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Abstract

We present BabyLlama-2, a 345 million pa-
rameter model distillation-pretrained from two
teachers on a 10 million word corpus for the
BabyLM competition. On the BLiMP and Su-
perGLUE benchmarks, BabyLlama-2 outper-
forms baselines trained on both 10 and 100
million word datasets with the same data mix,
as well as its teacher models. Through an ex-
tensive hyperparameter sweep, we demonstrate
that the advantages of distillation cannot be
attributed to suboptimal hyperparameter selec-
tion of the teachers. Our findings underscore
the need for further investigation into distil-
lation techniques, particularly in data-limited
settings.

1 Introduction

With frontier model training runs using beyond
1025 FLOPs (Dubey et al., 2024), training effi-
ciency has become a billion-dollar question. Hu-
mans are vastly more sample efficient than current
Large Language Models (LLMs). For example, a
typical 13-year-old child has been exposed to less
than 100 million words (extrapolating from Gilk-
erson et al. (2017)), whereas Llama-3.1 has been
trained on 15.6 trillion text tokens. The goal of
the BabyLM Challenge (Choshen et al., 2024) is
to optimize pretraining given dataset limitations
inspired by human development.

In this work, we present our contribution to the
BabyLM challenge (Strict-Small Track), with the
following main results:

• BabyLlama-2 model: This 345M parameter
decoder-only model1, distillation-pretrained

1It is worth noting that encoder models are better suited for
the evaluation tasks of the challenge than decoder ones. In last
year’s evaluation (Warstadt et al., 2023), the 125M parameter
RoBERTa-base (Liu et al., 2019) performed on par with the
70B parameter Llama-2 (Touvron et al., 2023b). However, our
focus throughout this paper shall be on generative, decoder
models.

on 9.5M words, outperforms baseline models
trained on both 10M and 100M words (using
the same data mix). It also surpasses similar
models pretrained using conventional meth-
ods.

• Extensive hyperparameter sweep: We have
conducted a comprehensive hyperparameter
optimization and demonstrated that distilla-
tion pretraining consistently outperforms the
best models from the sweep.

• Correlation between test loss and perfor-
mance: As a byproduct of our sweep, we have
identified a correlation between zero-shot per-
formance on the BLiMP task and the model’s
test loss.

The success of distillation pretraining, i.e. pretrain-
ing from scratch with distillation loss, in our ex-
periments highlights its potential as a powerful
technique for improving model performance, espe-
cially in data-limited settings. While our findings
are promising, they also raise intriguing questions
about the nature of knowledge distillation and its
interaction with pretraining objectives. Further in-
vestigation into these areas could yield valuable in-
sights for the development of more sample-efficient
language models.

2 Related Work

The first edition of the BabyLM challenge, which
aims to optimize language model pretraining un-
der data constraints inspired by human language
acquisition, prompted numerous works on sample-
efficient pretraining. For a detailed summary of
all contributions, see the review by Warstadt et al.
(2023).

Outside the BabyLM context, relatively few
works address training on limited language datasets.
Notable exceptions include Muennighoff et al.
(2023), who studied the scaling of data-constrained
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LLMs. Their main finding is that training for more
than 4 epochs leads to diminishing returns. Luukko-
nen et al. (2023) trained FinGPT on more than 30B
tokens in Finnish language. Although resource-
constrained, this dataset is significantly larger than
that of the BabyLM Challenge. A sample-efficient
modification of BERT architecture was proposed
by Samuel et al. (2023), with a model trained on
a 100M word dataset from the British National
Corpus outperforming the original BERT model.

The existing literature on training small mod-
els often focuses on models deployable on edge
devices, such as MobileLLM (Liu et al., 2024).
However, these works typically concentrate on de-
ployment efficiency rather than sample efficiency.

Knowledge distillation has recently attracted sig-
nificant attention, primarily for deployment effi-
ciency reasons (see Xu et al. (2024) for a systematic
review). Typically, this involves using large frontier
models as teachers to train smaller student mod-
els. In contrast, BabyLlama-2 utilizes distillation
for sample-efficient pretraining, using similar-sized
teacher models trained on the same limited dataset.

A similar phenomenon, where a student model
outperforms its teachers when distilled from mod-
els with identical architecture and trained on the
same dataset, was observed in “Born-Again Neural
Networks” (Furlanello et al., 2018). However, this
work did not focus on the data-limited regime and
it used LSTM variants (instead of transformers) for
language modeling.

