@inproceedings{ghanizadeh-dousti-2024-towards,
title = "Towards Data-Efficient Language Models: A Child-Inspired Approach to Language Learning",
author = "Ghanizadeh, Mohammad Amin and
Dousti, Mohammad Javad",
editor = "Hu, Michael Y. and
Mueller, Aaron and
Ross, Candace and
Williams, Adina and
Linzen, Tal and
Zhuang, Chengxu and
Choshen, Leshem and
Cotterell, Ryan and
Warstadt, Alex and
Wilcox, Ethan Gotlieb",
booktitle = "The 2nd BabyLM Challenge at the 28th Conference on Computational Natural Language Learning",
month = nov,
year = "2024",
address = "Miami, FL, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.conll-babylm.2/",
pages = "22--27",
abstract = "In this work, we explain our approach employed in the BabyLM Challenge, which uses various methods of training language models (LMs) with significantly less data compared to traditional large language models (LLMs) and are inspired by how human children learn. While a human child is exposed to far less linguistic input than an LLM, they still achieve remarkable language understanding and generation abilities. To this end, we develop a model trained on a curated dataset consisting of 10 million words, primarily sourced from child-directed transcripts. The 2024 BabyLM Challenge initial dataset of 10M words is filtered to 8.5M. Next, it is supplemented with a randomly selected subset of TVR dataset consisting of 1.5M words of television dialogues. The latter dataset ensures that similar to children, the model is also exposed to language through media. Furthermore, we reduce the vocabulary size to 32,000 tokens, aligning it with the limited vocabulary of children in the early stages of language acquisition. We use curriculum learning and is able to match the baseline on certain benchmarks while surpassing the baseline on others. Additionally, incorporating common LLM training datasets, such as MADLAD-400, degrades performance. These findings underscore the importance of dataset selection, vocabulary scaling, and curriculum learning in creating more data-efficient language models that better mimic human learning processes."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ghanizadeh-dousti-2024-towards">
<titleInfo>
<title>Towards Data-Efficient Language Models: A Child-Inspired Approach to Language Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Amin</namePart>
<namePart type="family">Ghanizadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Javad</namePart>
<namePart type="family">Dousti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>The 2nd BabyLM Challenge at the 28th Conference on Computational Natural Language Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="given">Y</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aaron</namePart>
<namePart type="family">Mueller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Candace</namePart>
<namePart type="family">Ross</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adina</namePart>
<namePart type="family">Williams</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tal</namePart>
<namePart type="family">Linzen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengxu</namePart>
<namePart type="family">Zhuang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leshem</namePart>
<namePart type="family">Choshen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Warstadt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ethan</namePart>
<namePart type="given">Gotlieb</namePart>
<namePart type="family">Wilcox</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, FL, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this work, we explain our approach employed in the BabyLM Challenge, which uses various methods of training language models (LMs) with significantly less data compared to traditional large language models (LLMs) and are inspired by how human children learn. While a human child is exposed to far less linguistic input than an LLM, they still achieve remarkable language understanding and generation abilities. To this end, we develop a model trained on a curated dataset consisting of 10 million words, primarily sourced from child-directed transcripts. The 2024 BabyLM Challenge initial dataset of 10M words is filtered to 8.5M. Next, it is supplemented with a randomly selected subset of TVR dataset consisting of 1.5M words of television dialogues. The latter dataset ensures that similar to children, the model is also exposed to language through media. Furthermore, we reduce the vocabulary size to 32,000 tokens, aligning it with the limited vocabulary of children in the early stages of language acquisition. We use curriculum learning and is able to match the baseline on certain benchmarks while surpassing the baseline on others. Additionally, incorporating common LLM training datasets, such as MADLAD-400, degrades performance. These findings underscore the importance of dataset selection, vocabulary scaling, and curriculum learning in creating more data-efficient language models that better mimic human learning processes.</abstract>
<identifier type="citekey">ghanizadeh-dousti-2024-towards</identifier>
<location>
<url>https://aclanthology.org/2024.conll-babylm.2/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>22</start>
<end>27</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Data-Efficient Language Models: A Child-Inspired Approach to Language Learning
%A Ghanizadeh, Mohammad Amin
%A Dousti, Mohammad Javad
%Y Hu, Michael Y.
%Y Mueller, Aaron
%Y Ross, Candace
%Y Williams, Adina
%Y Linzen, Tal
%Y Zhuang, Chengxu
%Y Choshen, Leshem
%Y Cotterell, Ryan
%Y Warstadt, Alex
%Y Wilcox, Ethan Gotlieb
%S The 2nd BabyLM Challenge at the 28th Conference on Computational Natural Language Learning
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, FL, USA
%F ghanizadeh-dousti-2024-towards
%X In this work, we explain our approach employed in the BabyLM Challenge, which uses various methods of training language models (LMs) with significantly less data compared to traditional large language models (LLMs) and are inspired by how human children learn. While a human child is exposed to far less linguistic input than an LLM, they still achieve remarkable language understanding and generation abilities. To this end, we develop a model trained on a curated dataset consisting of 10 million words, primarily sourced from child-directed transcripts. The 2024 BabyLM Challenge initial dataset of 10M words is filtered to 8.5M. Next, it is supplemented with a randomly selected subset of TVR dataset consisting of 1.5M words of television dialogues. The latter dataset ensures that similar to children, the model is also exposed to language through media. Furthermore, we reduce the vocabulary size to 32,000 tokens, aligning it with the limited vocabulary of children in the early stages of language acquisition. We use curriculum learning and is able to match the baseline on certain benchmarks while surpassing the baseline on others. Additionally, incorporating common LLM training datasets, such as MADLAD-400, degrades performance. These findings underscore the importance of dataset selection, vocabulary scaling, and curriculum learning in creating more data-efficient language models that better mimic human learning processes.
%U https://aclanthology.org/2024.conll-babylm.2/
%P 22-27
Markdown (Informal)
[Towards Data-Efficient Language Models: A Child-Inspired Approach to Language Learning](https://aclanthology.org/2024.conll-babylm.2/) (Ghanizadeh & Dousti, CoNLL-BabyLM 2024)
ACL