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Abstract

Large language models demonstrate emer-
gent modularity, where functionally specialized
components and circuits arise to handle specific
tasks or task formats. If similar modules arise
in models trained on more cognitively plausi-
ble datasets, it could inform debates surround-
ing what kinds of mechanisms would be learn-
able given more human-like language learn-
ing signals. In this paper, we describe a mul-
timodal vision-language model submitted to
the BabyLM Challenge. Our model achieves
similar performance to the best-performing ar-
chitectures from last year, though visual infor-
mation does not improve performance on text-
only tasks over text-only models (in accordance
with prior findings). To better understand how
the model processes the evaluation tasks of the
BabyLM Challenge, we leverage causal inter-
pretability methods to locate the neurons that
contribute to the model’s final decisions. We
find that the models we train are highly mod-
ular: distinct components arise to process re-
lated tasks. Furthermore, on text-and-image
tasks, adding or removing visual inputs causes
the model to use distinct components to pro-
cess the same textual inputs. This suggests that
modal and task-specific specialization is effi-
ciently learned, and that a high degree of func-
tional specialization arises in even small-scale
language models.

1 Introduction

Despite impressive capabilities across a wide range
of tasks, language models (LMs) remain highly
data-inefficient: LMs typically require orders of
magnitude more data during pretraining than hu-
mans encounter over their entire lifetime (Gilker-
son et al., 2017). This inefficiency has driven inter-
est in alternative approaches to language learning
that leverage more human-like language learning
scenarios. One such effort is the BabyLM Chal-
lenge (Warstadt et al., 2023), which promotes the
development of language models trained on the

quantity of linguistic input that children receive
when learning language. To create a more develop-
mentally plausible training setup, the 2024 iteration
of the challenge (Choshen et al., 2024) provides
aligned image and text data.

Evaluating these more cognitively plausible
models requires a focused analysis not only of how
models behave, but also of the mechanisms1 under-
lying their behaviors. Conventional benchmarks
are finite and often deploy identically distributed
train/test splits, causing us to overlook key aspects
of how models generalize. To address this, mecha-
nistic interpretability has emerged as a framework
for obtaining a more algorithmic understanding of
how neural networks perform particular behaviors.
This typically entails causally attributing model
behavior to specific components, or causal graphs
composed thereof.

We conduct a study around one of the baseline
architectures from the BabyLM Challenge that in-
corporates both language and vision: the genera-
tive image transformer (GIT; Wang et al., 2022).
We train and evaluate a suite of language-only and
multimodal models with this architecture to inves-
tigate the role of visual inputs in language learning.
Specifically, we first examine how different weight-
ing schemes for text and image-text loss signals
affect model performance and assess whether vi-
sual input offers any benefit for language learning.
As expected, visual data leads to enhanced perfor-
mance on multimodal benchmarks compared to
text-only models. However, we find no significant
benefit of visual data for performance on text-only
benchmarks. This supports prior findings of a mul-
timodal submission from last year’s BabyLM Chal-
lenge (Amariucai and Warstadt, 2023), as well as
findings of Zhuang et al. (2024).

Then, using attribution patching (Syed et al.,
2023), we identify the most causally important neu-

1At a high level, a mechanism can be defined as a causal
graph describing how inputs are transformed into outputs.
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rons in GIT’s text decoder across tasks. This analy-
sis reveals a high level of modularity,2 with sepa-
rate internal mechanisms being deployed even for
slightly different subtasks of the same task. Most
surprisingly, the same textual input is processed dif-
ferently in the text decoder depending on whether
visual inputs are present. This suggests that visual
inputs do not merely add to textual information, but
rather activate distinct mechanisms in the model’s
language processing components. These findings
suggest that modal and task-specific specialization
is efficiently learnable in human-like learning sce-
narios, even in the absence of human-like learning
biases.3 These findings extend prior work on emer-
gent modularity in pre-trained language models
(e.g., Zhang et al., 2023; Csordás et al., 2021; Agar-
wala et al., 2021) to a more cognitively plausible
training scenario, thus allowing us to make more
convincing claims as to what kinds of linguistic
functional specializations can arise from human-
like language learning signals.

Our main contributions are as follows:

• An analysis of what small-scale language
models gain from visual inputs over pure text.

• A causal analysis of which text decoder neu-
rons perform each BabyLM evaluation task,
and how the addition of vision data changes
these component sets.

• A suite of minimally differing autoregressive
text-only and text-and-image models for fu-
ture analyses.4

2 Related Work

Small-scale multimodal language modeling
Many believe that grounding text data in some sym-
bolic representation or alternate modality is neces-
sary for robust language understanding (Bender and
Koller, 2020; Bisk et al., 2020, inter alia). Thus, as-
suming the training corpus is no more than what a
human could realistically be exposed to when learn-
ing language, the addition of aligned visual data
may provide an even better test ground for under-
standing what kinds of structures are learnable from
data alone (without a human-like inductive bias).

2In this context, “modularity” refers to function-based
neuron grouping (Zhang et al., 2023), where particular neuron
clusters have specific functions.

3This degree of modularity is not necessarily desirable nor
undesirable; see §5.

4Our code and models are publicly available:
https://github.com/klerings/babylm_analysis

Recent related work has investigated whether vi-
sual inputs can aid in word learning, finding largely
negative results—but crucially, visual inputs are
helpful in the kinds of low-resource scenarios we in-
vestigate (Zhuang et al., 2024). The 2023 BabyLM
Challenge received many multimodal submissions;
most relevant to ours is the text-and-vision submis-
sion of Amariucai and Warstadt (2023).