3 Background

Knowledge distillation, introduced by Hinton et al.
(2015), is a technique for transferring knowledge
from a “teacher” model to a “student” model. The
core idea is to train the student to mimic the logit
distribution (soft targets) produced by the teacher,
rather than just the hard labels of the training data.
The distillation loss combines the standard cross-
entropy loss with the soft target loss:

Ldistill(y, zs, zt) = αLCE(y, σ(zs))+

(1− α)T 2DKL (σ(zt/T ) ||σ(zs/T )) (1)

where α balances the usual cross-entropy loss LCE
and the soft targets loss, T is the temperature pa-
rameter that softens the probability distributions,
zs and zt are respectively the logits of the student
and teacher models, σ is the softmax function, and
DKL denotes the Kullback-Leibler divergence. In
our implementation, we use the averaged logits of

an ensemble of teacher models as zt. Moreover,
unlike typical applications, our student and teacher
models are of the same size.

4 Model

Architecture. Previous experiments have shown
that the Llama architecture (Touvron et al., 2023a),
featuring RoPE and a SwiGLU non-linearity, re-
quires fewer epochs to reach minimal loss com-
pared to GPT-2 or GPT-J architectures (Timiryasov,
2023). After training a family of Llama models
ranging from 16M to 728M parameters, we con-
verged on a specific 345M model architecture sug-
gested in MobileLLM (Liu et al., 2024) and also
used in SmolLM (Allal et al., 2023), whose hy-
perparameters are listed in table 1. This design
incorporates Grouped-Query Attention (GQA) and
prioritizes depth over width. Some details of our
model selection are listed in appendix B.

Hyperparameter Value

Vocabulary size 16,000
Number of layers 32
Number of heads 15
Number of KV heads 5
Embedding dimension 960
Hidden dimension 2560
Total parameters 345M

Table 1: BabyLlama-2 Model Architecture.

Pretraining Approach. The particularity of the
BabyLlama-2 model is to be distilled from an en-
semble of teacher models, using the distillation
loss (1). The teacher models share the same archi-
tecture and are pretrained on the same dataset using
the standard cross-entropy loss. The student model
is then pretrained with the same hyperparameters,
using the mean teacher logits z̄t in the distillation
loss Ldistill(y, zs, z̄t).

5 Experimental Setup

Dataset. We use the 10 million word BabyLM-
2 dataset (Zhuang et al., 2024), that we split into
9.5M train and 0.5M validation splits, as well as
the accompanying 10M word “dev” dataset, that
we use as a test split. While the validation split is
used to perform the hyperparameter optimization,2

2This choice is dictated by the following logic. A hyperpa-
rameter sweep can be viewed as a form of optimization. There-
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the test split is used solely for the purpose of re-
porting the final cross-entropy loss. Each dataset
is composed of six files, corresponding each to a
different type of (English) language that a child is
likely to be exposed to, such as transcribed child-
directed speech, children’s books, subtitles, or sim-
ple Wikipedia. The relative fractions of these files
differ slightly between, on the one hand, the train
and validation splits and, on the other, the test split,
which is therefore slightly out of distribution.

We have experimented with the FineWeb-Edu
dataset (Lozhkov et al., 2024) but have observed
that models trained on the BabyLM-2 dataset reach
better BLiMP scores (see appendix C for more
details).

Training. The teacher models are pretrained us-
ing the Trainer class from the HuggingFace Trans-
formers library, using the hyperparameters listed
in table 2. For the distillation, we use the modified
trainer from the original BabyLlama (Timiryasov
and Tastet, 2023b), with one, two or three teachers.
We use the AdamW optimizer (Loshchilov and Hut-
ter, 2019), with a cosine schedule for the learning
rate and 600 warm-up steps. The pretraining hy-
perparameters have been optimized using a coarse-
grained scan, with each parameter being varied
independently. The distillation hyperparameters α
and T were optimized similarly, while holding the
pretraining parameters fixed.

All models share the same Byte-Pair Encoding
(BPE) tokenizer with a vocabulary size of 16000
trained on the training split of BabyLM-2 dataset.

Hyperparameter Value

Learning rate 7 · 10−4

Number of epochs 8
Batch size 128
Weight decay 5

Distillation T 1
Distillation α 0.5

Table 2: Training and distillation hyperparameters of
BabyLlama-2.

