak-
ers often use this strategy to caution the hate
speaker about the potential repercussions of
their hate speech. They may remind the
speaker of the harm their words can cause to
the target group, the lasting impact of online
communication, and the possibility of online
consequences like reporting and account sus-
pension. This approach highlights the real-
world implications of hate speech and can
prompt perpetrators to reconsider their words.

• Shaming/labeling: Another effective strat-
egy involves labeling hate speech, such as
tagging tweets as ‘hateful’, ‘racist’, ‘bigoted’,
or ‘misogynist’. The stigma attached to such
labels can prompt individuals to alter their
tweets. Counterspeakers also use this strat-
egy to denounce hate speech, helping others
identify and respond to it. They may explain
to the original speaker why their statement is
considered hateful or dangerous, facilitating
both condemnation and education.

• Empathy/affiliation: This strategy focuses
on changing the tone of a hateful conversation.
Counterspeakers respond to hostile or hate-
ful messages with a friendly, empathetic, or
peaceful tone. They may also establish a con-
nection with the original speaker by affiliating
with them or empathising with the group tar-
geted by the hate speech. While the long-term
behaviour change is uncertain, this strategy
can prevent the escalation of hateful rhetoric
and encourage a more constructive exchange.

• Humor: Humorous counterspeech is a power-
ful tool to shift the dynamics of communica-
tion, de-escalate conflicts, and draw attention
to a message. Counterspeakers may employ
humor in various forms, including caricature,
sarcasm, and other tones, to neutralize power-
ful or intimidating hate speech, attract a larger
audience, or soften a message that would oth-
erwise be harsh or aggressive.

• Pointing out hypocrisy: This strategy in-
volves countering hate speech by pointing out
the hypocrisy or contradictions in the user’s
statements. Counterspeakers may explain and
rationalize the hate speaker’s previous be-
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haviour or prompt them to resolve to avoid
similar behaviour in the future. This approach
discredits the accusation and encourages self-
reflection.

• Questions: Counterspeakers employ this strat-
egy by questioning the sources of informa-
tion or the rationale behind the hate speaker’s
claims. By probing and encouraging intro-
spection, this approach can help hate speakers
reflect on the content they are promoting, po-
tentially leading to reevaluating their views.

Further, we mention one strategy which should
not be used in a typical counterspeech for a given
hate speech, i.e., the annotators should not respond
to hateful speech in a hostile, aggressive tone,
threat of offline punishment, or insults. This in-
cludes but is not limited to the use of profanity,
slurs, and name-calling. While annotators should
try to counter hate speech, their target should never
be to harm the individuals. Finally, we do not use
the strategy facts as an additional type of counter-
speech since factual counterspeech may not be very
effective (Benesch et al., 2016). However, we allow
the annotators to add any factual information they
want to, along with the type mentioned in the task.

C Top keywords

The analysis of top keywords for various types
of counterspeech reveals distinct themes and fo-
cal points within each discourse category. We
identify and rank the most significant terms using
Term Frequency-Inverse Document Frequency
(TF-IDF) scores16. TF-IDF (Salton and Buckley,
1988) is a statistical measure that evaluates the
importance of a word in a document relative to a
collection of documents, where higher scores indi-
cate greater significance within the specific context.
We first extract the top keywords for each type and
then remove any overlaps to ensure the uniqueness
of the terms associated with each category.

Table 11 showcases the top 5 distinct keywords
for different counterspeech types. Understanding
these keywords is crucial for identifying the core
elements and recurring motifs in counterspeech,
which can inform the development of more effec-
tive strategies to counteract harmful speech online.
For instance, terms like ‘problem’ and ‘apart’ un-
der the contradiction category indicate a focus on

16https://scikit-learn.org/stable/modules/
generated/sklearn.feature_extraction.text.
TfidfVectorizer.html

highlighting issues and discrepancies, while key-
words such as ‘opinion. and ‘share’ in empathy-
affiliation emphasize the importance of expressing
and exchanging personal viewpoints to foster un-
derstanding.

D Hyperparameters

D.1 Type classification

For fine-tuning bert-base-cased, we use a
max_length of 256 and a batch size of 32 with
a gradient accumulation steps of 2. We set the
learning-rate is 2e-5, number of training epochs of
10 and optimize with paged_adamw_32bit having
weight decay 0.01. The learning scheduler is set to
cosine. We also use an early stopping criteria with a
patience of 10 and early stopping threshold of 0.01.
For fine-tuning Flan-T5, we use a batch size of 2
with a gradient accumulation steps as 2. We use 10
training epochs along with paged_adamw_32bit
having weight decay of 0.01. Rest of the things
remain same as bert-base-uncased.

D.2 Training generation models

For fine-tuning models, we employ a consistent
training configuration across various model types,
ensuring both efficiency and performance. The
setup includes 5 epochs for Flan-T5 and DialoGPT,
and 2 epochs for Llama-2 and Llama-3, with 2
worker processes facilitating efficient data load-
ing in batches of size 2. Gradients are accumu-
lated over 4 steps to manage memory efficiency,
and the paged_adamw_32bit optimizer is used
with a learning rate of 2e-4 and weight decay of
0.001. Mixed precision training with fp16 is sup-
ported. Logging intervals are set to every 100
steps, with a cosine decay schedule for the learn-
ing rate and gradient clipping at a maximum
norm of 0.3. The best model is tracked based on
’eval_loss’ and progress is reported to Weights
& Biases17. Specifically for Llama family mod-
els, the Low Rank Adaptation (LoRA) (Hu
et al., 2021) configuration is used along with 4-bit
quantization (Dettmers et al., 2023) which in-
cludes hyperparameters such as LoRA α set to
16, dropout rate of 0.1, and a rank of 64, tar-
geting specific model parts. Further gradient
checkpointing is used to reduce memory require-
ments.

17https://wandb.ai/site
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Type Model Generated sample

Warning of
consequences

DialoGPT
Hate speech: Hey black! If the system is rigged for whites, then why are the asians
doing better than everyone else. #MythDestroyed #IQMatters
Counterspeech: You shouldn’t post things like this, it can come back to you. Remember,
internet is forever, can come back to haunt you. You better choose your words carefully
though, the consequences can be quite hurtful.

Flan-T5
Hate speech: "The worst film of 2017" Hopefully worse than that lesbian ghostbusters
variant with that fat nigger a few years back
Counterspeech: This comment is very offensive and can get you banned.

Llama-2
Hate speech: In england they call these people asians, even though they are from the
sub-continent and pakistan, and east asians are called orientals. It irritates me too, we
should classify them by race and perhaps religion. In this case, paki muzzie.
Counterspeech: Using the word "paki" is offensive to the Pakistani people and can lead
to a ban on your account. Be careful with your words. #RespectAllRaces

Llama-3
Hate speech: "Obama didn’t do enough for black people!" Not even god can do enough.
It’s impossible. Maybe if they ship in whites and asians and paint them black?
Counterspeech: Please do not post such comments. You can be banned for this. The
internet is permanent. Don’t post something you will regret.

Shaming
DialoGPT

Hate speech: I’m not a Racist, I just hate Murderously retarded fascist Ideologies, &
stupid people. But some things are universally recognizable & some are not, apparently.
Counterspeech: What did the fascist ideologist do to you? Or did you just made a
stupid statement on the internet? I doubt it. Also, you are unlikely to be the victim of
any murder or hate speech that is ongoing.

Flan-T5
Hate speech: #TRUMP 3 yrs ago Obama had 3 million green cards made up.They were
2 go2 the refugees and illegals, DO NOT LET THEM STAY, He also had 5 million SSI
cards, which he stole from dead ppl
Counterspeech: Your words hurt people and rapes people. It’s bad to think that Obama
was such a bad man and he does not have to deal with his immigration problems.

Llama-2
Hate speech: Isn’t it ironic Freddy, that something as manly as mixed martial arts would
be too cuck to allow a ’scary’ nationalist on their team. It’s run by jews i take it. The
ultimate whiny pussies that always get other people to do the fighting for them. heh.
Counterspeech: You are a disgrace. You are a disgrace to the sport and to humanity.

Llama-3
Hate speech: "Sweden decided in 1975 to welcome #immigration. Since 1975 violent
crime in #Sweden has increased by 300% and #RAPE has increased by 1,472%." Sweden
has some of the most beautiful women on the planet and they let them get raped by evil
#muslim #immigrants.
Counterspeech: If you don’t like it then leave. You’re not forced to live there. Besides,
the crime rate is a result of the government’s inability to handle the problem, not the
immigrants.

Empathy
Affiliation

DialoGPT
Hate speech: "Where are all the conservative white men?" Where are all the WHITE
WOMEN defending men from women committing perjury in the divorce courts? Oh,
that’s right....they are CHEERING as men commit suicide. Screw you bitches. Look
after yourselves. #MGTOW
Counterspeech: We all have our own characteristics, and it’s important to work with
what we’ve got, not against. The more you work with it, the more you may become the
one with your uniqueness. So it’s worth it to explore different perspectives.

Flan-T5
Hate speech: (((They))) are saying there were nigger vikings for fuck sake. Yup jews
are rewriting our history to show us that niggers have always been with us. Pisses me off.
Fucking jews.
Counterspeech: I think you should learn to appreciate Jewish history better before you
start talking about it.

Llama-2
Hate speech: "A lawyer representing Jordan Salter, who was accused of bringing a knife
to Marjory Stoneman Douglas High School in Parkland, Florida, said he doesn’t blame
students for wanting to bring in weapons." Before you see the pic how many would bet
it’s a niglet caught with a knife?
Counterspeech: I don’t think it’s right to make generalizations about people based on
their race. Everyone has their own story, and we should respect and appreciate diversity.
Let’s focus on promoting positivity and understanding.

Llama-3
Hate speech: "You (jews) have surpassed all nations in impertinent fables in bad conduct
and in barbarism. You deserve to be punished, for this is your destiny." - Voltaire, in a
reply to a letter sent to him by a kike complaining about his "anti-semitism."
Counterspeech: I would be more worried about the hate speech than the hate you are
accusing others of. I don’t think Voltaire would want you to use his words to spread hate.
Let’s all try to be respectful and understanding of each other.

Table 12: Sample generation of counterspeech types (warning-of-consequences, shaming and empathy/affiliation)
from each finetuned model.
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Type Model Generated sample

Humor
DialoGPT

Hate speech: #TRUMP 3 yrs ago Obama had 3 million green cards made up.They were
2 go2 the refugees and illegals,DO NOT LET THEM STAY,He also had 5 million SSI
cards,he stole from dead ppl
Counterspeech: I think your lack of knowledge about immigration is showing your
ignorance about Trump. Also you are probably the reason the Trump’s popularity is so
low.

Flan-T5
Hate speech: 1) strawman 2) strawman 3) blacks voted 88% democrat in 16, Hispanics
and Asians both 65%, Jewish 71%, muzzies 62%.
Counterspeech: It is not that everyone is good at voting, but you might be biased. Not
everyone has that opinion, but you are a good person.

Llama-2
Hate speech: "Obama didn’t do enough for black people!" Not even god can do enough.
It’s impossible. Maybe if they ship in whites and asians and paint them black?
Counterspeech: I’m sure you’d be the first to volunteer to help them paint their faces.
Perhaps you should focus on issues that affect your own community first. There are
plenty of things to fix in your own neighborhood.

Llama-3
Hate speech: @user Cuz it is upsetting all of my muzzie friends fam
Counterspeech: I guess it is good that you have some friends who are Muslims. But I
hope you have some non-Muslim friends too. After all, you don’t want to be a ghetto
with only one race and religion.

Contradiction
DialoGPT

Hate speech: 2040: Pres. Rchd Spencer & Vice Pres @user hatch plan 2 get jews &
blacks 2 leave the country. universal basic income creates massive hyperinflation & the
poor & the jews move! next up 4 our team, getting gays 2 leave (after they’ve gentrified
all the ol’ black ghettos:)
Counterspeech: If we are talking about the left, it is worth thinking about the social
circle that rejects you outright and you find yourself in.

Flan-T5
Hate speech: 650 uk mps involved in the cover up of 1 million white children raped by
paki muslims. Resign all of you filthy bastards
Counterspeech: And if it’s not a crime - it’s still a crime to be prosecuted. If it’s an
infringement - it will be reported.

Llama-2
Hate speech: Hollywood is out of ideas and is now running out of money so the jews
are cannibalizing each other and Weinstein is the first victim. That’s my theory anyway.
Counterspeech: There are many successful Hollywood producers and directors who
are not Jewish. And there are many other industries that are not run by Jews. You are
making a generalization based on your own prejudices.

Llama-3
Hate speech: It’s soooooooo nigger. Future BLM member is what you sound like. Are
you from Houston? This sounds like that nigger garbage from that shithole. Damn, break
that programming. You are a Jew-tool.
Counterspeech: This is not true. It is not a fact that the black people are from Houston.
This is a stereotype. It is not true that the black people are from Houston. It is not true
that the black people are garbage.

Questions
DialoGPT

Hate speech: Stop being obtuse. You know damn well majority of all Mexicans are not
white. Hence why you people bitch and moan about white genocide. Which is why u
love him. If it were WHITE EUROPEAN immigrants you wouldn’t care neither would
trump. They’re not WHITE.
Counterspeech: Why would you use those strong words for? Its not right. And who
would they harm?

Flan-T5
Hate speech: OTOH, you might just be retarded and failing at trolling along with the
rest of your life.
Counterspeech: Are you sure that this is not enough to understand how people treat
each other? Do you not want to be perceived as a retarded or not? What would it explain?

Llama-2
Hate speech: Holy man from Switzerland tells Daily Mail that cancer caused by
immigrants.
Counterspeech: How do you know? Do you have any data? What are your sources? Or
is this just an opinion? Do you think immigrants are more likely to get cancer?

Llama-3
Hate speech: Judging by your retarded limey accent, I highly doubt your ass has any say
regarding American policies. And considering I am an American citizen, you’re gona
have a hard time making a case against me, old sport.
Counterspeech: What do you have against the British accent? Why do you use such
derogatory terms? Do you have a problem with people who have a different accent? Do
you have a problem with people who are British?

Table 13: Sample generation of counterspeech types (humor, contradiction and questions) from each finetuned
model.
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D.3 Generation of responses

For the Llama family, the generation settings in-
clude a batch size of 6, using 4-bit quantization,
and a maximum of 50 new tokens. The top-p the
sampling parameter is set to 0.9 to control the di-
versity of the generated output. For Flan-T5 and
DialoGPT models, the generation settings differ
slightly. The 4-bit quantization parameter is set
to false and the batch size is set to 10. The maxi-
mum input tokens are fixed based on the particular
datasets - Gab (128), Reddit (256) and CROWD-
COUNTER (128).

E System information

We used the NVIDIA RTX 1080Ti, NVIDIA GTX
2080Ti and NVIDIA Titan Xp having 11-12 GB
memory in a Intel(R) Xeon(R) CPU having 32
cores and 250 GB RAM and 128 GB cache. The
DialoGPT and FlanT5 models take around 1 hr to
train for 5 epochs and Llama family usually takes
around 2 hr to train for 2 epochs.