Mechanistic interpretability Mechanistic inter-
pretability methods allow us to more deeply under-
stand where and how particular tasks are accom-
plished in a neural network. This paper focuses
more on localizing than qualitatively explaining
model behavior—but localization can itself reveal
whether certain behaviors are performed using the
same underlying mechanisms. For example, one
line of work aims to causally quantify whether
the most important neurons for a particular task
overlap with those from highly related tasks in lan-
guage models (e.g., Finlayson et al., 2021; Sankara-
narayanan et al., 2024). There also exist investi-
gations of the mechanisms underlying how vision-
language models accomplish particular tasks (e.g.,
Palit et al., 2023; Salin et al., 2022). Past work
has used other (not always causal) methods to dis-
cover that language models are highly modular; this
includes work with small-scale CNN and LSTM-
based models (Csordás et al., 2021; Agarwala et al.,
2021), as well as large Transformer-based models
(Zhang et al., 2023).

Our work extends this literature through analyses
of developmentally plausible multimodal language
models. We investigate whether these models use
similar mechanisms to perform diverse natural lan-
guage processing (NLP) tasks, and whether they
use the same mechanisms to perform the same tasks
with and without image data. While our models
are not directly comparable to human learners due
to differing inductive biases and a relatively small
quantity of visual inputs, they nonetheless provide
evidence as to the kinds of mechanisms that are
learnable from a realistic language learning dataset.

3 Methods

3.1 Model Training

We closely replicate the challenge baseline setup
as a foundation for our causal analysis, with the
goal of mechanistic insights rather than model op-
timization. Specifically, we train a series of gener-
ative image transformer (GIT; Wang et al., 2022)
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models on the official training data for the multi-
modal track of the BabyLM Challenge (Choshen
et al., 2024). The corpus is composed of two parts:
one half consists of text-only data—primarily tran-
scribed speech and child-directed language—while
the other half is composed of paired image-caption
data from sources such as Localized Narratives
(Pont-Tuset et al., 2020) and Conceptual Captions
(Sharma et al., 2018).

GIT Architecture The GIT architecture consists
of two main components: an image encoder and
a text decoder. For the image encoder, we use
DINOv2 (Oquab et al., 2024), a Vision Transformer
(ViT; Dosovitskiy et al., 2021), which is pretrained
independently in a self-supervised manner using
only image data, thus not counting towards the
word budget imposed by the challenge. The text
decoder is then jointly pretrained with the image
encoder on image-text pairs, following a causal
language modeling objective.

GIT also offers the advantage that it can func-
tion as a decoder-only language model when im-
age input is absent, enabling additional training on
text-only data and facilitating evaluation on both
unimodal and multimodal tasks.

Multimodal Loss GIT uses a standard cross-
entropy loss for language modeling, which is com-
puted over two types of training data: (1) samples
containing both images and text (from Localized
Narratives and Conceptual Captions) and (2) text-
only samples (from the BabyLM corpus). These
two types of data are handled separately during
training, with distinct loss terms for each.

For samples that include both images and text,
the model computes a loss by predicting the caption
tokens, conditioned on the preceding text tokens
and the projected image encoding. This loss is
denoted as Lmulti. Notably, the image input from
this corpus can be disabled to simulate a language-
only model.

For text-only samples (from the BabyLM cor-
pus), the model computes a unimodal loss, Luni,
where each token is predicted based solely on the
preceding text tokens.

The total loss during training is a weighted sum
of these two components:

L = w1Lmulti + w2Luni (1)

We investigate the impact of varying weight con-

figurations5. A configuration denoted as 1/1 im-
plies equal weighting (w1 = w2), while 1/0.5 refers
to w1 = 1 and w2 = 0.5.

When we include images in the captions cor-
pus, the weights w1 and w2 not only determine
the degree of emphasis placed on child-directed
language in the BabyLM corpus, but also adjust
the contributions of multimodal and unimodal loss
signals during training. For more information on
implementation and hyperparameters, see App. A.

3.2 Benchmarks

We evaluate our models on the official benchmarks
of the BabyLM Challenge to verify their compet-
itiveness with the challenge baselines and ensure
relevance of any conclusions drawn from the subse-
quent analysis. For language understanding this in-
cludes BLiMP (Warstadt et al., 2020), BLiMP Sup-
plement (Warstadt et al., 2023), EWoK (Ivanova
et al., 2024) and GLUE (Wang et al., 2018, 2020),
see Table 7 in App. C.2 for examples. BLiMP
and its supplement consist of sentence pairs with
one grammatically correct and one incorrect sen-
tence. EWoK tests logical entailment requiring
world knowledge and reasoning, where the model
must choose the more semantically likely of two
continuations given prior context. Accuracy on
BLiMP and EWoK is measured by how often the
model assigns a higher probability to the correct
sentence. Meanwhile, GLUE tests natural language
understanding after task-specific finetuning.

To assess combined textual and visual under-
standing, the BabyLM Challenge evaluates on
the visual question answering benchmark VQAv2
(Goyal et al., 2019) using 7 distractor answers, as
well as on Winoground (Thrush et al., 2022) and
DevBench (Tan et al., 2024). Winoground includes
images paired with two sentences: one accurately
describing the image, and another minimally differ-
ing sentence that reflects a contrasting scenario. For
samples in DevBench, the model must instead se-
lect one of multiple images given a textual concept
or scenario. These are each evaluated in a zero-
shot manner. In addition to the BabyLM evaluation
tasks, we evaluate on the visual question answering
benchmark MMStar (Chen et al., 2024), which has
been manually curated to exclude questions that
could be answered via linguistic information alone.

