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Abstract

We present a model for the Strict-Small track
of the BabyLM Challenge 2024 (Choshen et al.,
2024). We introduce a Curriculum Learning
approach for training a specialized version of
GPT-2 (Radford et al., 2019), that we name
ConcreteGPT. We utilize the norms from Brys-
baert et al. (2014), which provide concreteness
ratings for 40,000 English lexical items based
on human subjects. Using these norms, we
assign a concreteness score to each sentence
in the training dataset and develop two cur-
riculum strategies that progressively introduce
more complex and abstract language patterns
in the training data. Compared to the baselines,
our best model shows lower performance on
zero-shot tasks but demonstrates superior per-
formance in fine-tuning tasks. Notably, our
curriculum-trained models exhibit significant
improvements over a non-curriculum based
training of the same model.

1 Introduction

Optimising language model training to enhance
efficiency without compromising performance
presents a significant challenge, especially in the
era of Large Language Models (LLMs) which
require trillions of input tokens and millions of
PetaFLOPs for training (Villalobos et al., 2024).
A promising approach lies in exploring training
strategies that streamline the learning process and
maximise resource utilisation. Initiatives like the
BabyLM Challenge (Warstadt et al., 2023) aim to
find strategies to train effective LLMs under spe-
cific data constraints, that naturally reflect also on
model sizes constraints following known scaling
laws.
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One possible area of interest in this context is
the use of training strategies related to Curricu-
lum Learning, which refers to the idea of training
machine learning models on meaningfully ordered
data, for instance from easier to harder samples
(Bengio et al., 2009). This approach has yielded
beneficial results on many tasks (Soviany et al.,
2022), but has not been widely adopted in the con-
text of language modelling. Typically, LLMs are
trained on data scraped from the Web, for which
it is difficult to obtain a meaningful ordering. In
the present work, we evaluate the hypothesis that
a curriculum learning strategy informed by evi-
dence from human language acquisition can en-
hance model performance in data- and/or compute-
constrained settings. Specifically, we attempt to
understand the impact of considering word con-
creteness for ordering training data. In this context,
concreteness refers to how tangible or percepti-
ble the referent of a word is, with more concrete
words being those that refer to physical objects
or sensory experiences, while abstract words re-
late to concepts and ideas (Brysbaert et al., 2014).
Word concreteness is often considered a proxy for
the natural order in which children acquire lan-
guage, beginning with words that represent famil-
iar objects and situations (Bergelson and Swingley,
2013; Schwanenflugel, 2013). As language devel-
opment progresses, children gradually learn terms
that describe more complex concepts or relation-
ships, which typically rely on the prior acquisition
of simpler linguistic elements. Understanding the
impact of word concreteness on language model
training could potentially lead to models that better
grasp and generate language in a more nuanced
manner, and more importantly, that learn faster and
more efficiently. While some studies have explored
different language complexity metrics for Curricu-
lum Learning (Opper et al., 2023; Mi, 2023; Mar-
tinez et al., 2023), none of the methods proposed in
the 2023 BabyLM Challange employed curriculum
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criteria related to lexical concreteness (Warstadt
et al., 2023).

In this work, we introduce a Curriculum Learn-
ing approach to train a specialised version of GPT2
(Radford et al., 2019), that we call ConcreteGPT,
which leverages word concreteness ratings. We
exploit the concreteness norms from Brysbaert
et al. (2014), which include concreteness ratings
obtained from human subjects for 40,000 lexical
items in English. Using the norms, we compute a
concreteness score for each sentence in the training
dataset and create a curriculum that progressively
emphasises more complex and abstract language
patterns. We evaluate our approach on the Strict-
Small track for the 2024 BabyLM Challenge. For
the track, participants are provided with a dataset
of 10M tokens for pre-training their model. Then,
the model is evaluated in two ways: first, on a
set of tasks in zero-shot settings, using Perplexity
(PPL) or Pseudo-Log-Likelihood (PLL) metrics as
a proxy of model understanding; second, the model
is fine-tuned using standard fine-tuning or LoRA
on the GLUE benchmark tasks. We evaluate two
different models that employ a slightly different ap-
proach to building the curricula for the training, and
compare them with a baseline model trained with
the same amount of FLOPs without curriculum
learning. We show that the curriculum-based mod-
els tend to outperform the non-curriculum model,
while generally matching or slightly underperform-
ing compared to the strong baselines provided by
the task organizers (i.e., the winning models from
the 2023 edition), despite a possibly lower compu-
tational cost.