F Metrics

Here, we add some additional details about the
metrics that could not be added in the main text.

F.1 Evaluation metric considerations

Here we note some of the choices of metric and
their peculiarities. We do not use the BLEU (Pap-
ineni et al., 2002) score because it has some undesir-
able properties when used for single sentences, as
it is designed to be a corpus-specific measure (Wu
et al., 2016). Further, the reader might notice neg-
ative scores in the case of bleurt metric which is
not calibrated18.

F.2 Multilabel metrics

Accuracy is defined as the proportion of predicted
correct labels to the total number of label, averaged
over all instances.

Accuracy =
1

| D |

|D|∑

i=1

| Yi ∩ Zi |
| Yi ∪ Zi |

(1)

Precision is defined as the proportion of pre-
dicted correct labels to the total number of actual
labels, averaged over all instances

18https://github.com/google-research/bleurt/
issues/1

Precision =
1

| D |

|D|∑

i=1

| Yi ∩ Zi |
| Zi |

(2)

Recall is defined as the proportion of predicted
correct labels to the total number of predicted la-
bels, averaged over all instances

Recall =
1

| D |

|D|∑

i=1

| Yi ∩ Zi |
| Yi |

(3)

F1-Score is defined simply as the harmonic mean
of Precision and Recall.

F1-Score = 2 ∗ Precision ∗Recall

Precision+Recall
(4)

Hamming loss is equal to 1 over |D| (number of
multi-label samples), multiplied by the sum of the
symmetric differences between the predictions (Zi)
and the true labels (Yi), divided by the number of
labels (L), giving

HammingLoss =
1

|D|

|D|∑

i=1

|Yi∆Zi|
|L| . (5)

G Prompts

We note the prompts used in this paper which are
used for training or zero-shot generation across
different models.
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Task Model(s) Prompt

Vanilla CS gen
Flan-T5 and DialoGPT Counterspeech is a strategic response to hate speech, aiming to

foster understanding or discourage harmful behavior. A good
counterspeech to this hate speech - "{hate_speech}" is:

Llama-2 [INST] «SYS» You are an helpful agent who generates a specific
type of counterspeech to the hate speech provided by the user.
Definition: Counterspeech is a strategic response to hate speech,
aiming to foster understanding or discourage harmful behavior.
«/SYS» {hate_speech} [/INST]

Llama-3 <|begin_of_text|><|start_header_id|>system <|end_header_id|>
You are an helpful agent who generates a specific type of coun-
terspeech to the hate speech provided by the user. Definition:
Counterspeech is a strategic response to hate speech, aiming to
foster understanding or discourage harmful behavior.<|eot_id|>
<|start_header_id|> user <|end_header_id|> {hate_speech}
<|eot_id|><|start_header_id|> assistant <|end_header_id|>

Type-spec CS gen
Flan-T5 and DialoGPT Counterspeech is a strategic response to hate speech, aiming to

foster understanding or discourage harmful behavior. Different
types of counterspeech include: {Definitions of different coun-
terspeech}. A "{type}" type good counterspeech to this hate
speech -{hate_speech} is:

Llama-2 <|begin_of_text|><|start_header_id|>system<|end_header_id|>You
are an helpful agent who generates a counterspeech of type
- {type} to the hate speech provided by the user. Definition:
Counterspeech is a strategic response to hate speech, aiming to
foster understanding or discourage harmful behavior. Different
types of counterspeech include: {Definitions of different coun-
terspeech} <|eot_id|><|start_header_id|>user<|end_header_id|>
hate_speech <|eot_id|><|start_header_id|>assistant
<|end_header_id|>

Llama-3 [INST] «<SYS» You are an helpful agent who generates a coun-
terspeech of type - {type} to the hate speech provided by the
user. Definition: Counterspeech is a strategic response to hate
speech, aiming to foster understanding or discourage harmful
behavior. Different types of counterspeech include: {Definitions
of different counterspeech} «/SYS»{hate_speech} [/INST]

CS-Type
Flan-T5 and GPT-4 Counterspeech is a strategic response to hate speech, aiming to

foster understanding or discourage harmful behavior. Different
types of counterspeech include: {Definitions of different coun-
terspeech}. Given this counterspeech - {counterspeech} what
are the types present in the counterspeech out of the ones listed
? Give in the format of a list

Table 14: This table notes down the prompts used for different models in zero-shot/ training pipelines. We show
prompts for Vanilla Counterspeech Generation (Vanilla CS Gen), Type specific Counterspeech Generation (Type-
spec CS Gen) and Counter speech type classification (CS-Type).

488



Proceedings of the 28th Conference on Computational Natural Language Learning, pages 489–506
November 15-16, 2024 ©2024 Association for Computational Linguistics

Solving the Challenge Set without Solving the Task:
On Winograd Schemas as a Test of Pronominal Coreference Resolution

Ian Porada
Mila - Quebec AI Institute

McGill University
ian.porada@mail.mcgill.ca

Jackie Chi Kit Cheung
Mila - Quebec AI Institute

McGill University
Canada CIFAR AI Chair

jackie.cheung@mcgill.ca

Abstract

Challenge sets such as the Winograd Schema
Challenge (WSC) are used to benchmark sys-
tems’ ability to resolve ambiguities in natu-
ral language. If one assumes as in existing
work that solving a given challenge set is at
least as difficult as solving some more general
task, then high performance on the challenge
set should indicate high performance on the
general task overall. However, we show empiri-
cally that this assumption of difficulty does not
always hold. In particular, we demonstrate that
despite the strong performance of prompted lan-
guage models (LMs) on the WSC and its vari-
ants, these same modeling techniques perform
relatively poorly at resolving certain pronom-
inal ambiguities attested in OntoNotes and re-
lated datasets that are perceived to be easier.
Motivated by these findings, we propose a
method for ensembling a prompted LM with a
supervised, task-specific system that is overall
more accurate at resolving pronominal coref-
erence across datasets. Finally, we emphasize
that datasets involving the same linguistic phe-
nomenon draw on distinct, but overlapping, ca-
pabilities, and evaluating on any one dataset
alone does not provide a complete picture of a
system’s overall capability.

1 Introduction

The Winograd Schema Challenge (WSC; Levesque
et al., 2012) is a challenge set of ambiguous
pronominal coreference resolution (PCR) prob-
lems, one of many popular challenge sets used to
evaluate NLP systems (e.g., Isabelle et al., 2017;
Clark et al., 2018; McCoy et al., 2019). Challenge
sets are constructed to consist of relatively diffi-
cult instances of some more general task. In many
cases, systems’ performance on challenge sets is
considered in isolation of performance on the broad
range of ambiguous expressions attested in natural
corpora on which the general task being studied

… Mrs. Long says that Netherfield is taken by a young man    
    of large fortune from the north of England; that he
    came down on Monday as so much delighted with it, that he 
    agreed with Mr. Morris immediately; …

Jim yelled at Kevin because he was so upset.

Constructed WSC Pair

Attested Pronominal Expression

Jim comforted Kevin because he was so upset.

Figure 1: Top: An example minimal pair from the WSC.
Bottom: Pronouns attested in the novel Pride and Preju-
dice and annotated for coreference by Vala et al. (2016).

could also be evaluated;1 e.g., systems are often
evaluated on the WSC without considering how
those same systems might perform on a diverse
range of attested pronominal expressions (Kocijan
et al., 2019b; Shen et al., 2021; Gao et al., 2023;
Achiam et al., 2023, i.a.).

The WSC specifically consists of minimal pairs
of sentences, each containing an ambiguous pro-
noun (Figure 1). These pairs are manually con-
structed such that consistently disambiguating the
pronouns is believed to require the types of com-
monsense world knowledge and reasoning ability a
human reader might rely on. Considering the recent
success of language model (LM) based approaches
at resolving WSC instances, some of the original
authors of the WSC have declared the challenge set
solved (Kocijan et al., 2023).

And yet, in this work we demonstrate that
the same LM-based systems that have reportedly
solved the WSC and its variants are relatively inac-
curate at resolving certain ambiguous pronominal
expressions attested in natural corpora and anno-
tated in OntoNotes (Hovy et al., 2006) and related

1We use the term natural corpora to refer to text that was
not explicitly constructed or elicited for research purposes.
An attested expression is one appearing in natural corpora in
contrast to constructed expressions that commonly compose
challenge sets.
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datasets. One may find this result surprising given
that “the point of the WSC is to test programs that
claim to have solved the problem of pronoun ref-
erence resolution” (Kocijan et al., 2023) and that
WSC instances are believed to represent relatively
difficult examples of PCR (Peng et al., 2015).

We specifically consider prompted LMs as sys-
tems that are relatively accurate at resolving Wino-
grad schemas; among LMs, our experiments focus
on the Llama family of models (Touvron et al.,
2023; Dubey et al., 2024), although we present
evidence that our results generalize across LM fam-
ilies including OLMo (Groeneveld et al., 2024) and
Mistral (Jiang et al., 2023). We compare the per-
formance of prompted LMs up to 70B parameters
against state-of-the-art coreference resolution sys-
tems, such as Maverick (Martinelli et al., 2024),
which are known to be accurate at resolving at-
tested pronominal coreferences.

We evaluate systems across 11 datasets. Six
of these datasets contain PCR problems for
text attested in natural corpora, e.g., OntoNotes
5.0 (Weischedel et al., 2013) and OntoGUM (Zhu
et al., 2021). The other five datasets consist of
PCR problems that were constructed for WSC-like
challenge sets, e.g., Winogrande (Sakaguchi et al.,
2021) and DPR (Rahman and Ng, 2012).

When comparing against unsupervised baselines,
we find LMs are generally more accurate across all
datasets; however, whereas supervised coreference
resolution models perform relatively poorly on the
WSC, we find these same systems are more accurate
than prompted LMs at resolving certain attested
pronouns. This finding is consistent across test sets
of diverse annotation guidelines and textual genres.

Motivated by these results, we propose a method
for ensembling a prompted LM with a task-specific
system in order to achieve a final system that
is overall more accurate at resolving pronom-
inal coreference across datasets. This ensem-
bling method functions by heuristically determin-
ing salient discourse entities for which coreference
is disambiguated by a state-of-the-art coreference
resolution system trained on OntoNotes. Mean-
while, the remaining instances are disambiguated
using an LM prompted with in-context examples.
In most cases, the final system is more accurate
at resolving pronouns occurring in attested expres-
sions and WSC-like challenge sets.

Ultimately, our findings illustrate the point that
datasets involving the same linguistic phenomenon
draw on distinct, but overlapping, capabilities;

therefore, no one dataset alone is capable of pro-
viding a complete picture of a system’s overall
performance. We therefore argue that challenge set
results should be considered in conjunction with re-
sults on evaluations that encompass a diverse range
of attested expressions.

Contributions. Our primary contributions can be
summarized as follows:

1. We formalize and empirically question the
challenge set assumption that solutions to a
challenge set generalize to diverse, attested
instances of the phenomenon being targeted.
In the case of PCR, we provide direct evidence
that this assumption does not hold.

2. We present a formatted collection of 11
datasets that follow the same, consistent for-
mulation of PCR. Using this collection, we
evaluate and compare multiple types of ap-
proaches to PCR including supervised models,
prompted LLMs, and rule-based systems.

2 Related Work

PCR is broadly the task of determining which lin-
guistic expressions refer to the same discourse
entity as a given pronominal expression (Hobbs,
1978). See Zhang et al. (2021) and Poesio et al.
(2023) for related surveys.

Proposed systems for resolving pronominal
coreference have traditionally relied on heuris-
tic rules often in combination with unsupervised
statistical patterns of handcrafted features (Poon
and Domingos, 2008; Charniak and Elsner, 2009;
Raghunathan et al., 2010; Lee et al., 2011, i.a.).
More recently, LM-based approaches have been
proposed including: LMs finetuned on supervised
training data (Zhang et al., 2019c; Zhao et al.,
2022), weakly supervised LMs (Kocijan et al.,
2019a; Shen et al., 2021), and prompting LMs by
formatting PCR as either a cloze task (Trinh and
Le, 2018; Radford et al., 2019) or question answer-
ing (Brown et al., 2020; Wang et al., 2022; Le and
Ritter, 2023; Zhu et al., 2024).

The ability of a system to perform PCR has been
evaluated generally on: 1) collections of ambigu-
ous pronouns attested in natural text (Hobbs, 1978;
Lappin and Leass, 1994; Webster et al., 2018), 2)
the subsets of larger coreference resolution datasets
that include pronominal coreference (Martschat
and Strube, 2014; Zhang et al., 2019c; Lu and Ng,
2020), and 3) challenge sets composed of WSC-
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like instances (Rahman and Ng, 2012; Emami et al.,
2019; Sakaguchi et al., 2021).

The WSC and inspired datasets have been
adopted by researchers studying the more general
task of coreference resolution to be used as chal-
lenge sets in addition to more canonical evaluations
such as OntoNotes (Peng et al., 2015; Toshniwal
et al., 2021; Zhao et al., 2022). Such work has
shown that systems designed for coreference reso-
lution perform poorly on the WSC. We adopt the
perspective of this line of work and view WSC-like
datasets as challenge sets of PCR.

Recent advances in language modeling have
proven accurate at resolving WSC instances when
compared to earlier approaches, in some cases near-
ing approximates of human accuracy (Brown et al.,
2020; Wei et al., 2022; Touvron et al., 2023). How-
ever, similar techniques have been shown to be less
accurate than supervised models when evaluated
on established evaluations of the general task of
coreference resolution (Yang et al., 2022; Le and
Ritter, 2023; Zhu et al., 2024; Gan et al., 2024).
Our work diverges from these studies by focusing
specifically on PCR rather than the broader concept
of coreference which has multiple competing defi-
nitions (Recasens and Hovy, 2010; Zeldes, 2022).

3 Method

In this section, we formulate the problem of
pronominal coreference resolution (PCR) and pro-
vide a high-level description of how system accu-
racy is evaluated. We also formalize the assump-
tions commonly made when evaluating on chal-
lenge sets so that we can explicitly test if these
assumptions hold.

3.1 Problem Formulation

We consider the task of PCR formulated as follows:
given a text passage w = (w1, . . . , wt), resolve
some pronominal expression x to its correct an-
tecedent a, where x and a are subspans of w. We
study a restricted version of this problem formu-
lated as binary classification.

More explicitly, we assume that exactly one of
two candidate antecedents in w is the correct reso-
lution of x. This formulation accommodates both
WSC-style and datasets containing annotations of
coreference in occurring in natural corpora. For-
mally, given w, x, and a set of two candidate an-
tecedents {â1, â2}, the goal is to correctly deter-
mine which candidate antecedent corresponds to

Example Sequence

�1 �2 �3 �4 �5 �6 �7 �8 �9

Jim yelled at Kevin because he was so upset

� = �   =6:6 he
� = �   =4:4 Kevin

� = �   =1:1 Jim
Variables

Figure 2: An example instance and the corresponding
variables: the pronoun x, antecedent a, and distractor
candidate b.

the true antecedent a = wk:l. The other candidate
is some distractor mention b = wm:n that refers to
a discourse entity but does not corefer with x. An
example instance is given in Figure 2.