Hyperparameter Sweep. To exclude the pos-
sibility that the student model BabyLlama-2 out-
performs its teachers due to a suboptimal choice

fore we would consider using the dev split from BabyLM-2
as a violation of the rules of the challenge. Of course, it
means that we trained only on 95% of the tokens, and could
potentially improve our results further.

of hyperparameters for the teachers, we have per-
formed a comprehensive sweep for the teachers’
hyperparameters using the W&B API (Biewald,
2020). We vary the following hyperparameters:
the learning rate and its schedule, the Adam pa-
rameters (β1, β2, ϵ), the batch size, the number of
epochs and warm-up steps, the weight decay, the
maximum gradient norm, and the attention drop-
out. We use the Bayesian Optimization and Hy-
perband (BOHB) (Falkner et al., 2018) parallel
sweep algorithm, which stops badly-performing
runs early, and we minimize the validation loss at
the last epoch. Suitable priors are used for each
parameters, usually log-normal or log-uniformly
distributed around the values obtained from the
coarse-grained scan, with the exception of the at-
tention dropout (uniform) and schedule (discrete).
In total, we trained 265 models as part of the sweep,
amounting to 26 GPU-days. While the sweep pro-
duced some runs that perform noticeable better
than the teachers trained with the parameters in ta-
ble 2, re-training them from a different initial state,
but otherwise with the exact same parameters, lead
to models that significantly under-performed com-
pared to the initial teachers. Due to this lack of
stability with respect to the initialization, we de-
cided to use the original teachers for the distillation
procedure.

Benchmarks. We evaluate the performance of
the teacher and student models on the benchmarks
suggested by the organizers of the BabyLM chal-
lenge. Those include zero-shot benchmarks —
such as BLiMP (Warstadt et al., 2020), which
focuses on linguistic knowledge in English, and
EWoK (Ivanova et al., 2024), focusing on world
knowledge — as well as the suite of fine-tuning
benchmarks SuperGLUE (Wang et al., 2020) about
language understanding. For the latter, the fine-
tuning hyperparameters are optimized using a sep-
arate sweep for each task (totalling 1293 runs and
37 GPU-days). The optimal parameters, listed in
table 4, differ significantly from the suggested de-
faults. See appendix A for further discussion.

Baseline models. The organizers of BabyLM-
2 have provided two baseline models: LTG-
BERT (Samuel et al., 2023), (encoder-only) and
BabyLlama (Timiryasov and Tastet, 2023a) (de-
coder). Both models were re-trained by the chal-
lenge organizers on both the 10M and 100M word
datasets. LTG-BERT modifies the original BERT
architecture by utilizing the pre-norm variant of the
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transformer with GEGLU feed-forward layers and
by disentangling positional information from token
embeddings. The highest performing solution of
the 2023 edition of the BabyLM challenge, ELC-
BERT (Charpentier and Samuel, 2023), is based
on this architecture. On the other hand, BabyL-
lama (the highest-performing decoder model) uses
the standard LLaMA architecture (Touvron et al.,
2023a), but a modified training procedure, follow-
ing a similar approach to the one presented here.
However, in contrast to BabyLlama-2, it was dis-
tilled from two larger teachers with two differ-
ent architectures (GPT and Llama), and had six
times less parameters. Since BabyLlama-2 aims to
demonstrate the validity of the ensemble distilla-
tion method itself, it uses same-size, homogeneous
models in order to remove potential confounding
factors. In addition to the baseline models, we
vary the number of teachers between 1 and 3, and
compare BabyLlama-2 to the ensemble formed
by the two teacher models (applying softmax to
the averaged logits z̄t and letting the gradient flow
back into both teachers during fine-tuning, with the
same training hyperparameters as for BabyLlama-
2). When evaluating the original BabyLlama on
the SuperGLUE benchmarks, we fine-tune it again
using the hyperparameters reported in (Timiryasov
and Tastet, 2023a), and successfully reproduce all
of its scores.

6 Results

Figure 1 summarizes the performance of the mod-
els considered in section 5 with respect to the vari-
ous evaluation metrics: the cross-entropy loss eval-
uated on the held-out test set, the BLiMP scores
for the “filtered” and “supplement” subsets of eval-
uation tasks, and the mean SuperGLUE score. The
EWoK benchmark is not shown, since the perfor-
mance of our models and of the baselines trained
on 10M words is consistent with random chance,
hinting that all these models have extremely limited
world knowledge, if any.