The paper is organised as follows. First, we out-
line the motivations behind our curriculum learning
approach in Section 2. Section 3 details the method-
ology used to create the datasets and describe the
curriculum design. Sections 4 and 5 provide an
in-depth discussion of the model, covering train-
ing specifics and results, and discuss the impact
of two variations of the curriculum learning strat-
egy. Finally, Section 6 draws some conclusions and
highlights possible future directions.

2 Motivation Behind Curriculum Design

The motivation behind this approach stems from
the hypothesis that a curriculum guided by word
concreteness can enhance the model’s learning
trajectory by starting with more concrete, easily
grasped examples and gradually advancing to more

sophisticated verbal items. This method aims to
improve the model’s ability to handle a broader
range of linguistic phenomena, potentially leading
to more robust and contextually aware text genera-
tion. Given that the model is not multimodal, one
might initially question the value of using a Cur-
riculum Learning approach based on lexical con-
creteness, since the representations learned by the
model are not grounded in perceptual experiences.
It is useful to start from the assumption that, in prin-
ciple, all meanings can be considered as abstract,
referring to general classes capable of subsuming
heterogeneous and always particular phenomena
(Eco, 1979, §2.6). From this perspective, the value
of an approach based on lexical concreteness does
not lie in grounding meanings in perceptual experi-
ence (Søgaard, 2023). Despite the abstract charac-
ter of meaning, it is widely accepted that the first
words children learn tend to have a tight connection
to their experience with referents (Schwanenflugel,
2013; Bergelson and Swingley, 2013). Early lan-
guage acquisition typically involves words related
to the child’s surroundings, such as parents, pets,
and daily routines objects. From these familiar
meanings, children gradually expand their vocab-
ulary to include words with more complex mean-
ings that concern more abstract situations, require
greater linguistic competence and larger cultural
experience. Thus, concreteness rating can be un-
derstood as an index of the difficulty in acquiring a
word. For instance, learning a term like “dog” re-
quires less linguistic knowledge and semantic struc-
turing than understanding a more abstract concept
like “justice”. By initially exposing the model to
sentences containing words with an high concrete-
ness rating, we attempt to simulate this learning
trajectory, providing the model with simpler, more
fundamental contexts before progressing to the ac-
quisition of more complex meanings and linguistic
situations. The method proposed in this paper is
consistent with the findings of Abdou et al. (2021)
and Patel and Pavlick (2022) which suggest that
LM embeddings encode perceptual structures (e.g,
meaningful spatial relations and colors) without
requiring perceptual grounding. The hypothesis
is that a curriculum based on lexical concreteness
can facilitate the acquisition of these meaningful
structures.

A potential objection to our method is why age
of acquisition is not used directly as a feature for
sorting the curriculum. The core principle of the
Curriculum Learning approach is to establish a
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criterion that accurately assesses the difficulty of
language items, thereby grouping items of simi-
lar difficulty together. In this context, a criterion
such as age of acquisition alone does not serve this
purpose effectively. Linguistically similar items —
those that function similarly in speech and possess
comparable levels of difficulty — can exhibit dif-
ferent ages of acquisition. In fact, consulting data
from WordBank (Frank et al., 2017), specifically
the British Oxford Communicative Development
Inventory (CDI), we observe that linguistically sim-
ilar items are acquired at different ages by children.
For example, the proportion of children understand-
ing the word dog at 12 months is slightly over
0.6, whereas the corresponding value for the word
lamb is just under 0.1. This disparity remains rela-
tively constant until 25 months, even though lamb
does not appear to present any particular challenges
compared to dog. Consequently, two words of sim-
ilar difficulty may be sorted differently within the
curriculum based solely on age of acquisition. In
contrast, this issue is mitigated by the use of con-
creteness ratings, with lamb being rated at 4.97 and
dog at 4.85 in Brysbaert et al. (2014).