3.2 Challenge Set Assumptions
An assumption of the WSC is that solving WSC
instances is more difficult than resolving other in-
stances of the PCR task such as pronouns attested
in natural corpora. We formulate this assumption
as follows (Def. 1). We will then test this assump-
tion empirically by comparing the performance of
various systems across both challenge set instances
and attested pronouns.

To premise, let C be a challenge set and D some
other dataset representing the same task. Further-
more, let θ and ϕ be systems that are to be evaluated
based on their performance on the given task. Func-
tion U represents a measure of the performance of
a system on a given dataset, e.g., the performance
of θ on C is measured as U(θ, C).

Definition 1 (The Challenge Set Assumption)
The ordering of model performance on the
challenge set C is preserved on dataset D. That is,
U(θ, C) > U(ϕ,C) =⇒ U(θ,D) > U(ϕ,D).

Intuitively, the assumption is that because C is
strictly more difficult than D, systems that are rela-
tively accurate on C should be relatively accurate
on D as well.

3.3 Evaluating Performance
To test this assumption, we evaluate systems across
multiple test sets. Here we describe how the perfor-
mance function U is calculated.

Attested Pronominal Expressions. To evaluate
performance on attested pronominal expressions,
we start with some existing dataset of identity coref-
erence relations annotated in datasets of curated
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Final Exam with Answer Key
Instructions: Please carefully read 
the following passages. For each 
passage, you must identify which 
noun the pronoun marked in 
*bold* refers to.\n
Passage: The bee landed on the 
�ower because *it* had pollen .
Question: In the above passage, 
what does "*it*" refer to?
Answer: *it* refers to ���������

������������

Please carefully read the following 
passages. For each passage, you 
must identify which noun the 
mention marked in *bold* refers to.

Passage: [The bee] landed on [the 
�ower] because *it* had pollen .
Question: In the above passage, 
what does "*it*" refer to?
Answer: *it* refers to ���������

���������
Please carefully read the following 
passages. For each passage, you 
must identify which noun the 
mention marked in *bold* refers to. 
If the marked mention does not 
have any antecedent, please select 
“no antecedent”.\n
Context: Passage: [The bee] landed 
on [the �ower] because *it* had 
pollen .
Choices:\nA. the �ower\nB. the 
bee\nC. no antecedent
Question: What does "*it*" refer to?
Answer: �

����������

Annotate all entity mentions in the 
following text with coreference 
clusters. Use Markdown tags to 
indicate clusters in the output, with 
the following format [mention](#-
cluster_name)\n
Input: [The bee](#cluster_1) landed 
on [the �ower](#cluster_0) because 
[it](#) had pollen .
Output:���������
	�������_���
��������������������
	�����
���_��������������
	�������_���
������������

����������

Figure 3: A training set instance from the Definite Pronoun Resolution (DPR) dataset (Rahman and Ng, 2012)
formatted using each of the corresponding prompts. Denoted in bold is the expected model output. The GPT-3
prompt (Brown et al., 2020) does not rely on gold mention span annotations. QA Prompt and Doc Prompt were
presented by Le and Ritter (2023). The multiple-choice QA (MQA) prompt was presented by Zhu et al. (2024).

natural corpora. We then take all mentions that are
in a coreference relation and are within a prede-
fined set of pronouns to be a coreferring pronom-
inal expressions x.2 We take the text passage w
to be the concatenation of the sentence in which
x occurs with the preceding two sentences. For
each x for which a single coreferring nominal an-
tecedent mention a occurs in the context w, and
for which at least one coreferring expression b that
does not corefer with x also occurs in w, we create
a test instance. In the event that there are multiple
candidates that could be chosen as b, we randomly
sample one. We measure performance based on a
system’s accuracy at resolving these instances.

This formulation and the predefined set of pro-
nouns follow the conventional setup for PCR used
in existing work (Yang et al., 2003; Ng, 2005;
Li et al., 2011; Zhang et al., 2019c; Zhao et al.,
2022). App. C provides further details regarding
how datasets are formatted.

WSC-like Challenge Sets. WSC instances gen-
erally follow the formulation of PCR we have out-
lined above—i.e., the basic premise of a WSC is
that there is some text w containing a pronoun x
with two candidate antecedents {â1, â2}—so we
perform minimal formatting of existing WSC-like
challenge sets so that examples are in the same
form as for attested datasets. This requires tok-
enization and in certain cases determining the ex-
act span of candidate mentions. Further details are
provided in App. C. We can then directly compute
accuracy as the ratio of instances where the system
predicts the correct candidate antecedent.

2The following strings are considered as pronouns: "she",
"her", "he", "him", "them", "they", "it", "his", "hers", "its",
"their", "theirs", "this", "that", "these", "those".

4 Experiments

In this section, we describe our experimental setup
in detail which tests whether the challenge set as-
sumption holds empirically. We compare prompted
LMs that are known to be accurate at the WSC
against task-specific systems known to be accurate
at resolving certain attested pronouns (§4.1). Sys-
tems are evaluated across 11 datasets spanning both
attested and WSC-like instances (§4.2).

4.1 Systems

4.1.1 Prompted Language Models

In recent years, prompted LMs have proven ac-
curate at the WSC. One would therefore expect
such systems to be relatively accurate at resolving
attested pronominal expressions if the challenge
set assumption holds. Prompted LMs function by
predicting the correct antecedent span a given a
problem instance (w, x, {â1, â2}) which is format-
ted using a particular textual prompt template that
may possibly include in-context examples.

Llama 3.1 As a prompted LM we focus on the
Llama 3.1 family of models at various sizes (Dubey
et al., 2024). These are competitive open-weights
LMs. We consider either the base or instruct ver-
sion as specified in each experiment. The instruct
versions were additionally finetuned on instruction-
tuning data, such as the Flan collection (Longpre
et al., 2023), and human preference annotations.
We evaluate the 8B and 70B parameter model sizes.

In the experiments where we consider few-shot
prompted Llama models, we also compare against a
supervised Llama 3.1 8B model which we finetune
to resolve WSC by training on public training sets
formatted using a QA prompt.
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Additional LMs We additionally compare per-
formance against the smaller Llama 3.2 models,
the fully open source OLMo model (Groeneveld
et al., 2024), and the Mistral-NeMo 12B parameter
model (Mistral AI Team, 2024).

Prompting Techniques. Our goal is not to pro-
pose new prompting techniques, so we experiment
using four existing prompt templates sourced from
the literature. These templates are shown in Fig-
ure 3. The GPT-3 prompt was used by Brown et al.
(2020) for evaluating GPT-3 on the SuperGLUE
WSC (Wang et al., 2019) and does not require gold
mention annotations. For this prompt, we check the
string match of the model output as in Brown et al.
(2020). The additional prompts (QA, MQA, and
Doc prompts) were proposed for using language
models to explicitly perform the task of corefer-
ence resolution and do require explicit candidate
mention spans. For these prompts, of the candidate
outputs, we take that with the highest probability
assigned by the language model to be the model
prediction. Another common approach is to for-
mulate WSC-like instances as a cloze-task (Trinh
and Le, 2018; Gao et al., 2023). We do not con-
sider this prompting technique, however, as it is
not compatible with pronominal references whose
resolution depends on the grammatical features of
the pronoun being considered.

We evaluate prompted LMs in zero- and few-
shot settings depending on what comparison is
being made. In the zero-shot setting, the LM is
only prompted with the corresponding instructions
and input passage. In the few-shot setting, we use
instruction-tuned version of the Llama 3.1 models
with 32 training instances prepended to the input.

4.1.2 Task-Specific Systems
We compare the performance of prompted LMs
against the following task-specific systems de-
signed for the general problem of coreference res-
olution. Such coreference resolution models are
believed to perform poorly on the WSC. One would
therefore expect prompted LMs to outperform
these task-specific systems across all PCR datasets
given the challenge set assumption (Def. 1).

dcoref As a representative unsupervised system,
we consider the “Stanford Deterministic Corefer-
ence Resolution System” (dcoref; Lee et al., 2013).
This is a deterministic, rule-based approach to the
general problem of identity coreference resolution
and does not rely on supervised examples of coref-

erence relations. The system is optimized to per-
form well on the OntoNotes dataset. This system
uses 10 sieves (such as string match and gram-
matical feature agreement) to identify potentially
coreferring mentions. We use the most recent ver-
sion implemented in Stanford Core NLP (Manning
et al., 2014). Around 30 percent of OntoNotes er-
rors are described as pronominal anaphora errors
in the original dcoref paper.

Maverick As a representative example of a su-
pervised system, we consider the state-of-the-art
Maverick coreference resolution system (Martinelli
et al., 2024). We use the publicly released weights
of the best performing system which consists of a
DeBERTa-v3 encoder (He et al., 2021) finetuned
on OntoNotes.

4.2 Datasets

We evaluate systems on 11 datasets including cu-
rated datasets of pronouns attested in natural cor-
pora, such as OntoNotes (Weischedel et al., 2013),
and challenge sets of WSC-like instances, such as
the original WSC test set (Levesque et al., 2012)
and DPR (Rahman and Ng, 2012).

4.2.1 Attested Pronominal Expressions
As noted in the methods section (§3), our tests that
involve attested pronouns are based on restricting
the set of annotations in more general coreference
resolution datasets to be evaluated as binary classi-
fication problems similar to the WSC. The datasets
that we use to achieve this are described below.
Four of these are datasets of nominal identity coref-
erence annotated in English-language, document-
level passages (OntoNotes, OntoGUM, PreCo, and
ARRAU). The remaining two focus exclusively on
PCR (GAP and PDP).

OntoNotes OntoNotes 5.0 (Weischedel et al.,
2013) consists of seven genres including news,
conversations, and web data annotated for corefer-
ence by two experts. This dataset has been used
in prior work to explicitly evaluate PCR both in
isolation (Zhang et al., 2019c, 2021, 2019b) as well
as PCR as a failure case of more general corefer-
ence resolution systems (Lu and Ng, 2020). We
use the standard English CoNLL-2012 Shared Task
version of this dataset (Pradhan et al., 2012).

OntoGUM OntoGUM (Zhu et al., 2021) is a
reformatted version of the GUM corpus (Zeldes,
2017) which was annotated for coreference by
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Figure 4: A comparison of the rule-based dcoref system (Lee et al., 2013) and the Llama 3.1 8B base model
prompted for PCR using various prompts. A) Systems that do not need gold mention spans. Across datasets, Llama
3.1 with the GPT-3 prompt always outperforms the dcoref baseline. B) Systems that require gold mention spans as
input. In general, prompted Llama 3.1 is more accurate than dcoref on both attested and constructed instances.

linguistic students. We use version 9.2.0 of On-
toGUM. This dataset is designed to follow the same
annotation guidelines as OntoNotes while expand-
ing coverage to additional textual genres such as
web forums and video blogs.

PreCo PreCo (Chen et al., 2018) is a large-scale
dataset of English exams annotated for coreference.

ARRAU ARRAU 2.1 (Uryupina et al., 2020) is
a dataset of written news and spoken conversations
annotated for various anaphoric phenomena by ex-
perts. We use the version formatted by Xia and
Van Durme (2021). The annotation guidelines dif-
fer from OntoNotes, and additional phenomenon
have been annotated including extensive semantic
and syntactic features of mentions.

GAP GAP (Webster et al., 2018) is a dataset of
pronouns attested in English Wikipedia and an-
notated for coreference. We study only instances
where exactly one of two candidate antecedents is
coreferring with the given pronoun to match our
PCR problem formulation.

PDP PDP (Morgenstern et al., 2016) is a col-
lection of 80 pronoun disambiguation problems
attested in text which was used for the original
version of the WSC in order to test systems on
examples believed to be relatively easy.

4.2.2 WSC-like Challenge Sets
The five challenge sets that we evaluate on are as
follows. To standardize the format of these datasets,
we consider the lexical units wi to be syntactic
words. We split the raw text into these syntactic
words using the Stanza library (Qi et al., 2020).

KnowRef-60K Emami et al. (2020) presented
WSC-like instances which were created by perturb-
ing internet forum text using heuristic rules. Thus,
these instances fall somewhere in between attested
and constructed.

DPR Definite pronoun resolution (DPR; Rahman
and Ng, 2012) is a dataset of instances in a similar
format to the original WSC without the strict re-
quirement that instances cannot be resolved based
on simple selectional preferences.
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SuperGLUE WSC (SG-WSC) The set of
WSC instances used for the SuperGLUE bench-
mark (Wang et al., 2019) which was originally
modified from WSC 273 and PDP.

WSC 273 The original WSC (Levesque et al.,
2012) consisting of 273 instances. We manually
annotated mentions to fit our format similar to as in
McCann et al. (2018) and Toshniwal et al. (2021).

Pronominal Winogrande (P-WG) We use the
portion of the Winogrande test set (Sakaguchi et al.,
2021) which contains person entities. We replace
the underscore with an appropriate third-person
pronoun as in Porada et al. (2023).

5 Results

We first present results comparing zero-shot
prompting methods with the unsupervised dcoref
system. We then compare the best performing
prompting method against the supervised Maver-
ick coreference resolution system and a supervised
Llama 3.1 baseline. Across all figures, error bars
represent 90% confidence intervals. Results are
presented on the corresponding test splits using the
best model configuration. Additional details are
presented in App. D.

Comparing prompted LMs against earlier unsu-
pervised systems, the challenge set assumption
does hold. Results for the fully unsupervised sys-
tems are presented in Figure 4. We observe that
generally prompted LMs, which outperform dcoref
on the WSC variants, also outperform dcoref on
datasets of attested pronominal expressions. We
also see that model performance is sensitive to the
prompt format.

Exceptions are on the PDP dataset, whose small
size makes it difficult to draw generalizable conclu-
sions, and in the case of the Doc Prompt, which has
high variance across datasets. Le and Ritter (2023)
similarly found that Llama models did not consis-
tently generalize with the Doc Prompt template.

In Figure 5, we compare accuracies of various
LMs using the QA prompt template. Our conclu-
sion, that prompted LMs outperform dcoref on both
constructed and attested instances, is consistent
across LM families.

However, when comparing prompted LMs
against a supervised coreference resolution sys-
tem, the challenge set assumption does not hold.
In Figure 6, we present the accuracy of Llama 3.1
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Figure 5: Accuracies of various LMs using the QA
prompt template as compared against a dcoref baseline.
We find that LMs generally outperform dcoref on both
attested and constructed instances.

70B using the QA prompt in a few-shot setting com-
pared against a supervised coreference resolution
system. While the prompted LM is more accu-
rate across WSC-like datasets (with the exception
of KnowRef), the supervised coreference resolu-
tion system is more accurate at resolving attested
pronominal coreferences.

For this experiment, we consider the instruction-
tuned version of Llama 3.1 with 32 in-context ex-
amples as a prototypical example of an LM as eval-
uated on WSC-like datasets. When we compare
against a supervised Llama 3.1 base model, trained
on the Winogrande and DPR training sets for 5k
steps, the difference in accuracies across datasets
is even more extreme.

