@inproceedings{tastet-timiryasov-2024-babyllama,
title = "{B}aby{L}lama-2: Ensemble-Distilled Models Consistently Outperform Teachers With Limited Data",
author = "Tastet, Jean-Loup and
Timiryasov, Inar",
editor = "Hu, Michael Y. and
Mueller, Aaron and
Ross, Candace and
Williams, Adina and
Linzen, Tal and
Zhuang, Chengxu and
Choshen, Leshem and
Cotterell, Ryan and
Warstadt, Alex and
Wilcox, Ethan Gotlieb",
booktitle = "The 2nd BabyLM Challenge at the 28th Conference on Computational Natural Language Learning",
month = nov,
year = "2024",
address = "Miami, FL, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.conll-babylm.26/",
pages = "292--301",
abstract = "We present BabyLlama-2, a 345 million parameter model distillation-pretrained from two teachers on a 10 million word corpus for the BabyLM competition. On the BLiMP and SuperGLUE benchmarks, BabyLlama-2 outperforms baselines trained on both 10 and 100 million word datasets with the same data mix, as well as its teacher models. Through an extensive hyperparameter sweep, we demonstrate that the advantages of distillation cannot be attributed to suboptimal hyperparameter selection of the teachers. Our findings underscore the need for further investigation into distillation techniques, particularly in data-limited settings."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tastet-timiryasov-2024-babyllama">
<titleInfo>
<title>BabyLlama-2: Ensemble-Distilled Models Consistently Outperform Teachers With Limited Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jean-Loup</namePart>
<namePart type="family">Tastet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Inar</namePart>
<namePart type="family">Timiryasov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>The 2nd BabyLM Challenge at the 28th Conference on Computational Natural Language Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="given">Y</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aaron</namePart>
<namePart type="family">Mueller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Candace</namePart>
<namePart type="family">Ross</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adina</namePart>
<namePart type="family">Williams</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tal</namePart>
<namePart type="family">Linzen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengxu</namePart>
<namePart type="family">Zhuang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leshem</namePart>
<namePart type="family">Choshen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Warstadt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ethan</namePart>
<namePart type="given">Gotlieb</namePart>
<namePart type="family">Wilcox</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, FL, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present BabyLlama-2, a 345 million parameter model distillation-pretrained from two teachers on a 10 million word corpus for the BabyLM competition. On the BLiMP and SuperGLUE benchmarks, BabyLlama-2 outperforms baselines trained on both 10 and 100 million word datasets with the same data mix, as well as its teacher models. Through an extensive hyperparameter sweep, we demonstrate that the advantages of distillation cannot be attributed to suboptimal hyperparameter selection of the teachers. Our findings underscore the need for further investigation into distillation techniques, particularly in data-limited settings.</abstract>
<identifier type="citekey">tastet-timiryasov-2024-babyllama</identifier>
<location>
<url>https://aclanthology.org/2024.conll-babylm.26/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>292</start>
<end>301</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BabyLlama-2: Ensemble-Distilled Models Consistently Outperform Teachers With Limited Data
%A Tastet, Jean-Loup
%A Timiryasov, Inar
%Y Hu, Michael Y.
%Y Mueller, Aaron
%Y Ross, Candace
%Y Williams, Adina
%Y Linzen, Tal
%Y Zhuang, Chengxu
%Y Choshen, Leshem
%Y Cotterell, Ryan
%Y Warstadt, Alex
%Y Wilcox, Ethan Gotlieb
%S The 2nd BabyLM Challenge at the 28th Conference on Computational Natural Language Learning
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, FL, USA
%F tastet-timiryasov-2024-babyllama
%X We present BabyLlama-2, a 345 million parameter model distillation-pretrained from two teachers on a 10 million word corpus for the BabyLM competition. On the BLiMP and SuperGLUE benchmarks, BabyLlama-2 outperforms baselines trained on both 10 and 100 million word datasets with the same data mix, as well as its teacher models. Through an extensive hyperparameter sweep, we demonstrate that the advantages of distillation cannot be attributed to suboptimal hyperparameter selection of the teachers. Our findings underscore the need for further investigation into distillation techniques, particularly in data-limited settings.
%U https://aclanthology.org/2024.conll-babylm.26/
%P 292-301
Markdown (Informal)
[BabyLlama-2: Ensemble-Distilled Models Consistently Outperform Teachers With Limited Data](https://aclanthology.org/2024.conll-babylm.26/) (Tastet & Timiryasov, CoNLL-BabyLM 2024)
ACL