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Abstract

While today’s large language models exhibit
impressive abilities in generating human-like
text, they require massive amounts of data dur-
ing training. We here take inspiration from hu-
man cognitive development to train models in
limited data conditions. Specifically we present
a self-synthesis approach that iterates through
four phases: Phase 1 sets up fundamental lan-
guage abilities, training the model from scratch
on a small corpus. Language is then associ-
ated with the visual environment in phase 2,
integrating the model with a vision encoder to
generate descriptive captions from labeled im-
ages. In the “self-synthesis” phase 3, the model
generates captions for unlabeled images, that
it then uses to further train its language com-
ponent with a mix of synthetic, and previous
real-world text. This phase is meant to expand
the model’s linguistic repertoire, similar to hu-
mans self-annotating new experiences. Finally,
phase 4 develops advanced cognitive skills, by
training the model on specific tasks such as vi-
sual question answering and reasoning. Our
approach offers a proof of concept for training
a multimodal model using a developmentally
plausible amount of data.

1 Introduction

Recent advances in machine learning have pro-
duced large language models (LLMs) that, after
training on massive text corpora, are capable of gen-
erating human-like text. However, when comparing
LLM training to human development, the amount
of data required for successful model training far
exceeds the quantities that humans learn from dur-
ing their development (Warstadt et al., 2023a). The
human brain is thus often seen as a more sample-
efficient learning machine than contemporary arti-
ficial neural network approaches (Marcus, 2020).
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Figure 1: Self-Synthesis Training Framework. Our
model BabyLLaMA is trained in four phases that connect
fundamental language abilities to vision by learning to
describe unlabeled visual experiences. We divided our
approach in 4 phases, each feeding its best snapshot in
terms of validation loss to the next phase. Phase 1 is
concerned with fundamental language skill acquisition
using 50M words. Phase 2 combines visual and text data
(35 M words) to learn to describe objects and scenes. In
phase 3 - making our approach one revolving around
self-synthesis - we generate captions from images and
use this synthesized text (i.e., 0 words from real-world
corpora) to further train the model’s language decoder.
Phase 4 closes the loop using 15M words to develop
skills for advanced visuo-linguistic tasks such as ques-
tion answering and reasoning about the environment.

In this work, we take inspiration from human
cognitive development to build new models under
limited data conditions that more closely resemble
the language experience of humans. Specifically,
humans learn language in combination with other
senses, and use it to reflect on their experiences. We
implement this idea via a self-synthesis approach
that combines vision and language such that the
model learns on external (real-world) text as well
as its own (synthetic) description of unlabeled vi-
sual experiences (Figure 1). Self-synthesis can also
be seen as analogous to the process of dreaming,
which neuroscience research suggests functions as
providing “augmented samples of waking expe-
riences,” helping to shape neural representations
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and prevent overfitting to those experiences (Hoel,
2021; Prince and Richards, 2021).

2 Dataset Selection

In line with the BabyLM challenge requirements
(Warstadt et al., 2023b), we restrict our training
data to 100 million words, which approximates
the maximum number of words a 13-year-old
would encounter in their lifetime (Gilkerson et al.,
2017). In contrast, the latest LLaMA-3-8B model
was trained on 15 trillion tokens (Dubey et al.,
2024), which is 150,000 times larger than our train-
ing budget. We created our own dataset of 100
million words, emphasizing diversity and quality.
This word budget is split evenly between a text-
only corpus and a multimodal image-text corpus.

Text-Only Data Our text corpus comprises 50
million words selected from the top-scoring sen-
tences of FineWeb-Edu’s October 2024 Common-
Crawl snapshot (Lozhkov et al., 2024), based on
their educational quality. FineWeb-Edu is a sub-
set of the FineWeb dataset (Penedo et al., 2024),
which is created using scalable, automated annota-
tions to assess educational value. The educational
scores were assigned by LLaMA-3-70B-Instruct,
which rated 500,000 samples on a scale from 0
to 5 for their educational quality (Penedo et al.,
2024). Models trained on this dataset have sur-
passed all other publicly available web datasets on
several educational benchmarks, including MMLU
(Hendrycks et al., 2021), ARC (Clark et al., 2018),
and OpenBookQA (Mihaylov et al., 2018).