The exceptional case of KnowRef may be due
to the fact that this dataset is constructed by per-
turbing attested pronominal expressions and may
be overall more similar to collections of attested
rather than constructed linguistic expressions.

6 Analysis

Our results thusfar do not answer the question of
why the challenge set assumption does not hold.
Heuristic estimates of features such as number and
animacy are typically required to agree between
an antecedent and a pronoun in order for the two
to be coreferring, but these features are never re-
quired to resolve WSC instances per their design.
Therefore, it may be the case that prompted LMs
are not sufficiently considering these features for
the attested PCR problems. To test this hypothesis,
we analyze to what extent LMs could benefit from,
or already incorporate implicitly, the use of such
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Figure 6: A comparison of the accuracy of Llama 3.1 70B instruct (32-shot) against the supervised Maverick
coreference resolution system. We observe that the challenge set assumption does not hold; that is, despite being
generally more accurate on WSC-like datasets, the prompted LM is less accurate on datasets of pronominal
expressions attested in natural corpora. From left to right, the first six datasets consist of attested examples, and the
remaining five are WSC-like challenge sets.

features. To do so, we experiment with oracle base-
lines including these features in the model input as
a verbalized statement.

6.1 Verbalized Features

The verbalized features that we consider are those
annotated in the ARRAU corpus. These are: 1)
grammatical gender, 2) number, 3) enamex type
(i.e., semantic type: is the entity a person, orga-
nization, or location?), and 3) distance between
mentions. We also explore incorporating a gold,
annotated label as an oracle baseline.

Prompt. Verbalized features are appended to the
input string in the form:

The [FEATURE_NAME] of “[X]” is [Y].

For example, the passage in Figure 2 is
prepended with verbalizations such as:

The grammatical gender of “Jim” is male.

Results of this experiment are presented in Ta-
ble 1. We observe some accuracy increase from the
inclusion of grammatical gender, but otherwise no
influence. Meanwhile, the oracle baseline suggests
models are capable of incorporating verbalized fea-
tures that perfectly align with the correct antecedent
prediction (i.e., gold labels).

7 Ensembling Systems for Better
Performance

Finally, we present results for our proposed ensem-
bling method. This method is motivated as follows:

ARRAU

Llama 3.1 70B (QA Prompt) 0.86
+ gold gender 0.87
+ gold number 0.85
+ gold enamex type 0.86
+ distance between mentions 0.84
+ gold label (oracle) 0.99

Table 1: Results including additional features in the
model input on the ARRAU validation set.

because the challenge set assumption does not hold,
prompted LMs and task-specific systems have dis-
tinct strengths at PCR.

7.1 Method

This method functions by heuristically determining
if x corresponds to a salient discourse entity, in
which case a supervised coreference resolution sys-
tem is used to predict the correct antecedent a. Oth-
erwise, x is resolved using a prompted LM. This ap-
proach benefits from the fact that supervised coref-
erence resolution systems are relatively accurate
at resolving pronominal expressions that corefer
to the most salient discourse entities. Meanwhile,
prompted LMs are relatively accurate at resolving
pronominal expressions referring to infrequently
mentioned entities.

7.2 Implementation

For our proposed ensembling method, we first pre-
dict pronominal coreferences using both the super-
vised Maverick system and the prompted Llama 3.1
70B instruct model as before. We then heuristically
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System OntoGUM PreCo WSC 273

Maverick 0.90 0.94 0.71
Llama 3.1 70B 0.84 0.88 0.82

Ensemble 0.90 0.95 0.84

Table 2: Accuracy of the ensemble method compared
against Maverick (supervised coreference resolution)
and prompted Llama 3.1 70B instruct.

determine if a candidate antecedent corresponds to
a salient discourse entity based on the number of
coreferring noun phrases predicted by Maverick in
an end-to-end setup. When the number of predicted
coreferring mentions is greater than two (that is, the
pronoun is estimated to corefer to more than one
other linguistic expression) we use the Maverick
predictions given gold mention spans. Otherwise,
we use the Llama predictions.

7.3 Results
We present the results for our ensembling method
on three out-of-domain datasets of attested pronom-
inal expressions in Table 2. The ensemble predic-
tions are at least as accurate as the best performing
model, and in the case of PreCo and WSC 273,
more accurate than the single most accurate system.
Results across all datasets are presented in App. E.

8 Discussion

Coreference resolution systems have traditionally
struggled at resolving pronouns when the resolu-
tion depends on semantic knowledge related to
high-order predicate-argument relations (Kehler
et al., 2004; Durrett and Klein, 2013; Zhang et al.,
2019a). Meanwhile, our results suggest that re-
solving WSC instances, which are designed to ex-
plicitly rely on such knowledge, is in some ways
relatively easier than other cases for prompted LMs.
Therefore, our intuitions as a research community
regarding what constitutes challenging examples
may not always be aligned with the actual failure
cases of newer modeling paradigms. Consequently,
we must be careful as a community to not interpret
high performance on challenge sets as indicating
that the more general task being studied can consis-
tently be solved by a given system.

The Solvability of PCR. Our experiments and
results are not intended to make claims regarding
the solvability of the task of PCR. It may be that al-
ternative prompting formats exist for which Llama
models are relatively more accurate at resolving

attested pronominal coreferences, and one would
expect accuracy to increase with LM size. What our
results do show, rather, is that existing approaches
that are successful on the WSC and variants cannot
generalize to all attested PCR problems.

Coreference and Substitutability. By their de-
sign, WSC instances can be formatted as a cloze-
style task where the correct antecedent is that which
is most likely to be substituted for the ambiguous
pronoun. Substitutability and coreference are re-
lated but distinct concepts, however. While WSC
instances are difficult in that they cannot be solved
with the agreement of features between a pronoun
and a candidate antecedent, they differ from some
attested PCR problems in that for WSC instances
the concept of coreference is aligned with substi-
tutability. One possible hypothesis to explain our
results is that this alignment is useful for solving
the WSC. This hypothesis is based on the idea that
substitutability can be formatted as a cloze-style
task and is therefore closely aligned with the LM
pretraining objective.

Data Contamination. An open question is
whether LMs are exposed to the WSC or other
datasets’ test instances during pretraining. Elazar
et al. (2023) estimate that up to 30% of WSC test
instances may be contaminated in the training cor-
pus of Llama and other language models. However,
OntoNotes, OntoGUM, Winogrande, Knowref, and
GAP are estimated to have close to zero con-
tamination according to the Data Contamination
Database (CONDA Workshop Organizers, 2024).
ARRAU is not publicly distributed and also un-
likely to be contaminated. Because our results are
consistent for datasets that are likely not contami-
nated, we believe that issues of data contamination
are unlikely to invalidate our findings.

9 Conclusion

The ability to disambiguate pronominal expres-
sions is necessary for interpreting natural language
and has been used extensively as a benchmark to
evaluate models of semantics and discourse.

In this work, we study several possible ap-
proaches to modeling pronominal coreference.
Across evaluations, we find that prompting a
large language model (LM) outperforms other ap-
proaches on the WSC, but underperforms on cer-
tain attested occurrences of pronouns annotated for
coreference in OntoNotes and related datasets.
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A Limitations

We focus on a limited formulation of PCR. One
could expand on the scope of these results by con-
sidering additional formulations of PCR as well as
additional types of pronominal or other proform
expressions (e.g., a broader set of expressions con-
sidered as pronouns such as first and second person
or reflexive pronouns). Additionally, the scope of
coreference could be more explicitly specified by
distinguishing identity coreference versus other re-
lated phenomenon such as binding.

We also did not consider differences between
dataset annotation in detail. For example, datasets
differ in the annotation of mention spans. Our ex-
periments using gold mention annotations provide
some insight into the impact of these differences,
but this impact could be studied more thoroughly
by explicitly considering how mention spans are
annotated within each dataset.

Furthermore, we did not consider model failure
cases in detail beyond our ablation experiments
on the ARRAU dataset. For example, how per-
formance might vary based on genre and how this
differs between systems. For instance, LinkAppend
was trained with genre and speaker metadata.

Finally, expanding our evaluations to multilin-
gual pronominal anaphora and subsets of coref-
erence datasets other than the English language
would allow for new results regarding phenomenon
that are more prominent outside of English (e.g.,
zero-anaphors) or do not exist in English (e.g.,
switch reference and obviation).

B Ethics Statement

PCR systems are known to perform disparately
on subgroups which has ethical implications par-
ticularly for potential real-world use cases (Zhao
et al., 2018; Rudinger et al., 2018; Webster et al.,
2018; Hossain et al., 2023). We therefore do not
recommend or endorse the use of these systems
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for downstream purposes such as real-world, com-
mercial applications; rather, our experiments are
focused solely on the validity of certain assump-
tions of existing challenge sets.

C Differences in formulations of PCR

Our formulation of PCR follows the precise setup
proposed by Zhang et al. (2021) which was in turn
based on earlier formulations which also consid-
ered fixed subsets of English pronouns in restricted
contexts. These restrictions were viewed as rea-
sonable because most antecedents occur within the
local context of a pronoun; e.g., Yang et al. (2003)
observed that the antecedent is within the local
context 95% of the time in the MUC corpus.

We similarly formatted WSC-like challenge sets
in this way to allow for a fair comparison. For
instance, WSC-like datasets may initially contain
pronominal expressions outside our considered set
such as one and y’all.

For additional details, we release our preprocess-
ing code at https://github.com/ianporada/
challenge-set-assumption.

C.1 Additional Considerations

In this section, we outline differences in how exist-
ing work has approached PCR and which choices
we make in setting the scope of our analysis.

There is a tradeoff between evaluating all forms
of pronominal coreference that might occur in nat-
ural language and evaluating those forms that have
been identified and defined in such a way that they
can be reliably annotated in existing corpora. With
this perspective, our goal is more oriented towards
the latter. That is, we do not intend to analyze all
conceivable coreferences of all possible pronomi-
nal expressions. Rather, we take the intersection of
existing work to better understand how well models
generalize across datasets.

End-to-end v.s. mention-linking: As an end-
to-end task, the goal of PCR is to determine with
which linguistic expressions a pronoun corefers
given only the raw context and identification of the
pronoun. In contrast, it could be the case that can-
didate antecedent mentions are already identified,
in which case the task of PCR consists of resolv-
ing the correct antecedent. Common approaches
are to score each candidate independently or pair-
wise (Yang et al., 2008). We compare existing
systems within the category with which they can
perform the task.

One v.s. many mentions: A discourse entity can
be realized as multiple coreferring linguistic ex-
pressions in a discourse. These realizations form
a coreference cluster. In the case that multiple re-
alizations appear in the context of a pronominal
expression, there are multiple possible interpreta-
tions for what is considered the correct antecedent
to be resolved to the pronoun. Popular approaches
are to consider the most recent mention (Liang
and Wu, 2003) or any one of the coreferring men-
tions as a valid antecedent. We consider the most
recent mention to be the valid antecedent which
is the approach most commonly taken in existing
work (Zhang et al., 2021). Nonetheless, we do not
consider instances where multiple coreferring ex-
pressions appear within the immediate context w
to allow for our binary classification evaluation.

Mention boundaries: Finally, datasets differ in
the annotation of mention boundaries (Moosavi
et al., 2019). For example, the antecedent noun
phrase “a young man” in Figure 1 is annotated
in the dataset as “man” whereas in OntoNotes
would be annotated as the maximal dominating
span “a young man of large fortune from the north
of England” according to the annotation guide-
lines. In the case where a PCR model functions
end-to-end a reasonable assumption might be that
the pronoun should corefer with at least a men-
tion containing the head word of the correct an-
tecedent and no mention containing the head word
of the incorrect antecedent (Žabokrtský and Ogrod-
niczuk, 2022); however, optimizing for head words
in this way has been shown to lead to strange mod-
eling design decisions that do not align with hu-
man intuition (Žabokrtský and Ogrodniczuk, 2023).
Moosavi et al. (2019) presents a method for nor-
malizing mention boundaries so some minimal
span which is a reasonable choice for end-to-end
systems and may be useful for future work. For
mention-linking, we simply consider the dataset’s
annotated mention. We do not consider more com-
plex phenomenon such as split-antecedents and
discontinuous mentions in our analysis, but these
would also be interesting to investigate in future
work.

D Input Format

In this section we provide more details regarding
how the input was formatted. We also discuss addi-
tional results given other formats. We find that our
conclusions are consistent across these decisions.
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Figure 7: A comparison of the LinkAppend coreference resolution system and other systems that also do not rely on
gold mention annotations. The GPT-3 Prompt is most accurate on certain WSC datasets, but performance is near
random chance on OntoNotes, OntoGUM, PreCo, and ARRAU. This may be due to the difficulty in predicting the
appropriate spans of linguistic expressions.

Speaker Information. Many datasets of corefer-
ence annotations consist of spoken language and
include corresponding speaker metadata. We tested
models both with and without this metadata and
report models in their best configuration. We found
that Maverick and dcoref perform best with speaker
information, which including speaker data in LLM
input in the form of “SPEAKER_NAME: ...” had
marginal negative effect on LMs’ performance.

Input Length. The datasets of curated natural
corpora that we consider typically consist of rel-
atively long document contexts. Therefore, we
experimented with including in the input only the
local context w or the entire document. We find
that including the full context length has a marginal
effect on performance. In the unsupervised case,
we use only the local context w whereas for super-
vised models we include the full document in the
input for all models (both finetuned systems and
few-shot LMs).

dcoref For the dcoref baseline, we do not use
gold parses (since not all datasets include parse
information) and rather use parses predicted by the
Stanford CoreNLP pipeline.

LinkAppend As an additional representative ex-
ample of supervised systems, we consider the state-
of-the-art LinkAppend coreference resolution sys-
tem (Bohnet et al., 2023). We use the publicly
released weights of the best performing system
which consists of the multilingual mT5-XXL lan-
guage model (13B params) finetuned on OntoNotes.
Results for the LinkAppend system without gold
mention spans are presented in Figure 7.

E Full Ensemble

Results of the ensembling method across all
datasets are presented in Table 3. (We do not con-
sider PDP due to its small test set size.) The ensem-
bled predictions outperform any single system on
all datasets except OntoNotes and KnowRef. The
OntoNotes test set is known to have a high lexical
overlap with the training set which could possibly
explain the exceptional superior performance of the
supervised Maverick model on this dataset. To test
if this is the case, we can also consider the public
Maverick weights trained on PreCo in the same
setup in which case the Maverick model accuracy
is 0.71 and is significantly outperformed by the
ensemble approach (0.89 in this case).

In the case of KnowRef, it is not clear why the
ensemble approach is less accurate than the super-
vised system in contrast to all other datasets. This
may be related to the relatively poor accuracy of
Llama 3.1 on KnowRef and would be interesting
to investigate in future work.

F Dataset Details

F.1 Examples
Here we present example instances from the valida-
tion sets of those datasets that include a validation
split. For readability, we show only the local con-
text w.