5Since increasing the relative importance of one loss com-
ponent is equivalent to decreasing the importance of the other,
we only experiment with varying w1.
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3.3 Baselines

We compare our baseline replication against the
released baselines from the BabyLM competition.
For text-and-vision tasks, this includes Flamingo
(Alayrac et al., 2024) and GIT, which are trained on
the multimodal BabyLM training corpus. For text-
only tasks, this also includes last year’s winning
architectures, BabyLlama (Timiryasov and Tastet,
2023) and LTG-BERT (Georges Gabriel Charpen-
tier and Samuel, 2023), both trained on the official
training data from the Strict track, comprising the
same number of words as the multimodal corpus.6

3.4 Attribution Patching

We causally attribute model behaviors to specific
neurons to determine whether the most important
components are shared across task settings. A key
technique for this purpose is attribution patch-
ing (Syed et al., 2023) with integrated gradients
(AP-IG; (Hanna et al., 2024; Marks et al., 2024)), a
linear approximation of the computationally more
expensive activation patching (Vig et al., 2020; Fin-
layson et al., 2021; Geiger et al., 2021). Activation
patching entails intervening on the activation of a
model component during a forward pass; the ex-
tent to which this intervention changes the model
behavior is measured as the indirect effect (IE).
Activation patching is often used with contrastive
input pairs, where activations from one prompt are
transferred into a forward pass on a minimally dif-
ferent prompt. It also supports interventions like
setting the activation to zero7 or replacing the acti-
vation with its mean across some dataset.

In attribution patching, rather than directly patch-
ing neuron activations, the indirect effect is linearly
approximated by multiplying the gradient of the tar-
get metric m with respect to the neuron’s activation
x by the difference between the original activation
x and the counterfactual activation x′:

ÎE =
δm

δx
· (x′ − x) (2)

The gradient can be viewed as a local approxi-
mation of how much changing the neuron’s acti-
vation would affect m, so multiplying this by how
much x changes gives us an estimate of how much

6But from a different distribution. The 50M words of
image-caption data are replaced by data more closely resem-
bling the text-only corpus’s distribution.

7This is not entirely principled and may even be out-of-
distribution for the network, as a neuron’s baseline value will
not necessarily be 0.

m will change. Typically, m is the logit differ-
ence between a correct token completion and mini-
mally different incorrect token completion. High-
magnitude ÎE values indicate that a neuron signifi-
cantly influences a particular model behavior.8

Benchmark-specific prompts and metrics For
BLiMP, we select a subset of subtasks consistent
with the “one-prefix-method” (Linzen et al., 2016)
which ensures that both sentences of a pair share
an initial phrase but diverge at a critical word that
determines grammaticality. This format general-
izes well to VQA, where the logit difference is
computed between the target answer and the first
distractor that consists of a single token.

Attribution patching is primarily suited to cases
where the correct and counterfactual answers can
be distinguished by a single token. This is not the
case for the other tasks of the BabyLM challenge.
Therefore, we adapt the prompt structure and target
metric to suit the specific nature of each benchmark,
as illustrated in Table 7 in App. C.2.

While MMStar has a multiple-choice structure
similar to VQA, the answer choices often exceed a
single token in length, rendering the single-token
logit difference metric unsuitable. For EWoK
and Winoground, the tasks are not formulated
as question-answer pairs; instead, the objective
is to select the more plausible sentence given a
preceding sentence or image. Accordingly, we
employ an alternative metric that compares the
sum of logits for the entire correct sentence S1

against the sum for the entire incorrect sentence S2,
given a textual or visual context. In other words,
m =

∑
s1∈S1

p(s1) −
∑

s2∈S2
p(s2). For EWoK,

we repeat the context sentence following the first
context and continuation; these are separated by
a newline, allowing the model to process the full
text input for each comparison (and thus allow-
ing us to backpropagate after comparing p(s1) and
p(s2)). In Winoground, the context consists of the
image representation, and both possible descrip-
tion sentences separated by newlines. Similarly,
for MMStar, the prompt is made up of the image
and both question-answer pairs (where the question
is repeated), separated by newlines.

This design presents a challenge: prior work has
shown that language models can be semantically

8This includes positive as well as negative ÎE values. An
example of components that negatively and significantly im-
pact performance are Negative Name Mover Heads in the
Indirect Object Identification task (Wang et al., 2023).

121



BLiMP BLiMP-Supp. EWoK GLUE Avg. Avg. w/o GLUE

Baseline Models

BabyLlama (100M) 73.1 60.6 52.1 69.0 63.7 61.9
LTG-BERT (100M) 69.2 66.5 51.9 68.4 64.0 62.5
Flamingo 70.9 65.0 52.7 69.5 64.5 62.9
GIT 65.2 62.7 52.4 68.3 62.2 65.1

Multimodal Models

GIT 1/1 70.0 (2.03) 65.8 (2.26) 51.9 (0.75) - - 62.6
GIT 1/0.5 68.9 (1.41) 64.1 (1.96) 52.7 (0.40) - - 61.9
GIT 1/0.25 71.2 (1.34) 64.6 (2.29) 52.5 (0.20) - - 62.8
GIT 1/0.125 66.3 (1.88) 61.7 (1.44) 52.3 (0.91) 65.6 61.5 60.1

Language-only Models

GIT 1/1 72.0 (1.54) 65.6 (1.89) 51.9 (0.39) 66.5 64.0 63.2
GIT 1/0.25 71.6 (1.22) 64.0 (2.32) 52.6 (0.38) - - 62.7

Table 1: Results for text-only benchmarks averaged across 3 random seeds. Avg. columns refer to macroaverage
over the respective tasks. For GIT, we show the corpus weightings as w1/w2.

and syntactically primed (Meyer and Schvaneveldt,
1971; Neely, 1977; Bock, 1986) to favor text more
similar to prior text that has already been seen in
the same context (van Schijndel and Linzen, 2018;
Prasad et al., 2019). Therefore, we randomly alter-
nate the order of correct and incorrect continuations
to account for priming effects on average across
examples. While this will not yield accurate be-
haviors per se, we care more about the relative
probability change between p(S1) and p(S2) when
a component is ablated, rather than their actual val-
ues; this design will still allow us to measure this
quantity when averaging across inputs.