Image-Text Data Our image-text corpus consists
of two groups: (1) image-caption data used for vi-
sual experience training (“phase 3” Section 5.3);
(2) multi-task image-text data used for finetuning
the model towards advanced reasoning (“phase 4”,
Section 5.4), which include captioning, VQA, and
visual reasoning. For the images with captions
used for visual experience training, we select sub-
sets from WIT (Srinivasan et al., 2021), obelics
(Laurençon et al., 2024), and LAION (Schuhmann
et al., 2021). These datasets include diverse image
descriptions such as wikipedia paragraphs, news,
and also simple short captions. We sampled 27
million, 5 million, and 3 million words respectively
from the 3 datasets. For the multi-task image-text
data, we used M3IT (Li et al., 2023), a dataset
curated for multi-lingual instruction tuning and
sampled 15 million words from it. The goal is

to enhance the model’s ability to follow instruc-
tions as well as gain more advanced skills such as
visual-reasoning, such that it can utilize its acquired
knowledge more effectively. Taken together, the
two groups of image-text data make up a total of 50
million words. The selection of these datasets was
not arbitrary; it resulted from multiple iterations
aimed at ensuring both diversity and quality.

3 Benchmarks

We evaluate our model across six benchmarks:
three focused on language-only tasks and three on
vision-language tasks. Except for GLUE, where we
fine-tune the model on each subtask using LoRA
(Hu et al., 2022), all benchmarks are evaluated in a
zero-shot setting.

3.1 Language-Only Benchmarks
BLiMP BLiMP is a benchmark that evaluates
key grammatical phenomena in English. It is com-
posed of 67 sub-datasets, each containing 1,000
minimal pairs designed to highlight specific con-
trasts in syntax, morphology, or semantics. The
data is automatically generated based on grammars
developed by experts (Warstadt et al., 2019).

Elements of World Knowledge (EWoK) EWoK
is a benchmark that evaluates the world modeling
abilities of language models. It covers 11 key do-
mains of world knowledge essential for human-like
world modeling. These domains range from reason-
ing about spatial relations to understanding social
interactions (Ivanova et al., 2024).

GLUE The General Language Understanding
Evaluation (GLUE) benchmark is a comprehensive
suite of resources designed to train, evaluate, and
analyze natural language understanding models. It
includes nine diverse tasks focused on sentence
or sentence-pair understanding, drawn from well-
established datasets. These tasks vary in dataset
size, text genre, and complexity, providing a broad
assessment of language understanding capabilities
(Wang et al., 2018). In our experiments, we utilize
LoRA (Hu et al., 2022), a parameter efficient fine-
tuning method, in order to tune our model to the
GLUE tasks.

3.2 Vision-Language Benchmarks
VQA We use the second version of the Visual
Question Answering (VQA) benchmark that builds
upon the original VQA (Zhang et al., 2015) by in-
corporating complementary images. In this dataset,
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Figure 2: Overview diagram illustrating the four phases of training. Starting from training on text only (phase
1), language capabilities are connected to images (phase 2). The model then self-synthesizes text (red border) on
unseen images, and uses this text to continue training the language component (phase 3), which is further refined for
e.g. question answering (phase 4). Sizes of model components do not reflect number of parameters.

each question is linked to a pair of similar images,
each yielding a distinct answer, thus increasing the
challenge. For the model to answer these ques-
tions, it requires a grasp of vision, language, and
commonsense knowledge (Goyal et al., 2016).

Winoground Winoground is a challenging
task and dataset designed to assess the visio-
linguistic compositional reasoning abilities of
vision-language models. The objective is to cor-
rectly match two images with two captions, where
both captions use the exact same words or mor-
phemes but arranged in different orders. Expert
annotators carefully curated the dataset, providing
fine-grained tags to facilitate a detailed analysis of
model performance (Thrush et al., 2022).

DevBench This benchmark contains 7 tasks
across lexical, syntactic, and semantic domains,
each accompanied by human response data at the
item level, allowing for detailed comparisons be-
tween model scores and human response distribu-
tions. The lexical tasks evaluate vocabulary knowl-
edge by assessing the model’s ability to correctly
identify the visual referent of a given noun. Syntac-
tic tasks test grammatical understanding, requiring
the model to choose the correct scene that aligns
with a provided sentence. Semantic tasks measure
the model’s ability to represent conceptual similar-
ity, either visually or linguistically, by comparing
representational similarity scores (Tan et al., 2024).

