@inproceedings{theodoropoulos-etal-2024-berttime,
title = "{BERT}time Stories: Investigating the Role of Synthetic Story Data in Language Pre-training",
author = "Theodoropoulos, Nikitas and
Filandrianos, Giorgos and
Lyberatos, Vassilis and
Lymperaiou, Maria and
Stamou, Giorgos",
editor = "Hu, Michael Y. and
Mueller, Aaron and
Ross, Candace and
Williams, Adina and
Linzen, Tal and
Zhuang, Chengxu and
Choshen, Leshem and
Cotterell, Ryan and
Warstadt, Alex and
Wilcox, Ethan Gotlieb",
booktitle = "The 2nd BabyLM Challenge at the 28th Conference on Computational Natural Language Learning",
month = nov,
year = "2024",
address = "Miami, FL, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.conll-babylm.28/",
pages = "308--323",
abstract = "We describe our contribution to the Strict and Strict-Small tracks of the 2nd iteration of the BabyLM Challenge. The shared task is centered around efficient pre-training given data constraints motivated by human development. In response, we study the effect of synthetic story data in language pre-training using *TinyStories*: a recently introduced dataset of short stories. Initially, we train GPT-Neo models on subsets of *TinyStories*, while varying the amount of available data. We find that, even with access to less than 100M words, the models are able to generate high-quality, original completions to a given story, and acquire substantial linguistic knowledge. To measure the effect of synthetic story data, we train *LTG-BERT* encoder models on a combined dataset of: a subset of *TinyStories*, story completions generated by GPT-Neo, and a subset of the *BabyLM* dataset. Our experimentation reveals that synthetic data can occasionally offer modest gains, but overall have a negative influence on linguistic understanding. Our work offers an initial study on synthesizing story data in low resource settings and underscores their potential for augmentation in data-constrained language modeling. We publicly release our models and implementation on our GitHub."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="theodoropoulos-etal-2024-berttime">
<titleInfo>
<title>BERTtime Stories: Investigating the Role of Synthetic Story Data in Language Pre-training</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikitas</namePart>
<namePart type="family">Theodoropoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giorgos</namePart>
<namePart type="family">Filandrianos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vassilis</namePart>
<namePart type="family">Lyberatos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Lymperaiou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giorgos</namePart>
<namePart type="family">Stamou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>The 2nd BabyLM Challenge at the 28th Conference on Computational Natural Language Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="given">Y</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aaron</namePart>
<namePart type="family">Mueller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Candace</namePart>
<namePart type="family">Ross</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adina</namePart>
<namePart type="family">Williams</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tal</namePart>
<namePart type="family">Linzen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengxu</namePart>
<namePart type="family">Zhuang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leshem</namePart>
<namePart type="family">Choshen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Warstadt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ethan</namePart>
<namePart type="given">Gotlieb</namePart>
<namePart type="family">Wilcox</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, FL, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe our contribution to the Strict and Strict-Small tracks of the 2nd iteration of the BabyLM Challenge. The shared task is centered around efficient pre-training given data constraints motivated by human development. In response, we study the effect of synthetic story data in language pre-training using *TinyStories*: a recently introduced dataset of short stories. Initially, we train GPT-Neo models on subsets of *TinyStories*, while varying the amount of available data. We find that, even with access to less than 100M words, the models are able to generate high-quality, original completions to a given story, and acquire substantial linguistic knowledge. To measure the effect of synthetic story data, we train *LTG-BERT* encoder models on a combined dataset of: a subset of *TinyStories*, story completions generated by GPT-Neo, and a subset of the *BabyLM* dataset. Our experimentation reveals that synthetic data can occasionally offer modest gains, but overall have a negative influence on linguistic understanding. Our work offers an initial study on synthesizing story data in low resource settings and underscores their potential for augmentation in data-constrained language modeling. We publicly release our models and implementation on our GitHub.</abstract>
<identifier type="citekey">theodoropoulos-etal-2024-berttime</identifier>
<location>
<url>https://aclanthology.org/2024.conll-babylm.28/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>308</start>
<end>323</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BERTtime Stories: Investigating the Role of Synthetic Story Data in Language Pre-training
%A Theodoropoulos, Nikitas
%A Filandrianos, Giorgos
%A Lyberatos, Vassilis
%A Lymperaiou, Maria
%A Stamou, Giorgos
%Y Hu, Michael Y.
%Y Mueller, Aaron
%Y Ross, Candace
%Y Williams, Adina
%Y Linzen, Tal
%Y Zhuang, Chengxu
%Y Choshen, Leshem
%Y Cotterell, Ryan
%Y Warstadt, Alex
%Y Wilcox, Ethan Gotlieb
%S The 2nd BabyLM Challenge at the 28th Conference on Computational Natural Language Learning
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, FL, USA
%F theodoropoulos-etal-2024-berttime
%X We describe our contribution to the Strict and Strict-Small tracks of the 2nd iteration of the BabyLM Challenge. The shared task is centered around efficient pre-training given data constraints motivated by human development. In response, we study the effect of synthetic story data in language pre-training using *TinyStories*: a recently introduced dataset of short stories. Initially, we train GPT-Neo models on subsets of *TinyStories*, while varying the amount of available data. We find that, even with access to less than 100M words, the models are able to generate high-quality, original completions to a given story, and acquire substantial linguistic knowledge. To measure the effect of synthetic story data, we train *LTG-BERT* encoder models on a combined dataset of: a subset of *TinyStories*, story completions generated by GPT-Neo, and a subset of the *BabyLM* dataset. Our experimentation reveals that synthetic data can occasionally offer modest gains, but overall have a negative influence on linguistic understanding. Our work offers an initial study on synthesizing story data in low resource settings and underscores their potential for augmentation in data-constrained language modeling. We publicly release our models and implementation on our GitHub.
%U https://aclanthology.org/2024.conll-babylm.28/
%P 308-323
Markdown (Informal)
[BERTtime Stories: Investigating the Role of Synthetic Story Data in Language Pre-training](https://aclanthology.org/2024.conll-babylm.28/) (Theodoropoulos et al., CoNLL-BabyLM 2024)
ACL