For each benchmark, we retrieve the 100 most
important MLP neurons in the text decoder by ÎE
over all layers. We obtain the top neurons for each
subtask within a benchmark. For some tasks that do
not have subtasks such as VQA and Winoground,
we automatically generate subcategorizations of
examples. For more information on subtask defi-
nitions and the automatic subcategorization proce-
dure, see App. C.1. We exclude DevBench from
this analysis because its samples consist of multi-
ple images, each requiring a separate forward pass,
rendering attribution patching unfeasible.

4 Results

We train and evaluate four weighting configurations
for the multimodal model and two for the text-
only model; for each configuration, we average

across three random seeds. Detailed information
on the learning progress of each model is provided
in App. B.

4.1 Benchmarking Results

We use the challenge benchmarks to validate that
our models perform sufficiently well for mean-
ingful neuron analysis. To explore the impact of
visual information on language-only and multi-
modal learning, we evaluate all models on both
text-only9,10 and text-vision benchmarks.

Furthermore, we test the multimodal model’s
performance on vision tasks without image input,
simulating its behavior as a language-only model.
The average and standard deviation across all ran-
dom seeds are presented in Tables 1 and 2.

Text-only Results For the text-only benchmarks,
our models are on par with or slightly below the per-
formance of the baseline models, except for GLUE,
which we exclude from our causal attribution study.

There is no single weighting configuration that
consistently performs best across all datasets, but

9Due to computational constraints, only the best model
per modality and random seed is reported for GLUE. The
best unimodal model is selected from 1/1 to ensure a fair
comparison with other language-only models that similarly
balance loss signals across all samples.

10The GLUE metric is an unweighted mean of each subtask
accuracy, except QQP and MRPC (where we use F1 scores),
and CoLA (where we use the Matthews correlation coeffi-
cient).
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VQA Winoground DevBench MMStar Avg.
Input multimodal text-only multimodal text-only multimodal multimodal text-only multimodal

Baseline Models

Flamingo 52.3 45.0 51.6 50.0 60.1 24.1 22.6 47.0
GIT 54.1 48.4 55.5 50.0 50.5 25.9 22.4 46.5

Multimodal Models

GIT 1/1 51.5 (3.52) 49.2 (1.01) 55.4 (0.13) 50.0 (0.0) 48.7 (1.22) 25.1 (0.35) 23.0 (0.57) 45.1
GIT 1/0.5 53.1 (1.40) 47.5 (1.09) 55.9 (2.46) 50.0 (0.0) 50.2 (1.50) 24.3 (0.57) 21.8 (0.98) 45.7
GIT 1/0.25 52.2 (1.12) 47.4 (0.81) 56.2 (0.79) 50.0 (0.0) 47.6 (0.75) 25.8 (0.18) 22.5 (0.73) 45.3
GIT 1/0.125 52.6 (1.40) 48.6 (0.68) 57.0 (0.66) 50.0 (0.0) 47.8 (2.52) 26.7 (0.52) 22.6 (1.41) 45.9

Language-only Models

GIT 1/0.1 - 49.4 (0.72) - 50.0 (0.0) - - 22.9 (1.33) -
GIT 1/0.25 - 48.0 (0.60) - 50.0 (0.0) - - 24.0 (1.21) -

Table 2: Results for multimodal benchmarks with (multimodal) and without (text-only) visual input averaged across
3 random seeds. “Avg.” is a macroaverage over multimodal tasks. For GIT, we show loss weightings as w1/w2.

the models achieving the highest average perfor-
mance are 1/1 for the language-only setup and
1/0.25 in the multimodal case. This is contrary to
observations regarding the evaluation loss (App. B),
where lower weightings on BabyLM data samples
(w2) correlated with performance improvement.

No significant performance differences are ob-
served between models trained on textual data
alone and those incorporating both text and im-
age inputs, when comparing the same weightings.
This suggests that the addition of multimodal data
does not yield measurable improvements in this
specific context. This aligns with findings from
Zhuang et al. (2024).

Multimodal Results In multimodal tasks,
our models exceed baseline performance on
Winoground and MMStar but show a slight
underperformance on VQA and a more significant
drop on DevBench.

Results from both language-only and multi-
modal models without visual input provide vali-
dation and confirm that performance decreases sub-
stantially when image inputs are excluded. As on
the text-only tasks, there is no single multimodal
weighting configuration that consistently outper-
forms across all benchmarks. However, for tasks
such as Winoground and MMStar, which require
visual input for an above chance performance, the
1/0.125 weighting configuration proves most effec-
tive, as it places significantly more emphasis on the
visual loss signal during training.

We present learning curves for the best-

performing models in each modality across the
BabyLM evaluation tasks in Figure 5 in App. B.
For the multimodal model, we observe an order
in which phenomena are acquired: BLiMP perfor-
mance peaks early, whereas EWoK performance
gradually improves later in training. In App. B, we
discuss this order of acquisition further, and discuss
how learning curves differ between multimodal and
text-only models.