Distributions. Violin plots are used in order to
quantify the variability across model initializations,
with a minimum of 5 runs per model. Each subplot
shows a different metric, with the y-axis listing
the various models considered: the teacher models,
pretrained without distillation; the student mod-
els pretrained with one, two or three teachers; the
direct ensembles formed by averaging the logits
of two teachers; the baseline models for the 2024

BabyLM challenge; and the 265 models from the
hyperparameter sweep. No violin is shown for base-
line models, since they do not have an associated
distribution. Similarly, running fine-tuning bench-
marks for all the models from the sweep would
have been computationally prohibitive, therefore
the SuperGLUE distribution associated with the
sweep is not present, with only the best checkpoint
being shown.

Models of interest. Instead of, or in addition to
the distributions, the performance of various mod-
els of interest is plotted using markers. This in-
cludes the baseline models, denoted by triangles
for BabyLlama and squares for LTG-BERT, with
filled markers for baselines pretrained on the 10M
word dataset and empty markers for the 100M one.
We also indicate with stars the two BabyLlama-2
models that have been submitted to the 2024 edi-
tion of the BabyLM challenge. Finally, the cross
denotes the best model from the entire sweep, as
quantified by its validation loss. The detailed nu-
merical results for the models of interest are listed
in table 3, and table 5 further details the Super-
GLUE scores of the two submitted BabyLlama-2
checkpoints.

Cross-entropy. The cross-entropy loss is by far
the cleanest metric, with a standard deviation
across initializations much smaller than the dif-
ference between models.3 It shows a clear and
gradual improvement between the teacher models,
the student models trained from a single teacher,
those trained from two teachers, and those trained
from three teachers, although we note that there are
diminishing returns as we add more teachers. Even
with a single teacher, the improvement is larger that
what can be achieved through the hyperparameter
sweep. However, looking at the BabyLlama base-
line4, it is clear that this improvement is nowhere
near the one resulting from using a ten-fold larger
dataset. The cross-entropy loss of the direct en-
semble of two teachers is almost as low as for the
corresponding model obtained through distillation.

3The much larger standard deviation for the sweep comes
from including all runs (including early and badly performing
runs) instead of just the best runs. The relevant quantity for
the sweep is therefore the edge of the distribution. The “best”
model is not always located on this edge, since the valida-
tion loss does not correlate perfectly with the test loss or the
benchmark scores.

4The cross-entropy loss is not shown for the LTG-BERT
baseline, since it is an encoder-only model trained using
masked language modeling, and as such its loss is not compa-
rable to the one discussed here.
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Figure 1: Comparison of the models for each evaluation metric, in the form of violin plots, with ticks denoting the
mean and ±1 standard deviation. The baselines are denoted by square and triangle markers, the submitted model
(BabyLlama-2) by stars, and the best checkpoint from the entire hyperparameter sweep by a cross. BabyLlama
(100M) and LTG-BERT (100M) were trained on the 100M dataset.
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Model BLiMP (filtered) BLiMP (supplement) EWoK SuperGLUE Macro-average

BabyLlama-2 (run 1) 73.2 63.1 50.6 69.3 64.0
Teacher 1 71.9 61.8 50.6 61.2 61.3
Teacher 2 72.1 62.9 50.1 69.5 63.6

BabyLlama-2 (run 2) 71.8 63.4 51.5 70.2 64.2
Teacher 1 70.9 62.9 50.4 67.6 62.9
Teacher 2 70.5 62.4 51.1 68.4 63.1

Sweep’s best ckpt. 72.2 60.7 50.1 68.4 62.9

BabyLlama (10M) 69.8 59.5 50.7 63.3 60.8
LTG-BERT (10M) 60.6 60.8 48.9 60.3 57.7

BabyLlama (100M) 73.1 60.6 52.1 69.0 63.7
LTG-BERT (100M) 69.2 66.5 51.9 68.4 64.0

Table 3: Summary of the model scores (in %) across the considered benchmarks. The best scores overall and within
the strict-small track (10M words maximum) are highlighted.