4 Model Details

We use the same model architecture provided by the
BabyLM Challenge organizers, called BabyLLaMA,
which consists of a reduced LLaMA architecture, and
we equip it with the DINOv2Large vision encoder to
be able to handle visual inputs.

Tokenizer We train a BPE tokenizer with a vo-
cabulary size of 16,000 on the text data from the
curated dataset described in Section 2.

Language Model The language models employs
the same architectural components as the LLaMA
model (Dubey et al., 2024), but with only 16 Trans-
former layers and a reduced hidden dimension size
of 512. The intermediate size in the MLP is 1,024,
resulting in a total model size of 58 million param-
eters. The attention mechanism uses 8 attention
heads in each layer.

Vision Encoder To equip our language model
with visual capabilities, we incorporate the pre-
trained DINOv2Large vision encoder (Oquab et al.,
2023). DINOv2 was trained on a large-scale, unla-
beled image dataset. It is built on the ViT architec-
ture (Dosovitskiy et al., 2020) and generates 256
vision tokens per image. The vision encoder re-
mains frozen during all experiments to preserve its
pretrained features.

Projection Module The projection module
serves as the bridge between the vision encoder
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Image Synthetic Description

Hot off the field at the Ravensboro Golf Club in Ravensboro, IL. I am
looking forward to the win of the season. I love the game and hopefully
the games are really going to be a big thing...

The first section of the East End of London’s West End was dedicated to
the Holy Spirit. The West End of London’s West End was the last part of
the East End of London...

The airport is in the midst of a multi-year, $10 billion contract with the
U.S. Navy, which is expected to be operational over the next few years.
The agreement is expected to be signed by the United States, Canada, and
the United States...

Table 1: Synthetic descriptions generated by the model for the images shown. This table illustrates the model’s
ability to associate visual cues with corresponding textual representations.

and the language model. It comprises a two-layer
MLP with a GeLU activation function in between.
This module projects the concatenated image to-
kens to match the dimensionality of the language
model and is learnable throughout the training pro-
cess.

5 Self-Synthesis Training Phases

Our framework trains the model in four phases. In
each phase, we record the model checkpoint with
the lowest validation loss and use it as a starting
point for the following phase. For all phases, we
use the AdamW optimizer combined with a cosine
learning rate scheduler and a batch-size of 256.
The learning rate begins with a linear warm-up
phase and then gradually decreases to zero over the
course of the training.

5.1 Phase 1: Bootstrapping Language Skills

Similar to how children learn a fundamental lin-
guistic repertoire with supervision from their en-
vironment, the language component of our model
is first trained from scratch on a text-only corpus.
Specifically, we train BabyLLaMA for 15 epochs on
fewer than 50 million words, using the top-scoring
sentences from FineWeb-Edu based on their edu-
cational quality. Rather than concatenating and
chunking the entire corpus into the maximum se-
quence length, as is common in language model
pretraining, we divided each document from the
FineWeb-Edu snapshot into individual sentences.
Each sentence was truncated to have a maximum
of 256 tokens and a minimum of 10 tokens. We

found that training on shorter sequences by seg-
menting documents in this way resulted in better
performance on the BLiMP benchmark (Warstadt
et al., 2019) compared to training with fixed long
sequences. The model was trained with a peak
learning rate of 1e − 4 and a linear warm-up for
the first 5, 000 optimization steps. (Learning rates
1e− 4, 5e− 5, 1e− 5 were tried and the one with
the lowest validation error was chosen. We did
not conduct other hyperparameter selections due
to the limited resources. This also applies to other
phases.)

5.2 Phase 2: Learning to Associate Language
and Vision

Inspired by children learning to associate words
with the objects they encounter daily, this train-
ing phase integrates a DINOv2Large vision encoder
into the model to link visual inputs with language.
The model is trained on image-text pairs, keep-
ing the weights of the vision encoder frozen. We
first divide each image into 16x16 patches. These
256 tokens are then transformed into feature em-
beddings by the model. We concatenate every 4
consecutive tokens together to form one embed-
ding to reduce the number of tokens from 256 to
64 before passing them to the projection module.
Training involves an autoregressive loss applied
exclusively to the text tokens, conditioned on the
corresponding image embeddings. In this setup,
the projected image embeddings are concatenated
with the text embeddings t1:s before being passed
through the language model. This allows the model
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Language-Only Benchmarks Vision-Language Benchmarks
Phase BLiMP BLiMP Supp. EWoK GLUE VQA Winoground DevBench