4.2 Causal Neuron Analysis

To explore whether neuron activation patterns are
shared across tasks or modalities, we compute the
average indirect effect for each MLP neuron in
the text decoder of the strongest multimodal GIT
model (1/0.125) per subtask. Then, we select the
top 100 neurons by indirect effect and analyze their
overlap across subtasks from all benchmarks.

Modularity within benchmarks For text-only
benchmarks, the results (Figure 1) indicate a sig-
nificant degree of neuron sharing in GIT among
subtasks within each benchmark. Specifically, for
EWoK, over 70% of the top neurons are pairwise
shared between subtasks. However, given the low
performance on the EWoK benchmark, it is possi-
ble that these neurons are not responsible for task
solving, but rather pick up on spurious heuristics;
we therefore focus on BLiMP and VQA11. Here,
we observe a similar though less pronounced trend
of intra-benchmark neuron sharing. For BLiMP,

11Note that VQA questions have seven distractor answers,
so random chance performance is 12.5%
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Figure 1: Overlap between top 100 neurons by ÎE per subtask for text-only (left) and multimodal benchmarks with
and without visual inputs (right). Subtask names are abbreviated; see App. C.1 for full names and example counts.

there is an overlap of about 20% between two sub-
task pairs. In VQA, many subtask pairs even share
over 70% of their task-relevant neurons.

Component sharing across benchmarks The
primary factor in determining neuron overlap ap-
pears to be task similarity: subtasks within the
same benchmark are more similar and display a
stronger overlap, whereas tasks across different
benchmarks are very distinct and share little neu-
rons. The 30% overlap between Irregular Forms
(IF) in BLiMP and all EWoK subtasks is an ex-
ception, but models did not score well on these
tasks; these could therefore be encoding spurious
heuristics or irrelevant information.

Distinct processing of multimodal input A shift
in neuron overlap is observed when comparing the
same subtasks with and without visual input (Fig-
ure 1; full results in Figure 6 in App. C.3). The
addition of vision leads to greater overlap of im-
portant neurons between all pairs of tasks: for ex-
ample, the overlap between subtasks in MMStar
and Winoground is 30% or less without images,
but rises to 40-60% for certain subtasks when vi-
sual input is introduced.12 This increase in shared
components is also observed between VQA and
Winoground, as well as between VQA and MM-

12Note that this is the overlap between MLP neurons in the
text decoder, not in the image encoder. It is not necessarily
intuitive that adding visual information should change the text
processing mechanisms to this degree.

Star. Interestingly, this increase in shared top com-
ponents does not extend to intra-benchmark sub-
tasks. Here, we find a mixture of subtask pairs that
increase their overlap, mostly in VQA, and subtask
pairs that decrease their overlap as in Winoground.

Furthermore, we find the overlap between the
same task with and without vision to be minimal for
both Winoground and MMStar. This suggests that
the presence of visual input significantly changes
the mechanisms employed by the language decoder
to solve these tasks.

Neuron Sharing in Flamingo To evaluate how
well our findings generalize to other multimodal
architectures, we conduct a causal neuron analysis
on the BabyLM Flamingo baseline model. Unlike
GIT, which relies on self-attention, Flamingo inte-
grates vision and text using cross-attention between
a frozen image encoder and text decoder.

Flamingo exhibits a similar degree of intra- and
inter-task neuron overlap as GIT, with overlap in-
creasing when visual input is added (Figure 7 in
App. C.3). However, in contrast to GIT, EWoK dis-
plays only selective subtask overlap, aligning more
closely with patterns observed in other datasets.

Notably, there is a significant amount of shared
neurons between text-only and image-text variants
of VQA. This was not observed with GIT (see
Figure 2). While adding image inputs in other mul-
timodal cases alters the salient features in the text,
Flamingo’s processing of VQA suggests the image
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Figure 2: Overlap between top 100 neurons of GIT (top)
and Flamingo (bottom) for subtasks of VQA with and
without visual inputs.

supports rather than redirects the text decoder.

4.3 Neuron Ablation

To verify the causal influence of the identified top
components, we perform a neuron ablation study
on VQA. We mean ablate the most influential neu-
rons for each subtask and measure the resulting
performance changes, quantifying the effect of the
removed information. We consider the top neurons
of two settings: (1) text-only, where the multimodal
GIT model processes just text, and (2) multimodal,
integrating both text and visual inputs. We then
mean ablate these distinct neuron sets in the mul-
timodal model. We measure accuracy by the sign
of the logit difference between correct answer and
first distractor of token length one.

We witness an expected drop in GIT’s perfor-
mance for eight of the ten VQA subtasks (Figure 3;
see Figure 8 in App. C.4 for all subtasks), confirm-
ing the task-relevance of the identified top neurons.

When measuring performance after ablations,

we note four patterns. (1) Performance sometimes
drops comparably when ablating only text-only
neurons, or only text-image neurons. This could in-
dicate that there are more task-relevant neurons
shared than the overlap matrix of top 100 neu-
rons implies, or simply that these two sets redun-
dantly encode similar mechanisms. (2) Ablating
text-image neurons sometimes results in a greater
drop in performance. This suggests that the most
important neurons are the ones processing the task
multimodally, which could be indicative of suc-
cessful fusion of vision and text data. (3) Some
tasks experience a larger performance drop when
ablating the text-only neurons, which means for
these tasks, much of the model’s performance can
be attributed to question-answer likelihoods rather
than visual reasoning. (4) There are two cases
where performance increases after ablations: Color
Identification and Quantity & Counting. Our mod-
els achieve comparatively low accuracies on these
tasks before ablations; it is thus unclear whether
these ablations improve scores because (i) the top
neurons encode actively unhelpful spurious infor-
mation, or (ii) ablating them causes the model to
rely on some other heuristic that happens to be
more successful (or both).