   , urging the Supreme Court to give states more leeway to restrict

abortions , said  have n't any right to abortion without the consent of  parents .

The Bush administration

minors their

b

a x

Figure 8: An instance from the OntoNotes dataset.
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System ON OG PreCo ARRAU GAP KnowRef DPR SG-WSC WSC 273 P-WG

Maverick 0.96∗ 0.90 0.94 0.90 0.88 0.87∗ 0.78 0.73 0.71 0.60
Llama 3.1 70B 0.87 0.84 0.88 0.87 0.77 0.73 0.82 0.77 0.82 0.80

Ensemble 0.93 0.90 0.95 0.91 0.91∗ 0.77 0.85 0.79 0.84 0.81

Table 3: Accuracy of the ensemble method compared against Maverick (supervised coreference resolution) and
prompted Llama 3.1 70B instruct. ON denotes OntoNotes and OG denotes OntoGUM. The most accurate model
in each column is marked in bold. * indicates results that are statistically significant as compared to the next best
model based on a t-test with p-value < 0.1.

In a representative democracy , however , the citizens do not govern directly . Instead , they elect

representatives to make decisions and pass laws on behalf of all the people . Thus ,  

vote for members of  , the president and vice president , members of state legislatures ,

governors , mayors , and members of town councils and school boards to act on  behalf .

U.S. citizens

Congress

their

a

b

x

Figure 9: An instance from the OntoGUM dataset.

Balzac tells us of a man who suspected   of having a lover . The husband comes home by

surprise . But she hears him and quickly hides   in the closet of  bedroom .

his wife

her lover her

a

b x

Figure 10: An instance from the PreCo dataset.

it is tempting for girls to try to hide their acne with make-up . This rarely hides the spots , and it

blocks the skin pores - a situation almost guaranteed to make the acne worse . If  want to

wear  , use  sparingly and choose a light non-greasy lotion , not cold creams .

you

make-up it

b

a x

Figure 11: An instance from the ARRAU dataset.

Coudert traveled to Europe in the late 1890s under the patronage of socialite Minnie Paget . She

was welcomed by high society there and soon became known for her portraits of royalty ,

including    ,      and  wife Alexandra .King Edward VII Czar Nicholas II of Russia his
b a x

Figure 12: An instance from the GAP dataset.

 is often a condescending prick to  , but I do n't think  was being arrogant here .William Frank he
a b x

Figure 13: An instance from the KnowRef-60K dataset.

 helped  with his assignment because  politely asked him to .Mike Jack he
b a x

Figure 14: An instance from the DPR dataset.

 got a job working with dogs , while  worked in sales because  was a

people person .

Brian Derrick he
b a x

Figure 15: An instance from the Pronominal Wino-
grande (P-WG) dataset.

F.2 Summary Statistics
OntoNotes

• License: LDC User Agreement for Non-
Members

• Final validation instances: 1,536

• Final test instances: 1,642

OntoGUM

• License: Varies by subcorpus. All annotations
are cc-by-4.0

• Final validation instances: 272

• Final test instances: 236

PreCo

• License: None specified

• Final validation instances: 2,167

• Final test instances: 2,248

ARRAU

• License: LDC User Agreement for Non-
Members

• Final validation instances: 179

• Final test instances: 411

GAP

• License: apache-2.0

• Final validation instances: 203

• Final test instances: 832
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PDP

• License: cc-by-4.0

• Final test instances: 33

KnowRef-60K

• License: cc-by-4.0

• Final validation instances: 21,240

• Final test instances: 3,061

DPR

• License: None specified

• Final test instances: 558

SuperGLUE WSC

• License: Custom (research usages)

• Final test instances: 146

WSC 273

• License: cc-by-4.0

• Final test instances: 180

Pronominal Winogrande

• License: cc-by-4.0

• Final test instances: 209
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Abstract

Sentiment analysis is crucial in Natural Lan-
guage Processing as it enables the extraction
of opinions and emotions from text. How-
ever, Arabic sentiment analysis is often over-
looked. Current benchmarks for Arabic senti-
ment analysis tend to be outdated or lack com-
prehensive annotations, which limits the devel-
opment of more accurate and reliable models
for the Arabic language. To address these chal-
lenges, we introduce ArSen, a meticulously an-
notated Arabic dataset centered on COVID-19,
along with IFDHN, a novel model that employs
fuzzy logic for more precise sentiment classifi-
cation1. ArSen offers a robust and contempo-
rary benchmark, and IFDHN achieves state-of-
the-art performance in Arabic sentiment analy-
sis, with 78.12% accuracy, an F1-Macro score
of 55.83%, and an F1-Micro score of 78.12%
on the test set. Notably, by using only 0.23% of
the computational resources of large language
models, IFDHN achieved performance compa-
rable to LLaMA-3-8B, showcasing significant
improvements over existing methods.

1 Introduction

Sentiment analysis (SA), also known as opinion
mining, is a critical task in Natural Language Pro-
cessing (NLP) that involves detecting, extracting,
and classifying opinions and emotions expressed
in text (Marreddy and Mamidi, 2023; Hussein,
2018). In recent years, the advent of social me-
dia platforms like Twitter (X for now) has provided
a rich data source for SA. Building on this, so-
phisticated models such as RoBERTa-LSTM and
KEAHT have emerged, further promoting the de-
velopment of the SA field (Tan et al., 2022; Tabinda
Kokab et al., 2022; Tiwari and Nagpal, 2022).

Despite these advancements in sentiment anal-
ysis, the complexity of the Arabic language, com-

* Corresponding author.
1Resources are available at: https://github.com/

123fangyang/ArSen.

bined with its significant differences from English,
has led to a scarcity of studies and resources in Ara-
bic sentiment analysis (ASA) (El-Masri et al., 2017;
Yan and Xu, 2024). The widely used ASA bench-
marks, such as Gold Standard (Refaee and Rieser,
2014) and SemEval (Rosenthal et al., 2017), are
often outdated and small in scale (less than 10,000).
To address this gap, we leveraged a large volume
of Arabic tweets generated during the COVID-19
pandemic. During this pandemic, Arabic-speaking
users widely shared their emotions and experiences.
This large-scale public sharing made it possible
to construct a comprehensive and diverse dataset.
Therefore, we introduce Arabic Sentiment (ArSen),
a COVID-19-themed Arabic benchmark created
through meticulous manual annotation by trained
professionals. The ArSen benchmark aims to ad-
dress the previously mentioned challenges and pro-
vide ASA research with a modern, comprehensive
resource featuring accurate data annotations, thus
advancing the field of ASA within NLP.

Additionally, we propose a new model called the
Improved Fuzzy Deep Hybrid Network (IFDHN),
designed specifically to enhance sentiment clas-
sification through the integration of fuzzy logic.
Fuzzy logic has been effectively applied in senti-
ment analysis to handle the ambiguity and nuances
of language (Zadeh, 1996; Vashishtha et al., 2023).
Our IFDHN model demonstrates state-of-the-art
(SOTA) performance in ASA tasks, validating the
effectiveness of incorporating fuzzy logic to im-
prove classification accuracy.

Our contributions are twofold: (1) We proposed
ArSen, a robust and contemporary benchmark for
ASA tasks, addressing the lack of up-to-date and
high-quality benchmarks in this domain; (2) we
introduced IFDHN, a novel model that integrates
fuzzy logic to better handle ambiguous sentiments,
improving overall classification performance.

The paper is organized as follows: Section 2
introduces the ArSen benchmark, detailing its con-
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struction and significance. Section 3 discusses the
architecture and features of IFDHN model. Sec-
tion 4 presents comprehensive evaluations of the
IFDHN model against leading SOTA models using
the ArSen dataset. Finally, Section 5 summarizes
our findings and proposes directions for future re-
search in ASA.

2 ArSen Benchmark

To address the aforementioned shortcomings in
ASA, we introduce the ArSen benchmark. Firstly,
our motivation for creating the ArSen benchmark
is discussed in Section 2.1, where we outline the
rationale for selecting COVID-19-themed tweets
to develop the benchmark. We then move on to de-
scribe the benchmark construction process in Sec-
tion 2.2, providing a thorough explanation of the
data preprocessing and annotation steps involved.
This section aims to provide a clear understand-
ing of how ArSen was developed and the rigorous
methodologies employed to ensure its quality.

2.1 Motivation

The COVID-19 pandemic disrupted daily life for
everyone and became a trending topic on Twit-
ter from 2020 to 2023 (Ali, 2021). For now, the
COVID-19 crisis has largely subsided, the tweets
from this period provide a comprehensive and com-
plete picture of the real emotional states of Arabic-
speaking users during the pandemic, such as fear,
anxiety, hope, and solidarity (Lwin et al., 2020).
Additionally, the pandemic led to discussions on a
variety of topics, including health, economy, poli-
tics, and social interactions (Chandrasekaran et al.,
2020), which enhances the dataset’s comprehen-
siveness and enables the development of models
that can handle a wide range of topics (Xu et al.,
2022). This rich emotional context and topic diver-
sity offer valuable insights for ASA in a contem-
porary and relevant setting. Therefore, we focus
on using tweet data from the COVID-19 period to
develop the ArSen benchmark for ASA. In our pre-
vious research, we introduced a similar benchmark,
ArSen-20 (Fang and Xu, 2024), which included
20,000 tweets. However, ArSen-20 had limitations,
such as a less rigorous annotation process, and no
experiments were conducted using the dataset. To
address these issues, we have implemented stricter
annotation standards and performed extensive ex-
periments to enhance the reliability and usefulness
of our new benchmark.

Field Type Description
like_count int The number of likes on this tweet.
quote_count int The number of times this tweet has been quoted.
reply_count int The number of replies to this tweet.
retweet_count int The number of retweets to this tweet.
tweet string The actual UTF-8 text of the tweet.
user_verified boolean Indicates if this user is a verified Twitter User.
followers count int The number of followers of the author.
following count int The number of following of the author.
tweet_count int Total number of tweets by the author.
listed_count int The number of public lists that this user is a member of.
description string The text of this user’s profile description (bio).
created_at date Creation time of the tweet.
label string Sentiment Classification of this tweet.

Table 1: Tweets field feature information.

2.2 Data Preprocessing and Annotation

Xu and Yan (2023) provided a suitable opportunity
for our work with their proposed AROT-COV232

dataset, which collected approximately 500,000
original COVID-19-related tweets and contextual
information, spanning from January 2020 to Jan-
uary 2023. These data can be accessed and used for
research purposes, our ArSen dataset follows the
same policy. To maintain representativeness while
reducing dataset size for efficient analysis, we ran-
domly selected ~10k tweets from AROT-COV23.
Furthermore, to protect the privacy of Twitter users,
we remove redundant features that could expose
personal information during preprocessing, thereby
streamlining the dataset. The detailed tweets field
feature information is shown in Table 1.

Following this preprocessing phase, we anno-
tated around 10,000 tweets into three classes: pos-
itive, neutral, and negative. Each tweet was anno-
tated by three annotators, who are advanced Ara-
bic speakers. They received thorough training in
advance, following the same labeling guidelines.
The annotation guidelines categorized tweets as
follows:

Positive: Tweets expressing happiness, gratitude,
affirmation, encouragement, and solidarity.

Neutral: Tweets conveying factual information,
such as news updates, advertisements, sugges-
tions, advice, and questions.

Negative: Tweets conveying sadness, condemna-
tion, sarcasm, warnings, protests, regret, refu-
tation, and obituaries.

Notably, in our annotation process, emojis
helped as cues to label the tweets more quickly. For
instance, a positive tweet often includes a ’smile
emoji’ or a ’red heart emoji’ to express the author’s

2https://github.com/chengxuphd/AROT-COV23
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Labels Example in Arabic English Translations
Positive . é<Ë Qº ��Ë@ð é<Ë YÒmÌ'@ Praise be to God and thanks be to God.

Neutral . �é�J� úÍ@ A 	KðPñ» �ðQ�
 	̄ �HAJ
 	̄ð �éÊJ
�k ¨A 	®�KP@ France: Coronavirus death toll rises to six.

Negative . AJ
Ë A¢�
@ ú

	̄ Q 	k

�
@ 	áK
 	Qk ÐñK
 Another sad day in Italy.

Table 2: Labels used in annotation and examples of
each.

happiness or well-wishes to others. In addition,
the tweet’s sentiment must reflect the author’s emo-
tion when they posted the tweet, rather than the
annotators’ opinion.

In the annotation process, we employ a voting
mechanism. If two out of the three annotators agree
on a label, we accept that label (Rosenthal et al.,
2017; Alharbi et al., 2021). Otherwise, this tweet
will be deleted. Furthermore, Table 2 provides
examples of tweets from each sentiment category
as part of the annotation process.

We present the detailed statistics for the ArSen
dataset in Table 3, offering insights into the data
size and label classifications, which indicate that
neutral sentiments dominate the dataset. This is
primarily because most tweets aimed to inform the
public about the latest developments in the pan-
demic by sharing neutral news updates, while only
a smaller portion expressed the authors’ genuine
emotional responses (positive or negative).

Statistics Num Proportion
Data size
Training set 8153 80%
Validation set 1020 10%
Testing set 1020 10%
Avg. tweet length (tokens) 146 -
Labels
Neutral 7069 69.4%
Positive 1564 15.3%
Negative 1557 15.3%

Table 3: The ArSen dataset statistics.

3 Proposed Model

Researchers have long recognized the unique ad-
vantages of fuzzy logic in capturing the ambigui-
ties and uncertainties of real-world data (Das et al.,
2020). Zadeh (1996) introduced the concept of
computing words using fuzzy logic. In this ap-
proach, sentiment polarity is determined by calcu-
lating fuzzy membership values ranging from 0.0
to 1.0. Each word in the text is assigned a score
within this range, reflecting the realistic scenario
where sentiment is not always binary but often am-

biguous and uncertain (Vashishtha et al., 2023). In
recent years, fuzzy logic has also drawn significant
attention in the field of SA (Huyen Trang Phan
and Nguyen, 2023; Golondrino et al., 2023; Sun
et al., 2024; Alzaid and Fkih, 2023). Moreover, the
ArSen dataset contains contextual information, so
we would like to construct a multi-channel fuzzy
model to test the ArSen dataset. A recent study
in the field of fake news detection provides an op-
portunity for this work. Xu and Kechadi (2023,
2024) introduced the FDHN model, which uses
fuzzy logic and multiple input types: news text,
textual context, and numerical context. The text in-
puts are processed by TextCNNs, while numerical
context is handled by CNN and Bi-LSTM layers,
then processed by a Fuzzy Layer. The model’s out-
puts are concatenated and integrated in the final
layer, achieving SOTA performance metrics on the
LIAR dataset (Wang, 2017), which includes multi-
class labels such as pants-fire, false, barely-true,
half-true, mostly-true, and true. This use of fuzzy
multi-class labels shows a strong similarity to our
ArSen benchmark. Beyond this, they both require
contextual information. Therefore, we believe that
the strengths of the FDHN model allow us to ad-
equately analyze the ArSen benchmark. In order
to transfer FDHN to the ASA task, we tailored and
improved the architecture of FDHN to propose the
IFDHN model, aiming to better utilize its fuzzy
logic and context-dependent properties. Through
our experiments, we found that introducing textual
context information, specifically the created_at and
description features in the ArSen dataset, was re-
dundant and decreased the model’s performance,
leading us to remove these features. Furthermore,
we designed a separate TextCNN to process tweet
text and then fine-tuned the CNN-BiLSTM module
for numerical context.