Benchmarks. The scores on the two BLiMP task
sets show a similar trend, but with a significantly
higher variability across runs. Because of this, no
significant difference is observed between the var-
ious distilled or ensemble models. Nonetheless,
we can see that the distilled models not only do
better than the non-distilled ones, but they tend to
achieve this performance more reliably. This is to
be contrasted with the performance regression (not
shown) that we observed after re-training the best
model from the sweep. Direct ensembling leads
to similar performance to distillation. Another in-
teresting observation is that despite its much lower
cross-entropy loss, the BabyLlama baseline pre-
trained on 100M words only performs on par with
the best BabyLlama-2 model trained on 10M words
on the “filtered” subset of tasks, and significantly
underperforms on the “supplement” subset. The
results are sensibly similar for the SuperGLUE
fine-tuning benchmarks, although with much larger
variance among the teacher models. Here, again,
the distilled models perform more consistently, and
they even beat the two baseline models pretrained
on the 100M word dataset. Direct ensembling
slightly underperforms compared to distillation, but
this could be because fine-tuning introduces a de-
pendence on additional hyperparameters, that have
not been precisely re-tuned for direct ensembling.5

Relation between loss and benchmark perfor-
mance. The models trained during the hyperpa-
rameter sweep allow us to access the relation be-
tween the validation loss and BLiMP scores. First,
we observe that the loss on our 0.5M word vali-

5Naively doubling the fine-tuning learning rate to compen-
sate for the 1/2 factor resulting from averaging the logits leads
to significantly worse performance on SuperGLUE, below that
of the teacher models.

dation set correlates with the loss on the held-out
test set with R2 = 0.999. Second, as can be seen
from fig. 2, the validation loss explains a significant
portion of the variance of the scores: R2 = 0.86
for for BLiMP Filtered and R2 = 0.6 for BLiMP
Supplement.
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Figure 2: BLiMP scores (averaged over all sub-tasks) as
a function of the validation loss. Every circle represents
a model from the hyperparameter sweep.

Discussion. The results presented in fig. 1 demon-
strate that ensemble distillation from homogeneous
teacher models leads to enhanced and more consis-
tent performance across various benchmarks. No-
tably, BabyLlama-2 often matches or surpasses
models pretrained on datasets that are ten times
larger. This indicates that the distillation process
effectively leverages the knowledge from multi-
ple teachers to compensate for limited data. In
addition, the performance of distilled models is
consistently as good as, or better than the one of
non-distilled models, even when optimizing the hy-
perparameters of the latter. Therefore, the effect
observed in Timiryasov and Tastet (2023a) can-
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not be solely attributed to badly-tuned teacher hy-
perparameters, and persists even when the student
and teachers share the same size and architecture.
However, this effect can be difficult to see on the
benchmark scores, which are much noisier than the
cross-entropy loss. This variability is made particu-
larly evident when looking at the different ordering
of the two submitted BabyLlama-2 models across
different benchmarks.

Limitations The scalability of the ensemble dis-
tillation approach to larger datasets and more sub-
stantial model sizes remains unexplored. It is un-
clear whether the observed benefits will persist or
diminish as the scale of data and model parameters
increases. Additionally, the exact origin of the im-
provements from distillation-pretraining remains
unclear. Finally, it is not clear whether distillation-
pretraining performs significantly better than direct
ensembling. Further research, and more sensitive
metrics, may be needed to give definitive answers
to these question.

7 Conclusions

In this study, we prioritized investigating the ro-
bustness of the distillation approach over architec-
tural modifications or dataset curation. Our find-
ings demonstrate that a 345M parameter model,
distillation-pretrained on 9.5M words, outperforms
models of the same size and architecture pretrained
in the usual way. We carried out a systematic
analysis to exclude the possibility that the perfor-
mance gains were due to a single fortunate initial-
ization or suboptimal teacher model hyperparame-
ters. Through an extensive hyperparameter sweep
and the training of multiple teacher and student
models, we established that distillation-pretraining
consistently yields superior performance.