Similarly, in the pretrained Flamingo model,
seven out of ten VQA subtasks show a performance
decrease when either text-only or text-image neu-
rons are ablated (Figure 9 in App. C.4). However,
the drop is relatively small, indicating the model’s
robustness to MLP neuron ablations. This suggests
that either more than 100 neurons are involved in
task-relevant processes, or that critical processing
takes place in other components of the architecture,
such as the cross-attention mechanism.

5 Discussion

We find little neuron overlap between vision-and-
text and text-only variants of the same tasks. This
suggests a significant degree of modularity in small-
scale multimodal language models.13 This raises
important questions: is component sharing between
unimodal and multimodal processing mechanisms
of the same task desirable? Can it serve as a signal
of effective merging of information across modali-

13However, Flamingo’s processing of VQA is an exception.
This may be due to the training pipeline: text and image
encoders are first trained separately, and then cross-attention
between these frozen modules is learned using multimodal
data. This contrasts with GIT, where text decoder and text-
image associations are jointly learned.
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Figure 3: Multimodal accuracy for VQA subtasks when
mean ablating GIT’s top neurons. The dashed line indi-
cates accuracy before ablations. The left and right bars
show model performance given text and vision inputs
when ablating either the top neurons from the text-only
version of the task, or the top neurons from the text-and-
image version of the task.

ties? To investigate, future research could explore
the relationship between neuron overlap and task
performance, ideally across diverse architectures.

Many causes could explain the minimal over-
lap across similar benchmarks. First, the concep-
tual space in the model representations could be
such that there are few features or skills in com-
mon across tasks; thus, to the model, these tasks
have little in common. Investigating this possibility
would involve a more thorough qualitative analy-
sis of the features implicated in performing each
task. Second, different tasks may share features,
but the model might learn domain-specific versions
of qualitatively identical features. Follow-up re-
search could vary task formats—for example, by
paraphrasing all examples—and analyze whether
this changes the top neurons. That said, there is
some correlation between task similarity and com-
ponent overlap within a benchmark. This serves as
a sanity check, and also indicates that even small
models tend to share processing mechanisms across
closely related tasks with similar formats. This is a
more parameter-efficient strategy compared to rep-
resenting similar tasks in a fully modular fashion.

Is a high degree of task modularity desirable?
Some argue that emergent modularity can be har-
nessed for better generalization in language models
(e.g., Qiu et al., 2024); it could also enable more
fine-grained mechanistic understanding and con-

trol. However, modularity will generally result in
reduced parameter-efficiency. It could also be a
signal that a model is not efficiently compressing
information in a generalizable way, such that it
must relearn similar phenomena for distinct task
settings. We speculate that there exist more or less
desirable types and extents of modularity in neural
language models, and that classifying these types
of modularity could be especially helpful in assess-
ing parameter-(in)efficiency.

Relatedly, when speaking of modularity, it is es-
sential to distinguish between two types of neural
modules: (i) skill-related neural groups that share
general abilities independent of specific tasks, and
(ii) task-related neural groups that are specialized
for particular task formats. In our experiments,
we predominantly observe the latter. From an en-
gineering perspective, there is no clear indication
whether this would enhance performance or effi-
ciency. However, if one’s goal is to model human
language processing, perhaps modularity could be
a useful signal. Certain regions of the brain special-
ize toward particular tasks, even in the presence of
similar visual stimuli across tasks (Dupont et al.,
1993); different specialized regions for the same
task can also arise given sufficiently distinct stim-
uli (Müller et al., 2024). Our findings agree with
both. Whether emergent task modules in develop-
mentally plausible language models correspond to
comparable regions in the human brain remains an
interesting open question.

6 Conclusion

Developmentally plausible multimodal language
models exhibit a high degree of modularity. Fur-
thermore, adding visual inputs changes how the
text decoder processes a task, and increases the
amount of shared components between tasks. Our
findings highlight the types of functional special-
ization that can arise in language models trained
on developmentally plausible data, and raise ques-
tions about trade-offs between sample-efficiency,
parameter-efficiency, and cognitive plausibility.
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Limitations

Our study focuses on two multimodal architectures.
Other models such as CLIP combine visual and lan-
guage data differently, and therefore, the influence
of image data on the model’s behaviors and mecha-
nisms may be qualitatively different. Despite this,
our current findings suggest that visual informa-
tion does not significantly aid in language learning,
highlighting the need for novel fusion strategies
between the two modalities.

Additionally, there is room for improvement in
the scope of the analyzed components during at-
tribution patching. While we primarily examined
MLP neurons, which are crucial for language gener-
ation, the role of attention layers impacts a model’s
decoding ability equally. Future work could inves-
tigate the influence of visual data on the emergence
of task-specific attention heads, building on prior
studies in mechanistic interpretability.
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A Model Training

A.1 Hyperparameters
We train all models for a maximum of 30 epochs,
using a learning rate of 1e-4 with a weight decay
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Figure 4: Evaluation loss of GIT per epoch for each of the weighting configurations across three random seeds. Red
dot marks the best epoch.

of 0.1. The AdamW optimizer is employed with a
batch size of 128, and early stopping is applied to
prevent overfitting.

A.2 Tokenization

A single tokenizer is utilized across both unimodal
and multimodal models to enhance comparability
between the different settings. The tokenizer is
trained on the BabyLM corpus as well as the image
captions from the Localized Narratives and Con-
ceptual Captions datasets, with a vocabulary size
of 32,778 tokens.