Although Large Language Models (LLMs) like
GPT-3.5/4 (OpenAI, 2024) and LLaMA-3 (Dubey
et al., 2024) have achieved impressive results
in many NLP tasks like question answering and
text generation, they fall short in interpretability
and computational efficiency for fuzzy classifica-
tion tasks (Chang et al., 2024; Bang et al., 2023;
BehnamGhader et al., 2024). For example, GPT-4
achieved only 28.1% accuracy on the LIAR dataset,
whereas FDHN achieved 46.5% (Pelrine et al.,
2023), and FDHN requires only about 3 seconds
to train an epoch on a single A100 GPU, while
LLMs generally require more than 4 A100 GPUs
to be fine-tuned for hours to train for downstream
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Figure 1: The IFDHN model structure.

tasks. Taking these considerations into account, we
decided to use FDHN as the baseline model in this
work. However, we also included the results of
LLaMA-3-8B for comparison.

As illustrated in Figure 1, the IFDHN model
comprises two primary channels: Tweet Text and
Numerical Context. The tweet text is fed into a dis-
tinct TextCNN, while the numerical context is pro-
cessed by a combination of CNN and Bi-LSTM lay-
ers before being passed through a Fuzzy Layer. The
model produces three outputs: output 1 is derived
from the Tweet Text channel, output 2 is derived
from the Numerical Context channel, and output 3
is the Fuzzy Layer-processed version of output 2.
These three output representations are then concate-
nated and integrated in the final layer. In particular,
an example data point used in our IFDHN model
is shown in Table 4, with f1 representing the tweet
text and {f2, . . . , f10} representing the numerical
context. More detailed component analysis is pro-
vided in Appendix A.

# Field Value
- label positive
f1 tweet . �éÒJ
ºmÌ'@ A 	J�KXAJ
 �®Ë @Qº ��
f2 like_count 6
f3 quote_count 0
f4 reply_count 0
f5 retweet_count 6
f6 followers_count 10977
f7 following_count 356
f8 tweet_count 9029
f9 listed_count 108232
f10 user_verified False

Table 4: An example data point from ArSen dataset
used in IFDHN model.

4 Experimental Results

In this section, we present a comprehensive analy-
sis of our experiments, which are divided into two
main parts: a performance evaluation on the ArSen

Model Validation Test
Accuracy F1-Macro F1-Micro Accuracy F1-Macro F1-Micro

RoBERTa 0.6889 0.2719 0.6889 0.6850 0.2710 0.6850
AraT5-Tweet-Base 0.7134 0.6604 0.7134 0.7723 0.6837 0.7723

FNet 0.7233 0.5081 0.7233 0.7429 0.4960 0.7429
LLaMA-3-8B 0.7428 0.6236 0.7428 0.7595 0.6240 0.7595

FDHN 0.7350 0.4888 0.7306 0.7753 0.5575 0.7753
IFDHN 0.7478 0.5113 0.7368 0.7812 0.5583 0.7812

Table 5: Comparison of various state-of-the-art models
on ArSen dataset. The highest scores are highlighted in
bold, while the second-highest scores are highlighted
with an underline.

dataset using the IFDHN model and other SOTA
models (Section 4.1). In addition, an ablation study
was performed to investigate the impact of different
features on the performance of the IFDHN model
(Section 4.2). Performance evaluation metrics are
detailed in Appendix B. Detailed information about
our experimental setup, including the development
environment and hyperparameter configurations,
can be found in Appendix C.

4.1 Performance Comparison

We evaluated the performance of the IFDHN model
with several SOTA models on the ArSen dataset.
Table 5 presents a comparison of the accuracy and
F1 scores for the validation and testing sets.

The RoBERTa model (Liu et al., 2019) is an op-
timized BERT (Devlin et al., 2019) variant trained
with more data and longer sequences. Despite its
robust architecture, RoBERTa yielded the lowest
performance in our experiments, with particularly
low F1-Macro scores of 0.2719 on the validation
set and 0.2710 on the test set.

Nagoudi et al. (2022) evaluated both Dialec-
tal Arabic and Modern Standard Arabic, introduc-
ing the AraT5-Tweet-Base model. This model
achieved the highest F1-Macro scores in both vali-
dation and testing sets among the evaluated mod-
els, with scores of 0.6604 and 0.6837, respectively.
AraT5-Tweet-Base’s ability to handle both com-
mon language forms in tweets allows it to better
capture the diverse sentiment labels present in the
dataset. This flexibility in processing both language
forms likely contributed to its superior performance
in F1-Macro compared to our IFDHN model.

The FNet model(Lee-Thorp et al., 2022) replaces
the self-attention mechanism in Transformer en-
coders with unparameterized Fourier Transforms.
In our ArSen dataset, the FNet model delivered
average performance across various metrics.

The LLaMA-3 model (Dubey et al., 2024) is a
decoder-only LLM with a 128K token vocabulary,
optimized for efficient language encoding and pre-
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trained on over 15 trillion tokens. This structure
makes the LLaMA-3 model less suitable for our
sentiment classification task. It features grouped
query attention, offering strong performance across
diverse NLP tasks. In our experiments, this model
achieved the highest validation set F1-Micro score
of 0.7428 without any fine-tuning. This result may
be due to the relatively small scale of our bench-
mark.

The FDHN model (Xu and Kechadi, 2023, 2024),
significantly contributed to the development of our
IFDHN model. The FDHN model outperforms
in all metrics while using fewer computational re-
sources, which further motivated us to refine the
model for our ASA task.

The IFDHN model outperformed all other mod-
els in accuracy and achieved the highest F1-Micro
score on the test set. More importantly, we
achieved comparable performance using just 0.23%
of LLaMA-3’s computational resources. As shown
in Table 8, the IFDHN model has the lowest time
cost, taking only 0.44 seconds. This outstanding
result might be due to our multi-channel structure,
which combines more information than just the
tweet text, making it well-suited for the ArSen
benchmark.

4.2 Ablation Experiment

To evaluate the impact of different features on the
overall performance, we conducted a series of ab-
lation experiments on the ArSen dataset. Table 6
summarizes the results.

Our ablation study included three sets of exper-
iments: (1) evaluating each feature individually,
(2) assessing the impact of excluding each feature
one at a time, and (3) analyzing the model’s perfor-
mance with all features combined. This study pro-
vided critical insights into the role of various fea-
tures in sentiment analysis for Arabic text. These
experiments led to the following findings:

1. The tweet feature emerged as the most critical
for accurate sentiment detection. It achieved
the highest performance scores when used
alone and caused the most significant perfor-
mance drop when excluded. This underscores
the importance of the tweet as the primary
source of sentiment information.

2. The interaction metric was identified as the
second most crucial feature. Although its stan-
dalone performance was similar to that of the

Feature Validation Test Mean
Accuracy F1-Macro F1-Micro Accuracy F1-Macro F1-Micro

Interacting metric 0.6850 0.2755 0.6862 0.7164 0.2830 0.7164 0.5604
Meta-data 0.6869 0.2715 0.6869 0.7164 0.2783 0.7164 0.5594

Tweet 0.7390 0.4976 0.7319 0.7772 0.5655 0.7772 0.6814
All without

Tweet 0.6869 0.2715 0.6869 0.7164 0.2783 0.7164 0.5594
Interacting metric 0.7272 0.4749 0.7244 0.7713 0.5294 0.7713 0.6664

Meta-data 0.7380 0.4680 0.7260 0.7753 0.5464 0.7753 0.6715
All 0.7478 0.5113 0.7368 0.7812 0.5583 0.7812 0.6861

Table 6: Ablation Experiment Results on the ArSen
dataset. The interaction metric includes numerical
features of like_count, quote_count, reply_count, and
retweet_count. The meta-data feature comprises follow-
ers_count, following_count, tweet_count, listed_count,
and user_verified. In the first experiment, we individu-
ally tested our packed features. Next, we excluded one
feature at a time. Finally, all features were included to
observe their combined performance.

meta-data, it yielded the highest scores when
the meta-data feature was excluded, highlight-
ing its value in sentiment detection.

3. The meta-data feature contributed signifi-
cantly to the model’s performance. Its inclu-
sion improved the model’s ability to general-
ize and provided context that complemented
the tweet’s content.

The ablation study highlights the importance of
combining multiple features to improve the robust-
ness and accuracy of Arabic sentiment analysis
models. While tweet content is key, interaction
metrics and metadata provide valuable context that
enhances sentiment detection.

5 Conclusion

In this paper, we introduced a novel Arabic senti-
ment analysis benchmark focused on the COVID-
19 pandemic and presented the IFDHN model, tai-
lored specifically for sentiment analysis within this
context. Our model demonstrated substantial per-
formance improvements over other SOTA models.
Compared to the large language model LLaMA-
3-8B, our model achieved a 0.5% and 2.17% in-
crease in accuracy on the validation and test sets,
respectively, and a 2.17% increase in F1-Micro on
the test set. More notably, the IFDHN model re-
duced processing time by approximately 422 times
compared to LLaMA-3-8B, achieving a remark-
able processing speed of just 0.44 seconds. This
comprehensive evaluation highlights the IFDHN
model’s capability to effectively capture nuanced
sentiments, making it a valuable tool for under-
standing public sentiment.

511



Limitations

While our IFDHN model shows substantial
promise in Arabic sentiment analysis, several limi-
tations must be noted. Our experiments were lim-
ited to a COVID-19-focused dataset, which may
affect generalizability across other domains within
Arabic sentiment analysis. The model’s robustness
in diverse contexts remains unexplored as it was
not tested on established benchmarks like LABR
(Aly and Atiya, 2013) and ASTD (Nabil et al.,
2015). Additionally, despite the potential of LLMs
like GPT-4 for nuanced language understanding
(Guan and Greene, 2024a,b; Guan et al., 2024),
their high resource demands, challenges in fuzzy
classification, data contamination issues (Xu et al.,
2024), and susceptibility to illusions (Schaeffer
et al., 2023) precluded their inclusion in our study.
Our benchmark, primarily sourced from Twitter,
may not fully represent broader Arabic language
use, potentially introducing platform-specific bi-
ases. Ethical considerations also arise in the use
of this dataset, particularly regarding the poten-
tial for misuse in surveillance, censorship, or other
harmful activities, underscoring the importance of
adhering to strict ethical guidelines. Furthermore,
the model does not address the complexities of Ara-
bic dialects, which vary significantly in vocabulary
and syntax. Future work should include compre-
hensive evaluations across diverse datasets, explore
the integration of LLMs, and account for dialectal
variations to enhance the accuracy and generaliz-
ability of Arabic sentiment analysis.
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A Component Analysis

In this section, we present a comprehensive compo-
nent analysis of our proposed model for the ASA

task. The performance of the IFDHN models is
evaluated using various metrics, including accu-
racy, F1-macro, and F1-micro, on both validation
and testing sets. Importantly, all training phases of
the models are finished within 10 epochs.

Table 7 provides a summary of the performance
of our models in both sets. This table includes
three fundamental components: TextCNN (TC),
CNNBiLSTM (CB), and Fuzzy (FZ).

In the first row of this table, we use only the
TextCNN module to process our dataset. This
module proved to be the most significant part of
the IFDHN model, achieving high scores across
all evaluation metrics, with the highest F1-Macro
score on the testing set. Additionally, in the third
row, when the TextCNN module is excluded, the
F1-Macro score is the lowest. Moreover, when
comparing row two with row four, adding the Fuzzy
layer leads to improved performance across all met-
rics. If the Fuzzy layer is not employed, alternative
methods such as a self-attention mechanism or a
probabilistic approach like Bayesian Neural Net-
works may also be effective in handling uncertainty
and enhancing model performance.

B Evaluation Metrics

For our experiments, we utilize Accuracy and
F1-score to evaluate the performance of models.
Specifically, due to the class imbalance of our
dataset, we report F1-Macro and F1-Micro to cap-
ture the model’s performance across all classes.
These evaluation metrics are widely used in many
research studies (Heikal et al., 2018; Al-Smadi
et al., 2018).

Accuracy is the simplest and most intuitive per-
formance metric. It is defined as the ratio of cor-
rectly predicted instances to the total number of
instances in the dataset. The formula for Accuracy
is:

Accuracy =
TP + TN

TP + TN + FP + FN
where TP, TN, FP, and FN represent the number

of true positives, true negatives, false positives, and
false negatives, respectively.

F1-Score combines precision and recall into a
single metric by taking their harmonic mean, pro-
viding a balance between the two. The formula for
F1-Score is:

F1-Score =
2× Precision× Recall

Precision + Recall
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Model Validation Test Mean
Accuracy F1-Macro F1-Micro Accuracy F1-Macro F1-Micro

TC 0.7429 0.5022 0.7342 0.7743 0.5621 0.7743 0.6817
TC + CB 0.7341 0.4946 0.7318 0.7782 0.5553 0.7782 0.6787
CB + FZ 0.6869 0.2715 0.6869 0.7164 0.2783 0.7164 0.5594

TC + CB + FZ 0.7478 0.5113 0.7368 0.7812 0.5583 0.7812 0.6861

Table 7: Performance comparison of different sub-models of the IFDHN on validation and testing sets.

where Precision is defined as TP
TP+FP and Recall

is defined as TP
TP+FN .

F1-Macro is an extension of the F1-Score for
multi-class problems. It is calculated by first com-
puting the F1-Score for each class independently
and then averaging these scores. The formula for
F1-Macro is:

F1-Macro =
1

N

N∑

i=1

F1-Scorei

where N is the total number of classes, and
F1-Scorei represents the F1-Score of the ith class.
F1-Macro treats each class equally, which is bene-
ficial when assess the model’s performance across
all classes without being biased by class size.

F1-Micro, on the other hand, aggregates the con-
tributions of all classes to compute the precision
and recall before calculating the F1-Score. Un-
like F1-Macro, F1-Micro gives more weight to the
classes with more instances. The formula for F1-
Micro is:

F1-Micro =
2× TPsum

2× TPsum + FPsum + FNsum

In this formula, TPsum, FPsum, and FNsum are the
sums of true positives, false positives, and false
negatives across all classes, respectively.

By utilizing these metrics, particularly F1-Macro
and F1-Micro, we gain a comprehensive under-
standing of our model performance, especially in
the context of the class imbalance present in the
ArSen dataset.

C Experimental Setup

The model was implemented using PyTorch3, and
the experiment was conducted on a NVIDIA RTX
4090 GPU. Building on this setup, we provide de-
tails in this section on the specific configuration of
the model utilized in our experiments.