3 Curriculum Design

Brysbaert et al. (2014) collected ratings from 4,237
native speakers for 37,058 English words and 2,896
two-word expressions. The ratings ranged from a
minimum of 1, representing «something you can-
not experience directly through your senses or ac-
tions», to a maximum of 5, indicating «something
that exists in reality; you can have immediate expe-
rience of it through your senses (smelling, tasting,
touching, hearing, seeing) and the actions you do.
The easiest way to explain a word is by pointing to
it or by demonstrating it» (Brysbaert et al., 2014).
Based on these ratings, we assigned a concrete-
ness score to each sentence in the dataset (10M
Strict-Small dataset, Choshen et al. 2024). For
each sentence, only adjectives, nouns, and verbs
were considered in the score calculation. The con-
creteness ratings of the words in the sentence were
summed, and the total was divided by the num-
ber of selected words. This resulting value corre-
sponds to the sentence concreteness score. Once
the sentence scores were obtained, the dataset was
divided into four slices, each containing approx-
imately 300,000 items, based on increasing con-
creteness, as shown in Figure 1.

Based on the dataset slicing, we devise two dif-

ferent curriculum strategies:

SEQUENTIAL – This strategy considers the
slicing as-is, and the curriculum is based on
their sequential ordering, from the most con-
crete to the most abstract.

MIXED – This strategy is more nuanced, and
accounts for the fact that while sentence-level
concreteness can be used as proxy for the nat-
ural order in which children acquire language,
it is also likely that childrens will be exposed
to more complex words as well. Thus, starting
from the original slices, we redistribute part
of each slice into the other ones. Specifically,
each slice contains 50% of the data from the
original slice, and 50% from the other three
slices, in different proportions, to simulate an
increasing percentage of progressively more
abstract sentences in each slice. The exact pro-
portions of sentences from each mixed slice
are reported in Figure 2.

4 Model and Training

In our experiments, we use the GPT2 implementa-
tion from HuggingFace1 as our base architecture,
with its standard pretrained tokenizer. The model
has 124M trainable parameters. To further limit
the computational cost of training, we restrict the
context length of the model to 128 tokens. This
change is driven not only by concerns regarding
computational resources, but also by theoretical
considerations related to the development of work-
ing memory in humans, which appears to be lim-
ited during the early years of life (Swanson, 1996;
Cowan, 2016). A reduced context length (though
still larger than the number of tokens a child can
process) better aligns with the cognitive plausibility
criteria required by the challenge.

We experiment with a hybrid training proce-
dure where the model is sequentially trained on
each slice of the dataset for three epochs with the
same hyperparameters. Note that we restart the
training procedure each time, and that we random-
ized the batch sampling within the training slice.
This means that data from each batch is randomly
sampled (as customary for training LMs) from the
training slice. Then, the resulting model is further
trained on the entire dataset with a lower learning
rate for an additional two epochs, again with ran-
dom batch sampling. We follow this procedure for

1https://huggingface.co/openai-community/gpt2
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Figure 1: Distribution of sentences into slices. The dataset contains sentences with adjectives, verbs, and nouns that
are not among the rated words (assigned a score of zero), as well as sentences that contain none of these word types
(assigned a score of one). All such sentences are grouped into the final slice, representing the most abstract and
complex sentences.

Model Data Epochs Init. LR LR scheduler Batch size Grad. accum. Warmup

SEQUENTIAL

Slice 1 3 5e-4 Cosine 32 8 1000
Slice 2 3 5e-4 Cosine 32 8 1000
Slice 3 3 5e-4 Cosine 32 8 1000
Slice 4 3 5e-4 Cosine 32 8 1000

Full Dataset 2 2e-4 Cosine 32 8 1000

MIXED

Slice 1 - mix 3 5e-4 Cosine 32 8 1000
Slice 2 - mix 3 5e-4 Cosine 32 8 1000
Slice 3 - mix 3 5e-4 Cosine 32 8 1000
Slice 4 - mix 3 5e-4 Cosine 32 8 1000
Full Dataset 2 2e-4 Cosine 32 8 1000

SHUFFLE Full Dataset 5 5e-4 Cosine 32 8 1000

Table 1: Pre-training parameters for each of the models. In the case of curriculum-based models, parameters are
reported for each slice.