Our results indicate that distillation-pretraining
is an effective method for achieving high perfor-
mance without the need for meticulous hyperpa-
rameter tuning, at least within the data-limited
regime. The scalability of this approach to larger
datasets and model sizes, as well as its applicabil-
ity to other modalities, remains an open research
question.
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A SuperGLUE Fine-tuning

The SuperGLUE suite of benchmarks consists of
a number of fine-tuning tasks related to language
understanding. Since they involve further model
training, the scores crucially depend on the chosen
fine-tuning hyperparameters. In table 4, we list
the hyperparameters used to fine-tune all our mod-
els on the SuperGLUE tasks. These parameters
were identified using the BabyLlama-2 checkpoint
by performing a separate sweep for each task, and
then re-starting the fine-tuning with rounded param-
eters, in order to check the stability of the found
parameters. We have observed that they work well
with other model checkpoints, including different
versions of BabyLlama-2 and teacher models, sug-
gesting that our hyperparameter selection is robust
across different model initializations and pretrain-
ing objectives (but not model sizes, since the origi-
nal BabyLlama had different optimal hyperparam-
eters) and is not overfitted to a specific model or
task. The detailed SuperGLUE scores of the two
BabyLlama-2 checkpoints submitted to the 2024
BabyLM challenge are reported in table 5.

B Scaling Model Size

We performed initial experiments using a small,
16M version of the model, with the same vocabu-
lary size of 16,000; hidden size 256; intermediate
size 1024; 8 layers and 8 attention heads. This
model can be fully trained in a few minutes but
already achieves decent benchmark scores (without
distillation, BLiMP Filtered: 0.68, BLiMP Supple-
ment: 0.58).

To understand the relationship between model
size and data requirements, we conducted addi-
tional experiments with our 16M and 345M mod-
els. We trained these models on random (nested)
subsets of the 100M word dataset, ranging from
1M to 100M words each (without re-tuning the hy-
perparameters). Figure 3 illustrates how the loss
decreases as the dataset size increases for both the
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Task Max. learning rate Batch size Num. epochs Weight decay Schedule Warm-up steps

CoLA 1 · 10−5 32 10 0.15 linear 600
SST-2 2 · 10−6 24 2 5 constant 200
MRPC 1 · 10−5 1 2 2 cosine 500
QQP 4.5 · 10−6 32 6 2 linear 500
MNLI(-mm) 1 · 10−5 32 2 1 linear 500
QNLI 5 · 10−6 32 2 0.3 cosine 200
RTE 1 · 10−5 2 2 10 cosine 200
BoolQ 2 · 10−5 8 1 0.1 cosine 200
MultiRC 1 · 10−5 8 2 2 cosine 500
WSC 2 · 10−6 1 24 0.4 cosine 500

Table 4: List of the hyperparameters selected when fine-tuning BabyLlama-2 on the various SuperGLUE tasks. We
do not use early-stopping, since it interfered with BOHB’s own early-stopping mechanism. The random seed is 12
for all runs.

Task Run 1 Run 2

CoLA (MCC) 34.9 31.4
SST-2 85.8 83.5
MRPC (F1) 82.2 83.8
QQP (F1) 84.1 84.3
MNLI 74.4 74.3
MNLI-mm 75.3 76.4
QNLI 83.3 83.2
RTE 54.7 61.2
BoolQ 65.9 63.4
MultiRC 64.4 64.9
WSC 57.7 65.4

Table 5: Detailed scores (in %) of the two BabyLlama-
2 models on the SuperGLUE tasks. Unless specified
otherwise, the listed score is the accuracy. Hyperparam-
eters were optimized for run 1, and then transferred to
run 2.
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Figure 3: Cross-entropy loss (on the validation split) as
a function of dataset size for 16M and 345M models.

16M and 345M models. The 345M model consis-
tently outperforms the 16M model across all dataset
sizes, demonstrating that larger models can more
efficiently utilize data, hence justifying our choice
of the 345M architecture for the final BabyLlama-2
model.

C FineWeb-Edu dataset

Throughout this work, we primarily used the
BabyLM-2 dataset. In the early stages, we
also experimented with the FineWeb-Edu dataset
(Lozhkov et al., 2024), which consists of educa-
tional web pages filtered from the FineWeb dataset.
We randomly sampled documents containing 20M
words (evenly split between the training and valida-
tion sets), trained a new tokenizer on this data, and
evaluated several variants of the 16M BabyLlama
model. The BLiMP scores were consistently lower
for models trained on FineWeb-Edu compared to
those trained on the BabyLM-2 dataset.6 We spec-
ulate that this lower performance may be due to
the limited diversity of examples in FineWeb-Edu,
which lacks, for instance, dialogues and non-fiction
prose, that are present in BabyLM-2.
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