3https://pytorch.org/

Firstly, in our IFDHN model, each module’s
output sequence length is configured to 6, with a
dropout rate of 0.5 and an embedding dimension
set to 128, utilizing zero-padding where necessary
to maintain consistency.

The TextCNN module, responsible for process-
ing tweet text, includes an embedding layer fol-
lowed by three parallel CNN layers, which use
kernel sizes of 3, 4, and 5, all with a depth of 128.
Each CNN layer’s output is subjected to MaxPool-
ing to capture the most significant features. These
pooled feature maps are then concatenated and fed
into a linear layer with dropout to prevent overfit-
ting.

The CNNBiLSTM module, which handles nu-
merical context, starts with a linear layer incorpo-
rating dropout. This is followed by a CNN layer
with 32 output channels and a kernel size of 1. The
processed output is then fed into a three-layer Bi-
LSTM network with dropout to capture temporal
dependencies. Finally, a linear layer is applied to
generate the module’s output.

Secondly, to evaluate the performance of our
IFDHN model, we compared it with some SOTA
models, including RoBERTa, AraT5-Tweet-Base,
and FNet, using HuggingFace implementations
for sequence classification. Specifically, we em-
ployed the pre-training weights roberta-base4,
AraT5-tweet-base 5, and fnet-base6, respec-
tively. Additionally, for the FDHN model, we incor-
porated the description and created_at features as
inputs to the text context module. All models were
trained for 10 epochs, with other parameters set to
their default values, and the time spent to train one
epoch for all models is presented in Table 8. All
the code results represent the best outcomes from a
single execution, with a random seed set to 42.

Finally, we also included LLaMA-3 for test-
ing to explore the performance of LLMs on

4https://huggingface.co/FacebookAI/
roberta-base

5https://huggingface.co/UBC-NLP/AraT5-base
6https://huggingface.co/google/fnet-base
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this task. During the experiments with LLaMA-
3, we also used its HuggingFace implementa-
tion (Meta-Llama-3-8B-Instruct7) and utilized
LLM2Vec (BehnamGhader et al., 2024) for sen-
tence embedding.

Model Avg. Epoch Time Val Best Epoch
LLaMA-3-8B 185.82s -

RoBERTa 50.13s 5/10
AraT5-Tweet-Base 29.66s 3/10

FNet 23.70s 3/10
FDHN 0.47s 4/10
IFDHN 0.44s 4/10

Table 8: The average time spent by all models to train
one epoch. The third column indicates the best epoch
on the validation set, where the minimum loss value
was achieved. There is no best Epoch number on the
validation set since LLaMA-3 uses only the inference
mode.

7https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct
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Abstract

Cosine similarity between two documents can
be computed using token embeddings formed
by Large Language Models (LLMs) such as
GPT-4, and used to categorize those documents
across a range of uses. However, these sim-
ilarities are ultimately dependent on the cor-
pora used to train these LLMs, and may not
reflect subjective similarity of individuals or
how their biases and constraints impact simi-
larity metrics. This lack of cognitively-aware
personalization of similarity metrics can be par-
ticularly problematic in educational and rec-
ommendation settings where there is a limited
number of individual judgements of category
or preference, and biases can be particularly
relevant. To address this, we rely on an inte-
gration of an Instance-Based Learning (IBL)
cognitive model with LLM embeddings to de-
velop the Instance-Based Individualized Sim-
ilarity (IBIS) metric. This similarity metric is
beneficial in that it takes into account individ-
ual biases and constraints in a manner that is
grounded in the cognitive mechanisms of de-
cision making. To evaluate the IBIS metric,
we also introduce a dataset of human catego-
rizations of emails as being either dangerous
(phishing) or safe (ham). This dataset is used to
demonstrate the benefits of leveraging a cogni-
tive model to measure the subjective similarity
of human participants in an educational setting.

1 Introduction

When humans categorize textual information, such
as when giving recommendations or learning to
categorize documents, we often use our personal
subjective concepts to complete the task. One ex-
ample of this is giving a recommendation of a funny
book to a fiend, which requires not only our own
subjective conceptualization of humor, but also an
understanding of the similarities and differences
between ourselves and our friends. While humans
perform this task with relative ease, recommenda-
tion systems (Ko et al., 2022) and educational tools

(Nafea et al., 2019) typically do not have personal-
ized measurements of subjective concepts (Gazdar
and Hidri, 2020), potentially hindering their effi-
cacy (Pal et al., 2024).

When these systems incorporate data from hu-
man judgements to determine subjective similar-
ity, they typically do so by pooling together as
many judgements from different people as they
can, and aggregate their measurement (Xia et al.,
2015). This approach relies on machine learning
based methods (Shojaei and Saneifar, 2021), which
can be effective from a machine learning perspec-
tive, since more data can mean improved document
similarity metrics on average over large datasets
(Kusner et al., 2015). Focusing on individuals anno-
tations of documents has been explored in the con-
text of domain specific knowledge such as biomed-
ical research papers (Brown and Zhou, 2019), or
for specific context like document summarizing
(Zhang et al., 2003).

However to date little attention has been given
to the notion of individualized metrics of similarity
that account for biases and constraints specifically,
which are highly relevant for educational contexts
(Chew and Cerbin, 2021). Related to the domain
of this work in particular, recent work has demon-
strated a broad range of human opinions and levels
of trust associated with cybersecurity concepts such
as Trusted Execution Environments (Carreira et al.,
2024). This highlights the need for individualized
metrics that take into account experience in train-
ing tasks such as the anti-phishing training dataset
used in this work.

In this work, we propose a method for providing
personalized metrics of subjective concepts that can
determine the similarity between sets of text, with
additional applications in selecting educational ex-
amples and providing natural language feedback.
This is done by leveraging a cognitive model of hu-
man learning and decision making that can act as a
digital twin to individuals, and predict their behav-
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ior and opinions on a wider set of stimuli. We focus
specifically on students categorizing emails as be-
ing safe (ham) or dangerous (phishing) in a training
setting to help users identify and defend against
phishing email attacks. Our proposed method for
providing personalized similarity metrics of doc-
uments is compared to alternative methods using
a dataset of a phishing education task experiment
that we additionally present in this work.

The dataset of human annotations of emails as
being either ham or phishing is described in (Mal-
loy et al., 2024) and was made publicly available
on OSF1. This dataset consists of human annota-
tions of email documents that are either written by
cybersecurity experts or a GPT-4 model, the emails
shown to participants, and conversations between
human participants and a GPT-4o model providing
feedback to students. In total this dataset repre-
sents 39230 human judgements from 433 partici-
pants making decisions while observing a set from
1440 GPT-4 or human generated emails, as well as
20487 messages between human participants and
the GPT-4o teacher model.

This type of learning task represents a serious
challenge for traditional methods of adjusting doc-
ument embedding similarity metrics to conform
to human behavior, such as embedding pruning
(Manrique et al., 2023) or embedding weighting
(Onan, 2021). This is because these approaches
typically rely on a large amount of annotations col-
lected from many participants who are expected
to have the same knowledge level throughout the
annotation process. Instead, we are interested in
measuring the subjective similarity of documents
as participants learn the document annotation task
in a training setting. To do this, we employ a cog-
nitive model that can predict the learning trajectory
of each individual participant as they learn to cor-
rectly annotate these documents.

2 Background: Cognitive Model

The cognitive model used in this work to predict
the subjective similarity of human participants de-
cisions on unseen emails relies on Instance Based
Learning Theory (IBLT) (Gonzalez et al., 2003).
One of the benefits of employing IBL models over
alternatives like Reinforcement Learning is that
they base their predictions on the full history of
participant experience as well as the impact that
limitations like memory size and decay can have

1https://osf.io/wbg3r/

on decision making.
IBL models have been applied onto predicting

human behavior in dynamic decision making tasks,
including binary choice tasks (Gonzalez and Dutt,
2011; Lejarraga et al., 2012), theory of mind appli-
cations (Nguyen and Gonzalez, 2022), and practi-
cal applications such as identifying phishing emails
(Cranford et al., 2019; Malloy and Gonzalez, 2024),
cyber defense (Cranford et al., 2020), and cyber at-
tack decision-making (Aggarwal et al., 2022).

2.1 Activation

IBL models work by storing instances i in memory
M, composed of utility outcomes ui and options k
composed of features j in the set of features F of
environmental decision alternatives. These options
are observed in an order represented by the time
step t, and the time step that an instance occurred in
is given T (i). Option values are determined by se-
lecting the action that maximizes the blended value
Vk(t). In calculating this activation, the similarity
between instances in memory and the current in-
stance is represented by summing over all attributes
the value Sij , which is the similarity of attribute
j of instance i to the current state. This gives the
activation equation as:

Ai(t) = ln

( ∑

t′∈Ti(t)
(t− t′)−d

)
+

µ
∑

j∈F
ωj(Sij − 1) + σξ

(1)

The parameters that are set either by modelers
or set to default values are the decay parameter
d; the mismatch penalty µ; the attribute weight
of each j feature ωj ; and the noise parameter
σ. The default values for these parameters are
(d, µ, ωj , σ) = (0.5, 1, 1, 0.25). The value ξ is
drawn from a normal distribution N (−1, 1) and
multiplied by the noise parameter σ to add random
noise to the activation.

2.2 Similarity Measure

The definition of the similarity measure Sij is
highly influential in the behavior of the IBL model,
as it determines which instances from memory are
drawn from to predict utility. In simple binary
choice tasks without attributes (Gonzalez and Dutt,
2011; Lejarraga et al., 2012), the similarity metric
can be defined as the equality function Sij = 1 if
i == j else 0. In more complex domains such
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as the phishing email identification task used in
this work, one approach is to use the embeddings
of emails to compare the similarity of instances,
and rely on the cosine similarity metric to com-
pute the similarity of instances in memory (Malloy
and Gonzalez, 2024). The model presented in this
work relies on an initial baseline similarity metric,
the standard cosine similarity, to then build more
individual specific metrics of similarity.

2.3 Probability of Retrieval

The probability of retrieval represents the proba-
bility that a single instance in memory will be re-
trieved when estimating the value associated with
an option. To calculate this probability of retrieval,
IBL models apply a weighted soft-max function
onto the memory instance activation values Ai(t)
giving the equation:

Pi(t) =
expAi(t)/τ∑

i′∈Mk
expAi′(t)/τ

(2)

The parameter that is either set by modelers or set
to its default value is the temperature parameter
τ , which controls the uniformity of the probability
distribution defined by this soft-max equation. The
default value for this parameter is τ = σ

√
2.

2.4 Blended Value

The blended value determines the ultimate action
selected by the model and is calculated of an option
k at time step t according to the utility outcomes
ui weighted by the probability of retrieval of that
instance Pi and summing over all instances in mem-
oryMk to give the equation:

Vk(t) =
∑

i∈Mk

Pi(t)ui (3)

These blended values are used to determine the
action at+1 selected by the model at the next time
step.

at+1 = max
k∈K

Vk(t) (4)

In standard IBL models, this action can be used in
simulations to allow the model to gain experience
in a given task. In model tracing, which is used
in the method proposed in this work, the memory
of instances is made up of the past observations
and decisions of the participant, with the action
representing a prediction of their future behavior.

3 Phishing Email Categorization Dataset

The first component of this dataset is human be-
havioral experiment data from a study on human
categorization of emails. This experiment com-
pared human document annotation when categoriz-
ing emails as phishing (dangerous) or ham (safe).
The conditions of this experiment varied depending
on the email author (Human or GPT-4) and style
(plain-text or GPT-4 stylized). There was also a
comparison of the method of selecting emails to
show to participants, either randomly selected, or
chosen using an IBL model (IBL or Random). Fi-
nally, we compared the type of feedback given to
participants between positive and negative point
feedback and a natural language conversation with
an GPT-4o chat-bot (Points or Written).

This experiment included 10 pre-training trials
without feedback, 40 training trials with feedback,
and 10 post-training trials without feedback. Dur-
ing all trials, participants made judgments of emails
as phishing or ham and indicated their confidence
in their judgment as well as which action out of
6 possibilities they would select after receiving
the email. We recruited 433 participants online
through the Amazon Mechanical Turk (AMT) plat-
form. Participants (150 Female, 280 Male, 3 Non-
binary) had an average age of 40.3 with a standard
deviation of 11.02 years. Participants were com-
pensated with a base payment of $3-5 with the
potential to earn up to a $12-15 bonus payment
depending on performance and the length of the
experiment. This experiment was approved by the
Carnegie Mellon University Institutional Review
Board, and the study was pre-registered on OSF.

The second component of this dataset is the
emails shown to participants, which were either
written by human cybersecurity experts, a GPT-4
model working alone, or a combination of human
and GPT-4 model work. 360 base emails written
by human experts were used to form three addi-
tional versions of these base emails. These alter-
native versions included a ‘human-written gpt4-
styled’ version that used the email body written by
human experts, the ‘gpt4-written and gpt4-styled’
version that was fully rewritten by GPT-4, and the
‘gpt4-written plaintext-styled’ version that stripped
the HTML and CSS styling applied by the GPT-4
model. These emails as well as the original prompts
to generate them are included in dataset on OSF.
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Figure 1: Human participant similarity measure for all
1440 phishing (blue) and ham (orange) emails. Shaded
region is a logistic regression.

4 Methods of Measuring Similarity

4.1 Human Subjective Similarity

LLM embeddings have been suggested as a method
of measuring human similarity judgements (Bha-
tia and Aka, 2022), while also capturing the wide
range of individuals similarity measures. Ad-
ditionally, comparisons of LLM behavior have
also demonstrated human-like variability (Bhatia,
2024), suggesting these embeddings could be use-
ful for capturing the variety of human similar-
ity judgements. Cognitive models that rely on
representations of information from GAI models
have been shown to adequately account for the
wide range of human behavior (Mitsopoulos et al.,
2023).

However, for these methods to function properly
there must be a connection between the way that
similarity is measured in humans and GAI mod-
els. Previous applications in applying visual GAI
models onto representing decision-making tasks
in humans relied on the close connection to these
model representations and human representations
(Higgins et al., 2016, 2021). For this reason, we
devised a metric of human subjective similarity that
takes into account the confidence of document cat-
egorization as well as the time it takes participants
to categorize documents.

To determine the human subjective similarity
measure, we use the category of human participant
annotations, their annotation confidence, and the
speed of their annotation. For accuracy and confi-

dence, a higher value in our human subjective simi-
larity metric signifies that participants were more
likely to categorize an emails as being a member
of that group, and more confident in their catego-
rization. For reaction time, a lower value indicates
that the document is more immediately obviously
a member of a group and thus has a higher simi-
larity to other members of that group. The result
is a value that is difficult for a standard similarity
metric to account for, as the annotations made in
this dataset occurred in a learning setting where ear-
lier trials had less accuracy, which also impacted
reaction time and confidence.

The reaction time and confidence weighted sub-
jective similarity of an email x is given by multi-
plying the probability of a human participant cate-
gorizing that email as category c giving cs(x|c) =
p(c|x)r(c|x)c(c|x). where p(c|x) is the probabil-
ity of categorization, r(c|x) is the reaction time
normalized to between 0 and 1, and c(c|x) is the
confidence additionally normalized to between 0
and 1. The soft-max of this cs(x|c) value is the re-
sulting similarity metric, with the equation shown
in the supplementary materials2.