Hyperparameter Value

Initial learning rate 3e-4
Batch size 64
Maximum epochs 32
Evaluate every (epochs) 1
LoRA alpha 16
LoRA rank 8
LoRA dropout 0.1

Table 2: Parameters for fine-tuning with LoRA on the
GLUE tasks.

both the SEQUENTIAL and MIXED models, only
changing the composition of the slices as described
in Section 3. For training the comparison model

(i.e., the model without curriculum learning), that
we call SHUFFLE, we aimed to use the same amount
of computing, and thus to show the model each
data point the same number of times. Therefore,
we trained it for 5 epochs on the entire dataset with
random sampling.

Table 1 summarizes the training parameters. All
models were trained using half precision (fp16).
No direct hyperparameter optimization was per-
formed. However, we experimented with sev-
eral configurations, specifically varying the initial
Learning Rate and its scheduler, and found the cho-
sen configuration to work best. As for batch size
and gradient accumulation steps, the values were
chosen to best fit the available computational re-
sources. All models were trained using a Nvidia
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Figure 2: Percentage of sentences from each slice for
training the MIXED model.

A100 40GB GPU. Notably, we used the same ran-
dom seed for all training runs, to ensure that the
starting condition was the exact same for all of
the trained models. We are aware that averaging
the results of multiple training runs would have
yielded more reliable results. However, it would
have also drastically increased the computational
cost of our experiments. The pre-training proce-
dure was handled with the HuggingFace Trainer.2

For the fine-tuning, we train a LoRA for each of
the GLUE tasks using the script provided by the
challenge organisers. As for the hyperparameters,
we left the default ones provided by the challenge
organisers (Choshen et al., 2024). For the sake
of completeness, we report the LoRA fine-tuning
parameters in Table 2.

5 Results and Discussion

The models are evaluated on two distinct sets of
tasks: one requiring fine-tuning and the other per-
formed in a zero-shot setting. Fine-tuning was
conducted using the script provided by the organis-
ers (see Section 4). The baselines are two models
trained by the organizers, and inspired by the 2023
edition winning systems: LTG-BERT (Charpentier
and Samuel, 2023) and BabyLlama (Timiryasov
and Tastet, 2023).

For the fine-tuning task, models are fine-tuned
on the GLUE benchmark tasks (Wang et al.,
2018). Table 3 shows results on all the tasks for
each of our trained models, namely SEQUENTIAL,
MIXED, and SHUFFLE. While the differences in
performance across the models are not substan-

2https://huggingface.co/docs/transformers/v4.
44.2/en/main_classes/trainer.

tial, the curriculum-based models (SEQUENTIAL

and MIXED) consistently outperform the non-
curriculum one (SHUFFLE), with the exception
of the CoLA and RTE tasks. Among curriculum-
based models, the MIXED model outperform the
SEQUENTIAL model on 7 out of 10 tasks, and for
2 out of 10 taks they achieve the same level of
performances.

For the zero-shot tasks, results are reported in
Table 4, and are less clear-cut. For the Ewok task
(Ivanova et al., 2024), the MIXED model perform
slightly better than SHUFFLE and SEQUENTIAL

models, and achieve a score on par with the best
baseline. For the Blimp tasks (Warstadt et al., 2020)
the scenario is different: in Blimp Filtered, none
of our models manage to match the BabyLlama
baseline, although the two models trained with
curriculum learning come very close. Neverthe-
less, they significantly outperform LTG-BERT. For
Blimp Supplement, none of the models reach the
baseline, and the best-performing model is the non-
curriculum one (SHUFFLE). Nevertheless, in two
out of three zero-shot tasks curriculum-based mod-
els outperform, albeit slightly, the non-curriculum
based one. In Blimp Filtered, both models per-
form the same, while for Ewok the best performing
model is again the MIXED model. Table 4 also
report the average on the fine-tuning GLUE tasks.
The MIXED model significantly outperform both
the other proposed models as well as the baselines.

On average, across all tasks, the three models
consistently outperform the worse baseline (LTG-
BERT), but do not exceed the performance of the
best baseline (BabyLlama) except for GLUE. Of
the three, the MIXED model performs the closest to
BabyLlama overall. However, this result is largely
influenced by the poorer performance in Blimp,
especially in Blimp Supplement. In this case the
curriculum learning strategy appears to negatively
affect performance on acceptability tasks, as indi-
cated by the weaker results observed in CoLA and
Blimp. A potential explanation is that curriculum
learning based on lexical concreteness enhances
performance in tasks with a stronger semantic com-
ponent, such as MRPC, SST-2, and MNLI, where
the curriculum-trained models demonstrate supe-
rior performances.