Phase 1 0.723 0.533 0.500 0.651 - - -
Phase 2 0.728 0.561 0.504 0.650 0.395 0.507 0.242
Phase 3 0.736 0.556 0.514 0.647 0.380 0.507 0.350
Phase 4 0.729 0.542 0.502 0.659 0.420 0.509 0.228

Table 2: Performance comparison of the model across different phases of training on various benchmarks. The
results show accuracy scores on language-only benchmarks (BLiMP, BLiMP Supp., EWoK, GLUE) and multimodal
tasks (VQA, Winoground, DevBench). All benchmarks are evaluated in a zeroshot manner, except for GLUE, which
is first finetuned using LoRA for each of its tasks separately. The best result across phases is highlighted in bold.

to learn a joint representation that conditions the
text generation on the visual context provided by
the image.

Formally, let i = {i1, i2, . . . , i64} be the set of
image embeddings produced by the vision encoder
for a given image, and t = {t1, t2, . . . , ts} be the
sequence of text tokens associated with that im-
age, where s ≤ 512. The training objective is to
maximize the conditional likelihood of the next
text token ts+1 given the projected image embed-
dings and the preceding text tokens, where f is the
projection module. This can be formulated as:

max
θ,ϕ

N∑

n=1

|tn|∑

s=1

log pθ,ϕ ( tn,s+1 | [ f(in); tn,1:s ])

where: pθ,ϕ(·) is the probability distribution gen-
erated by the combined model, f(in) represents
the image embeddings processed through the pro-
jection module, tn = {t1, t2, . . . , ts} are the text
tokens for the n-th image-text pair, N is the total
number of training examples, and |tn| is the length
of the n-th text sequence.

Therefore, just as children learn to describe their
visual environment based on supervisory signals
(e.g. parents describing the surroundings), the
model learns to generate captions for images, ar-
ticulating what it “sees.” To achieve this, we train
the model to produce detailed descriptions across
a diverse range of images. Consequently, we bal-
anced the datasets to include samples with detailed
descriptions (from WIT and obelics; 35842 sam-
ples / 6M words, 135393 samples / 21M words )
alongside those with concise captions (from LAION;
323929 samples / 3M words). It is worth noting that
although LAION contains only 3 million words, it
accounts for more than half of the images due to its
short captions. In this phase, we train the model for

5 epochs, with a learning rate that linearly warms-
up to 10−5 for 250 steps, then decreases to zero
throughout training.

5.3 Phase 3: Learning via Self-Synthesis

Self-Synthesis Using Images in the Wild. Be-
yond supervised learning on images, children also
imagine and narrate stories about what they have
seen. We implement this idea by having the model
generate text from a set of unlabeled images and
synthesizing captions that are then used to further
train the language component with more diverse
text. Concretely, we collected 1.1 million images
from obelics that were not used during training.
Using nucleus sampling (p=0.95) and top-k sam-
pling (k=50) with a temperature of 0.7, we gener-
ated a total of 42 million words. For each image,
a maximum token length between 32 and 64 was
uniformly sampled. Table 1 shows a few examples
of images and their corresponding text generated
by our model. To avoid repetition in the gener-
ated text, we limit the maximal number of gener-
ated tokens to be 256. Note that some descriptions
do not perfectly match the content of the images.
This is insofar not an issue, as grammatically and
vocabulary-rich text suffices for our purpose.

Continuing Pretraining Inspired by humans
mixing real and imagined experiences to enhance
their understanding, we train BabyLLaMA on a mix-
ture of self-synthesized text and previously seen
"real-world" data to deepen its language abilities.
Specifically, we transition back from image-text
training to text-only training, combining all the text
data we have gathered thus far. This results in a to-
tal of 85 million real words and 42 million synthetic
words. Our model is trained for just 2 epochs, with
a learning rate that linearly warms up to 1e-5 over
500 optimization steps then decreases towards zero.
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Figure 3: Average performance on all language-only
(left) and vision-language-benchmarks (right) across
training phases. Each phase yields a small boost for its
respective training objective.