HS(x, x′) =
cs(x|c)cs(x′|c)∑

c′∈C cs(x|c)∑c′∈C cs(x′|c′)
(5)

Figure 1 shows the average human similarity
measures for each of the 1440 emails in the dataset.
The human ham and human phishing similarities
are calculated according to Equation 5 by aver-
aging the accuracy, reaction time, and confidence
across all participants in the dataset. It is also pos-
sible to calculate this subjective similarity for an
individual only using the documents that subject
categorized. We next compare similarity measures
in their ability to capture individual human subjec-
tive similarity.

4.2 Semantic Similarity
One method of measuring the similarity of doc-
uments is to employ semantic information con-
tained in documents and compare the similarities
and differences between documents in terms of
these semantic categories. This has been done in
the past in applications such as topic modeling
(Řehůřek and Sojka, 2010), document annotation
(Pech et al., 2017), and calculating document simi-
larity (Qurashi et al., 2020).

2https://osf.io/wbg3r/
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Figure 2: Semantic and human participant similarity for
phishing (blue) and ham (orange) emails. Shaded region
is a logistic regression. The Kernel Density Estimate
log probability score between each distribution is shown
on the bottom right, higher is better.

In this dataset, semantic similarity can be cal-
culated using the categorizations of email features
that were originally made by the cybersecurity ex-
perts who created the base email dataset. These
features are Link Mismatch, Offer, Urgent, Sub-
ject Suspicious, Request Credentials, and Sender
Mismatch. Figure 2 plots these semantic similarity
measures for each of the 1440 emails in our dataset,
and compares the distribution of these similarities
to our human subjective similarity metric.

These semantic similarity metrics are close to
human similarity for phishing emails (blue), but
highly diverge from the similarity scores of ham
emails (orange). This results in a low Kernel Den-
sity Estimate log probability score (-1127.69) be-
tween the two distributions compared to the se-
mantic similarity metric. This metric compares the
likelihood that the data-points in the human similar-
ity metric distribution would have come from the
semantic similarity distribution, summing all log
probabilities. This low score is due to the fact that
the majority of ham emails are very sparse for all of
the six semantic categories previously mentioned.

4.3 Cosine Similarity

Cosine similarity is the most commonly used met-
ric of similarity of word and document embed-
dings, with many applications from classification
(Park et al., 2020), recommendation systems (Khat-
ter et al., 2021), educational tutorial systems (Wu

Figure 3: Cosine and human participant similarity for
phishing (blue) and ham (orange) emails. Shaded region
is a logistic regression. The Kernel Density Estimate
log probability score between each distribution is shown
on the bottom right, higher is better.

et al., 2023), question answering (Aithal et al.,
2021), and more (Patil et al., 2023). However, there
are limitations to using cosine similarity such as
in documents with high-frequency words (Zhou
et al., 2022), and the presence of false information
(Borges et al., 2019), both of which are concerns
for phishing email education.

The cosine similarity metric is calculated using
an embedding of size 3072 formed by the ‘text-
embedding-3-large’ model, accessed through the
OpenAI API, these document embeddings are ad-
ditionally included in our presented dataset. The
cosine similarity of each email embedding is com-
pared to the mean embedding of that category and
shown in Figure 3, and compared to our metric
of human subjective similarity. From this, we can
see that on average the embeddings are calculated
as being significantly more similar to each other
compared to the subjective similarities of human
participants. This results in a lower Kernel Density
Estimate log probability score (-2097.40) between
the two distributions compared to the semantic sim-
ilarity metric.

4.4 Weighted Cosine Similarity

Distance weighted cosine similarity is a common
method employed in utilizing embeddings (Li and
Han, 2013), which has been applied onto measur-
ing similarity of online instruction in educational
settings (Lahitani et al., 2016), as well as several cy-
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Figure 4: Cosine and human participant similarity for
phishing (blue) and ham (orange) emails. Shaded region
is a logistic regression. The Kernel Density Estimate
log probability score between each distribution is shown
on the bottom right, higher is better.

bersecurity specific applications like ransomware
detection (Moussaileb et al., 2021), and inside at-
tacker detection (Khan et al., 2019). In this work,
we employ weighted cosine similarities of embed-
dings formed from emails categorized as being ei-
ther ham or phishing, and compare it to human
subjective similarity judgements. This weighting
is done by learning a weight transformation of size
3072, the same as the embedding size, which is
applied onto the embedding prior to calculating the
similarity. The results of this weighting are shown
in Figure 4, which compares the average human
participant subjective similarity and the weighted
cosine similarity of email embeddings.

The KDE log probability score between
weighted cosine similarities of phishing and ham
emails compared to human subjective similarity
has increased to -847.56 from the unweighted KDE
score of -2097.40, surpassing the semantic similar-
ity score at -1127.69. These improved similarity
metrics indicate that weighting cosine similarity
based on data from a large dataset of human partic-
ipants can result in a metric that more accurately
reflects the average of human subjects’ subjective
similarity metrics.

4.5 Pruning Document Embeddings

Another method of comparison documents is em-
bedding pruning, where embeddings are reduced
in size based on feedback from human categoriza-

Figure 5: Pruned cosine and human participant similar-
ity for phishing (blue) and ham (orange) emails. Shaded
region is a logistic regression. The Kernel Density Esti-
mate log probability score between each distribution is
shown on the bottom right, higher is better.

tions to better account for their subjective similarity
(Manrique et al., 2023). These approaches func-
tion by reducing the number of embedding values
that are used in comparison, and are similar to the
weighting method except with 0 or 1 values. We
structured our embedding pruning method to select
only the top 500 embedding values, representing
just under 20% of the size of the embedding, as
was done in (Manrique et al., 2023). These top
predictive embedding values are retained, while
all other values are masked to 0. After this, co-
sine similarity can be calculated with the standard
approach, resulting in the similarity shown in Fig-
ure 6. Compared to the weighted cosine similarity
method, the pruned cosine similarity has roughly
the same KDE log probability score.

5 Ensemble Similarity

The final comparison method is based on using an
ensemble of each of the previous similarity metrics,
weighted to maximize the similarity to the average
of the human subjective similarity metrics. This
approach has been applied to document matching
for patent documents (Yu et al., 2024), which re-
quires the similarity of document embeddings be
calculated to determine a match. This ensemble ap-
proach has the highest KDE log probability score
of any individual method by itself, at a value of
-812.23. Looking at the KDE distributions above
and to the right of the scatter plot in 6 demonstrates
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Figure 6: Ensemble and human participant similarity for
phishing (blue) and ham (orange) emails. Shaded region
is a logistic regression. The Kernel Density Estimate
log probability score between each distribution is shown
on the bottom right, higher is better.

the high similarity of the ensemble similarity metric
(light blue and light orange) and the human partic-
ipant similarity metric (blue and orange). While
this method is effective at resulting in a similarity
metric that closely matches the average over all
participants, it still does not fit as well to individ-
ual participants, as will be shown in our proposed
model.

6 Instance-Based Individualized
Similarity (IBIS)

To determine an individual participant’s metric of
similarity, we employ an IBL model that is serving
as a digital twin of the participant. The result in
an Instance-Based Individualized Similarity (IBIS)
metric. The benefits of IBIS are in the ability to
predict human judgements on unseen documents
or feedback from recommendations, and enhance
measurements of subjective similarity. Importantly,
these predictions of human behavior are not merely
relying on a separate machine learning based tech-
nique, but rather a cognitive model that is inspired
by the human cognitive mechanisms underlying de-
cision making and thus able to account for natural
biases and constraints in humans.

Predictions of Instance-Bases Individual Simi-
larity are done using an IBL model that is currently
serving as a digital twin with the same experience
as an individual participant. Using this we deter-
mine the value that the IBL model assigns to pre-

Figure 7: IBIS and human participant similarity for
phishing (blue) and ham (orange) emails. Shaded region
is a logistic regression. The Kernel Density Estimate
log probability score between each distribution is shown
on the bottom right, higher is better.

dicting a category c as Vk(c|x), or the value the IBL
model assigns to choosing option c as the category
of document x. Then, we can divide this value by
the same categorization value assigned to each alter-
native categorization of the same document. This
results in the IBIS metric which can be calculated
after each decision is made by a participant, pseudo-
code for the IBIS algorithm, The code-base for the
IBIS method including all comparison methods,
data, and scripts to generate similarity measures
and figures is made available3.

7 Case Study of IBIS: Individuals in
Phishing Email Education Dataset

Previous comparisons of similarity metrics and hu-
man participant behavior compared the average of
human performance. To highlight the benefits of
the IBIS method, we replicate these calculations
with one individual from the experiment. Here, the
individual similarity of phishing and ham emails is
based only on a single individuals categorization,
confidence, and reaction time in their judgement.
These graphs are shown for illustration in Figure 8,
with the average accuracy of logistic regression of
similarity metrics predicting individual participant
similarity metrics reported in table 1.

The KDE score of the similarities for the pruned
cosine method is -30.76, and for the ensemble
method it is -27.82. Note that these scores are much

3github.com/TylerJamesMalloy/cognitive-similarity
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Figure 8: Top performing similarity metrics and individual participant similarity for phishing and ham emails.
Shaded region is a logistic regression. The lower value is the individual KDE score

lower than the entire dataset scores since they are
calculated using only the emails observed by the
participant. Meanwhile, the IBIS metric gives a
KDE score of -24.72. From this we can see that
the IBIS method effectively learns the similarity
measures of individual participants. These results
are used for illustrative purposes, and the averages
across all participants for regression accuracy, as
well as the DKE score for individuals, is presented
in Table 1.

An important aspect of individual similarity com-
parisons of the IBIS method is that it can compare
emails that were not originally presented to an in-
dividual, meaning there are more embedding sim-
ilarities used in the logistic regression and KDE
score calculation. This comparison demonstrates
the benefits of using a cognitively inspired method
of modeling human participant decisions making
that takes into account biases and cognitive con-
straints.

The results is a prediction of behavior that can
accurately fill in the gaps of unseen elements of the
dataset that have not been observed by a participant.
This method more accurately predicts the subjec-
tive similarity of participants. Importantly, this is
done while initially limiting the cognitive model to
observing a single decision made by these partic-
ipants, and increasing this data as the participant
makes more decisions. This is important for the
functioning of the IBL model as using too many in-
stances in memory can slow compute performance.

The final comparison shown in the right most
columns of Table 1 shows the percent accuracy in
using the previously described logistic regressions,
shown on all figure results, in predicting the cate-
gorization of participants based on the similarity

metric applied onto the emails they observed. This
regression has the potential to predict the annota-
tions of individuals, similarly to the IBL model.
Comparing these measures shows that the best per-
formance comes from the IBIS metric when pre-
dicting participant annotations.

8 Discussion

Many applications of LLMs are interested in tailor-
ing use cases to individuals, even when little infor-
mation is known about that individual. While many
approaches of individualization exist but have typ-
ically relied on advanced machine learning tech-
niques. The method proposed in this work is rel-
atively simple from a mathematical perspective,
though there is a strength in its reliance on theo-
ries of cognition that underlie human learning and
decision making. The result is a simple to under-
stand and easy to implement method of calculating
similarities of unseen documents using a cognitive
model, which can augment datasets that contain
only a small number of decisions.

The general method described here, of augment-
ing subjective similarity metrics with predicted de-
cisions from a cognitive model, could be applied
onto various other scenarios. This includes set-
tings that leverage representations formed of visual
information such as β-Variational Autoencoders
(Higgins et al., 2016), which have been related to
biological representation formation (Higgins et al.,
2021). Overall, we believe that this method is use-
ful for any application where the experience of
end-users impacts future decisions.

For instance, in visual learning settings VAEs
have been integrated with cognitive models to pre-
dict human utility learning of abstract visual in-
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Similarity KDE Score KDE Score Regression
Metric Average Participants Individuals Accuracy

Semantic Similarity (Qurashi et al., 2020) -1127.69 -37.69±1.19 0.46±0.11
Cosine Similarity (Park et al., 2020) -2097.40 -47.26±2.27 0.52±0.10
Embedding Weighting (Onan, 2021) -847.56 -29.28±2.32 0.86±0.14

Embedding Pruning (Manrique et al., 2023) -846.20 -30.39±2.76 0.86±0.04
Ensemble Similarity (Yu et al., 2024) -812.23 -28.64±3.28 0.89±0.12

IBIS (proposed) -719.07 -23.17±3.29 0.93±0.04

Table 1: Comparison of the six previously described methods in their similarity to human behavior. Similarity to
average participants is performed across the entire dataset of human judgements (see Figures 1-6). Similarity to
individuals and regression accuracy are both done for each individual participant (see Figure 7). For all values
higher is better. Reported values are means of all participants measured individually ± standard deviations.

formation (Malloy and Sims, 2024). Other inte-
grations of Generative AI into cognitive models
includes use of LLMs as a knowledge reposito-
ries within cognitive models (Kirk et al., 2023).
In particular, ConceptNet (Speer et al., 2017) has
previously been integrated into a cognitive model
for question answering (Huet et al., 2021). Future
research should investigate how additional uses of
LLMs in integrations of cognitive models can aid
in educational settings.

Overall, the results in this work demonstrate the
usefulness of cognitive models in serving as digi-
tal twins to human participants. Leveraging these
models and integrating their results into Large Lan-
guage Model techniques has the potential to make
measurements from these models more cognitively
grounded. While there are existing methods of
incorporating human behavior through the use of
large datasets collected from many participants,
these do not necessarily account for biases and con-
straints. The method proposed in this work takes
these features of human learning and decision mak-
ing into account in developing a similarity metric.

9 Limitations

The semantic similarity metric suffered from the
sparsity of semantic categories in ham emails, ad-
ditional annotations could raise the performance
of this metric and can be explored in future work.
However, this ensemble method was partially re-
sponsible for the high KDE score of the ensemble
method, as it allowed for an integration of both
semantic information and embedding similarity.
Our IBIS method still outperformed the ensemble
method suggesting that this ensemble alone does
not address the issues of alternative methods.

One limitation inherent in IBL cognitive models
is the time requirements to compare the current in-
stance to all instances in memory. This may make
the proposed model unsuitable for applications that
rely on large datasets of individual behavior. How-
ever, methods in instance compression exist for
IBL models (Nguyen et al., 2023). In this setting,
we were able to predict individual participant’s de-
cisions fast enough that this was unnecessary.

The specific application we investigated is some-
what unique in that it is based on training human
participants to make categorization judgements of
textual information of one of two categories. Addi-
tionally, the task of annotating whether an email is
phishing or ham relies heavily on a small number
of features within the email. Namely, if an email
contains a link that redirects to a nefarious website,
or requests personal information, then it should be
labelled as phishing. While students rely on many
queues to make their judgements, the annotation is
in reality simple. Future work in the area of learn-
ing subjective similarity metrics should expand into
more complex domains.
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