B Learning Curves

After every epoch, we compute the validation loss
on the unimodal or multimodal development set
from the BabyLM Challenge, depending on the
model we are working with. We provide learning
curves for all weighting configuration in Figure 4.

In the 1/0.125 and 1/0.25 weighting configura-
tions, the loss consistently decreases across seeds
and modalities, indicating potential for further im-
provement with additional epochs. In contrast,
the 1/0.5 multimodal models show convergence
within the 30-epoch limit. For the 1/1 configura-

tion, where train losses are evenly weighted, over-
fitting occurs after six to ten epochs in both uni-
modal and multimodal setups. We conclude that
the fusion of language and vision is only learned
reliably with a strong multimodal loss signal. For
the language-only model, the setting with lower w2

value exhibits the better convergence, suggesting
that language skills and decoding abilities may be
more effectively learned from non-child-directed
language present in image captions.

We also present learning curves for each bench-
marking task. Learning curves for the best-
performing models in each modality across bench-
marks are visualized in Figure 5. For the multi-
modal model, there appears to be an order in which
phenomena are acquired: task performance on vi-
sion benchmarks and the EWoK dataset increases
steadily. In contrast, performance on the BLiMP
and BLiMP Supplement datasets peaks early in
training and subsequently fluctuates or declines.
We discuss this in more detail below. The language-
only model shows minimal performance change
over time on BLiMP, VQA, Winoground, and MM-
Star benchmarks, with performance remaining at
initial levels. For the EWoK dataset, performance
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Figure 5: Learning progress of best GIT model per modality on each benchmark. Moving average smoothing is
applied with window size 3.

peaks around 15 epochs before declining, whereas
on the smaller BLiMP Supplement task, perfor-
mance fluctuation occurs almost immediately.

These findings align with observations from eval-
uation loss curves, where the 1/0.125 multimodal
model exhibits continued learning, while the 1/1
language-only model reaches an early local mini-
mum.

Acquiring linguistic abilities in order. We ob-
serve a distinct order of acquisition in language
models: learning curves across benchmarks in-
dicate an almost immediate proficiency in distin-
guishing between valid and invalid formal linguis-
tic structures, primarily with respect to morphosyn-
tactic rules. This is reflected in the high scores
achieved on both BLiMP and BLiMP Supplement
early in training. In contrast, performance on
EWoK, a benchmark that assesses more functional
(semantic and pragmatic) linguistic abilities in con-
text, improves gradually and slowly over time—
and peaks at significantly lower scores. This phased
“order of acquisition” deviates somewhat from hu-
man language development, where syntactic and
semantic signals can assist in learning the other
throughout language acquisition (Gleitman, 1990;
Grimshaw, 1979; Pinker, 1984). This finding could
support the existence of a clear distinction between
effective representations of the formal structure
of language, and representations of how language
should be interpreted and deployed in context (Ma-
howald et al., 2024); nonetheless, this finding is
preliminary and should be investigated in more
depth and in a greater variety of architectures and
learning scenarios.

C Causal Neuron Analysis

C.1 Subtask Categories

The subtask categories are either provided explic-
itly in the dataset (e.g. EWoK, BLiMP, MM-
Star) or automatically aggregated using a large lan-
guage model. Since the subtask labels in VQA
and Winoground are too fine-grained, we lever-
age ChatGPT-4o to automatically merge them to
broader categories. This is achieved in a two-stage
process, where we first ask for the generation of su-
perclass labels and then for the assignment of these
labels to the fine-grained categories. This process
is done in two steps to ensure that each fine-grained
label is assigned exactly one superclass, see Table 3

Label Creation
The following is a list of VQA/Winoground
question types. It is too fine-grained, merge
the categories to 10 combined categories that
are reasonable to group together, and give the
merged categories a new name...

Assignment
Classify each of these following question types
with exactly one of these super categories...

Table 3: ChatGPT-4o prompts used to generate new
subtask labels.

In Tables 4 and 5 we provide a mapping between
original and superclass label per benchmark and
in Table 6 we report the number of samples per
supercategory, alongside an abbreviation used in
heatmap plots.

131



Person and Object Identification

are these are they is he is it
is the man is the person is the woman is this
is this person what is the man what is the person what is the woman
what is this who is

Other (General Queries and Miscellaneous)

are the what does the what is do you
what is the how none of the above what
what are what are the

Action and State

can you has could

Color Identification

what color what color is the what color are the what color is
what is the color of the

Verification and Existence

are does the is the are there
does this is there a are there any is
is there do is there

Identification and Classification

is that a what animal is what is the name is this a
what kind of what sport is is this an what type of
which what brand

Temporal Information

was what time

Spatial and Positional Information

how many people are in what room is where are the what is in the
where is the what is on the

Reason and Purpose

why why is the

Quantity and Counting

how many what number is how many people are

Table 4: VQA subtask categories with their original question types.
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Adjectival Comparisons and Modifications

Adjective-Age Adjective-Size Adjective-Manner
Adjective-Color Adjective-Color (3-way swap) Adjective-Shape
Adjective-Texture Adjective-Animate Adjective-Weight
Adjective-Temperature Adjective-Speed Adjective-Height
Adjective-Manner Phrase Adjective-Speed Phrase, Verb-Intransitive Adverb-Animate

Verb Phrases (Intransitive and Transitive)

Verb-Intransitive Verb-Transitive Verb-Transitive Phrase, Verb-Intransitive, Preposition Phrase
Verb-Transitive Phrase Verb-Intransitive, Noun Verb-Intransitive Phrase
Verb-Intransitive, Determiner-Numeral Verb-Intransitive, Adjective-Manner Verb-Intransitive, Verb-Transitive Phrase
Verb-Intransitive Phrase, Adverb-Animate Verb-Intransitive Phrase, Preposition Verb-Transitive, Noun