To assess the contribution of the self-synthesized
text, we train another model version using only the
85 million real words and report the results on the
text benchmarks in Section 6.1.

5.4 Phase 4: Learning to Answer and Explain
Equipped with fundamental language skills and
the ability to describe their surroundings, human
cognitive development includes answering ques-
tions and reasoning about their environment. Simi-
larly, we train BabyLLaMA to handle complex visual-
linguistic tasks: We finetune the language model
along with the projection layer on M3IT. We set the
learning rate to 10−5 with 250 warm-up updates.
The model is trained for 2 epochs.

The division in 4 training phases is inspired by
language acquisition in human infants. However,
we do not suggest that the exact same phases accu-
rately describe human linguistic development. For
example, humans are unlikely to establish funda-
mental language skills (phase 1) without concur-
rent visual input that our model only encounters in
phase 2.

6 Results

Table 2 presents the performance across various
benchmarks, including both language-only and
vision-language datasets. For language-only bench-
marks, the phase 3 model significantly outperforms
earlier models on BLiMP and EWoK, while the
phase 4 model achieves the best results on GLUE.
Notably, the phase 2 model delivers the highest
performance on BLiMP Supplement, which is a
smaller dataset compared to BLiMP. In vision-

Benchmark + Synth - Synth

BLiMP 0.736 0.736
BLiMP Supp. 0.556 0.550
EWoK 0.514 0.510

Table 3: Results of the ablation study on language-only
benchmarks, comparing the performance of the model
trained solely on real-world text (-Synth) against the
model trained on a combination of real and synthetic
data (+Synth). All benchmarks were evaluated in a zero-
shot manner, illustrating the contribution of synthetic
data to overall model performance.

language benchmarks, the phase 4 model surpasses
the phase 3 model on VQA and Winoground but
underperforms on DevBench. Overall, models
after phase 3 achieve the highest scores across
most benchmarks. To emphasize performance
differences across training phases, Figure 3 il-
lustrates the average scores on various bench-
marks. For language-only tasks, the phase 3 model
shows a substantial improvement over models from
phases 1 and 2. However, the phase 4 model
lags slightly, likely due to fine-tuning on question-
answer datasets, which shifts its focus away from
general text modeling. Table 1 provides examples
of synthetic descriptions generated by the phase 2
model conditioned on different images. The model
accurately captures key elements in the images
and produces varied syntactic and content-rich de-
scriptions. However, there are occasional issues
with logical consistency, such as the repetition of
"United States" in the third example.

6.1 Ablation Study

To measure the contribution of the synthetic data,
we train a separate phase 3 model using only real-
world text, excluding any generated text, and com-
pare its performance with the model trained on a
mixture of both real and synthetic data. Table 3
presents the results on the language-only bench-
marks, all evaluated in a zero-shot manner. The
findings demonstrate that incorporating synthetic
data either enhances or maintains performance
across benchmarks, highlighting the potential of
scaling self-synthesis with larger datasets.

7 Conclusion

This work proposes a novel self-synthesis ap-
proach to training vision-language models in a
data-efficient manner inspired by human cognitive
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development. By structuring the learning process
into four distinct phases—beginning with founda-
tional language abilities, integrating vision and lan-
guage, generating synthetic data through unlabeled
image captioning, and advancing cognitive tasks—
the resulting model is able to solve both vision-
language and language only benchmarks using a
limited amount of data in a unified manner.

While we observed improved performance from
each phase of training, these improvements were
comparatively small. Curriculum learning meth-
ods or architectural modifications might further im-
prove the model’s learning efficiency within the
proposed framework. For instance, the phases
could be ran repeatedly, such that the model it-
eratively trains on a mix of real-world text and con-
tinuously improving self-synthesized text. A layer-
fusion approach could better utilize intermediate
layer representations, which has been shown to en-
hance training in data-limited settings (ElNokrashy
et al., 2024). These efforts could close the perfor-
mance gap while maintaining the developmental
plausibility of the training setup. In summary, re-
sults presented here suggest that self-synthesis can
make effective use of information across modal-
ities, and might help to train performant models
with developmentally plausible data regimes.

References

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv,
abs/1803.05457.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2020. An image
is worth 16x16 words: Transformers for image
recognition at scale. ArXiv, abs/2010.11929.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
and et al. 2024. The llama 3 herd of models. ArXiv,
abs/2407.21783.