However, these findings appear to corroborate
the idea that, given the same (and limited) amount
of data and training compute, employing a cog-
nitively plausible training strategy that leverages
lexical concreteness as a proxy for a plausible or-
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model mrpc boolq qqp sst2 qnli wsc cola[matt_corr] rte mnli multirc

SEQUENTIAL 0.80 0.64 0.77 0.80 0.74 0.58 0.59 [0.02] 0.57 0.67 0.65
MIXED 0.82 0.66 0.77 0.85 0.78 0.65 0.61 [0.04] 0.56 0.68 0.65
SHUFFLE 0.79 0.66 0.74 0.79 0.76 0.62 0.59 [0.08] 0.57 0.64 0.64

Table 3: Fine-tuning results. As specified in the evaluation pipeline documentation (github.com/babylm/evaluation-
pipeline-2024), we use accuracy as the evaluation metric for all tasks except QQP and MRPC, for which we report
F1 scores, and CoLA, for which we use the Matthews correlation coefficient (we also report the evaluation loss for
this task).

Model Zero Shot Fine tuning Macro Avg.
blimp_supp blimp_filt ewok Glue Avg.

SEQUENTIAL 55.9 68.6 50.2 62.4 59.3
MIXED 55.9 68.6 50.7 64.6 60.0
SHUFFLE 57.1 67.8 50.5 62.9 59.6

BabyLlama 59.5 69.8 50.7 63.3 60.8
LTG-BERT 60.8 60.6 48.9 60.3 57.7

Table 4: Overall results and comparison with baselines.

dering to acquire language is probably beneficial.
In addition to this, it is also relevant to point out that
our model, albeit larger in terms of number of pa-
rameters, was not trained until convergence and in
any case was trained with less computing than the
strongest baseline represented by the BabyLlaMA
model, but it still either reach its performances or
surpasses them in 2 out of the 4 evaluations.

6 Conclusion and Future Work

In this paper we propose two models for the
Strict-Small track of the BabyLM Challenge 2024
(Choshen et al., 2024). The models were trained
using a Curriculum Learning strategy designed to
optimise performance. The dataset provided by the
organisers was divided into four slices based on
increasing levels of lexical concreteness. From this
division, two models were trained: the SEQUEN-
TIAL was trained on the slices in order of decreas-
ing concreteness, while the MIXED incorporated
a progressively higher percentage of abstract and
complex sentences at each epoch. For comparison,
the same architecture was trained using a standard
training procedure on the entire dataset with the
same amount of compute (SHUFFLE model).

The SHUFFLE model outperforms the
curriculum-trained models only in the Blimp
Supplement (for zero-shot) and in CoLA (for
fine-tuned) tasks. In all other tasks however
curriculum learning based on lexical concreteness,

particularly the MIXED model, demonstrates
improved performance. Compared to the baselines
provided by the organisers, the MIXED model
exhibits comparable or lower performance on
zero-shot tasks but performs well in fine-tuning
tasks. These results are notable, especially given
the relatively small amount of training compute
provided to the model.

Our findings suggest that in low resources and/or
low compute scenarios, cognitively plausible train-
ing strategies, specifically using concreteness, may
help the model learn effective representation faster
than with traditional training methods. Neverthe-
less, we must point out that the proposed approach
does not systematically outperform the strong base-
lines provided by the challenge organisers, espe-
cially in zero-shot tasks. Possible explanations are
that i.) our concreteness-based approach still re-
quires some refinement, and that ii.) our models
may be undertrained with respect to the baselines.

Based on these findings, we propose several di-
rections for future work. First, training the model
on a larger dataset and for more epochs would al-
low us to test whether the performance gap scales
with additional data, potentially by further refining
the progression of the slices in the MIXED strat-
egy. Second, applying this curriculum learning
approach to a multimodal model would help assess
whether it also facilitates mapping between lan-
guage and images. Finally, it would be valuable to
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further investigate the differences in performance
on acceptability tasks (which are more syntactic
in nature) versus tasks focused on semantics and
inference, to better understand the robustness of
this trend.
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