Noun Phrases and Modifiers

Noun, Adjective-Color Noun Phrase, Adjective-Animate Noun
Noun Phrase Noun Phrase, Adjective-Color Noun Phrase, Determiner-Possessive
Noun Phrase, Determiner-Numeral Noun, Verb-Intransitive Noun, Preposition Phrase, Scope
Noun, Adjective-Size

Altered POS

Sentence Altered POS Altered POS, Determiner-Numeral

Preposition and Locations

Preposition Phrase, Scope Preposition Phrase Preposition

Determiner and Quantifier Relationships

Determiner-Numeral Determiner-Possessive Determiner-Numeral Phrase
Determiner-Numeral, Noun Phrase

Scope and Relations

Scope Scope, Preposition, Verb-Intransitive Scope, Preposition Phrase
Scope, Adjective-Manner Scope, Adjective-Texture Scope, Conjunction Phrase
Scope, Relative Clause Scope, Conjunction Scope, Verb-Transitive
Scope, Preposition Relative Clause, Scope Scope, Preposition Phrase, Adjective-Color
Scope, Altered POS, Verb-Intransitive, Verb-Transitive Scope, Noun, Preposition

Negation and Opposites

Negation, Scope Negation, Noun Phrase, Preposition Phrase

Temporal and Spatial Phrases

Adjective-Temporal Adjective-Spatial Adverb-Temporal
Adverb-Spatial Phrase Adverb-Spatial

Table 5: Winoground subtask categories with their original question types.
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BLIMP (linguistics_term) MMStar (category)

Subtask Name Abb. Num. Subtask Name Abb. Num.

Subject Verb Agreement SVA 34 Fine-grained Perception FP 247
S-Selection S-S 417 Instance Reasoning IR 243
Anaphor Agreement AA 688 Science and Technology ST 174
Binding B 1056 Coarse Perception CP 245
Determiner Noun Agreement DNA 1710 Math M 112
Irregular Forms IF 67 Logical Reasoning LR 204

VQA Winoground

Subtask Name Abb. Num. Subtask Name Abb. Num.

Person and Object Identification POI 3208 Adjectival Comparisons and Modifications ACM 184
General Queries and Miscellaneous (renamed: Other) O 4648 Verb Phrases (Intransitive and Transitive) VP 52
Action and State AS 286 Noun Phrases and Modifiers NPM 268
Color Identification CI 2343 Altered POS APO 46
Verification and Existence VE 4894 Preposition and Locations PL 68
Identification and Classification IC 2393 Determiner and Quantifier Relationships DQR 50
Temporal Information TI 176 Scope and Relations SR 42
Spatial and Positional Information SPI 708 Negation and Opposites NO 18
Reason and Purpose RP 100 Temporal and Spatial Phrases TSP 12
Quantity and Counting QC 27

EWoK (Domain)

Subtask Name Abb. Num.

Physical Relations PR 818
Spatial Relations SPR 476
Physical Interactions PI 556
Agent Properties AP 2056
Material Dynamics MD 770
Social Properties SP 325
Social Relations SOR 1548
Quantitative Properties QP 310
Social Interactions SI 294
Physical Dynamics PD 120
Material Properties MP 170

Table 6: (Aggregated) subtask categories per benchmark with their abbreviation and number of contained samples.
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C.2 Prompt Format and Metrics
An example for each prompting format used in
attribution patching is given in Table 7, alongside
the metric used to compute the patching effect.

C.3 Heatmap for all subtasks
We provide an extensive heatmap for the neuron
overlap between subtasks of all benchmarks in Fig-
ure 6 for GIT and in Figure 7 for Flamingo.

C.4 Neuron Ablation
We provide the ablation effect for all subtasks of
VQA (in their multimodal variant) when ablating
the top neurons with their mean activation in Fig-
ure 8 for GIT and in Figure 9 for Flamingo.

C.5 Library
To perform attribution patching and neuron ab-
lations, we use nnsight (Fiotto-Kaufman et al.,
2024).
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Figure 6: Overlap in GIT between the top 100 neurons by indirect effect per subtask for all benchmarks.
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Figure 7: Overlap in Flamingo between the top 100 neurons by indirect effect per subtask for all benchmarks.
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Benchmark Prompt Metric

BLiMP The books about Galileo logit diff = final logit[token="are"] -
final logit[token="is"]

VQA Is this photo in color? logit diff = final logit[token="no"] -
final logit[token="yes"]

EWoK Chao is making Yan’s job easier. Chao is
helping Yan. \n Chao is making Yan’s job
easier. Chao is hindering Yan.

logit diff = logit sum["Chao is helping
Yan"] - log sum["Chao is hindering Yan."]

Winoground some plants surrounding a

lightbulb \n a lightbulb surrounding some
plants

logit diff = logit sum[a lightbulb
surrounding some plants] - logit sum[some
plants surrounding a lightbulb]

MMStar What is the main theme of the

image? Transportation \n What is the
main theme of the image? Outdoor recre-
ation

logit diff = logit sum[What is the main
theme of the image? Transportation]
- logit sum[What is the main theme of the
image? Outdoor recreation]

Table 7: Example prompts and their respective performance metric per benchmark used for attribution patching.
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Figure 8: Clean and ablated GIT accuracy on VQA.
Dashed line marks clean accuracy. The left and right
bars show model performance without vision and with
vision respectively.

Figure 9: Clean and ablated Flamingo accuracy on VQA.
Dashed line marks clean accuracy. The left and right
bars show model performance without vision and with
vision respectively.
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