Muhammad ElNokrashy, Badr AlKhamissi, and Mona
Diab. 2024. Depth-wise attention (DWAtt): A layer
fusion method for data-efficient classification. In Pro-
ceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages 4665–
4674, Torino, Italia. ELRA and ICCL.

Jill Gilkerson, Jeffrey A. Richards, Steven F. Warren, Ju-
dith K. Montgomery, Charles R. Greenwood, D. Kim-
brough Oller, John H. L. Hansen, and Terrance D.
Paul. 2017. Mapping the early language environ-
ment using all-day recordings and automated analy-
sis. American Journal of Speech-Language Pathol-
ogy, 26(2):248–265.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. 2016. Making the v in vqa
matter: Elevating the role of image understanding in
visual question answering. International Journal of
Computer Vision, 127:398 – 414.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Erik Hoel. 2021. The overfitted brain: Dreams evolved
to assist generalization. Patterns, 2(5):100244.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Anna Ivanova, Aalok Sathe, Benjamin Lipkin, Unnathi
Kumar, Setayesh Radkani, Thomas H Clark, Carina
Kauf, Jennifer Hu, Pramod RT, Gabriel Grand, Vi-
vian Paulun, Maria Ryskina, Ekin Akyurek, Ethan
Wilcox, Nafisa Rashid, Leshem Choshen, Roger
Levy, Evelina Fedorenko, Josh Tenenbaum, and Ja-
cob Andreas. 2024. Elements of world knowledge
(ewok): A cognition-inspired framework for eval-
uating basic world knowledge in language models.
arXiv.

Hugo Laurençon, Lucile Saulnier, Léo Tronchon,
Stas Bekman, Amanpreet Singh, Anton Lozhkov,
Thomas Wang, Siddharth Karamcheti, Alexander
Rush, Douwe Kiela, et al. 2024. Obelics: An open
web-scale filtered dataset of interleaved image-text
documents. Advances in Neural Information Pro-
cessing Systems, 36.

Lei Li, Yuwei Yin, Shicheng Li, Liang Chen, Peiyi
Wang, Shuhuai Ren, Mukai Li, Yazheng Yang,
Jingjing Xu, Xu Sun, et al. 2023. M 3 it: A large-
scale dataset towards multi-modal multilingual in-
struction tuning. arXiv preprint arXiv:2306.04387.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra,
and Thomas Wolf. 2024. Fineweb-edu.

Gary F. Marcus. 2020. The next decade in ai: Four
steps towards robust artificial intelligence. ArXiv,
abs/2002.06177.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,

250

https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:225039882
https://api.semanticscholar.org/CorpusID:225039882
https://api.semanticscholar.org/CorpusID:225039882
https://api.semanticscholar.org/CorpusID:271571434
https://aclanthology.org/2024.lrec-main.417
https://aclanthology.org/2024.lrec-main.417
https://doi.org/10.1044/2016_ajslp-15-0169
https://doi.org/10.1044/2016_ajslp-15-0169
https://doi.org/10.1044/2016_ajslp-15-0169
https://api.semanticscholar.org/CorpusID:8081284
https://api.semanticscholar.org/CorpusID:8081284
https://api.semanticscholar.org/CorpusID:8081284
https://doi.org/10.1016/j.patter.2021.100244
https://doi.org/10.1016/j.patter.2021.100244
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/0.57967/hf/2497
https://api.semanticscholar.org/CorpusID:211126492
https://api.semanticscholar.org/CorpusID:211126492
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260


pages 2381–2391, Brussels, Belgium. Association
for Computational Linguistics.

Maxime Oquab, Timoth’ee Darcet, Théo Moutakanni,
Huy Q. Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa,
Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Bal-
las, Wojciech Galuba, Russ Howes, Po-Yao (Bernie)
Huang, Shang-Wen Li, Ishan Misra, Michael G. Rab-
bat, Vasu Sharma, Gabriel Synnaeve, Huijiao Xu,
Hervé Jégou, Julien Mairal, Patrick Labatut, Armand
Joulin, and Piotr Bojanowski. 2023. Dinov2: Learn-
ing robust visual features without supervision. ArXiv,
abs/2304.07193.

Guilherme Penedo, Hynek Kydlíček, Loubna Ben al-
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